WO2012096238A1 - Continuous casting method for copper or copper alloy - Google Patents

Continuous casting method for copper or copper alloy Download PDF

Info

Publication number
WO2012096238A1
WO2012096238A1 PCT/JP2012/050212 JP2012050212W WO2012096238A1 WO 2012096238 A1 WO2012096238 A1 WO 2012096238A1 JP 2012050212 W JP2012050212 W JP 2012050212W WO 2012096238 A1 WO2012096238 A1 WO 2012096238A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductivity
casting
cast
wheel
Prior art date
Application number
PCT/JP2012/050212
Other languages
French (fr)
Japanese (ja)
Inventor
司 高澤
吉田 浩一
俊郎 阿部
修司 富松
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2012552715A priority Critical patent/JP5863675B2/en
Publication of WO2012096238A1 publication Critical patent/WO2012096238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process

Definitions

  • the present invention relates to a method for producing a copper alloy wire used as a copper wire or an automobile wire harness, a robot cable, and other signal wires.
  • the present invention relates to a belt and a copper or copper alloy suitable for such wire use.
  • the present invention relates to a continuous casting method using a wheel method.
  • an alloy used as a mold is required to have high temperature strength and high thermal conductivity.
  • Cast ring materials currently used in the belt and wheel method are mainly Cu—Cr—Zr alloys and Cu—Ag alloys of high conductivity (EC) (80 to 95% IACS) copper alloy.
  • EC high conductivity
  • a material with high conductivity has good thermal conductivity, excellent ingot cooling capability, and high production capability (see Patent Document 1).
  • pure copper alloys having a conductivity of 60% IACS or higher were cast using an iron casting ring.
  • the iron cast ring has a conductivity of 17% IACS, and its heat transfer coefficient is smaller than that of the copper cast ring, so the cooling capacity is weak and it is difficult to increase the casting speed. Moreover, cracking occurred on the ring surface due to the brittleness of iron, and long-term casting work could not be performed.
  • a mold release material is applied to the inner surface of the casting ring to prevent seizure.
  • this mold release material has a large thermal resistance, if the thickness varies, solidification becomes uneven and ingot defects occur. Will occur.
  • Patent Document 2 a material having a conductivity of 80% IACS or less for the casting ring.
  • Patent Document 3 a material having a low conductivity of 20 to 50% IACS for the mold conductivity is used in order to reduce the amount of heat removal and raise the ingot temperature.
  • an alloy having poor heat conduction is difficult to be cooled, so that solidification is delayed and solidification cracking and shrinkage are likely to occur.
  • the productivity is significantly reduced.
  • alloys with poor thermal conductivity are susceptible to cooling conditions.
  • the heat conduction of the cast alloy referred to here indicates that in a state immediately after solidification.
  • a precipitation type alloy it means heat conduction in a solid solution state.
  • An object of the present invention is to provide a continuous casting method of copper or copper alloy which is excellent in ingot quality and has a high cooling capacity and excellent productivity.
  • the inventors of the present invention created cast rings with various electrical conductivities, and conducted intensive studies on the conditions for achieving both ingot and rough drawn wire surfaces, internal quality, and productivity. Found rate casting ring.
  • the present invention has been completed based on this finding. That is, the present invention provides the following solutions.
  • d Depth of rough line surface defect (mm)
  • r radius of rough drawing wire (mm)
  • the conductivity satisfying the following formula (II-1) with respect to the conductivity a1 (% IACS) of the cast copper or copper alloy as a casting ring The continuous casting method according to (1), wherein a material having a rate b (% IACS) is used.
  • a1 Conductivity of cast copper or copper alloy (% IACS)
  • b Conductivity of cast ring (% IACS)
  • the following formula (for the conductivity a2 (% IACS) of the copper alloy to be cast as a cast ring The continuous casting method according to (1) or (2), wherein a material having a conductivity b (% IACS) that satisfies II-2) is used.
  • the molten metal in the tundish is poured from a pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot.
  • the continuous casting method according to (2) wherein a casting ring having the above is used.
  • the molten metal in the tundish is poured from the pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot.
  • a casting method for continuously pulling out the ingot from the mold, and having a conductivity of the relationship of the above formula (II-2) with respect to a copper alloy to be cast as a casting ring constituting the wheel The continuous casting method according to (3), wherein a ring is used.
  • the continuous casting method of the present invention it is possible to cast an ingot having excellent ingot surface and internal quality, and by using this ingot, high quality copper or copper alloy that can be drawn to an ultrafine wire.
  • the productivity of rough drawing can be increased.
  • FIG. 1 is a schematic explanatory view showing a process of manufacturing a wire in one embodiment of a continuous casting method according to the belt and wheel method of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a preferred embodiment of a belt and wheel casting machine used in the continuous casting method of the present invention.
  • FIG. 3 is an enlarged sectional view taken along line III-III of the casting machine shown in FIG.
  • FIG. 4 is a graph showing the relationship between the conductivity of the alloy to be cast and the conductivity of the casting ring.
  • FIG. 5 is an explanatory diagram schematically showing heat removal when the conductivity of the cast ring is high.
  • FIG. 6 is an explanatory diagram schematically showing heat removal when the conductivity of the casting ring is low.
  • FIG. 7 is an explanatory view schematically showing heat removal when the conductivity of the cast ring is within the scope of the present invention.
  • FIG. 1 is an explanatory view showing an example of the entire process of obtaining an ingot obtained by the continuous casting method of the present invention and further using this ingot.
  • molten copper is obtained in a reducing atmosphere using a shaft furnace 1 to obtain molten copper, and the molten copper is obtained. Copper is continuously led into the tundish 3 through the basket 2.
  • the molten metal 5 in the tundish 3 is poured from a pouring nozzle (spout) 4 into a belt & wheel casting machine 8 constituted by a belt 6 and a wheel 7 which are rotated by a turn roll, cooled and solidified, and ingot.
  • the ingot 9 is continuously drawn out from the mold.
  • the wheel 7 comprises a cast ring and a wheel body.
  • the continuous ingot 10 (two-way roll method or three-way roll method) is rolled to a predetermined wire diameter, and roughing is performed.
  • the wire 11 is used.
  • the rough drawn wire 11 is wound as it is, or further rolled by a wire drawing machine 12 shown in FIG. 1 to be drawn on a pallet 14 as a wire drawing material 13.
  • the installation of the wire drawing mill 12 is arbitrary.
  • FIG. 2 shows a longitudinal sectional view of a preferred embodiment of the belt and wheel casting machine used in the belt and wheel method according to the present invention.
  • FIG. 3 is an enlarged cross-sectional view taken along line III-III in FIG.
  • the belt-and-wheel casting machine of the moving mold type has a wheel body 21, a casting belt 22 having a cooling action that is movable by a drive roll 24, and a casting ring 23 provided on the outer periphery of the wheel body 21.
  • the belt 22 is made of carbon steel or stainless steel. Carbon steel or stainless steel is applied to the wheel body 21. A material having a specific conductivity described later is applied to the casting ring 23.
  • a molten metal (a molten metal of copper or copper alloy, hereinafter simply referred to as a molten metal) 26 is poured from a pouring nozzle 25 to a casting ring 23 on the outer periphery of the wheel 21.
  • the poured molten metal 26 is cooled in a rotating casting ring and gradually solidifies to form an ingot 27.
  • FIG. 2 schematically shows the molten metal solidifying and forming an ingot.
  • the casting speed is preferably 6 to 15 m / min (100 to 250 mm / second, or 10 to 50 ton / hour) which is put into practical use in normal operation, and the ingot cross-sectional area is preferably 1930 mm 2 to 6450 mm. 2 .
  • the depth of the surface defect of the copper or copper alloy rough wire produced by the belt and wheel method satisfies the following formula (I). d ⁇ r ⁇ 0.1 (I) d: Depth of rough line surface defect (mm) r: radius of rough drawing wire (mm)
  • the radius r of the rough drawing line is not particularly limited, but is usually 2 to 12 mm.
  • the measurement method of d was calculated from the correlation between the output of the eddy current flaw detector and the depth of the dummy defect by scanning the rough line with an eddy current flaw detector. If d is too large, disconnection is likely to occur in the wire drawing process, and a lot of skin must be removed in order to remove the defective portion, resulting in a significant reduction in productivity. A method for producing such copper or copper alloy rough drawn wire will be described below.
  • [Casting ring] (conductivity) 5 to 7 are schematic diagrams showing the relationship between the conductivity of the casting ring and the heat removal from the ingot.
  • FIG. 5 shows the case where the conductivity of the casting ring is high
  • FIG. 6 shows the case where the conductivity is low
  • FIG. 7 shows the case where it is within the scope of the present invention.
  • the larger the arrow the higher the heat removal rate.
  • the casting speed is overwhelmingly faster than the known DC casting and horizontal horizontal continuous casting methods, so the solid-liquid coexistence region is long in the casting direction.
  • the thickness of the solidified shell tends to vary at the final solidified site.
  • the cast ring with high conductivity immediately after the molten metal comes into contact with the ring is strongly cooled because it has good heat conduction, so that an air gap due to solidification shrinkage immediately occurs, cooling is inhibited, cooling becomes uneven, It was found that the thickness of the solidified shell was not constant. In particular, an alloy with poor thermal conductivity is more likely to have a temperature distribution within the solidified shell than copper or copper alloy with good thermal conductivity, resulting in uneven thickness of the solidified shell and local stress concentration due to solidification shrinkage and thermal shrinkage. And solidification cracks occur on the ingot surface.
  • the inventors investigated the relationship between the conductivity of the copper or copper alloy to be treated and the conductivity of the cast ring in order to study the cooling conditions for realizing the growth of the solidified shell under stable conditions.
  • the conductivity (% IACS) of the cast ring is as follows depending on whether the product obtained by casting is pure copper or copper alloy. It has become clear that it is preferable to set the value within the range of the formula (II-1) or the following formula (II-2). This relationship is shown in FIG.
  • a1 Conductivity of cast copper or copper alloy (% IACS)
  • b Conductivity of cast ring (% IACS) 0.25 ⁇ a2 + 15 ⁇ b ⁇ 0.25 ⁇ a2 + 35 (II-2)
  • a2 Conductivity of cast copper alloy (% IACS)
  • b Conductivity of cast ring (% IACS) That is, in a preferred embodiment of the present invention, the use of a copper alloy cast ring having a specific conductivity can extremely effectively suppress the formation of an air gap immediately after pouring.
  • the inhibition of heat transfer due to the air gap in the initial stage of solidification can be alleviated and stable cooling can be performed, and as a result, a uniform and stable solidified shell having no fragile portions can be formed.
  • a sufficient cooling rate can be obtained by suppressing the air gap and cooling with a cast ring having a conductivity of a certain value or more, and the occurrence of shrinkage can also be prevented.
  • the nucleation frequency is increased by increasing the supercooling, and the ingot structure near the ingot surface can be refined. With these effects, the surface quality of the ingot can be improved, and cracking of the ingot surface can be suppressed.
  • the surface defect of the rough drawn wire can be suppressed by improving the ingot quality, and the yield can be improved as well as the quality of the rough drawn wire is improved.
  • the heat transfer between the ingot and the casting ring can be changed depending on the amount of release material applied to the ring surface, it is difficult to finely control and is not suitable for stable operation, and is controlled by the conductivity of the casting ring. However, simple and stable casting is possible.
  • the conductivity means a value measured by the measurement method employed in the examples unless otherwise specified. In particular, when producing an alloy having low heat conductivity and low conductivity, the effect of the method of the present invention is remarkable because the cooling condition greatly affects the quality.
  • the alloy materials constituting the cast ring include Cu—Cr—Zr—Al alloy, Cu—Cr alloy, Cu—Be alloy, phosphor bronze, Corson alloy, Cu—Zn alloy, Cu Copper alloys such as —Ni—Sn alloys are preferred.
  • the preferable thing of a typical component composition about each copper alloy is described below.
  • Example 1 As shown in Tables 1-9, cast rings with an ingot cross-sectional area of 3220 mm 2 each having a conductivity of 15-80% IACS were used. The component composition of the alloy material constituting the cast ring is described together with the following examples and comparative examples.
  • TPC Ag-containing tough pitch copper
  • Table 2 0.15% Sn-containing tough pitch copper
  • Table 3 0.7% Sn-containing tough pitch copper
  • Table 4 Cu-0.3% Cr-0.3% Sn
  • Table 5 Cu-0.5% Cr alloy
  • Table 6 Cu-1.5% Ni-1.0% Sn
  • Table 7 Cu-2.5% Ni-0.6% Si Corson alloy
  • Table 8) Cu-1.0%
  • a copper or copper alloy rough drawn wire of Fe-0.3% P was produced by the SCR method and drawn to ⁇ 0.1 mm.
  • Tables 1 to 9 show the quality of the product based on the detection results of the eddy current flaw detector during rough wire drawing, the amount of porosity when observing the longitudinal section of the ingot, and the presence or absence of wire breakage when the wire is drawn with rough wire The result of having performed is shown.
  • the conductivity of the cast ring was determined by measuring the polished surface of the cast ring using AutoSigma 3000 (trade name) manufactured by GE Inspection Technologies.
  • the detection results of the eddy current flaw detector shown in Tables 1 to 9 are detected per ton, where “s” is a minute defect that satisfies the above formula (I) and “l” is a large defect that does not satisfy the above formula (I). The number of each was counted. The deepest (maximum defect depth) of the detected and measured surface defects was defined as the surface defect depth d (mm).
  • the center porosity was obtained by collecting a 1 m length of the ingot, observing the longitudinal section of the center, and measuring the total length of the porosity with a width of 0.5 mm or more.
  • the amount of peel and disconnection is judged as “ ⁇ (impossible” when the ⁇ 8 mm rough drawing wire 5000 kg is peeled with 0 to 0.2 mm thickness on one side and drawn to ⁇ 0.1 mm as shown. ) ”, Those that were not disconnected were evaluated as“ ⁇ (possible) ”.
  • “ ⁇ (excellent)” indicates that the skin peel on one side was 0 mm, and the wire was cut off on one side if the peel on one side was 0 mm.
  • Table 10 shows the lower and upper limits of the conductivity of each copper or copper alloy and the mold conductivity determined by the following formula (II).
  • the conductivity of the copper or copper alloy cast here refers to the conductivity in a solid solution state.
  • the formula (II) is a combination of the formula (II-1) and the formula (II-2), and has the same meaning.
  • a cast ring whose conductivity does not exceed the upper limit is preferable because it prevents the occurrence of fine cracks on the ingot surface and deterioration of the surface quality as described above.
  • an alloy whose cast alloy has a conductivity higher than 60% IACS can avoid disconnection due to skin peeling unless the conductivity of the cast ring is too low.
  • the alloy of 60% IACS or less is broken even with a 0.2 mm peel on one side, and it can be seen that the present invention is particularly effective for an alloy having a cast alloy conductivity of 60% IACS or less.
  • Example-2 It is an Example when changing a casting speed.
  • Various casting rings (molds) with a Cu-2.5% Ni-0.6% Si Corson alloy with an ingot cross-sectional area of 3220 mm 2 and electrical conductivity shown in Table 11 were used, and the casting speed was changed, Otherwise, the casting was performed in the same manner as in Example 1.
  • the pass / fail judgment of the implementation result is “ ⁇ (possible)” for those that did not break when the 5,000-kg rough drawing wire of ⁇ 8 mm was drawn 0.1 mm on one side, and “ ⁇ (impossible)” for those that did not break. evaluated. The results are shown in Table 11.
  • the formation of the air gap can be suppressed, so that it can be cooled strongly rather than the casting ring with high conductivity in the initial stage of solidification, and moreover than the iron casting ring. Due to the high conductivity, the overall cooling capacity could be higher than that of the high conductivity ring. In experiments using casting rings with various electrical conductivity, the casting speed could be increased up to 1.2 times from the current level in the region satisfying formula (II) (that is, formula (II-1) and formula (II-2)). .
  • Example 3 Various copper or copper alloys were cast, rolled, and drawn in the same manner as in Example 1 using cast rings having different electrical conductivities.
  • the crystal grain size ( ⁇ m) of the ingot was measured by the intersection method in the direction perpendicular to the crystal grain growth direction at a location 2 mm from the ingot surface.
  • the evaluation was performed in the same manner as in Example 1.
  • the upper limit value of the casting ring formula (II) (that is, formulas (II-1) and (II-2)) is 60% IACS, and the lower limit value is 16% IACS. The obtained results are shown in Table 12.
  • the supercooling near the mold is increased, the nucleation frequency is increased, and the vicinity of the ingot surface is increased. It has become clear that the ingot structure can be refined and the ingot surface quality can be improved. As a result, surface defects could be reduced, and wire could be drawn without disconnection even with a smaller amount of skin peeling.
  • Table 13 shows the components of the cast ring of each conductivity used.

