WO2011004888A1 - Method for continuous casting of bronze or bronze alloy and casting ring used therefor - Google Patents

Method for continuous casting of bronze or bronze alloy and casting ring used therefor Download PDF

Info

Publication number
WO2011004888A1
WO2011004888A1 PCT/JP2010/061682 JP2010061682W WO2011004888A1 WO 2011004888 A1 WO2011004888 A1 WO 2011004888A1 JP 2010061682 W JP2010061682 W JP 2010061682W WO 2011004888 A1 WO2011004888 A1 WO 2011004888A1
Authority
WO
WIPO (PCT)
Prior art keywords
casting
conductivity
iacs
wheel
ring
Prior art date
Application number
PCT/JP2010/061682
Other languages
French (fr)
Japanese (ja)
Inventor
司 高澤
浩一 吉田
俊郎 阿部
修司 富松
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2011004888A1 publication Critical patent/WO2011004888A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the present invention relates to the manufacture of a copper alloy wire used as a copper wire or an automobile wire harness, a robot cable, and other signal wires, and in particular, a method of continuously casting copper or a copper alloy by a belt and wheel method and the same It relates to the casting ring used.
  • an alloy used as a mold is required to have high temperature strength and high thermal conductivity.
  • the material of the cast ring currently used in the belt and wheel method is mainly a Cu—Cr—Zr alloy or a Cu—Ag alloy of a high conductivity (80 to 95% IACS) copper alloy with good heat conduction. Since the heat conduction is good, the ingot cooling capacity is excellent, and high production capacity can be exhibited (see Patent Document 1).
  • casting was performed using iron casting rings.
  • the iron cast ring has a conductivity of 17% IACS, and the heat transfer coefficient is small compared to the copper cast ring, so the cooling capacity is weak and it is difficult to increase the casting speed. Moreover, cracking occurred on the ring surface due to the brittleness of iron, and long-term casting work could not be performed.
  • a unique example is the use of a copper alloy mold material with a low conductivity such as Cu-Cr-Zr-Al, but this mold is not intended for changing cooling conditions but is used for electromagnetic stirring. (For example, refer to Patent Document 2).
  • a copper alloy cast ring using a Cu—Ag alloy (EC: 92% IACS) or a Cu—Cr—Zr alloy (EC: 80% IACS) is strongly cooled because the heat conduction is good immediately after the molten metal contacts the mold.
  • cooling of the initial solidified skin is hindered by an air gap caused by solidification shrinkage. Therefore, the cooling after the start of solidification becomes uneven, the thickness of the solidified shell varies, and cracks occur at fragile locations.
  • This fine crack appears as a surface defect when it becomes a rough drawn wire through a rolling process, and causes a serious problem such as disconnection in the wire drawing process.
  • the yield is also lowered by peeling after rolling to remove the surface defect portion.
  • an object of the present invention is to provide a continuous casting method of copper or copper alloy having a high cooling capacity, excellent productivity, and excellent ingot surface quality, and a casting ring used in the method.
  • the present invention solves the problem by the following solution means.
  • the belt & wheel type continuous casting apparatus comprises a pouring nozzle for injecting molten metal in a tundish, and a belt & wheel casting machine constituted by a belt and a wheel rotated by a turn roll, The continuous casting apparatus according to (5), wherein the wheel includes a wheel main body and a casting ring having the specific conductivity.
  • a continuous casting method of copper or copper alloy having high cooling capacity, excellent productivity, and excellent ingot surface quality, and a casting ring used in the method are provided. be able to.
  • FIG. 1 It is a schematic explanatory drawing which shows the process of manufacturing a wire in one embodiment of the continuous casting method by the belt & wheel method of this invention. It is sectional drawing which shows typically preferable embodiment of the belt & wheel casting machine used with the continuous casting method of this invention. It is an expanded sectional view of the III-III line cross section of the casting machine shown in FIG. It is a graph which shows the relationship between the electrical conductivity of the alloy to cast, and the electrical conductivity of a casting ring.
  • FIG. 1 is an explanatory view showing an example of all steps in which an ingot obtained by the continuous casting method of the present invention is further used as a wire.
  • the method for producing a copper (or copper alloy) wire is obtained by dissolving molten copper in a reducing atmosphere using a shaft furnace 1 to obtain molten copper. 2 is continuously led into the tundish 3.
  • the molten metal 5 in the tundish 3 is poured from the pouring nozzle 4 into a belt & wheel casting machine 8 constituted by a belt 6 and a wheel 7 that are rotated by a turn roll, and cooled and solidified to form an ingot 9.
  • the ingot 9 is continuously drawn out from the mold.
  • the wheel 7 comprises a cast ring and a wheel body.
  • the continuous ingot 10 (two-way roll method or three-way roll method) is rolled to a predetermined wire diameter, and roughing is performed.
  • the wire 11 is used.
  • the rough drawn wire 11 is wound as it is, or further rolled by a wire drawing machine 12 shown in FIG. In FIG. 1, the installation of the wire drawing mill 12 is arbitrary.
  • FIG. 2 shows a longitudinal sectional view of a preferred embodiment of the belt and wheel casting machine used in the belt and wheel method according to the present invention.
  • FIG. 3 is an enlarged cross-sectional view taken along line III-III in FIG.
  • the belt-and-wheel casting machine of the moving mold type has a wheel body 21, a casting belt 22 having a cooling action that is movable by a drive roll 24, and a casting ring 23 provided on the outer periphery of the wheel body 21.
  • the belt 22 is made of carbon steel or stainless steel. Carbon steel or stainless steel is applied to the wheel body 21. A material having a specific conductivity described later is applied to the casting ring 23.
  • the molten metal 26 is poured from the pouring nozzle 25 into the casting ring 23 on the outer periphery of the wheel 21.
  • the poured molten metal 26 is cooled in a rotating casting ring and gradually solidifies to form an ingot 27.
  • FIG. 2 schematically shows that the molten metal solidifies to form an ingot.
  • the casting speed is 6 to 15 m / min (100 to 250 mm / sec) which is put into practical use in normal operation, and the ingot cross-sectional area is 1930 mm 2 to 6450 mm 2 .
  • the inventors consider lowering the conductivity of the casting ring, and the casting ring with low conductivity, that is, poor heat conduction, has a low solidification rate, so that it is possible to perform initial cooling more stably.
  • the relationship between the conductivity of the copper or copper alloy to be treated and the conductivity of the cast ring was investigated.
  • the electrical conductivity (% IACS) of the cast ring is preferably 20% IACS or more and 50% IACS or less. That is, in a preferred embodiment of the present invention, the use of a specific low-conductivity copper alloy casting ring can extremely effectively suppress the formation of an air gap immediately after pouring. Therefore, the heat transfer hindrance due to the air gap in the initial stage of solidification is alleviated and stable cooling can be performed, and as a result, a uniform and stable solidified shell having no fragile portions can be formed. Moreover, the nucleation frequency is increased by increasing the supercooling, and the ingot structure near the ingot surface can be refined.
  • the surface quality of the ingot can be improved, and cracking of the ingot surface can be suppressed. Furthermore, the surface defect of the rough drawn wire can be suppressed by improving the ingot quality, and the yield can be improved as well as the quality of the rough drawn wire is improved.
  • the conductivity means a value measured by the measurement method employed in the examples unless otherwise specified.
  • the conductivity between the cast alloy and the cast ring is preferably set in the range of the following formula (II). 20 ⁇ b ⁇ 0.225 ⁇ a + 27.5 (II) a: Cast alloy conductivity (% IACS) b: Casting ring conductivity (% IACS)
  • the technical significance of the lower limit is as described above.
  • the mathematical formula on the right side constituting the upper limit is derived experimentally, and below this value, it is possible to produce a good cast alloy without peeling and without disconnection.
  • the alloy materials constituting the cast ring include Cu—Cr—Zr—Al alloy, Cu—Cr alloy, Cu—Be alloy, phosphor bronze, Corson alloy, Cu—Zn alloy and the like. preferable. Preferred examples of typical component compositions for each alloy are described below.
  • Example 1 As shown in Tables 1 to 3, cast rings having an ingot cross-sectional area of 3220 mm 2 each having a conductivity of 13 to 80% IACS were used. The component composition of the alloy constituting the cast ring is described together with the following examples and comparative examples. Tough pitch copper containing 0.7% Sn (see Table 1), Cu-1% Cr alloy (see Table 2), and Cu-2.5% Ni-0.6% Si Corson alloy at a casting speed of 20 ton / hour. The alloy rough drawn wire (see Table 3) was manufactured by the SCR method and drawn to ⁇ 0.1 mm. Tables 1 to 3 show the detection results of the eddy current flaw detector at the time of rough drawing wire manufacture and the results of product quality judgment based on the presence or absence of disconnection when the wire was drawn with rough drawing wire.
  • the conductivity of the casting ring was measured on the polished surface of the casting ring using an AutoSigma 3000 manufactured by GE Inspection Technologies. The conductivity of the cast ring was measured at room temperature (23 ° C.).
  • the amount of peel and disconnection judgment is “ ⁇ ” when the ⁇ 8 mm rough drawing wire 5000 kg is peeled off at 0 to 0.3 mm thickness on one side and drawn to ⁇ 0.1 mm as shown. Those that were not disconnected were evaluated as “ ⁇ ”.
  • “ ⁇ ” indicates that the skin peel on one side was 0 mm or 0.1 mm
  • “0” indicates that the skin peel on one side was 0 mm and 0.1 mm.
  • a case where the wire was broken and the wire was not broken when the peel on one side was 0.2 mm was evaluated as “ ⁇ ”, and a wire which was broken when the peel on one side was 0.2 mm was evaluated as “x”.
  • Example 2 For various alloys having the conductivity shown in Table 4, casting and wire drawing were performed under the same conditions as in Example 1 using a cast ring having the indicated conductivity, and evaluation was performed in the same manner as in Example 1. Went. Of these results, those with particularly good results and those with poor results are shown in Table 4 and FIG.
  • the “more desirable conductivity b” shown in Table 4 is a value obtained by applying the alloy conductivity a to (0.225 ⁇ a + 27.5) of the following formula (II), whereas “casting ring conductivity” "Rate” is the conductivity of the cast ring actually used.
  • Example 3 It is an Example when changing a casting speed.
  • Various casting rings with a Cu-2.5% Ni-0.6% Si Corson alloy with an ingot cross-sectional area of 3220 mm 2 and electrical conductivity shown in Table 5 were used, and the casting speed was changed. Casting was carried out in the same manner as in Example 1.
  • the formation of the air gap can be suppressed, so that it can be cooled strongly rather than the casting ring with high conductivity in the initial stage of solidification, and moreover than the iron casting ring. Due to the high conductivity, the overall cooling capacity could be higher than that of the high conductivity ring. In experiments using cast rings of various conductivity, the casting speed could be increased up to 1.2 times from the current level in the range of 20-50% IACS.
  • Example 4 Various alloys were cast, rolled and drawn in the same manner as in Example 1 using cast rings having different electrical conductivities.
  • the crystal grain size ( ⁇ m) of the ingot was measured by the intersection method in the direction perpendicular to the crystal grain growth direction at a location 2 mm from the ingot surface.
  • the evaluation was performed in the same manner as in Example 1. The results obtained are shown in Table 6.
  • the supercooling near the mold increases and the nucleation frequency increases, and the ingot structure near the ingot surface becomes finer. It became clear that the ingot surface quality could be improved. As a result, surface defects could be reduced, and wire could be drawn without disconnection even with a smaller amount of skin peeling.
  • the conductivity (unit:% IACS) and composition of the cast ring used in Examples 1 to 3 are shown below.
  • This composition is an example when the cast ring is formed of a copper alloy, and may be formed of another copper alloy or the like as long as the electrical conductivity condition is satisfied.
  • Table 7 corresponds to Table 3
  • Table 8 corresponds to Table 4
  • Table 9 corresponds to Table 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