Abstract

[Problem] To provide a continuous casting method for copper or a copper alloy having a superior ingot quality, having high cooling capacity, and having superior productivity. [Solution] In the continuous casting method for copper or copper alloy, depth (d) (mm) for surface defects in copper or copper alloy drawing stock manufactured by the belt and wheel method satisfies equation (I). d ≤ r × 0.1 (I) d: depth (mm) of surface defects in drawing stock r: radius (mm) of drawing stock

Description

銅又は銅合金の連続鋳造方法Continuous casting method of copper or copper alloy
 本発明は、銅線材または自動車用ワイヤーハーネスやロボット用ケーブルやその他の信号用線などとして使用する銅合金線材の製造方法に関し、特に、そのような線材用途に好適な銅または銅合金をベルト&ホイール法で連続鋳造する方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a copper alloy wire used as a copper wire or an automobile wire harness, a robot cable, and other signal wires. In particular, the present invention relates to a belt and a copper or copper alloy suitable for such wire use. The present invention relates to a continuous casting method using a wheel method.
 一般に鋳型として使用される合金は高温強度と高熱伝導度が要求される。現在ベルト&ホイール法に使用されている鋳造リングの材質は、高導電率(EC)(80~95%IACS)銅合金のCu-Cr-Zr合金やCu-Ag合金が中心である。一般に導電率は熱伝導率と比例するため、高導電率の材料は熱伝導が良く、鋳塊の冷却能力に優れ、高い生産能力を発揮することができる(特許文献1参照)。
 また、ベルト&ホイール鋳造機が開発された初期においては、導電率60%IACS以上の純銅系合金の鋳造を鉄製の鋳造リングを使用して行っていた。鉄製の鋳造リングは導電率が17%IACSであり、銅製の鋳造リングと比較して熱伝達率が小さいために冷却能力が弱く、鋳造速度を上げることが困難であった。また、鉄の脆性によってリング表面に割れ欠陥が発生し、長時間の鋳造作業を行うことはできなかった。
In general, an alloy used as a mold is required to have high temperature strength and high thermal conductivity. Cast ring materials currently used in the belt and wheel method are mainly Cu—Cr—Zr alloys and Cu—Ag alloys of high conductivity (EC) (80 to 95% IACS) copper alloy. In general, since conductivity is proportional to thermal conductivity, a material with high conductivity has good thermal conductivity, excellent ingot cooling capability, and high production capability (see Patent Document 1).
In the early days of development of belt and wheel casting machines, pure copper alloys having a conductivity of 60% IACS or higher were cast using an iron casting ring. The iron cast ring has a conductivity of 17% IACS, and its heat transfer coefficient is smaller than that of the copper cast ring, so the cooling capacity is weak and it is difficult to increase the casting speed. Moreover, cracking occurred on the ring surface due to the brittleness of iron, and long-term casting work could not be performed.
 また、一般的に鋳造リング内面に焼付き防止のために離型材を塗布しているが、この離型材は熱抵抗が大きいため、厚さにバラつきがあると凝固が不均一になり鋳塊欠陥が発生する。この離型材のバラつきの影響を抑制するため、鋳造リングに80%IACS以下の導電率の材料を使用することが提案されている(特許文献2)。
 さらに、Cu-Mg合金の製造においては鋳塊温度が低下しやすく圧延負荷が高くなり機械トラブルや加工割れを招く。そこで奪熱量を低下させて鋳塊温度を高くさせるために鋳型導電率が20~50%IACSの導電率の低い鋳造リングを使用している(特許文献3参照)。
In general, a mold release material is applied to the inner surface of the casting ring to prevent seizure. However, since this mold release material has a large thermal resistance, if the thickness varies, solidification becomes uneven and ingot defects occur. Will occur. In order to suppress the influence of the variation of the release material, it has been proposed to use a material having a conductivity of 80% IACS or less for the casting ring (Patent Document 2).
Further, in the production of Cu—Mg alloy, the ingot temperature tends to be lowered, and the rolling load is increased, resulting in machine troubles and processing cracks. Therefore, a casting ring having a low conductivity of 20 to 50% IACS for the mold conductivity is used in order to reduce the amount of heat removal and raise the ingot temperature (see Patent Document 3).
特開2008-173662号公報Japanese Patent Laid-Open No. 2008-173662 特開2008-266764号公報JP 2008-266664 A 特開2010-188362号公報JP 2010-188362 A
 ところで、銅又は銅合金材料を細径線、極細線まで伸線する場合、微細な表面欠陥や内部欠陥が断線を引き起こすことがあるため、より高品質な荒引線が要求される。一般的に鋳塊表面で発生した割れは、後工程で圧延しても圧着されず残ってしまう。この原因は、鋳塊表面に酸化被膜が形成されてしまうためであり、その対策として皮ムキ工程を途中に入れるが、表面品質の悪い荒引線は皮ムキ量を多くする必要があり、歩留を大きく低下させてしまう。また、鋳塊内部に発生したシュリンケージは軽微なものであれば圧延工程によって圧着され問題ないが、大きなものになると圧着することができず、特に極細線まで伸線する場合に断線を招くおそれがある。このように細径線まで伸線したり、高歩留を達成したり、線表面の品質を上げたりするためには鋳塊の表面、内部品質を良好とする必要がある。
 一般にCu-Ag合金(EC:92%IACS)やCu-Cr-Zr合金(EC:80%IACS)を用いた銅合金製鋳造リングは、溶湯が鋳型に接触した直後は熱伝導が良いため強冷されることにより、凝固初期スキンが凝固収縮することによるエアーギャップで冷却が阻害されてしまう。そのため凝固開始後の冷却が不均一になり凝固シェルの厚さにバラつきが生じ、脆弱な箇所で割れが発生する。特に導電率が低く熱伝導が悪い合金を鋳造する場合には凝固シェル内で温度勾配が生じやすく、凝固時の冷却条件によって鋳塊品質が大きく影響を受ける。
 また、特許文献2や特許文献3のように低導電率の鋳造リングを使用して奪熱量を大きく低減した場合、エアーギャップの生成は抑制できるが鋳造リングが大きな熱抵抗となってしまう。そのため、奪熱量が小さすぎると凝固シェルが薄く脆弱な時間帯が長くなるため、凝固割れを発生しやすくなるという問題点がある。この微細割れは圧延工程を経て荒引線となったときに表面欠陥として現れ、伸線工程で断線する等深刻な問題を引き起こす原因となる。また、この表面欠陥部分を除去するために圧延後に皮ムキすることで歩留も低下してしまう。さらに奪熱量が小さいと鋳塊中央部にシュリンケージが残存しやすく、圧延により圧着できなかった場合には伸線工程で断線を招くことがある。特に、熱伝導が悪い合金は冷却されにくいために凝固が遅れ凝固割れやシュリンケージが発生しやすい。シュリンケージが発生しないようにするために鋳造速度を低下させることが考えられるが、生産性が著しく低下してしまう。
 このように極細線まで伸線可能な高歩留の線材を製造するためには鋳塊の表面、内部品質を向上させる必要があり、そのためには合金の熱伝導に適した冷却条件で鋳造することが重要である。特に熱伝導が悪い合金では冷却条件の影響を受けやすい。ここで言及している鋳造合金の熱伝導とは凝固直後の状態のものを示しており、例えば析出型合金であれば固溶状態の熱伝導のことである。
 本発明は、鋳塊品質に優れ、かつ高い冷却能力を持ち生産性に優れた銅又は銅合金の連続鋳造方法を提供することを課題とする。
By the way, when a copper or copper alloy material is drawn to a thin wire or an ultrathin wire, a fine surface defect or an internal defect may cause disconnection, so that a higher quality rough drawing wire is required. In general, cracks generated on the surface of the ingot remain without being crimped even when rolled in a subsequent process. This is because an oxide film is formed on the surface of the ingot, and as a countermeasure against this, the skin peeling process is put in the middle, but rough drawing lines with poor surface quality require a large amount of skin peeling, and the yield Will be greatly reduced. In addition, if the shrinkage generated inside the ingot is slight, it is crimped by the rolling process, but there is no problem, but if it is large, it cannot be crimped, and may cause disconnection especially when drawing to an ultrafine wire. There is. Thus, in order to draw a thin wire, achieve a high yield, or improve the quality of the wire surface, it is necessary to improve the ingot surface and internal quality.
In general, a copper alloy cast ring using a Cu-Ag alloy (EC: 92% IACS) or a Cu-Cr-Zr alloy (EC: 80% IACS) is strong because heat conduction is good immediately after the molten metal contacts the mold. By being cooled, cooling is hindered by an air gap caused by solidification shrinkage of the initial solidification skin. Therefore, the cooling after the start of solidification becomes uneven, the thickness of the solidified shell varies, and cracks occur at fragile locations. In particular, when casting an alloy having low conductivity and poor thermal conductivity, a temperature gradient is likely to occur in the solidified shell, and the ingot quality is greatly affected by the cooling conditions during solidification.
Moreover, when the amount of heat removal is greatly reduced by using a low-conductivity cast ring as in Patent Document 2 and Patent Document 3, generation of an air gap can be suppressed, but the cast ring has a large thermal resistance. For this reason, if the amount of heat absorbed is too small, the solidified shell is thin and the fragile time period becomes long, so that there is a problem that solidification cracking is likely to occur. This fine crack appears as a surface defect when it becomes a rough drawn wire through a rolling process, and causes a serious problem such as disconnection in the wire drawing process. In addition, the yield is lowered by peeling after rolling to remove the surface defect portion. Furthermore, if the amount of heat removal is small, the shrinkage is likely to remain in the center part of the ingot, and if the crimping cannot be performed by rolling, disconnection may be caused in the wire drawing process. In particular, an alloy having poor heat conduction is difficult to be cooled, so that solidification is delayed and solidification cracking and shrinkage are likely to occur. Although it is conceivable to reduce the casting speed in order to prevent the occurrence of shrinkage, the productivity is significantly reduced.
In order to produce a high-yield wire that can be drawn to ultrafine wires in this way, it is necessary to improve the surface and internal quality of the ingot. This is very important. In particular, alloys with poor thermal conductivity are susceptible to cooling conditions. The heat conduction of the cast alloy referred to here indicates that in a state immediately after solidification. For example, in the case of a precipitation type alloy, it means heat conduction in a solid solution state.
An object of the present invention is to provide a continuous casting method of copper or copper alloy which is excellent in ingot quality and has a high cooling capacity and excellent productivity.
 本発明者らは、上記課題の達成のため、さまざまな導電率の鋳造リングを作成し、鋳塊と荒引線の表面、内部品質と生産性を両立する条件について鋭意検討を行い、所定の導電率の鋳造リングを見出した。本発明は、この知見に基づいて完成するに至ったものである。
 すなわち本発明は、以下の解決手段を提供するものである。
In order to achieve the above-mentioned problems, the inventors of the present invention created cast rings with various electrical conductivities, and conducted intensive studies on the conditions for achieving both ingot and rough drawn wire surfaces, internal quality, and productivity. Found rate casting ring. The present invention has been completed based on this finding.
That is, the present invention provides the following solutions.
(1)ベルト&ホイール法で製造する銅又は銅合金荒引線の表面欠陥の深さd(mm)が下記の式(I)を満たす銅又は銅合金の連続鋳造方法。
 d≦r×0.1       (I)
  d:荒引線表面欠陥の深さ(mm)
  r:荒引線の半径(mm)
(2)ベルト&ホイール法での銅又は銅合金の鋳造において、鋳造リングとして、鋳造される銅又は銅合金の導電率a1(%IACS)に対し下記の式(II-1)を満足する導電率b(%IACS)を有する材料を使用する(1)記載の連続鋳造方法。
 0.25×a1+15≦b<0.25×a1+35  (II-1)
  a1:鋳造される銅又は銅合金の導電率(%IACS)
  b:鋳造リングの導電率(%IACS)
(3)固溶状態の導電率が60%IACS以下の銅合金のベルト&ホイール法での鋳造において、鋳造リングとして、鋳造される銅合金の導電率a2(%IACS)に対し下記の式(II-2)を満足する導電率b(%IACS)を有する材料を使用する(1)又は(2)記載の連続鋳造方法。
 0.25×a2+15≦b<0.25×a2+35  (II-2)
  a2:鋳造される銅合金の導電率(%IACS)
  b:鋳造リングの導電率(%IACS)
(4)前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却凝固させて鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、鋳造される銅又は銅合金に対して前記の式(II-1)の関係の導電率を有する鋳造リングを用いることを特徴とする(2)に記載の連続鋳造方法。
(5)前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却凝固させて鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、鋳造される銅合金に対して前記の式(II-2)の関係の導電率を有する鋳造リングを用いることを特徴とする(3)に記載の連続鋳造方法。
(1) A continuous casting method of copper or copper alloy in which the depth d (mm) of the surface defect of the copper or copper alloy rough wire drawn by the belt and wheel method satisfies the following formula (I).
d ≦ r × 0.1 (I)
d: Depth of rough line surface defect (mm)
r: radius of rough drawing wire (mm)
(2) In the casting of copper or copper alloy by the belt and wheel method, the conductivity satisfying the following formula (II-1) with respect to the conductivity a1 (% IACS) of the cast copper or copper alloy as a casting ring The continuous casting method according to (1), wherein a material having a rate b (% IACS) is used.
0.25 × a1 + 15 ≦ b <0.25 × a1 + 35 (II-1)
a1: Conductivity of cast copper or copper alloy (% IACS)
b: Conductivity of cast ring (% IACS)
(3) In the casting of a copper alloy having a solid solution conductivity of 60% IACS or less by the belt & wheel method, the following formula (for the conductivity a2 (% IACS) of the copper alloy to be cast as a cast ring: The continuous casting method according to (1) or (2), wherein a material having a conductivity b (% IACS) that satisfies II-2) is used.
0.25 × a2 + 15 ≦ b <0.25 × a2 + 35 (II-2)
a2: Conductivity of cast copper alloy (% IACS)
b: Conductivity of cast ring (% IACS)
(4) In the belt and wheel method, the molten metal in the tundish is poured from a pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot. A casting method for continuously pulling out the ingot from the mold, wherein the cast ring constituting the wheel has a conductivity represented by the formula (II-1) with respect to copper or copper alloy to be cast. The continuous casting method according to (2), wherein a casting ring having the above is used.
(5) In the belt and wheel method, the molten metal in the tundish is poured from the pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot. A casting method for continuously pulling out the ingot from the mold, and having a conductivity of the relationship of the above formula (II-2) with respect to a copper alloy to be cast as a casting ring constituting the wheel The continuous casting method according to (3), wherein a ring is used.
 本発明の連続鋳造方法によれば、鋳塊表面と内部品質に優れた鋳塊を鋳造することができ、この鋳塊を用いることにより極細線まで伸線可能である高品質な銅又は銅合金荒引線の生産性を高めることができる。 According to the continuous casting method of the present invention, it is possible to cast an ingot having excellent ingot surface and internal quality, and by using this ingot, high quality copper or copper alloy that can be drawn to an ultrafine wire. The productivity of rough drawing can be increased.
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。 The above and other features and advantages of the present invention will become more apparent from the following description with reference to the accompanying drawings as appropriate.
図1は、本発明のベルト&ホイール法での連続鋳造方法の一実施態様で、線材を製造する工程を示す概略説明図である。FIG. 1 is a schematic explanatory view showing a process of manufacturing a wire in one embodiment of a continuous casting method according to the belt and wheel method of the present invention. 図2は、本発明の連続鋳造方法で使用するベルト&ホイール鋳造機の好ましい実施形態を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a preferred embodiment of a belt and wheel casting machine used in the continuous casting method of the present invention. 図3は、図2に示した鋳造機のIII-III線断面の拡大断面図である。FIG. 3 is an enlarged sectional view taken along line III-III of the casting machine shown in FIG. 図4は、鋳造する合金の導電率と鋳造リングの導電率との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the conductivity of the alloy to be cast and the conductivity of the casting ring. 図5は、鋳造リングの導電率が高い場合の奪熱を模式的にあらわす説明図である。FIG. 5 is an explanatory diagram schematically showing heat removal when the conductivity of the cast ring is high. 図6は、鋳造リングの導電率が低い場合の奪熱を模式的にあらわす説明図である。FIG. 6 is an explanatory diagram schematically showing heat removal when the conductivity of the casting ring is low. 図7は、鋳造リングの導電率が本発明の範囲内である場合の奪熱を模式的にあらわす説明図である。FIG. 7 is an explanatory view schematically showing heat removal when the conductivity of the cast ring is within the scope of the present invention.
[鋳造方法・鋳造装置]
 図1は本発明の連続鋳造法によって得る鋳塊を得、これをさらに線材とする全工程の一例を示す説明図である。この銅(又は銅合金)線材の製造方法において、例えば図1に示すように、電気銅の地金等を、シャフト炉1を用いて還元性雰囲気で溶解して溶銅を得て、該溶銅を樋2を経てタンディッシュ3内に連続的に導く。該タンディッシュ3内の溶湯5を注湯ノズル(スパウト)4から、ターンロールにより回動するベルト6とホイール7により構成されたベルト&ホイール鋳造機8内に注入し、冷却凝固させて鋳塊9とし、鋳塊9を前記鋳型から連続的に引き出す。同図で区別して示していないが、前記ホイール7は鋳造リングとホイール本体とからなる。この凝固した鋳塊9の温度をできるだけ低下させない状態(好ましくは800℃以上)で、連続圧延機10(2方ロール方式、又は3方ロール方式)で所定の線径まで圧延を行い、荒引線材11とする。その荒引線材11はそのまま巻き取られるか、または図1に示される伸線圧延機12で更に圧延し、伸線材13としパレット14上に巻き取られる。図1において、伸線圧延機12の設置は任意である。
[Casting method / Casting equipment]
FIG. 1 is an explanatory view showing an example of the entire process of obtaining an ingot obtained by the continuous casting method of the present invention and further using this ingot. In this method of manufacturing a copper (or copper alloy) wire, for example, as shown in FIG. 1, molten copper is obtained in a reducing atmosphere using a shaft furnace 1 to obtain molten copper, and the molten copper is obtained. Copper is continuously led into the tundish 3 through the basket 2. The molten metal 5 in the tundish 3 is poured from a pouring nozzle (spout) 4 into a belt & wheel casting machine 8 constituted by a belt 6 and a wheel 7 which are rotated by a turn roll, cooled and solidified, and ingot. The ingot 9 is continuously drawn out from the mold. Although not shown separately in the figure, the wheel 7 comprises a cast ring and a wheel body. In a state where the temperature of the solidified ingot 9 is not lowered as much as possible (preferably 800 ° C. or higher), the continuous ingot 10 (two-way roll method or three-way roll method) is rolled to a predetermined wire diameter, and roughing is performed. The wire 11 is used. The rough drawn wire 11 is wound as it is, or further rolled by a wire drawing machine 12 shown in FIG. 1 to be drawn on a pallet 14 as a wire drawing material 13. In FIG. 1, the installation of the wire drawing mill 12 is arbitrary.
 次に、本発明に係るベルト&ホイール法で利用するベルト&ホイール鋳造機の好ましい実施形態について、その縦断面図を図2に示す。図3は図2のIII-III線断面の拡大断面図である。
 移動鋳型式であるベルト&ホイール鋳造機は、ホイール本体21、駆動ロール24で可動する冷却作用をもつ鋳造ベルト22およびホイール本体21の外周に設けられた鋳造リング23を有する。上記ベルト22は炭素鋼またはステンレスが適用されている。ホイール本体21には炭素鋼またはステンレスが適用されている。鋳造リング23には後述する特定の導電率を有する材料が適用されている。注湯ノズル25から金属溶湯(銅又は銅合金の溶湯、以下単に金属溶湯とも言う。)26をホイール21の外周の鋳造リング23へ注湯する。注湯された金属溶湯26は回転移動する鋳造リング内で冷却し、徐々に凝固し鋳塊27を形成する。図2では溶湯が凝固し、鋳塊を形成する様子を模式的に示している。鋳造速度は、好ましくは、通常の操業において実用化されている6~15m/分(100~250mm/秒、あるいは、10~50ton/時)であり、鋳塊断面積は好ましくは1930mm~6450mmである。
Next, FIG. 2 shows a longitudinal sectional view of a preferred embodiment of the belt and wheel casting machine used in the belt and wheel method according to the present invention. FIG. 3 is an enlarged cross-sectional view taken along line III-III in FIG.