Disclosed is a method for continuous casting of bronze or bronze alloy which has a high cooling capacity and superior productivity and which improves ingot surface quality. Also disclosed is a casting ring used for said method. The continuous casting method uses a casting ring having an electrical conductivity of 20 to 50%IACS, inclusive, when casting bronze or a bronze alloy using the belt and wheel method.

Description

銅又は銅合金の連続鋳造方法およびそれに使用する鋳造リングCopper or copper alloy continuous casting method and casting ring used therefor
 本発明は、銅線材または自動車用ワイヤーハーネスやロボット用ケーブルやその他の信号用線などとして使用する銅合金線材の製造に関し、特に、銅または銅合金をベルト&ホイール法で連続鋳造する方法およびそれに利用する鋳造リングに関する。 The present invention relates to the manufacture of a copper alloy wire used as a copper wire or an automobile wire harness, a robot cable, and other signal wires, and in particular, a method of continuously casting copper or a copper alloy by a belt and wheel method and the same It relates to the casting ring used.
 一般に鋳型として使用される合金は高温強度と高熱伝導度が要求される。現在ベルト&ホイール法に使用されている鋳造リングの材質は、熱伝導の良い高導電率(80~95%IACS)銅合金のCu-Cr-Zr合金やCu-Ag合金が中心である。熱伝導が良いため鋳塊の冷却能力に優れ、高い生産能力を発揮することができる(特許文献1参照)。
 また、ベルト&ホイール鋳造機が開発された初期においては、鉄製の鋳造リングを使用して鋳造を行っていた。鉄製の鋳造リングは導電率が17%IACSであり、銅の鋳造リングと比較して熱伝達率が小さいために冷却能力が弱く、鋳造速度を上げることが困難でであった。また、鉄の脆性によってリング表面に割れ欠陥が発生し、長時間の鋳造作業を行うことはできなかった。
In general, an alloy used as a mold is required to have high temperature strength and high thermal conductivity. The material of the cast ring currently used in the belt and wheel method is mainly a Cu—Cr—Zr alloy or a Cu—Ag alloy of a high conductivity (80 to 95% IACS) copper alloy with good heat conduction. Since the heat conduction is good, the ingot cooling capacity is excellent, and high production capacity can be exhibited (see Patent Document 1).
In the early days of development of belt and wheel casting machines, casting was performed using iron casting rings. The iron cast ring has a conductivity of 17% IACS, and the heat transfer coefficient is small compared to the copper cast ring, so the cooling capacity is weak and it is difficult to increase the casting speed. Moreover, cracking occurred on the ring surface due to the brittleness of iron, and long-term casting work could not be performed.
 特異な例としてCu-Cr-Zr-Alのような低導電率の銅合金鋳型材料を使用することがあるが、この鋳型は冷却条件変更を目的とするものではなく電磁攪拌用として使われているのみである(例えば、特許文献2参照)。 A unique example is the use of a copper alloy mold material with a low conductivity such as Cu-Cr-Zr-Al, but this mold is not intended for changing cooling conditions but is used for electromagnetic stirring. (For example, refer to Patent Document 2).
特開2008-173662号公報JP 2008-173662 A 特開昭63-145732号公報JP 63-145732 A
 一般にCu-Ag合金(EC:92%IACS)やCu-Cr-Zr合金(EC:80%IACS)を用いた銅合金鋳造リングは溶湯が鋳型に接触した直後は熱伝導が良いため強冷されることにより、凝固初期スキンが凝固収縮によるエアーギャップで冷却が阻害されてしまう。そのため凝固開始後の冷却が不均一になり凝固シェルの厚さにバラつきが生じ、脆弱な箇所で割れが発生する。この微細割れは圧延工程を経て荒引線となったときに表面欠陥として現れ、伸線工程で断線する等深刻な問題を引き起こす原因となる。また、この表面欠陥部分を除去するために圧延後皮ムキすることで歩留も低下してしまう。
 このように高導電率の銅合金鋳造リングは鋳塊の生産性に優れるが鋳塊の表面品質に問題がある。
 そこで本発明は、高い冷却能力を持ち生産性に優れ、かつ鋳塊表面品質に優れた、銅又は銅合金の連続鋳造方法およびその方法に使用する鋳造リングを提供することを目的とする。
Generally, a copper alloy cast ring using a Cu—Ag alloy (EC: 92% IACS) or a Cu—Cr—Zr alloy (EC: 80% IACS) is strongly cooled because the heat conduction is good immediately after the molten metal contacts the mold. As a result, cooling of the initial solidified skin is hindered by an air gap caused by solidification shrinkage. Therefore, the cooling after the start of solidification becomes uneven, the thickness of the solidified shell varies, and cracks occur at fragile locations. This fine crack appears as a surface defect when it becomes a rough drawn wire through a rolling process, and causes a serious problem such as disconnection in the wire drawing process. Moreover, the yield is also lowered by peeling after rolling to remove the surface defect portion.
As described above, the high conductivity copper alloy casting ring is excellent in ingot productivity, but has a problem in the surface quality of the ingot.
Accordingly, an object of the present invention is to provide a continuous casting method of copper or copper alloy having a high cooling capacity, excellent productivity, and excellent ingot surface quality, and a casting ring used in the method.
 上記課題の達成のため、さまざまな導電率の鋳造リングを作成し、鋳塊の表面品質と生産性を両立する条件の探索を行い、20%IACS未満の導電率の鋳造リングで鋳造する場合は、冷却能力が不十分であり生産性が著しく低下してしまうので、この点を克服する所定の導電率の鋳造リングを見出した。
 すなわち本発明は、以下の解決手段により課題を解決するものである。
To achieve the above-mentioned problems, create cast rings with various electrical conductivity, search for conditions that balance the surface quality and productivity of the ingot, and cast with cast rings with electrical conductivity of less than 20% IACS. Since the cooling capacity is insufficient and the productivity is remarkably reduced, a casting ring having a predetermined conductivity has been found to overcome this point.
That is, the present invention solves the problem by the following solution means.
(1)ベルト&ホイール法での銅又は銅合金の鋳造において、導電率20%IACS以上50%IACS以下の鋳造リングを使用する連続鋳造方法。
(2)前記鋳造リングとして、鋳造金属の導電率A(%IACS)に対し、下記の式(I)を満足する導電率B(%IACS)を有するものを使用する(1)に記載の連続鋳造方法。
    20≦B<0.225×A+27.5  (I)
           A:鋳造金属の導電率(%IACS)
           B:鋳造リングの導電率(%IACS)
(3)前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却固化して鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、前記特定の導電率を有する鋳造リングを用いることを特徴とする(1)又は(2)に記載の連続鋳造方法。
(4)ベルト&ホイール法での銅又は銅合金の連続鋳造において使用する、導電率20%IACS以上50%IACS以下の鋳造リング。
(5)銅又は銅合金の連続鋳造に用いられるベルト&ホイール型の連続鋳造装置であって、導電率20%IACS以上50%IACS以下の鋳造リングを用いることを特徴とする連続鋳造装置。
(6)前記ベルト&ホイール型の連続鋳造装置が、タンディッシュ内の溶湯を注入する注湯ノズルと、ターンロールにより回動するベルト及びホイールにより構成されたベルト&ホイール鋳造機とを具備し、前記ホイールがホイール本体及び前記特定の導電率を有する鋳造リングを有してなることを特徴とする(5)に記載の連続鋳造装置。
(1) A continuous casting method using a casting ring having a conductivity of 20% IACS or more and 50% IACS or less in casting of copper or copper alloy by the belt and wheel method.
(2) The continuous ring according to (1), wherein the cast ring has a conductivity B (% IACS) that satisfies the following formula (I) with respect to the conductivity A (% IACS) of the cast metal. Casting method.
20 ≦ B <0.225 × A + 27.5 (I)
A: Conductivity of cast metal (% IACS)
B: Conductivity of cast ring (% IACS)