The belt-and-wheel casting machine of the moving mold type has a wheel body 21, a casting belt 22 having a cooling action that is movable by a drive roll 24, and a casting ring 23 provided on the outer periphery of the wheel body 21. The belt 22 is made of carbon steel or stainless steel. Carbon steel or stainless steel is applied to the wheel body 21. A material having a specific conductivity described later is applied to the casting ring 23. A molten metal (a molten metal of copper or copper alloy, hereinafter simply referred to as a molten metal) 26 is poured from a pouring nozzle 25 to a casting ring 23 on the outer periphery of the wheel 21. The poured molten metal 26 is cooled in a rotating casting ring and gradually solidifies to form an ingot 27. FIG. 2 schematically shows the molten metal solidifying and forming an ingot. The casting speed is preferably 6 to 15 m / min (100 to 250 mm / second, or 10 to 50 ton / hour) which is put into practical use in normal operation, and the ingot cross-sectional area is preferably 1930 mm 2 to 6450 mm. 2 .
[表面欠陥の深さ]
 本発明の方法においては、ベルト&ホイール法で製造される銅又は銅合金荒引線の表面欠陥の深さが下記(I)式を満たすようにするのが好ましい。
 d≦r×0.1       (I)
  d:荒引線表面欠陥の深さ(mm)
  r:荒引線の半径(mm)
 この式を満たすことにより、鋳塊または/および荒引線の表面欠陥に起因する伸線工程での断線を低減することができ、極細線まで伸線可能な高歩留の線材を製造できる。荒引線の半径rは特に制限はないが、通常2~12mmとする。dの測定方法は荒引線を渦流探傷器で走査し、渦流探傷器の出力とダミー欠陥の深さとの相関から算出した。
 dが大きすぎると、伸線工程において断線が発生しやすくなり、欠陥部分を除去するために皮ムキを多く行わなければならなくなり生産性が著しく低下してしまう。
 この様な銅又は銅合金荒引線とする製造方法を以下に説明する。
[Depth of surface defects]
In the method of the present invention, it is preferable that the depth of the surface defect of the copper or copper alloy rough wire produced by the belt and wheel method satisfies the following formula (I).
d ≦ r × 0.1 (I)
d: Depth of rough line surface defect (mm)
r: radius of rough drawing wire (mm)
By satisfying this equation, disconnection in the wire drawing process caused by surface defects of the ingot or / and the rough drawn wire can be reduced, and a high-yield wire that can be drawn to an ultrafine wire can be manufactured. The radius r of the rough drawing line is not particularly limited, but is usually 2 to 12 mm. The measurement method of d was calculated from the correlation between the output of the eddy current flaw detector and the depth of the dummy defect by scanning the rough line with an eddy current flaw detector.
If d is too large, disconnection is likely to occur in the wire drawing process, and a lot of skin must be removed in order to remove the defective portion, resulting in a significant reduction in productivity.
A method for producing such copper or copper alloy rough drawn wire will be described below.
[鋳造リング]
(導電率)
 図5から図7に、鋳造リングの導電率と鋳塊からの奪熱との関係の模式図を示す。鋳造リングの導電率が高い場合を図5に、低い場合を図6に、本発明の範囲内である場合を図7にそれぞれ示す。矢印が大きいほうが、奪熱速度が大きいことを示す。従来のベルト&ホイール法での連続鋳造では、周知のDC鋳造や水平横型連続鋳造方式に比較して圧倒的に鋳造速度が速いために、固液共存領域は鋳造方向に長く存在し、銅や銅合金において最終凝固部位にも凝固シェルの厚さのバラつきが発生しやすくなる。そして、高導電率の鋳造リングは溶湯がリングに接触した直後は熱伝導が良いため強冷されることにより、すぐに凝固収縮によるエアーギャップが発生し冷却が阻害され、冷却が不均一となり、凝固シェルの厚さが一定しないことが分かった。特に、熱伝導が悪い合金では熱伝導が良い銅又は銅合金と比較して凝固シェル内の温度分布が生じやすく、凝固シェルの厚さの不均一や凝固収縮と熱収縮による局所的な応力集中が発生し鋳塊表面において凝固割れが起きる。
 また、鋳造リングの導電率が低すぎる場合はエアーギャップの生成は抑制することができるが、鋳造リングが熱抵抗となってしまうため全体的な冷却能力は小さくなる。そのため、凝固シェルの成長が遅くなりシェルの強度が脆弱な時間帯が長くなってしまうために凝固割れが発生しやすくなる。また、凝固が遅れて最終凝固部が注湯部の高さに近づくと押し湯の効果が弱くなりシュリンケージが発生する。熱伝導が悪い合金では特に冷却しにくいためにより顕著に悪影響が現れる。これらの原因により鋳塊の表面と内部欠陥が発生し、荒引線の欠陥となり伸線での断線を招くものとなる。
[Casting ring]
(conductivity)
5 to 7 are schematic diagrams showing the relationship between the conductivity of the casting ring and the heat removal from the ingot. FIG. 5 shows the case where the conductivity of the casting ring is high, FIG. 6 shows the case where the conductivity is low, and FIG. 7 shows the case where it is within the scope of the present invention. The larger the arrow, the higher the heat removal rate. In the conventional continuous casting by the belt and wheel method, the casting speed is overwhelmingly faster than the known DC casting and horizontal horizontal continuous casting methods, so the solid-liquid coexistence region is long in the casting direction. In a copper alloy, the thickness of the solidified shell tends to vary at the final solidified site. And the cast ring with high conductivity immediately after the molten metal comes into contact with the ring is strongly cooled because it has good heat conduction, so that an air gap due to solidification shrinkage immediately occurs, cooling is inhibited, cooling becomes uneven, It was found that the thickness of the solidified shell was not constant. In particular, an alloy with poor thermal conductivity is more likely to have a temperature distribution within the solidified shell than copper or copper alloy with good thermal conductivity, resulting in uneven thickness of the solidified shell and local stress concentration due to solidification shrinkage and thermal shrinkage. And solidification cracks occur on the ingot surface.
In addition, when the conductivity of the cast ring is too low, the generation of the air gap can be suppressed, but the cast ring becomes a thermal resistance, so the overall cooling capacity is reduced. Therefore, the growth of the solidified shell is slowed down and the time zone in which the strength of the shell is fragile becomes long, so that a solidified crack is likely to occur. Further, when the solidification is delayed and the final solidified portion approaches the height of the pouring portion, the effect of the hot water becomes weak and shrinkage occurs. Alloys with poor thermal conductivity are particularly difficult to cool because they are difficult to cool. Due to these causes, defects on the surface of the ingot and internal defects are generated, resulting in defects in the rough drawing wire, leading to disconnection in wire drawing.
 そこで発明者らは、安定した条件での凝固シェルの成長を実現させるための冷却条件を検討するため、処理される銅または銅合金の導電率と鋳造リングの導電率との関係を調べた。
 導電率の異なる各種の純銅又は銅合金を用いて検討した結果、鋳造リングの導電率(%IACS)は、鋳造されて得られるものが純銅であるのかあるいは銅合金であるのかに応じて、下記(II-1)式又は下記(II-2)式の範囲に設定することが好ましいことが明らかとなった。この関係を図4に示す。
 0.25×a1+15≦b<0.25×a1+35  (II-1)
  a1:鋳造される銅又は銅合金の導電率(%IACS)
  b:鋳造リングの導電率(%IACS)
 0.25×a2+15≦b<0.25×a2+35  (II-2)
  a2:鋳造される銅合金の導電率(%IACS)
  b:鋳造リングの導電率(%IACS)
 すなわち本発明の好ましい実施態様では、特定の導電率の銅合金製鋳造リングを使用することで注湯直後のエアーギャップの生成を極めて効果的に抑制することができる。そのため凝固初期のエアーギャップによる熱伝達の阻害が緩和され安定した冷却をすることができ、その結果脆弱な箇所のない性質の均一な安定した凝固シェルを形成することができる。エアーギャップを抑制し、さらに一定値以上の導電率の鋳造リングで冷却することで十分な冷却速度を得ることができ、シュリンケージの発生も防ぐことができる。また、過冷却が大きくなることで核生成頻度が高くなり、鋳塊表面近傍の鋳塊組織を微細化することができる。これらの効果により鋳塊の表面品質を向上させることができ、鋳塊表面の割れを抑制することができる。さらに、鋳塊品質の改善によって荒引線の表面欠陥を抑制することができ、荒引線の高品質化とともに歩留向上を実現することができる。
 リング表面に塗布する離型材の量によっても鋳塊と鋳造リング間の熱伝達を変えることができるが、細かな制御が難しく安定した操業には不向きであり、鋳造リングの導電率でコントロールする方が簡単かつ安定した鋳造が可能である。
Therefore, the inventors investigated the relationship between the conductivity of the copper or copper alloy to be treated and the conductivity of the cast ring in order to study the cooling conditions for realizing the growth of the solidified shell under stable conditions.
As a result of studying using various pure copper or copper alloys having different electrical conductivity, the conductivity (% IACS) of the cast ring is as follows depending on whether the product obtained by casting is pure copper or copper alloy. It has become clear that it is preferable to set the value within the range of the formula (II-1) or the following formula (II-2). This relationship is shown in FIG.
0.25 × a1 + 15 ≦ b <0.25 × a1 + 35 (II-1)
a1: Conductivity of cast copper or copper alloy (% IACS)
b: Conductivity of cast ring (% IACS)
0.25 × a2 + 15 ≦ b <0.25 × a2 + 35 (II-2)
a2: Conductivity of cast copper alloy (% IACS)
b: Conductivity of cast ring (% IACS)
That is, in a preferred embodiment of the present invention, the use of a copper alloy cast ring having a specific conductivity can extremely effectively suppress the formation of an air gap immediately after pouring. Therefore, the inhibition of heat transfer due to the air gap in the initial stage of solidification can be alleviated and stable cooling can be performed, and as a result, a uniform and stable solidified shell having no fragile portions can be formed. A sufficient cooling rate can be obtained by suppressing the air gap and cooling with a cast ring having a conductivity of a certain value or more, and the occurrence of shrinkage can also be prevented. Moreover, the nucleation frequency is increased by increasing the supercooling, and the ingot structure near the ingot surface can be refined. With these effects, the surface quality of the ingot can be improved, and cracking of the ingot surface can be suppressed. Furthermore, the surface defect of the rough drawn wire can be suppressed by improving the ingot quality, and the yield can be improved as well as the quality of the rough drawn wire is improved.
Although the heat transfer between the ingot and the casting ring can be changed depending on the amount of release material applied to the ring surface, it is difficult to finely control and is not suitable for stable operation, and is controlled by the conductivity of the casting ring. However, simple and stable casting is possible.
 上記(II-1)式又は(II-2)式において、上記下限値以上であることにより、冷却効率を十分に確保することができ鋳塊内部及び表面品質を良好にすることができ好ましい。上記上限値以下であることにより、鋳塊表面の品質を良好に維持することができ好ましい。なお、本発明において導電率は特に断らない限り実施例で採用した測定方法により測定した値を言う。
 特に熱伝導が悪い導電率の低い合金を製造する場合は冷却条件が品質に大きく影響を及ぼすため本発明方法による効果は顕著である。
In the above formula (II-1) or (II-2), it is preferable that it is not less than the above lower limit value, because sufficient cooling efficiency can be ensured and the inside of the ingot and the surface quality can be improved. By being below the upper limit, the quality of the ingot surface can be favorably maintained, which is preferable. In the present invention, the conductivity means a value measured by the measurement method employed in the examples unless otherwise specified.
In particular, when producing an alloy having low heat conductivity and low conductivity, the effect of the method of the present invention is remarkable because the cooling condition greatly affects the quality.
(合金)
 上記のような点を考慮すると、鋳造リングを構成する合金材料としては、Cu-Cr-Zr-Al合金、Cu-Cr合金、Cu-Be合金、りん青銅、コルソン合金、Cu-Zn合金、Cu-Ni-Sn合金などの銅合金が好ましい。それぞれの銅合金について代表的な成分組成の好ましいものを下記に記載する。
・Cu-Cr(-Zr-Al)合金
 Cr 0.2質量%~2.0質量%(好ましくは0.3質量%~1.5質量%、より好ましくは0.5質量%~1.5質量%)
 Zr 0質量%~0.5質量%(好ましくは0.08質量%~0.30質量%)
 Al 0質量%~3.0質量%(好ましくは0.3質量%~2.0質量%)
 残部銅及び不可避不純物
・Cu-Be合金
 Be 0.3質量%~3.0質量%(好ましくは0.5質量%~2.0質量%)
 Co 0.1質量%~1.0質量%(好ましくは0.2質量%~0.6質量%)
 残部銅及び不可避不純物
・りん青銅
 Sn 1質量%~8質量%(好ましくは1質量%~6質量%)
 P  0.03質量%~0.4質量%(好ましくは0.03質量%~0.1質量%)
 残部銅及び不可避不純物
・コルソン合金
 Ni 1質量%~5質量%(好ましくは1.1質量%~5質量%)
 Si 0.2質量%~1.3質量%(好ましくは0.3質量%~1.3質量%)
 残部銅及び不可避不純物
・Cu-Zn合金
 Zn 10質量%~50質量%(好ましくは20質量%~45質量%)
 残部銅及び不可避不純物
・Cu-Ni-Sn合金
 Ni 0.1質量%~5質量%(好ましくは1質量%~2質量%)
 Sn 0.1質量%~1質量%(好ましくは0.3質量%~0.5質量%)
 残部銅及び不可避不純物
(alloy)
Considering the above points, the alloy materials constituting the cast ring include Cu—Cr—Zr—Al alloy, Cu—Cr alloy, Cu—Be alloy, phosphor bronze, Corson alloy, Cu—Zn alloy, Cu Copper alloys such as —Ni—Sn alloys are preferred. The preferable thing of a typical component composition about each copper alloy is described below.
Cu—Cr (—Zr—Al) alloy Cr 0.2 mass% to 2.0 mass% (preferably 0.3 mass% to 1.5 mass%, more preferably 0.5 mass% to 1.5 mass%) mass%)
Zr 0 mass% to 0.5 mass% (preferably 0.08 mass% to 0.30 mass%)
Al 0 mass% to 3.0 mass% (preferably 0.3 mass% to 2.0 mass%)
Remaining copper and inevitable impurities / Cu—Be alloy Be 0.3 mass% to 3.0 mass% (preferably 0.5 mass% to 2.0 mass%)
Co 0.1% to 1.0% by mass (preferably 0.2% to 0.6% by mass)
Remaining copper and inevitable impurities / phosphor bronze Sn 1% to 8% by mass (preferably 1% to 6% by mass)
P 0.03 mass% to 0.4 mass% (preferably 0.03 mass% to 0.1 mass%)
Remaining copper and inevitable impurities / Corson alloy Ni 1 mass% to 5 mass% (preferably 1.1 mass% to 5 mass%)
Si 0.2% to 1.3% by mass (preferably 0.3% to 1.3% by mass)
Remaining copper and inevitable impurities Cu-Zn alloy Zn 10% to 50% by mass (preferably 20% to 45% by mass)
Remaining copper and inevitable impurities / Cu—Ni—Sn alloy Ni 0.1 mass% to 5 mass% (preferably 1 mass% to 2 mass%)
Sn 0.1% to 1% by mass (preferably 0.3% to 0.5% by mass)
Remaining copper and inevitable impurities
[鋳造される純銅系材料]
 上記のようなベルト&ホイール法における特性及びその鋳造時の現象を考慮し、本発明の鋳造リングを適用した鋳造方法においては、下記のような純銅、例えばタフピッチ銅若しくは無酸素銅を鋳造することが好ましい。
・銀含有タフピッチ銅若しくは無酸素銅
 Ag 0.03~0.20質量%
・スズ含有タフピッチ銅若しくは無酸素銅
 Sn 0.05~0.70質量%
[Pure copper-based material to be cast]
In consideration of the characteristics in the belt and wheel method as described above and the phenomenon at the time of casting, in the casting method to which the casting ring of the present invention is applied, the following pure copper, for example, tough pitch copper or oxygen-free copper is cast. Is preferred.
-Silver-containing tough pitch copper or oxygen-free copper Ag 0.03-0.20 mass%
-Tin-containing tough pitch copper or oxygen-free copper Sn 0.05-0.70 mass%
[鋳造される銅合金]
 上記のようなベルト&ホイール法における特性及びその鋳造時の現象を考慮し、本発明の鋳造リングを適用した鋳造方法においては、下記のような組成の銅合金を鋳造することが特に効果的であり好ましい。
・Cu-Sn合金
 Sn 0.2質量%~8質量%
 残部銅及び不可避不純物
・コルソン合金
 Ni 1.0質量%~5.0質量%
 Si 0.2質量%~1.3質量%
 残部銅及び不可避不純物
・Cu-Cr合金
 Cr 0.1質量%~1.5質量%
 残部銅及び不可避不純物
・Cu-Cr-Zr合金
 Cr 0.1質量%~1.5質量%
 Zr 0.01質量%~0.5質量%
 残部銅及び不可避不純物
・Cu-Cr-Sn合金
 Cr 0.1質量%~1.5質量%
 Sn 0.01質量%~0.5質量%
 残部銅及び不可避不純物
・Cu-Zr合金
 Zr 0.01質量%~2.0質量%
 残部銅及び不可避不純物
・Cu-Fe-P合金
 Fe 0.1質量%~1.5質量%
 P 0.01質量%~0.5質量%
 残部銅及び不可避不純物
・Cu-Ni-Sn合金
 Ni 0.2質量%~2.5質量%
 Sn 0.01質量%~1.0質量%
 残部銅及び不可避不純物
[Copper alloy cast]
In consideration of the characteristics in the belt and wheel method as described above and the phenomenon at the time of casting, in the casting method to which the casting ring of the present invention is applied, it is particularly effective to cast a copper alloy having the following composition. It is preferable.
Cu-Sn alloy Sn 0.2 mass% to 8 mass%
Remaining copper and inevitable impurities / Corson alloy Ni 1.0% by mass to 5.0% by mass
Si 0.2 mass% to 1.3 mass%
Remaining copper and inevitable impurities ・ Cu-Cr alloy Cr 0.1 mass% to 1.5 mass%
Remaining copper and inevitable impurities / Cu—Cr—Zr alloy Cr 0.1 mass% to 1.5 mass%
Zr 0.01% to 0.5% by mass
Remaining copper and inevitable impurities ・ Cu-Cr-Sn alloy Cr 0.1 mass%-1.5 mass%
Sn 0.01% to 0.5% by mass
Remaining copper and inevitable impurities ・ Cu-Zr alloy Zr 0.01% to 2.0% by weight
Remaining copper and inevitable impurities / Cu—Fe—P alloy Fe 0.1 mass% to 1.5 mass%
P 0.01% to 0.5% by mass
Remaining copper and inevitable impurities ・ Cu-Ni-Sn alloy Ni 0.2 mass% to 2.5 mass%
Sn 0.01% to 1.0% by mass
Remaining copper and inevitable impurities
 次に、本発明を実施例に基づいてさらに詳細に説明するが、たとえばサンプルおよびその作製条件などは具体的一例にすぎず、本発明はこれに制限されるものではない。なお以下の説明中、特に断らない限り組成を示す%は質量%を示す。
[実施例1]
 表1~9に示すように、各15~80%IACSの導電率を有する鋳塊断面積3220mmの鋳造リングを使用した。この鋳造リングを構成する合金材の成分組成は以下の実施例・比較例と併せ最後にまとめて記載する。鋳造速度20ton/時でΦ8mmの0.03%Ag含有のタフピッチ銅(TPC)(表1参照)、0.15%Sn含有のタフピッチ銅(表2参照)、0.3%Sn含有のタフピッチ銅(表3参照)、0.7%Sn含有のタフピッチ銅(表4参照)、Cu-0.3%Cr-0.3%Sn(表5参照)、Cu-0.5%Cr合金(表6参照)、Cu-1.5%Ni-1.0%Sn(表7参照)、Cu-2.5%Ni-0.6%Siコルソン合金(表8参照)およびCu-1.0%Fe-0.3%P(表9参照)の銅又は銅合金荒引線をSCR法で製造し、Φ0.1mmまで伸線を行った。表1~9に、荒引線製造時の渦流探傷器の検出結果と鋳塊縦断面を観察した時のポロシティ量、荒引線皮ムキしての伸線した時の断線の有無により製品の良否判定を行った結果を示す。
Next, the present invention will be described in more detail on the basis of examples. However, for example, the sample and the production conditions thereof are only specific examples, and the present invention is not limited thereto. In the following description, “%” indicating a composition means “% by mass” unless otherwise specified.
[Example 1]
As shown in Tables 1-9, cast rings with an ingot cross-sectional area of 3220 mm 2 each having a conductivity of 15-80% IACS were used. The component composition of the alloy material constituting the cast ring is described together with the following examples and comparative examples. 0.08% Ag-containing tough pitch copper (TPC) (see Table 1), 0.15% Sn-containing tough pitch copper (see Table 2), and 0.3% Sn-containing tough pitch copper at a casting speed of 20 ton / hour (See Table 3), 0.7% Sn-containing tough pitch copper (See Table 4), Cu-0.3% Cr-0.3% Sn (See Table 5), Cu-0.5% Cr alloy (Table 6), Cu-1.5% Ni-1.0% Sn (see Table 7), Cu-2.5% Ni-0.6% Si Corson alloy (see Table 8) and Cu-1.0% A copper or copper alloy rough drawn wire of Fe-0.3% P (see Table 9) was produced by the SCR method and drawn to Φ0.1 mm. Tables 1 to 9 show the quality of the product based on the detection results of the eddy current flaw detector during rough wire drawing, the amount of porosity when observing the longitudinal section of the ingot, and the presence or absence of wire breakage when the wire is drawn with rough wire The result of having performed is shown.
[導電率の測定]
 鋳造リングの導電率はGEインスペクション・テクノロジーズ社製のAutoSigma3000(商品名)を使用して鋳造リングの研磨面を測定した。
[Measurement of conductivity]
The conductivity of the cast ring was determined by measuring the polished surface of the cast ring using AutoSigma 3000 (trade name) manufactured by GE Inspection Technologies.
 表1~9に示す渦流探傷器の検出結果については、上記式(I)を満たす微小な欠陥を「s」、式(I)を満たさない大きな欠陥を「l」とし、1ton当りで検出されたそれぞれの個数をカウントした。また、検出・測定された表面欠陥のうち最も深いもの(最大欠陥深さ)を表面欠陥深さd(mm)とした。
 センターポロシティは鋳塊を長さ1m採取して中央部縦断面を観察し、幅0.5mm以上のポロシティの延べ長さを測定した。また、皮ムキ量と断線判定は、Φ8mm荒引線5000kgを表示のように片側0~0.2mm厚さで皮ムキをしてΦ0.1mmまで伸線した時、断線したものを「×(不可)」、断線しなかったものを「○(可)」と評価した。
 表1~9の最右欄の「評価」において、片側の皮ムキが0mmのときに断線しなかったものを「◎(優)」、片側の皮ムキが0mmのときに断線し、片側の皮ムキが0.1mmのときに断線しなかったものを「○(良)」、片側の皮ムキが0.1mmのときに断線し、片側の皮ムキが0.2mmのときに断線しなかったものを「△(可)」、片側の皮ムキが0.2mmのときに断線したものを「×(不可)」と評価した。