(3) In the belt and wheel method, the molten metal in the tundish is poured from the pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and then cooled and solidified to form an ingot. (1) or (2), wherein the ingot is continuously drawn from the mold, and the cast ring having the specific conductivity is used as the cast ring constituting the wheel. The continuous casting method described.
(4) A casting ring having a conductivity of 20% IACS or more and 50% IACS or less used in continuous casting of copper or copper alloy by the belt and wheel method.
(5) A belt and wheel type continuous casting apparatus used for continuous casting of copper or a copper alloy, wherein a continuous casting apparatus having a conductivity of 20% IACS to 50% IACS is used.
(6) The belt & wheel type continuous casting apparatus comprises a pouring nozzle for injecting molten metal in a tundish, and a belt & wheel casting machine constituted by a belt and a wheel rotated by a turn roll, The continuous casting apparatus according to (5), wherein the wheel includes a wheel main body and a casting ring having the specific conductivity.
 本発明の鋳造方法及び鋳造装置によれば、高い冷却能力を持ち生産性に優れ、かつ鋳塊表面品質に優れた、銅又は銅合金の連続鋳造方法およびその方法に使用する鋳造リングを提供することができる。 According to the casting method and the casting apparatus of the present invention, a continuous casting method of copper or copper alloy having high cooling capacity, excellent productivity, and excellent ingot surface quality, and a casting ring used in the method are provided. be able to.
本発明のベルト&ホイール法での連続鋳造方法の一実施態様で、線材を製造する工程を示す概略説明図である。It is a schematic explanatory drawing which shows the process of manufacturing a wire in one embodiment of the continuous casting method by the belt & wheel method of this invention. 本発明の連続鋳造方法で使用するベルト&ホイール鋳造機の好ましい実施形態を模式的に示す断面図である。It is sectional drawing which shows typically preferable embodiment of the belt & wheel casting machine used with the continuous casting method of this invention. 図2に示した鋳造機のIII-III線断面の拡大断面図である。It is an expanded sectional view of the III-III line cross section of the casting machine shown in FIG. 鋳造する合金の導電率と鋳造リングの導電率との関係を示すグラフである。It is a graph which shows the relationship between the electrical conductivity of the alloy to cast, and the electrical conductivity of a casting ring.
[鋳造方法・鋳造装置]
 図1は本発明の連続鋳造法によって得る鋳塊をさらに線材とする全工程の一例を示す説明図である。銅(又は銅合金)線材の製造方法は、電気銅の地金等を例えば図に示すように、シャフト炉1を用いて還元性雰囲気で溶解して溶銅を得て、該溶銅を樋2を経てタンディッシュ3内に連続的に導く。該タンディッシュ3内の溶湯5を注湯ノズル4から、ターンロールにより回動するベルト6とホイール7により構成されたベルト&ホイール鋳造機8内に注入し、冷却固化して鋳塊9とし、鋳塊9を前記鋳型から連続的に引き出す。同図で区別して示していないが、前記ホイール7は鋳造リングとホイール本体とからなる。この凝固した鋳塊9の温度をできるだけ低下させない状態(好ましくは800℃以上)で、連続圧延機10(2方ロール方式、又は3方ロール方式)で所定の線径まで圧延を行い、荒引線材11とする。その荒引線材11はそのまま巻き取られるか、または図1に示される伸線圧延機12で更に圧延し、伸線材13としパレット14に巻き取る。図1において、伸線圧延機12の設置は任意である。
[Casting method / Casting equipment]
FIG. 1 is an explanatory view showing an example of all steps in which an ingot obtained by the continuous casting method of the present invention is further used as a wire. As shown in the figure, for example, the method for producing a copper (or copper alloy) wire is obtained by dissolving molten copper in a reducing atmosphere using a shaft furnace 1 to obtain molten copper. 2 is continuously led into the tundish 3. The molten metal 5 in the tundish 3 is poured from the pouring nozzle 4 into a belt & wheel casting machine 8 constituted by a belt 6 and a wheel 7 that are rotated by a turn roll, and cooled and solidified to form an ingot 9. The ingot 9 is continuously drawn out from the mold. Although not shown separately in the figure, the wheel 7 comprises a cast ring and a wheel body. In a state where the temperature of the solidified ingot 9 is not lowered as much as possible (preferably 800 ° C. or higher), the continuous ingot 10 (two-way roll method or three-way roll method) is rolled to a predetermined wire diameter, and roughing is performed. The wire 11 is used. The rough drawn wire 11 is wound as it is, or further rolled by a wire drawing machine 12 shown in FIG. In FIG. 1, the installation of the wire drawing mill 12 is arbitrary.
 次に、本発明に係るベルト&ホイール法で利用するベルト&ホイール鋳造機の好ましい実施形態について、その縦断面図を図2に示す。図3は図2のIII-III線断面の拡大断面図である。
 移動鋳型式であるベルト&ホイール鋳造機は、ホイール本体21、駆動ロール24で可動する冷却作用をもつ鋳造ベルト22およびホイール本体21の外周に設けられた鋳造リング23を有する。上記ベルト22は炭素鋼またはステンレスが適用されている。ホイール本体21には炭素鋼またはステンレスが適用されている。鋳造リング23には後述する特定の導電率を有する材料が適用されている。注湯ノズル25から金属溶湯26をホイール21の外周の鋳造リング23へ注湯する。注湯された金属溶湯26は回転移動する鋳造リング内で冷却し、徐々に凝固し鋳塊27を形成する。図2では溶湯が凝固し、鋳塊を形成するのを模式的に示している。鋳造速度は、通常の操業において実用化されている6~15m/min(100~250mm/sec)であり、鋳塊断面積は1930mm~6450mmである。
Next, FIG. 2 shows a longitudinal sectional view of a preferred embodiment of the belt and wheel casting machine used in the belt and wheel method according to the present invention. FIG. 3 is an enlarged cross-sectional view taken along line III-III in FIG.
The belt-and-wheel casting machine of the moving mold type has a wheel body 21, a casting belt 22 having a cooling action that is movable by a drive roll 24, and a casting ring 23 provided on the outer periphery of the wheel body 21. The belt 22 is made of carbon steel or stainless steel. Carbon steel or stainless steel is applied to the wheel body 21. A material having a specific conductivity described later is applied to the casting ring 23. The molten metal 26 is poured from the pouring nozzle 25 into the casting ring 23 on the outer periphery of the wheel 21. The poured molten metal 26 is cooled in a rotating casting ring and gradually solidifies to form an ingot 27. FIG. 2 schematically shows that the molten metal solidifies to form an ingot. The casting speed is 6 to 15 m / min (100 to 250 mm / sec) which is put into practical use in normal operation, and the ingot cross-sectional area is 1930 mm 2 to 6450 mm 2 .
[鋳造リング]
(導電率)
 従来のベルト&ホイール法での連続鋳造では、周知のDC鋳造や水平横型連続鋳造方式に比較して圧倒的に鋳造速度が速い為に、固液共存領域は鋳造方向に長く存在し、金属銅や銅合金において最終凝固部位にも凝固シェルの厚さのバラつきが発生しやすくなる。そして、高導電率の鋳造リングは溶湯がリングに接触した直後は熱伝導が良いため強冷されることにより、すぐに凝固収縮によるエアーギャップが発生し冷却が阻害され、冷却が不均一となり、凝固シェルの厚さが一定しないことが分かった。これにより、荒引線の表面欠陥となり伸線での断線を招くものとなる。
[Casting ring]
(conductivity)