The detection results of the eddy current flaw detector shown in Tables 1 to 9 are detected per ton, where “s” is a minute defect that satisfies the above formula (I) and “l” is a large defect that does not satisfy the above formula (I). The number of each was counted. The deepest (maximum defect depth) of the detected and measured surface defects was defined as the surface defect depth d (mm).
The center porosity was obtained by collecting a 1 m length of the ingot, observing the longitudinal section of the center, and measuring the total length of the porosity with a width of 0.5 mm or more. In addition, the amount of peel and disconnection is judged as “× (impossible” when the Φ8 mm rough drawing wire 5000 kg is peeled with 0 to 0.2 mm thickness on one side and drawn to Φ0.1 mm as shown. ) ”, Those that were not disconnected were evaluated as“ ◯ (possible) ”.
In “Evaluation” in the rightmost column of Tables 1 to 9, “◎ (excellent)” indicates that the skin peel on one side was 0 mm, and the wire was cut off on one side if the peel on one side was 0 mm. What was not broken when the peel was 0.1 mm, “Good”, broken when the peel on one side was 0.1 mm, and not broken when the peel on one side was 0.2 mm The sample was evaluated as “Δ (possible)”, and the one disconnected when the peel on one side was 0.2 mm was evaluated as “x (impossible)”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表10に各銅又は銅合金の導電率と下記式(II)で定める鋳型導電率の下限値と上限値を示す。ここで鋳造される銅又は銅合金の導電率とは固溶状態の導電率を指す。この式(II)は前記式(II-1)と式(II-2)を併せて示したものであり、これらと同義である。
 0.25×a+15≦b<0.25×a+35  (II)
  a:鋳造される銅又は銅合金の導電率(%IACS)
  b:鋳造リングの導電率(%IACS)
 いずれの合金も式(II)(つまり式(II-1)と式(II-2))の条件を満たす鋳造リングを使ったとき最大欠陥深さが式(I)を満たし、探傷結果、断線判定ともに優れた結果となった。また、導電率が下限未満の鋳造リングを使った場合は冷却能力が不十分であったため鋳塊中心部への溶湯供給が足りず、これが大きなシュリンケージとなって断線不良の原因となった。導電率が上限を越えない鋳造リングでは、前述のように鋳塊表面に微細割れが発生し表面品質が悪化することが防がれるため好ましいことが分かる。また、式(II)を満たさない領域に関して、鋳造合金の導電率が60%IACSより高い合金は、鋳造リングの導電率が極端に低すぎることがなければ、皮ムキによって断線を免れることができたが、60%IACS以下の合金は片側0.2mmの皮ムキでも断線しており、本発明は鋳造合金導電率が60%IACS以下の合金に対して特に有効であることが分かる。
Table 10 shows the lower and upper limits of the conductivity of each copper or copper alloy and the mold conductivity determined by the following formula (II). The conductivity of the copper or copper alloy cast here refers to the conductivity in a solid solution state. The formula (II) is a combination of the formula (II-1) and the formula (II-2), and has the same meaning.
0.25 × a + 15 ≦ b <0.25 × a + 35 (II)
a: Conductivity (% IACS) of cast copper or copper alloy
b: Conductivity of cast ring (% IACS)
In any alloy, when using a casting ring that satisfies the condition of the formula (II) (that is, the formula (II-1) and the formula (II-2)), the maximum defect depth satisfies the formula (I). Both results were excellent. In addition, when a cast ring having a conductivity lower than the lower limit was used, the cooling capacity was insufficient, so that the molten metal was not supplied to the center of the ingot, which caused a large shrinkage and caused a disconnection failure. It can be seen that a cast ring whose conductivity does not exceed the upper limit is preferable because it prevents the occurrence of fine cracks on the ingot surface and deterioration of the surface quality as described above. Also, regarding the region that does not satisfy the formula (II), an alloy whose cast alloy has a conductivity higher than 60% IACS can avoid disconnection due to skin peeling unless the conductivity of the cast ring is too low. However, the alloy of 60% IACS or less is broken even with a 0.2 mm peel on one side, and it can be seen that the present invention is particularly effective for an alloy having a cast alloy conductivity of 60% IACS or less.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[実施例-2]
 鋳造速度を変化させたときの実施例である。
 Cu-2.5%Ni-0.6%Siのコルソン合金を鋳塊断面積3220mmで、表11に示す導電率を有する各種の鋳造リング(鋳型)を使用し、鋳造速度を変更し、それ以外は実施例1と同様に鋳造した。
 80%IACSの鋳造リングで通常の鋳造速度V(200mm/秒)を基準とし、実施した鋳造速度Vにより、相対速度である鋳造速度Vrを評価した。Vr=V/Vである。
 鋳造速度が冷却速度に対して速すぎると鋳塊温度が高くなりすぎて鋳塊強度が低下して割れが生じたり、鋳塊中心部に大きなシュリンケージが残存したりして断線の原因となる。そこで、実施結果の良否判定はΦ8mmの荒引線5000kgを片側0.1mm皮ムキして伸線した時に断線しなかったものを「○(可)」、断線したものを「×(不可)」と評価した。
 結果を表11に示した。
[Example-2]
It is an Example when changing a casting speed.
Various casting rings (molds) with a Cu-2.5% Ni-0.6% Si Corson alloy with an ingot cross-sectional area of 3220 mm 2 and electrical conductivity shown in Table 11 were used, and the casting speed was changed, Otherwise, the casting was performed in the same manner as in Example 1.
The casting speed Vr, which is a relative speed, was evaluated based on the casting speed V performed with a casting ring of 80% IACS based on the normal casting speed V 0 (200 mm / second). It is Vr = V / V 0.
If the casting speed is too high with respect to the cooling speed, the ingot temperature becomes too high, the ingot strength decreases and cracks occur, or a large shrinkage remains in the center of the ingot, causing disconnection. . Therefore, the pass / fail judgment of the implementation result is “○ (possible)” for those that did not break when the 5,000-kg rough drawing wire of Φ8 mm was drawn 0.1 mm on one side, and “× (impossible)” for those that did not break. evaluated.
The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 本発明で規定する範囲の導電率を有する鋳造リングでは、エアーギャップの生成を抑制できることで、凝固初期段階では高導電率の鋳造リングよりもむしろ強力に冷却することができ、さらに鉄製鋳造リングより導電率が高いため、全体の冷却能力を高導電率リングより高くすることができた。各種導電率の鋳造リングを使った実験で式(II)(つまり式(II-1)と式(II-2))を満たす領域で現状より最大1.2倍鋳造速度を上げることができた。 In the casting ring having the electrical conductivity in the range specified in the present invention, the formation of the air gap can be suppressed, so that it can be cooled strongly rather than the casting ring with high conductivity in the initial stage of solidification, and moreover than the iron casting ring. Due to the high conductivity, the overall cooling capacity could be higher than that of the high conductivity ring. In experiments using casting rings with various electrical conductivity, the casting speed could be increased up to 1.2 times from the current level in the region satisfying formula (II) (that is, formula (II-1) and formula (II-2)). .
[実施例3]
 各種の銅又は銅合金を導電率の異なる鋳造リングを使用して実施例1と同様に鋳造、圧延、伸線を行なった。鋳塊の結晶粒径(μm)を鋳塊表面から2mmの場所の結晶粒の成長方向と垂直方向に交線法で測定した。また、実施例1と同様に評価を行った。なお、鋳造リングの式(II)(つまり式(II-1)と式(II-2))の上限値は60%IACS、下限値は16%IACSである。
 得られた結果を表12に示した。
[Example 3]
Various copper or copper alloys were cast, rolled, and drawn in the same manner as in Example 1 using cast rings having different electrical conductivities. The crystal grain size (μm) of the ingot was measured by the intersection method in the direction perpendicular to the crystal grain growth direction at a location 2 mm from the ingot surface. The evaluation was performed in the same manner as in Example 1. The upper limit value of the casting ring formula (II) (that is, formulas (II-1) and (II-2)) is 60% IACS, and the lower limit value is 16% IACS.
The obtained results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 導電率が高すぎる比較例に比べて、本発明で規定する範囲の導電率の鋳造リングを使用することで、鋳型近傍の過冷却が大きくなって核生成頻度が高くなり、鋳塊表面近傍の鋳塊組織が微細化し鋳塊表面品質を向上させることができるのが明らかになった。その結果、表面欠陥を軽減することができ、より少ない皮ムキ量でも断線することなく伸線することができた。 Compared to comparative examples with too high conductivity, by using a casting ring with a conductivity in the range specified in the present invention, the supercooling near the mold is increased, the nucleation frequency is increased, and the vicinity of the ingot surface is increased. It has become clear that the ingot structure can be refined and the ingot surface quality can be improved. As a result, surface defects could be reduced, and wire could be drawn without disconnection even with a smaller amount of skin peeling.
 使用した各導電率の鋳造リングの成分を表13に示す。 Table 13 shows the components of the cast ring of each conductivity used.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2011年1月11日に日本国で特許出願された特願2011-003452に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2011-003452 filed in Japan on January 11, 2011, the contents of which are incorporated herein by reference. Capture as part.
  1 シャフト炉
  2 樋 
  3 タンディッシュ
  4 スパウト
  5 溶湯
  6 ベルト
  7 ホイール
  8 ベルト&ホイール鋳造機
  9 鋳塊
 10 連続圧延機
 11 荒引線材
 12 伸線圧延機
 13 伸線材
 14 パレット
 21 ホイール
 22 ベルト
 23 鋳造リング
 24 駆動ロール
 25 注湯ノズル
 26 溶湯
 27 鋳塊
1 Shaft furnace 2 樋
3 Tundish 4 Spout 5 Melt 6 Belt 7 Wheel 8 Belt & Wheel Casting Machine 9 Ingot 10 Continuous Rolling Machine 11 Rough Drawing Wire 12 Wire Drawing Roller 13 Wire Drawing Material 14 Pallet 21 Wheel 22 Belt 23 Casting Ring 24 Drive Roll 25 Note Hot water nozzle 26 Molten metal 27 Ingot