In continuous casting by the conventional belt and wheel method, the casting speed is overwhelmingly faster than the known DC casting and horizontal horizontal continuous casting methods, so the solid-liquid coexistence region exists long in the casting direction, and metal copper In a copper alloy, the thickness of the solidified shell tends to vary at the final solidification site. And the cast ring with high conductivity immediately after the molten metal comes into contact with the ring is strongly cooled because it has good heat conduction, so that an air gap due to solidification shrinkage immediately occurs, cooling is inhibited, cooling becomes uneven, It was found that the thickness of the solidified shell was not constant. Thereby, it becomes the surface defect of a rough drawing line, and causes the disconnection by a wire drawing.
 そこで発明者らは、鋳造リングの導電率を低くすることを考え、導電率の小さい、すなわち熱伝導の悪い鋳造リングは凝固速度が遅いため、より初期冷却を安定的に行い得ることができると思われ、処理される銅または銅合金の導電率と鋳造リングの導電率との関係を調べた。 Therefore, the inventors consider lowering the conductivity of the casting ring, and the casting ring with low conductivity, that is, poor heat conduction, has a low solidification rate, so that it is possible to perform initial cooling more stably. The relationship between the conductivity of the copper or copper alloy to be treated and the conductivity of the cast ring was investigated.
 導電率の異なる各種合金を用いて検討した結果、鋳造リングの導電率(%IACS)は20%IACS以上50%IACS以下が望ましいことが明らかとなった。すなわち本発明の好ましい実施態様では、特定の低導電率の銅合金鋳造リングを使用することで注湯直後のエアーギャップの生成を極めて効果的に抑制することができる。そのため凝固初期のエアーギャップによる熱伝達の阻害が緩和され安定した冷却をすることができ、その結果脆弱な箇所のない均一の安定した凝固シェルを形成することができる。また、過冷却が大きくなることで核生成頻度が高くなり、鋳塊表面近傍の鋳塊組織を微細化することができる。これらの効果により鋳塊の表面品質を向上させることができ、鋳塊表面の割れを抑制することができる。さらに、鋳塊品質の改善によって荒引線の表面欠陥を抑制することができ、荒引線の高品質化とともに歩留向上を実現することができる。 As a result of examination using various alloys having different electrical conductivities, it was found that the electrical conductivity (% IACS) of the cast ring is preferably 20% IACS or more and 50% IACS or less. That is, in a preferred embodiment of the present invention, the use of a specific low-conductivity copper alloy casting ring can extremely effectively suppress the formation of an air gap immediately after pouring. Therefore, the heat transfer hindrance due to the air gap in the initial stage of solidification is alleviated and stable cooling can be performed, and as a result, a uniform and stable solidified shell having no fragile portions can be formed. Moreover, the nucleation frequency is increased by increasing the supercooling, and the ingot structure near the ingot surface can be refined. With these effects, the surface quality of the ingot can be improved, and cracking of the ingot surface can be suppressed. Furthermore, the surface defect of the rough drawn wire can be suppressed by improving the ingot quality, and the yield can be improved as well as the quality of the rough drawn wire is improved.
 以上のことより、銅又は銅合金の鋳造に当たっては、鋳造リングの導電率は、20%IACS以上50%IACS以下、好ましくは20%IACS以上40%IACS以下である材質を選択することが望ましい。上記下限値以上であることにより、冷却効率を十分に確保することができ好ましい。上記上限値以下であることにより、鋳塊表面の品質を良好に維持することができ好ましい。なお、本発明において導電率は特に断らない限り実施例で採用した測定方法により測定した値を言う。 From the above, when casting copper or a copper alloy, it is desirable to select a material whose conductivity of the casting ring is 20% IACS to 50% IACS, preferably 20% IACS to 40% IACS. By being more than the said lower limit, cooling efficiency can fully be ensured and it is preferable. By being below the upper limit, the quality of the ingot surface can be favorably maintained, which is preferable. In the present invention, the conductivity means a value measured by the measurement method employed in the examples unless otherwise specified.
 本発明の好ましい実施形態においては、鋳造合金と鋳造リングとの導電率を下記式(II)の範囲に設定することが好ましい。
       20≦b<0.225×a+27.5  (II)
           a:鋳造合金導電率(%IACS)
           b:鋳造リング導電率(%IACS)
 上記下限値の技術的意義は上述したとおりである。上限を構成する右辺の数式は実験的に導かれたものであり、これを下回ることに皮むき無しで断線のない良好な鋳造合金を製造することができる。
In a preferred embodiment of the present invention, the conductivity between the cast alloy and the cast ring is preferably set in the range of the following formula (II).
20 ≦ b <0.225 × a + 27.5 (II)
a: Cast alloy conductivity (% IACS)
b: Casting ring conductivity (% IACS)
The technical significance of the lower limit is as described above. The mathematical formula on the right side constituting the upper limit is derived experimentally, and below this value, it is possible to produce a good cast alloy without peeling and without disconnection.
(合金)
 上記のような点を考慮すると、鋳造リングを構成する合金材料としては、Cu-Cr-Zr-Al合金、Cu-Cr合金、Cu-Be合金、りん青銅、コルソン合金、Cu-Zn合金などが好ましい。それぞれの合金について代表的な成分組成の好ましいものを下記に記載する。
・Cu-Cr(-Zr-Al)合金
 Cr 0.2質量%~2.0質量%(好ましくは0.3質量%~1.5質量%、より好ましくは0.5質量%~1.5質量%)
 Zr 0質量%~0.5質量%(好ましくは0.08質量%~0.30質量%)
 Al 0質量%~3.0質量%(好ましくは0.3質量%~2.0質量%)
 残部銅及び不可避不純物
・Cu-Be合金
 Be 0.3質量%~3.0質量%(好ましくは0.5質量%~2.0質量%)
 Co 0.1質量%~1.0質量%(好ましくは0.2質量%~0.6質量%)
 残部銅及び不可避不純物
・りん青銅
 Sn 1質量%~5質量%(好ましくは1質量%~4質量%)
 P  0.03質量%~0.4質量%(好ましくは0.03質量%~0.1質量%)
 残部銅及び不可避不純物
・コルソン合金
 Ni 2質量%~5質量%(好ましくは3質量%~5質量%)
 Si 0.5質量%~1.3質量%(好ましくは0.7質量%~1.3質量%)
 残部銅及び不可避不純物
・Cu-Zn合金
 Zn 10質量%~40質量%(好ましくは20質量%~40質量%)
 残部銅及び不可避不純物
(alloy)
Considering the above points, the alloy materials constituting the cast ring include Cu—Cr—Zr—Al alloy, Cu—Cr alloy, Cu—Be alloy, phosphor bronze, Corson alloy, Cu—Zn alloy and the like. preferable. Preferred examples of typical component compositions for each alloy are described below.
Cu—Cr (—Zr—Al) alloy Cr 0.2 mass% to 2.0 mass% (preferably 0.3 mass% to 1.5 mass%, more preferably 0.5 mass% to 1.5 mass%) mass%)
Zr 0 mass% to 0.5 mass% (preferably 0.08 mass% to 0.30 mass%)
Al 0 mass% to 3.0 mass% (preferably 0.3 mass% to 2.0 mass%)
Remaining copper and inevitable impurities / Cu—Be alloy Be 0.3 mass% to 3.0 mass% (preferably 0.5 mass% to 2.0 mass%)
Co 0.1% to 1.0% by mass (preferably 0.2% to 0.6% by mass)
Remaining copper and inevitable impurities / phosphor bronze Sn 1 mass% to 5 mass% (preferably 1 mass% to 4 mass%)
P 0.03 mass% to 0.4 mass% (preferably 0.03 mass% to 0.1 mass%)
Remaining copper and inevitable impurities / Corson alloy Ni 2 mass% to 5 mass% (preferably 3 mass% to 5 mass%)
Si 0.5% to 1.3% by mass (preferably 0.7% to 1.3% by mass)
Remaining copper and inevitable impurities / Cu—Zn alloy Zn 10% to 40% by mass (preferably 20% to 40% by mass)
Remaining copper and inevitable impurities
[鋳造合金]
 上記のようなベルト&ホイール法における特性及びその鋳造時の現象を考慮し、本発明の鋳造リングを適用した鋳造方法においては、下記のような合金を鋳造することが特に効果的であり好ましい。
・Cu-Sn合金
 Sn 0.1質量%~0.8質量%
 残部銅及び不可避不純物
・Cu-Ag合金
 Ag 0.02質量%~4.0質量%
 残部銅及び不可避不純物
・コルソン合金
 Ni 1.5質量%~5.0質量%
 Si 0.4質量%~1.3質量%
 残部銅及び不可避不純物
・Cr合金
 Cr 0.3質量%~1.5質量%
 残部銅及び不可避不純物
・Cu-Cr-Zr合金
 Cr 0.5質量%~1.5質量%
 Zr 0.05質量%~0.5質量%
 残部銅及び不可避不純物
[Casting alloy]
In consideration of the characteristics in the belt and wheel method as described above and the phenomenon at the time of casting, in the casting method to which the casting ring of the present invention is applied, it is particularly effective and preferable to cast the following alloy.
Cu-Sn alloy Sn 0.1 mass% to 0.8 mass%
Remaining copper and inevitable impurities / Cu-Ag alloy Ag 0.02 mass% to 4.0 mass%
Remaining copper and inevitable impurities / Corson alloy Ni 1.5% by mass to 5.0% by mass
Si 0.4% to 1.3% by mass
Remaining copper and inevitable impurities / Cr alloy Cr 0.3 mass% to 1.5 mass%
Remaining copper and inevitable impurities, Cu-Cr-Zr alloy Cr 0.5 mass% to 1.5 mass%
Zr 0.05 mass% to 0.5 mass%
Remaining copper and inevitable impurities
 次に、本発明を実施例に基づいてさらに詳細に説明するが、たとえばサンプルおよびその作製条件などは具体的一例にすぎず、本発明はこれに制限されるものではない。
[実施例1]
 表1~3に示すように、各13~80%IACSの導電率を有する鋳塊断面積3220mmの鋳造リングを使用した。この鋳造リングを構成する合金の成分組成は以下の実施例・比較例と併せ最後にまとめて記載する。 鋳造速度20ton/時でΦ8mmの0.7%Sn含有のタフピッチ銅(表1参照)、Cu-1%Cr合金(表2参照)およびCu-2.5%Ni-0.6%Siコルソン合金(表3参照)の合金荒引線をSCR法で製造し、Φ0.1mmまで伸線を行った。表1~3に荒引線製造時の渦流探傷器の検出結果と荒引線皮ムキしての伸線した時の断線の有無により製品の良否判定を行った結果を示す。
Next, the present invention will be described in more detail on the basis of examples. However, for example, the sample and the production conditions thereof are only specific examples, and the present invention is not limited thereto.
[Example 1]
As shown in Tables 1 to 3, cast rings having an ingot cross-sectional area of 3220 mm 2 each having a conductivity of 13 to 80% IACS were used. The component composition of the alloy constituting the cast ring is described together with the following examples and comparative examples. Tough pitch copper containing 0.7% Sn (see Table 1), Cu-1% Cr alloy (see Table 2), and Cu-2.5% Ni-0.6% Si Corson alloy at a casting speed of 20 ton / hour. The alloy rough drawn wire (see Table 3) was manufactured by the SCR method and drawn to Φ0.1 mm. Tables 1 to 3 show the detection results of the eddy current flaw detector at the time of rough drawing wire manufacture and the results of product quality judgment based on the presence or absence of disconnection when the wire was drawn with rough drawing wire.
[導電率の測定]
 鋳造リングの導電率はGEインスペクション・テクノロジーズ社製のAutoSigma3000を使用して鋳造リングの研磨面を測定した。鋳造リングの導電率測定は、室温(23℃)で行った。
[Measurement of conductivity]
The conductivity of the casting ring was measured on the polished surface of the casting ring using an AutoSigma 3000 manufactured by GE Inspection Technologies. The conductivity of the cast ring was measured at room temperature (23 ° C.).
 表1~3に示す渦流探傷器の検出結果については、皮ムキを行わなかった場合、断線には至らないような微少な欠陥を「s」、まれに断線を引き起こすような欠陥を「m」、断線の原因となる深刻な欠陥を「l」とし、1ton当りで検出されたそれぞれの個数をカウントした。さらに、それぞれの欠陥をs=1、m=20、l=100と重み付けをし、その合計値dで探傷結果の総合的な評価を行った。該合計値dが50未満のものを「◎」、50以上のものを「○」、100以上のものを「×」と評価した。また、皮ムキ量と断線判定は、Φ8mm荒引線5000kgを表示のように片側0~0.3mm厚さで皮ムキをしてΦ0.1mmまで伸線した時、断線したものを「×」、断線しなかったものを「○」と評価した。
 表1~3の最右欄の「評価」において、片側の皮ムキが0mmまたは0.1mmのときに断線しなかったものを「○」、片側の皮ムキが0mmおよび0.1mmのときに断線し、片側の皮ムキが0.2mmのときに断線しなかったものを「△」、片側の皮ムキが0.2mmのときに断線したものを「×」と評価した。
As for the detection results of the eddy current flaw detectors shown in Tables 1 to 3, “s” indicates a minute defect that does not lead to disconnection, and “m” indicates a defect that rarely causes disconnection when the skin is not peeled off. Then, the serious defect causing the disconnection was regarded as “l”, and the number of each detected per ton was counted. Furthermore, each defect was weighted as s = 1, m = 20, and l = 100, and the total evaluation value of the flaw detection results was evaluated. Those having a total value d of less than 50 were evaluated as “◎”, those having 50 or more as “◯”, and those having 100 or more as “×”. In addition, the amount of peel and disconnection judgment is “×” when the Φ8 mm rough drawing wire 5000 kg is peeled off at 0 to 0.3 mm thickness on one side and drawn to Φ0.1 mm as shown. Those that were not disconnected were evaluated as “◯”.
In “Evaluation” in the rightmost column of Tables 1 to 3, “○” indicates that the skin peel on one side was 0 mm or 0.1 mm, and “0” indicates that the skin peel on one side was 0 mm and 0.1 mm. A case where the wire was broken and the wire was not broken when the peel on one side was 0.2 mm was evaluated as “Δ”, and a wire which was broken when the peel on one side was 0.2 mm was evaluated as “x”.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
 いずれの合金も20%以上50%IACS以下の鋳造リングを使ったときの方が探傷結果、断線判定ともに優れた結果となった。また、20%IACS未満の鋳造リングを使った場合は冷却能力が不十分であったため鋳塊中心部への溶湯供給が足りず、これが大きなシュリンケージとなって断線不良の原因となった。50%IACSを越えない鋳造リングでは、前述のように鋳塊表面に微細割れが発生し表面品質が悪化することが防がれるため好ましいことが分かる。 Both of these alloys were superior in both flaw detection results and disconnection judgments when using a cast ring of 20% to 50% IACS. In addition, when a casting ring of less than 20% IACS was used, the cooling capacity was insufficient, so that the molten metal was not supplied to the center of the ingot, which caused a large shrinkage and caused a disconnection failure. It can be seen that a cast ring that does not exceed 50% IACS is preferable because it prevents the occurrence of fine cracks on the ingot surface and deterioration of the surface quality as described above.
[実施例2]
 表4に示した導電率を有する各種合金に対し、表示の導電率を有する鋳造リングを使用して、実施例1と同様の条件で鋳造、伸線を実施し、実施例1と同様に評価を行った。この結果の中で、特に結果が良好であったものとそうでないものを表4及び図3に示した。なお、表4に示す「より望ましい導電率b」とは、合金導電率aを下記式(II)の(0.225×a+27.5)にあてはめた値であるのに対し、「鋳造リング導電率」とは実際に使用した鋳造リングの導電率のことである。この場合、「bとの適合」とは「実際に使用した鋳造リングの導電率と下記式(II)との適合」を意味し、実際に使用した鋳造リングの導電率が下記式(II)のbの範囲内にあったものを「○」、実際に使用した鋳造リングの導電率が下記式(II)のbの上限より大きく、かつ50%IACS以下であったものを「△」と評価した。
 導電率の異なる各種合金で実験した結果、以下の式(II)に従い鋳造リング材質を選択することが特に望ましいことが明らかとなった。
       20≦b<0.225×a+27.5  (II)
           a:鋳造合金導電率(%IACS)
           b:鋳造リング導電率(%IACS)
[Example 2]