Claims (5)

  1.  ベルト&ホイール法で製造する銅又は銅合金荒引線の表面欠陥の深さd(mm)が下記の式(I)を満たす銅又は銅合金の連続鋳造方法。
     d≦r×0.1       (I)
      d:荒引線表面欠陥の深さ(mm)
      r:荒引線の半径(mm)
    A continuous casting method of copper or copper alloy in which the depth d (mm) of the surface defect of the copper or copper alloy rough wire drawn by the belt and wheel method satisfies the following formula (I).
    d ≦ r × 0.1 (I)
    d: Depth of rough line surface defect (mm)
    r: radius of rough drawing wire (mm)
  2.  ベルト&ホイール法での銅又は銅合金の鋳造において、鋳造リングとして、鋳造される銅又は銅合金の導電率a1(%IACS)に対し下記の式(II-1)を満足する導電率b(%IACS)を有する材料を使用する請求項1記載の連続鋳造方法。
     0.25×a1+15≦b<0.25×a1+35  (II-1)
      a1:鋳造される銅又は銅合金の導電率(%IACS)
      b:鋳造リングの導電率(%IACS)
    In the casting of copper or copper alloy by the belt-and-wheel method, the conductivity b satisfying the following formula (II-1) with respect to the conductivity a1 (% IACS) of the cast copper or copper alloy as a casting ring ( The continuous casting method according to claim 1, wherein a material having% IACS) is used.
    0.25 × a1 + 15 ≦ b <0.25 × a1 + 35 (II-1)
    a1: Conductivity of cast copper or copper alloy (% IACS)
    b: Conductivity of cast ring (% IACS)
  3.  固溶状態の導電率が60%IACS以下の銅合金のベルト&ホイール法での鋳造において、鋳造リングとして、鋳造される銅合金の導電率a2(%IACS)に対し下記の式(II-2)を満足する導電率b(%IACS)を有する材料を使用する請求項1又は2記載の連続鋳造方法。
     0.25×a2+15≦b<0.25×a2+35  (II-2)
      a2:鋳造される銅合金の導電率(%IACS)
      b:鋳造リングの導電率(%IACS)
    In casting of a copper alloy having a solid solution conductivity of 60% IACS or less by the belt & wheel method, the following formula (II-2) is applied to the conductivity a2 (% IACS) of the cast copper alloy as a cast ring. The continuous casting method according to claim 1 or 2, wherein a material having an electrical conductivity b (% IACS) satisfying (1) is used.
    0.25 × a2 + 15 ≦ b <0.25 × a2 + 35 (II-2)
    a2: Conductivity of cast copper alloy (% IACS)
    b: Conductivity of cast ring (% IACS)
  4.  前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却凝固させて鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、鋳造される銅又は銅合金に対して前記の式(II-1)の関係の導電率を有する鋳造リングを用いることを特徴とする請求項2に記載の連続鋳造方法。 In the belt and wheel method, the molten metal in the tundish is poured from a pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot. A casting method for continuously pulling a lump from the mold, wherein the casting ring constituting the wheel has a conductivity of the relationship of the above formula (II-1) with respect to copper or copper alloy to be cast The continuous casting method according to claim 2, wherein:
  5.  前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却凝固させて鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、鋳造される銅合金に対して前記の式(II-2)の関係の導電率を有する鋳造リングを用いることを特徴とする請求項3に記載の連続鋳造方法。 In the belt and wheel method, the molten metal in the tundish is poured from a pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot. In this casting method, a lump is continuously drawn out from the mold, and a casting ring having the conductivity of the above formula (II-2) with respect to a copper alloy to be cast is used as a casting ring constituting the wheel. The continuous casting method according to claim 3.
PCT/JP2012/050212 2011-01-11 2012-01-06 Continuous casting method for copper or copper alloy WO2012096238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012552715A JP5863675B2 (en) 2011-01-11 2012-01-06 Continuous casting method of copper or copper alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011003452 2011-01-11
JP2011-003452 2011-01-11