For various alloys having the conductivity shown in Table 4, casting and wire drawing were performed under the same conditions as in Example 1 using a cast ring having the indicated conductivity, and evaluation was performed in the same manner as in Example 1. Went. Of these results, those with particularly good results and those with poor results are shown in Table 4 and FIG. The “more desirable conductivity b” shown in Table 4 is a value obtained by applying the alloy conductivity a to (0.225 × a + 27.5) of the following formula (II), whereas “casting ring conductivity” "Rate" is the conductivity of the cast ring actually used. In this case, “conformity with b” means “conformity between the conductivity of the cast ring actually used and the following formula (II)”, and the conductivity of the cast ring actually used is the formula (II) “○” indicates that the value was within the range of b, and “Δ” indicates that the conductivity of the cast ring actually used was larger than the upper limit of b in the following formula (II) and not more than 50% IACS. evaluated.
As a result of experiments with various alloys having different electrical conductivities, it has become clear that it is particularly desirable to select a cast ring material according to the following formula (II).
20 ≦ b <0.225 × a + 27.5 (II)
a: Cast alloy conductivity (% IACS)
b: Casting ring conductivity (% IACS)
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
[実施例3]
 鋳造速度を変化させたときの実施例である。
 Cu-2.5%Ni-0.6%Siのコルソン合金を鋳塊断面積3220mmで、表5に示す導電率を有する各種の鋳造リングを使用し、鋳造速度を変更し、それ以外は実施例1と同様に鋳造した。
 80%IACSの鋳造リングで通常の鋳造速度V(200mm/秒)を基準とし、実施した鋳造速度Vにより、相対速度である鋳造速度Vrを評価した。Vr=V/Vである。
 鋳造速度が冷却速度に対して速すぎると鋳塊温度が高くなりすぎて鋳塊強度が低下して割れが生じたり、鋳塊中心部に大きなシュリンケージが残存したりして断線の原因となる。そこで、実施結果の良否判定はΦ8mmの荒引線5000kgを片側0.1mm皮ムキして伸線した時に断線しなかったものを「○」、断線したものを「×」と評価した。
 結果を表5に示した。
[Example 3]
It is an Example when changing a casting speed.
Various casting rings with a Cu-2.5% Ni-0.6% Si Corson alloy with an ingot cross-sectional area of 3220 mm 2 and electrical conductivity shown in Table 5 were used, and the casting speed was changed. Casting was carried out in the same manner as in Example 1.
The casting speed Vr, which is a relative speed, was evaluated based on the casting speed V performed with a casting ring of 80% IACS based on the normal casting speed V 0 (200 mm / second). It is Vr = V / V 0.
If the casting speed is too high with respect to the cooling speed, the ingot temperature becomes too high, the ingot strength decreases and cracks occur, or a large shrinkage remains in the center of the ingot, causing disconnection. . Therefore, the judgment of pass / fail of the implementation results was evaluated as “◯” when the rough drawing wire of 5000 mm of Φ8 mm was peeled and drawn 0.1 mm on one side, and “×” when the wire was not broken.
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
 本発明で規定する範囲の導電率を有する鋳造リングでは、エアーギャップの生成を抑制できることで、凝固初期段階では高導電率の鋳造リングよりもむしろ強力に冷却することができ、さらに鉄製鋳造リングより導電率が高いため、全体の冷却能力を高導電率リングより高くすることができた。各種導電率の鋳造リングを使った実験で導電率20~50%IACSの領域で現状より最大1.2倍鋳造速度を上げることができた。 In the casting ring having the electrical conductivity in the range specified in the present invention, the formation of the air gap can be suppressed, so that it can be cooled strongly rather than the casting ring with high conductivity in the initial stage of solidification, and moreover than the iron casting ring. Due to the high conductivity, the overall cooling capacity could be higher than that of the high conductivity ring. In experiments using cast rings of various conductivity, the casting speed could be increased up to 1.2 times from the current level in the range of 20-50% IACS.
[実施例4]
 各種合金を導電率の異なる鋳造リングを使用して実施例1と同様に鋳造、圧延、伸線を行なった。鋳塊の結晶粒径(μm)を鋳塊表面から2mmの場所の結晶粒の成長方向と垂直方向に交線法で測定した。また、実施例1と同様に評価を行った。
 得られた結果を表6に示した。
[Example 4]
Various alloys were cast, rolled and drawn in the same manner as in Example 1 using cast rings having different electrical conductivities. The crystal grain size (μm) of the ingot was measured by the intersection method in the direction perpendicular to the crystal grain growth direction at a location 2 mm from the ingot surface. The evaluation was performed in the same manner as in Example 1.
The results obtained are shown in Table 6.
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 比較例に比べ本発明で規定する範囲の低導電率の鋳造リングを使用することで、鋳型近傍の過冷却が大きくなって核生成頻度が高くなり、鋳塊表面近傍の鋳塊組織が微細化し鋳塊表面品質を向上させることができるのが明らかになった。その結果、表面欠陥を軽減することができ、より少ない皮ムキ量でも断線することなく伸線することができた。 Compared with the comparative example, by using a casting ring with a low conductivity within the range specified in the present invention, the supercooling near the mold increases and the nucleation frequency increases, and the ingot structure near the ingot surface becomes finer. It became clear that the ingot surface quality could be improved. As a result, surface defects could be reduced, and wire could be drawn without disconnection even with a smaller amount of skin peeling.
 以下、実施例1~3で用いた鋳造リングの導電率(単位:%IACS)と組成を示す。この組成は鋳造リングを銅合金で形成した場合の一例であり、導電率の条件を満足すれば、他の銅合金などで形成しても差し支えない。
 なお、表7は表3に対応し、表8は表4に対応し、表9は表5に対応する。
The conductivity (unit:% IACS) and composition of the cast ring used in Examples 1 to 3 are shown below. This composition is an example when the cast ring is formed of a copper alloy, and may be formed of another copper alloy or the like as long as the electrical conductivity condition is satisfied.
Table 7 corresponds to Table 3, Table 8 corresponds to Table 4, and Table 9 corresponds to Table 5.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
  1 シャフト炉
  2 樋 
  3 タンディッシュ
  4 スパウト
  5 溶湯
  6 ベルト
  7 ホイール
  8 ベルト&ホイール鋳造機
  9 鋳塊
 10 連続圧延機
 11 荒引線材
 12 伸線圧延機
 13 伸線材
 14 パレット
 21 ホイール
 22 ベルト
 23 鋳造リング
 24 駆動ロール
 25 注湯ノズル
 26 溶湯
 27 鋳塊
1 Shaft furnace 2 樋
3 Tundish 4 Spout 5 Molten Metal 6 Belt 7 Wheel 8 Belt & Wheel Casting Machine 9 Ingot 10 Continuous Rolling Machine 11 Rough Drawing Wire 12 Wire Drawing Roller 13 Wire Drawing Material 14 Pallet 21 Wheel 22 Belt 23 Casting Ring 24 Drive Roll 25 Note Hot water nozzle 26 Molten metal 27 Ingot
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2009年7月10日に日本国で特許出願された特願2009-164248に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2009-164248 filed in Japan on July 10, 2009, which is incorporated herein by reference. Capture as part.

Claims (6)

  1.  ベルト&ホイール法での銅又は銅合金の鋳造において、導電率20%IACS以上50%IACS以下の鋳造リングを使用する連続鋳造方法。 A continuous casting method using a casting ring having a conductivity of 20% IACS or more and 50% IACS or less in casting of copper or copper alloy by the belt and wheel method.
  2.  前記鋳造リングとして、鋳造金属の導電率A(%IACS)に対し、下記の式(I)を満足する導電率B(%IACS)を有するものを使用する請求項1に記載の連続鋳造方法。
        20≦B<0.225×A+27.5  (I)
               A:鋳造金属の導電率(%IACS)
               B:鋳造リングの導電率(%IACS)
    The continuous casting method according to claim 1, wherein the casting ring has a conductivity B (% IACS) satisfying the following formula (I) with respect to a conductivity A (% IACS) of the cast metal.
    20 ≦ B <0.225 × A + 27.5 (I)
    A: Conductivity of cast metal (% IACS)
    B: Conductivity of cast ring (% IACS)
  3.  前記ベルト&ホイール法が、タンディッシュ内の溶湯を注湯ノズルから、ターンロールにより回動するベルトとホイールにより構成されたベルト&ホイール鋳造機内に注入し、冷却固化して鋳塊とし、該鋳塊を前記鋳型から連続的に引き出す鋳造方法であり、前記ホイールを構成する鋳造リングとして、前記特定の導電率を有する鋳造リングを用いることを特徴とする請求項1又は2に記載の連続鋳造方法。 In the belt and wheel method, the molten metal in the tundish is poured from a pouring nozzle into a belt and wheel casting machine constituted by a belt and a wheel that is rotated by a turn roll, and is cooled and solidified to form an ingot. 3. The continuous casting method according to claim 1, wherein the casting is a casting method for continuously drawing a lump from the mold, and a casting ring having the specific conductivity is used as a casting ring constituting the wheel. 4. .
  4.  ベルト&ホイール法での銅又は銅合金の連続鋳造において使用する、導電率20%IACS以上50%IACS以下の鋳造リング。 Cast ring with conductivity of 20% IACS or more and 50% IACS or less used in continuous casting of copper or copper alloy by belt & wheel method.
  5.  銅又は銅合金の連続鋳造に用いられるベルト&ホイール型の連続鋳造装置であって、導電率20%IACS以上50%IACS以下の鋳造リングを用いることを特徴とする連続鋳造装置。 A belt and wheel type continuous casting apparatus used for continuous casting of copper or copper alloy, wherein a continuous casting apparatus having a conductivity of 20% IACS or more and 50% IACS or less is used.
  6.  前記ベルト&ホイール型の連続鋳造装置が、タンディッシュ内の溶湯を注入する注湯ノズルと、ターンロールにより回動するベルト及びホイールにより構成されたベルト&ホイール鋳造機とを具備し、前記ホイールがホイール本体及び前記特定の導電率を有する鋳造リングを有してなることを特徴とする請求項5に記載の連続鋳造装置。 The belt & wheel type continuous casting apparatus comprises a pouring nozzle for injecting molten metal in a tundish, and a belt and wheel casting machine constituted by a belt and a wheel rotated by a turn roll, The continuous casting apparatus according to claim 5, comprising a wheel main body and a casting ring having the specific conductivity.
PCT/JP2010/061682 2009-07-10 2010-07-09 Method for continuous casting of bronze or bronze alloy and casting ring used therefor WO2011004888A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009164248A JP2012179607A (en) 2009-07-10 2009-07-10 Method for continuous casting of bronze or bronze alloy and casting ring used therefor
JP2009-164248 2009-07-10