Publications (1)

Publication Number Publication Date
WO2012096238A1 true WO2012096238A1 (en) 2012-07-19

Family

ID=46507138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050212 WO2012096238A1 (en) 2011-01-11 2012-01-06 Continuous casting method for copper or copper alloy

Country Status (3)

Country Link
JP (1) JP5863675B2 (en)
TW (1) TWI556888B (en)
WO (1) WO2012096238A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203127A1 (en) 2020-03-30 2021-09-30 Ngk Insulators, Ltd. Beryllium / copper alloy ring and process for its manufacture
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237260A (en) * 2006-03-09 2007-09-20 Furukawa Electric Co Ltd:The Rough-drawn wire rod of oxygen-free copper or oxygen-free copper alloy having excellent stripping property
JP2008266764A (en) * 2006-06-01 2008-11-06 Furukawa Electric Co Ltd:The Manufacturing method of copper alloy wire rod, and copper alloy wire rod
JP2009226419A (en) * 2008-03-19 2009-10-08 Furukawa Electric Co Ltd:The Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod
JP2010188362A (en) * 2009-02-16 2010-09-02 Mitsubishi Materials Corp METHOD AND APPARATUS OF MANUFACTURING Cu-Mg BASED ROUGH DRAWING WIRE
WO2011004888A1 (en) * 2009-07-10 2011-01-13 古河電気工業株式会社 Method for continuous casting of bronze or bronze alloy and casting ring used therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237260A (en) * 2006-03-09 2007-09-20 Furukawa Electric Co Ltd:The Rough-drawn wire rod of oxygen-free copper or oxygen-free copper alloy having excellent stripping property
JP2008266764A (en) * 2006-06-01 2008-11-06 Furukawa Electric Co Ltd:The Manufacturing method of copper alloy wire rod, and copper alloy wire rod
JP2009226419A (en) * 2008-03-19 2009-10-08 Furukawa Electric Co Ltd:The Method for producing copper or copper alloy wire rod and copper or copper alloy wire rod
JP2010188362A (en) * 2009-02-16 2010-09-02 Mitsubishi Materials Corp METHOD AND APPARATUS OF MANUFACTURING Cu-Mg BASED ROUGH DRAWING WIRE
WO2011004888A1 (en) * 2009-07-10 2011-01-13 古河電気工業株式会社 Method for continuous casting of bronze or bronze alloy and casting ring used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021203127A1 (en) 2020-03-30 2021-09-30 Ngk Insulators, Ltd. Beryllium / copper alloy ring and process for its manufacture
US11746404B2 (en) 2020-03-30 2023-09-05 Ngk Insulators, Ltd. Beryllium copper alloy ring and method for producing same
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Also Published As

Publication number Publication date
TW201233465A (en) 2012-08-16
TWI556888B (en) 2016-11-11
JPWO2012096238A1 (en) 2014-06-09
JP5863675B2 (en) 2016-02-17

Similar Documents

Publication Publication Date Title
US20210332467A1 (en) High-efficiency and short-process method for preparing a high-strength and high-conductivity copper alloy
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP5975493B2 (en) Method for producing copper alloy wire
JP5515313B2 (en) Method for producing Cu-Mg-based rough wire
JP5202921B2 (en) Copper alloy wire manufacturing method, copper alloy wire and copper alloy wire manufacturing apparatus
JP5975494B2 (en) Method for producing copper alloy foil
CN111496200B (en) Horizontal continuous casting method of copper alloy
CN111394609B (en) Continuous extrusion process of high-strength high-conductivity copper alloy, application of continuous extrusion process and die material
JP5863675B2 (en) Continuous casting method of copper or copper alloy
WO2011004888A1 (en) Method for continuous casting of bronze or bronze alloy and casting ring used therefor
US4927467A (en) Method for producing thin plate of phosphor bronze
Hwang et al. Comparison of phosphor bronze metal sheet produced by twin roll casting and horizontal continuous casting
JP2011012300A (en) Copper alloy and method for producing copper alloy
JPH0112579B2 (en)
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP2010242149A (en) Magnesium alloy and method for manufacturing magnesium alloy plate
JP2006239760A (en) Method for producing copper alloy
JP4934438B2 (en) Method and apparatus for producing oxygen-free copper wire or copper alloy wire
JPH06134552A (en) Method for continuously casting cu-ni-sn alloy
JPH04289136A (en) Production of steel product
JP2011012301A (en) Copper alloy and method for producing copper alloy
Smirnov et al. Application of a casting-rolling unit in a combined process of production of high-quality products from copper scrap
JPH04105753A (en) Continuous casting method
JPH0154147B2 (en)
JP2010007179A (en) METHOD FOR MANUFACTURING Zn-Sn-Mg-BASED ALLOY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734169

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552715

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12734169

Country of ref document: EP

Kind code of ref document: A1