Publications (1)

Publication Number Publication Date
WO2011004888A1 true WO2011004888A1 (en) 2011-01-13

Family

ID=43429312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061682 WO2011004888A1 (en) 2009-07-10 2010-07-09 Method for continuous casting of bronze or bronze alloy and casting ring used therefor

Country Status (3)

Country Link
JP (1) JP2012179607A (en)
TW (1) TW201111068A (en)
WO (1) WO2011004888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096238A1 (en) * 2011-01-11 2012-07-19 古河電気工業株式会社 Continuous casting method for copper or copper alloy
JP7404991B2 (en) 2020-04-21 2023-12-26 株式会社プロテリアル Copper wire manufacturing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789459B (en) * 2021-09-02 2022-07-12 宁波博威合金材料股份有限公司 Copper-nickel-tin alloy and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266764A (en) * 2006-06-01 2008-11-06 Furukawa Electric Co Ltd:The Manufacturing method of copper alloy wire rod, and copper alloy wire rod
JP2010188362A (en) * 2009-02-16 2010-09-02 Mitsubishi Materials Corp METHOD AND APPARATUS OF MANUFACTURING Cu-Mg BASED ROUGH DRAWING WIRE

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266764A (en) * 2006-06-01 2008-11-06 Furukawa Electric Co Ltd:The Manufacturing method of copper alloy wire rod, and copper alloy wire rod
JP2010188362A (en) * 2009-02-16 2010-09-02 Mitsubishi Materials Corp METHOD AND APPARATUS OF MANUFACTURING Cu-Mg BASED ROUGH DRAWING WIRE

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096238A1 (en) * 2011-01-11 2012-07-19 古河電気工業株式会社 Continuous casting method for copper or copper alloy
JP5863675B2 (en) * 2011-01-11 2016-02-17 古河電気工業株式会社 Continuous casting method of copper or copper alloy
JP7404991B2 (en) 2020-04-21 2023-12-26 株式会社プロテリアル Copper wire manufacturing equipment

Also Published As

Publication number Publication date
JP2012179607A (en) 2012-09-20
TW201111068A (en) 2011-04-01

Similar Documents

Publication Publication Date Title
JP7345868B2 (en) Highly efficient manufacturing method for high-strength, high-conductivity copper alloy
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP5147040B2 (en) Method for producing copper alloy conductor
CN110060871B (en) Preparation method of 1XXX series cathode foil for aluminum electrolytic capacitor
JP5202921B2 (en) Copper alloy wire manufacturing method, copper alloy wire and copper alloy wire manufacturing apparatus
JP5515313B2 (en) Method for producing Cu-Mg-based rough wire
TWI453288B (en) Cu-Ni-Si alloy excellent in bending workability
JP2014047401A (en) Rough-drawn copper wire and winding
WO2011030898A1 (en) Copper alloy wire and process for producing same
JP5800301B2 (en) Copper alloy foil, flexible printed circuit board using the same
JP2022028597A (en) Continuous extrusion method of high-strength and high-conductivity copper alloy, application of the same, and mold material
JP2022023782A (en) High efficiency production method of high strength and high conductivity copper alloy
WO2011004888A1 (en) Method for continuous casting of bronze or bronze alloy and casting ring used therefor
JP5863675B2 (en) Continuous casting method of copper or copper alloy
JP2011012300A (en) Copper alloy and method for producing copper alloy
TW202217013A (en) Copper alloy, copper alloy plastic working material, component for electronic/electrical devices, terminal, bus bar, lead frame and heat dissipation substrate
JP2004188429A (en) Method for producing copper rough-drawn wire and copper wire
US10718037B2 (en) Copper alloy material and production method therefor
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
JP2003237426A (en) Deposit strengthened copper alloy trolley wire and method of manufacture
CN117845082A (en) Production process of high-wear-resistance copper alloy contact wire
JPH07155907A (en) Production of copper alloy rod for electric conductive wire
JPH0112579B2 (en)
JPS60243238A (en) Manufacture of fine copper wire
JPH07155908A (en) Production of copper alloy rod for electric conductive wire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP