TW201111068A - Method for continuous casting of bronze or bronze alloy and casting ring used therefor - Google Patents

Method for continuous casting of bronze or bronze alloy and casting ring used therefor Download PDF

Info

Publication number
TW201111068A
TW201111068A TW99122688A TW99122688A TW201111068A TW 201111068 A TW201111068 A TW 201111068A TW 99122688 A TW99122688 A TW 99122688A TW 99122688 A TW99122688 A TW 99122688A TW 201111068 A TW201111068 A TW 201111068A
Authority
TW
Taiwan
Prior art keywords
casting
conductivity
ring
iacs
alloy
Prior art date
Application number
TW99122688A
Other languages
Chinese (zh)
Inventor
Tsukasa Takazawa
Hirokazu Yoshida
Toshio Abe
Shuji Tomimatsu
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Publication of TW201111068A publication Critical patent/TW201111068A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0602Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a casting wheel and belt, e.g. Properzi-process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

Disclosed is a method for continuous casting of bronze or bronze alloy which has a high cooling capacity and superior productivity and which improves ingot surface quality. Also disclosed is a casting ring used for said method. The continuous casting method uses a casting ring having an electrical conductivity of 20 to 50% IACS, inclusive, when casting bronze or a bronze alloy using the belt and wheel method.

Description

201111068 六、發明說明: 【發明所屬之技術領域】 本發明係關於作為銅線材或者汽車用電線車(wire harness)、機械人用纜線或其他訊號用線等使用之銅合金線 材之製造,尤其關於以輪帶(belt & wheel)法對銅或銅合金 進行連續鑄造之方法及其所使用之鑄造環。 【先前技術】 一般而言’作為鑄模使用之合金,係被要求高溫強度 與高導熱率。現在輪帶法所使用之鑄造環的材質,主要為 導熱良好之高導電率(80〜95% I ACS)銅合金之Cu — Cr — Zr 合金或Cu — Ag合金。因導熱良好,故鑄塊之冷卻能力優 異,可發揮高生產能力(參照專利文獻丨)。 又,於開發輪帶鑄造機之初期,係使用鐵製之鑄造環 進行鑄造。鐵製之鑄造環之導電率為17%lACs,與銅鑄造 環相比’導熱率較小,故冷卻能力較弱,而難以提高鎮造 速度。另外,會由於鐵之脆性而在環表面產生裂縫缺陷, 而無法進行長時間之鑄造作業。 雖有使用如C卜Cr—Zr—A1之類的低導電率之銅合 :模材料作為特異之例的情形,但該鑄模並非以改變冷 l、件為目的’而僅係用於電磁授拌(例如參照專利文獻2)。 [專利文獻丨]日本特開2008— 173662號公報 [專利文獻2]日本特„ 63 — 145732號公報 201111068 【發明内容】 一般而言’使用Cu- Ag合金(EC : 92% IACS)及Cu — Cr- Zr合金(EC : 80% I ACS)之銅合金鑄造環,由於導熱良 好,因此熔融液剛接觸到鑄模後即受到強力冷卻,因而, 凝固初期表皮會由於凝固收縮所引起之空氣隙而使得冷卻 受到抑制。因此凝固開始後之冷卻變得不均勻,凝固外殼 之厚度發生參差不齊,於脆弱之部位產生裂縫。該微細裂 縫在經過壓延步驟而成為粗拉線(r〇ugh drawn wire)時,會 以表面缺陷的形態出現,而成為引起拉伸步驟中發生斷線 等嚴重問題之原因。另外,為了除去此表面缺陷部分,係 於壓延後進行剝皮,因而亦使得產率下降。 如此,咼導電率之銅合金鑄造環,雖然鑄塊之生產率 優異’但是在鑄塊之表面品質有問題。 因此,本發明之目的,在於提供具有高冷卻能力、生 產率優異且鑄塊表面&質優#之銅或銅纟金之連續鎮造方 法及該方法所使用之鑄造環。 為了達成上述課題,而製成各種導電率之鑄造環’進 行兼顧鑄塊表面品質與生產率之條件的研究,於以未達2〇 %IACS之導電率之鑄造環來進行鑄造之情形時,由於冷卻 能力不充分’生產率顯著下降 只在r降,因此發現克服該點之 導電率的铸造環。201111068 VI. Description of the Invention: [Technical Field] The present invention relates to the manufacture of copper alloy wires used as copper wires or wire harnesses for automobiles, cables for robots, or other signal wires, and the like. A method of continuously casting copper or a copper alloy by a belt & wheel method and a casting ring used therefor. [Prior Art] Generally, the alloy used as a mold is required to have high temperature strength and high thermal conductivity. The material of the casting ring used in the wheel method is mainly a Cu-Cr-Zr alloy or a Cu-Ag alloy of a high conductivity (80 to 95% I ACS) copper alloy with good thermal conductivity. Since the heat conductivity is good, the ingot has excellent cooling capacity and can exhibit high productivity (refer to the patent document 丨). Further, in the early days of the development of the belt casting machine, casting was carried out using an iron casting ring. The electrical conductivity of the cast ring made of iron is 17% lACs, and the thermal conductivity is smaller than that of the copper cast ring, so the cooling capacity is weak, and it is difficult to increase the speed of fabrication. In addition, crack defects occur on the surface of the ring due to the brittleness of iron, and it is impossible to perform a long-time casting operation. Although there is a case where a low conductivity copper alloy such as CBuCr-Zr-A1 is used as a specific example, the mold is not intended to be used for electromagnetic modification. Mixing (for example, refer to Patent Document 2). [Patent Document] Japanese Laid-Open Patent Publication No. 2008-173662 [Patent Document 2] Japanese Patent Application No. 63-145732 (2011) [Invention] In general, 'using Cu-Ag alloy (EC: 92% IACS) and Cu- Since the Cr-Zr alloy (EC: 80% I ACS) copper alloy casting ring has good heat conduction, the molten metal is strongly cooled immediately after it contacts the mold, and therefore, the skin is caused by the air gap caused by solidification shrinkage at the initial stage of solidification. The cooling is suppressed. Therefore, the cooling after the start of solidification becomes uneven, and the thickness of the solidified outer shell is uneven, and cracks are generated in the fragile portion. The fine crack is a thick drawn wire after the calendering step. When it occurs, it will appear as a surface defect, which may cause serious problems such as breakage in the stretching step. In addition, in order to remove the surface defect portion, peeling is performed after rolling, thereby also causing a decrease in yield. Thus, the copper alloy casting ring of bismuth conductivity is excellent in the productivity of the ingot, but there is a problem in the surface quality of the ingot. Therefore, the object of the present invention is It is to provide a continuous bonding method of copper or copper ruthenium which has high cooling ability and excellent productivity, and has an ingot surface and a high quality. The casting ring used in the method is used to obtain various electrical conductivity in order to achieve the above problems. The casting ring's research on the conditions of the surface quality and productivity of the ingot, when casting with a casting ring of less than 2% IACS, the cooling capacity is insufficient, and the productivity is significantly reduced only in the r Drop, so found a casting ring that overcomes the conductivity of this point.

即’本發明係藉由以 (Ο 一種連續鑄造方法 ,使用導電率20%IACS 時 下之解決手段來解決課題。 ,係於以輪帶法鑄造銅或銅合金 以上' 50%IACS以下之鑄造環。 4 201111068 ,係使用具有相對於鑄造金屬 下述式⑴之導電率b(%iacs) (2)如(1)之連續鑄造方法 之導電率A(%IACS),滿足 者作為上述鑄造環: 20^B< 0.225XA+27.5 ⑴ A:鑄造金屬之導電率(%IACS) B :鑄造環之導電率(% IACS)。 (3)如⑴印)之連續鑄造方法,其中,上述輪帶法係如 下之鑄造方法:將餵槽内之熔融液自注液口 =轉輥㈣_)進行旋動之輸送帶與滾輪所構成的輪帶铸 k機内,冷卻固化而製成鑄塊’將該鑄塊自 :抽出"吏用具有上述特定導電率之禱造環作為Π 滾輪之鑄造環。 (4) -種鏵造環’係於以輪帶法連續铸造銅或銅合金時 所使用之導電率20%IACS以上、5〇%IACS以下之鑄造環。 (5) -種連續鑄造裝置’係使用於銅或銅合金之連續鑄 造的輪帶型連續鑄造裝置’纟特徵在於,❹導電率2〇% !ACS以上、50%IACS以下之鑄造環。 上述輪帶型連續鑄造 注液口、與由利用旋 的輪帶鑄造機,上述 定導電率之鑄造環而 (6)如(5)之連續鑄造裝置,其中, 裝置具備:將餵槽内之熔融液注入之 轉輥進行旋動之輸送帶及滾輪所構成 滚輪係具備有滾輪本體及具有上述特 成〇 可提供具有高冷 的鋼或銅合金之 根據本發明之鑄造方法及鑄造|置, 卻症力、生產率優異且铸塊表面品質優異 201111068 連續鑄造方法及該方法所使用之鑄造環β 【實施方式】 [鑄造方法、铸造艘置] 圖1,係表示將藉由本發明之連續鑄造法所得之鑄塊進 一步製成線材之全部步驟一例的說明圖。銅(或銅合金)線材 之製造方法,例如如圖所示,使用豎爐丨於還原性環境氣 氛中將電解銅之卑金屬等熔解而獲得熔銅,將該熔銅絰由 導流槽2連續性地引導至館槽3 π。將該飯槽3内之溶融 自✓主液口 4 /主入至由利用旋轉輥進行旋動之輸送帶6 與滾輪7所構成之輪帶鎮造機8 β,冷卻固化而製成鱗塊 9,將鑄塊9自上述鑄模連續㈣出。雖未於同圖中區別表 示’但上述滾輪7係由铸造環與滾輪本體所構成。於儘可 能不使該凝固之铸塊9之溫度降低的狀態(較㈣ 上)下_’以連續壓延機10(兩觀式或三輥式)進㈣延至特定 之線徑’製成粗拉線材U。直接捲取該粗拉線材n,或利 用圖!所示之拉伸壓延機12進—步進行壓延,製成拉伸材 13而捲取於托板14。於圖1中’拉伸壓延機12之設置係 任意》 其次’本發明之輪帶法中所利 丫汀扪用之輪帶鑄造機的較佳 實施形態,將其縱剖面圖示於圖That is, the present invention solves the problem by solving a problem by using a 20% IACS current solution in a continuous casting method. It is a casting of less than 50% IACS by casting a copper or copper alloy by a wheel method. 4 201111068, using a conductivity A (% IACS) having a continuous casting method with respect to the casting metal of the following formula (1), conductivity b (%iacs) (2), as in (1), as the above-mentioned casting ring : 20^B< 0.225XA+27.5 (1) A: Conductivity of cast metal (%IACS) B: Conductivity of cast ring (% IACS). (3) Continuous casting method as (1) printed), wherein the above-mentioned belt The casting method is as follows: the molten liquid in the feeding tank is rotated from the liquid filling port = the rotating roller (four) _) into a belt casting machine composed of a conveyor belt and a roller, and is solidified by cooling to form an ingot. The ingot is: extracted and used as a casting ring of the 滚轮 roller with the above-mentioned specific conductivity of the prayer ring. (4) - The entangled ring is a casting ring having a conductivity of 20% IACS or more and 5% IACS or less when the copper or copper alloy is continuously cast by the belt method. (5) - A continuous casting apparatus" is a belt type continuous casting apparatus which is used for continuous casting of copper or a copper alloy. The crucible is characterized by a casting ring having a crucible conductivity of 2% by % ACS or more and 50% IACS or less. The above-described belt-type continuous casting liquid injection port, and the continuous casting device of the above-mentioned constant conductivity casting ring by the spinning belt casting machine, (6), wherein the device is provided with: The roller formed by the conveyor belt and the roller which is rotated by the melt injection roller is provided with a roller body and a casting method and casting method according to the present invention which has the above-mentioned special steel to provide high-cold steel or copper alloy. Excellent strain, excellent productivity, and excellent surface quality of ingot 201111068 Continuous casting method and casting ring β used in the method [Embodiment] [Casting method, casting ship] FIG. 1 shows a continuous casting method by the present invention. An illustration of an example of all the steps of the obtained ingot to be further made into a wire. A method for producing a copper (or copper alloy) wire, for example, as shown in the drawing, using a shaft furnace in a reducing atmosphere to melt a copper or the like of electrolytic copper to obtain a molten copper, and the molten copper is continuous by the flow channel 2 The ground is guided to the hall slot 3 π. The inside of the rice tank 3 is melted from the main liquid port 4/mainly into a belt-making machine 8β composed of a conveyor belt 6 and a roller 7 that is rotated by a rotating roller, and is cooled and solidified to form a scale 9 The ingot 9 is continuously (four) from the above mold. Although not shown in the same figure, the above roller 7 is composed of a casting ring and a roller body. In a state in which the temperature of the solidified ingot 9 is lowered as much as possible (more than (4)), the continuous calender 10 (two-view or three-roll type) is advanced (four) to a specific wire diameter to make a thick drawing. Wire U. Take the thick drawn wire n directly, or use the map! The drawing calender 12 shown is further calendered to form a stretched material 13 which is taken up on a pallet 14. In Fig. 1, the arrangement of the drawing calender 12 is arbitrary. Next, a preferred embodiment of the belt casting machine used in the belt method of the present invention is shown in the longitudinal section.

_ J 马圖 2 之 III — III 線剖面之放大剖面圖。 2 1、利用驅 22、及設置 移動鑄模式之輪帶鑄造機,具有滚輪本體 動輥24而可移動之具有冷卻作用的鑄造輪送帶 201111068 於滚輪本體21之外周的鑄造環23。上述輸送帶22係應用 碳鋼或不銹鋼。滾輪本體21係應用碳鋼或不銹鋼《铸造環 23係應用後述之具有特定導電率之材料。自注液口 25將金 屬炫融液20注入至滾輪21之外周的鑄造環23。所注入之 金屬炫融液26會於旋轉移動之鑄造環内冷卻,漸漸凝固而 形成鑄塊27。圖2示意地表示熔融液凝固而形成鑄塊。鑄 造速度於通常之操作中為實用化之6〜15m / min( 100〜 250mm/Sec),鑄塊剖面積為 193〇mm2〜645〇mm2。 [鑄造環] (導電率) 以在利用輪帶法之連續鑄造,由於與習知之鑄造或 水平臥式連續鑄造方式相較之下,鑄造速度壓倒性地更 快,因此固液共存區域長時間地存在於鑄造方向,於金屬 銅及銅合金中最後凝固部位亦易於產生凝固外殼之厚度的 參差不齊。而且可知,由於高導電率之鑄造環,由於導熱 良好,因此熔融液剛接觸到環後即受到強力冷卻,因而, 會馬上發生因凝固收縮所引起之空氣隙,而使得冷卻受到 妨礙冷卻變得不均勻,導致凝固外殼之厚度不固定。因 此造成粗拉線之表面缺陷,導致拉伸時斷線。 ^因此發明人等考慮到降低鑄造環之導電率,認為導電 率】、、即導熱差的鑄造環因凝固速度慢,&更能穩定地進 行初期冷卻,而對所處理之銅或銅合金之導電率與鑄造環 之導電率的關係進行了研究。 使用導電率不同之各種合金進行研究後之結果,可知 201111068 鑄造環之導電率(%IACS)宜為2〇%IACs以上、5〇%iacs 以下。即於本發明之較佳實施態樣中,藉由使用特定之低 導電率的銅合金鑄造環,可極為有效地抑制剛注液後之空 氣隙的生成。因此可緩和凝固初期之空氣隙對熱傳遞之阻 礙而進订穩疋之冷部,其結果可形成無脆弱部位之均句 的穩定凝固外殼。另外,由於過冷變大,會使成核頻率變 高,而可使鑷塊表面附近之銹塊組織細微化。藉由該等效 果可提高鑄塊之表面品質,可抑制鑄塊表面之裂縫。進而, 藉由改善铸塊品I,可抑制粗拉線之表面缺@,不僅可實 現粗拉線之高質量化,而且亦可實現產率提高。 根據以上内容,於銅或銅合金之鎮造時,宜為選擇禱 造環之導電率為20%IACS以上、5〇%iacs以下(較佳為 %IACS以上、40%IACS以下)之材質。藉由在上述下限值 以上,可充分地確保冷卻效率,故較佳。藉由在上述上限 值以下,可良好地維持鑄塊表面之品質,故較佳。再者, 於本發明中,只要未特別說明,則導電率係指藉由實施例 中所採用之測量方法所測得之值。 於本發明之較佳實施形態中,較佳為將鑄造合金與鑄 造環之導電率設定於下述式(Π)之範圍。 20 S b < 0.225xa + 27.5 (Π) a :鑄造合金導電率(%IACs) b :鑄造環導電率IACS) 上述下限值之技術意義如上述。構成上限之右邊的算 式為實驗上所導出者’藉由在其以下,可不進行剝皮,製 8 201111068 造無斷線之良好的鑄造合金。 (合金) 若考慮到如上述之事馆 ^ . ,-Η , 爭項,則構成鑄造環之合金材斜 較佳為 Cu — Cr — Zr~ A1 人 a . ^ A1合金、Cu — Cr合金、Cu__ Be合金、 磷青鋼、卡遜合全、π + —Zn合金等。關於各種合金,代表 性成分組成之較佳者記載於下。 • Cu— Cr(— Zr— Ai)合金_ J Figure 2 is an enlarged cross-sectional view of the III-III line profile. 2 1. Using a drive 22, and a caster casting machine with a moving cast mode, a cast caster belt having a cooling effect with a roller body moving roller 24, 201111068 A casting ring 23 on the outer circumference of the roller body 21. The conveyor belt 22 described above is made of carbon steel or stainless steel. The roller body 21 is made of carbon steel or stainless steel. The casting ring 23 is a material having a specific conductivity described later. The metal spurt 20 is injected into the casting ring 23 on the outer circumference of the roller 21 from the liquid filling port 25. The injected molten metal 26 is cooled in a rotationally moving casting ring and gradually solidifies to form an ingot 27. Fig. 2 schematically shows that the melt solidifies to form an ingot. The casting speed is practically 6 to 15 m / min (100 to 250 mm / Sec) in the normal operation, and the ingot section is 193 〇 mm 2 to 645 〇 mm 2 . [Casting Ring] (Electrical Conductivity) For continuous casting using the belt method, the casting speed is overwhelmingly faster compared to the conventional casting or horizontal horizontal continuous casting method, so the solid-liquid coexistence area is long The ground exists in the casting direction, and the final solidified portion in the metallic copper and copper alloy is also prone to the uneven thickness of the solidified outer shell. Moreover, since the casting ring of high conductivity is excellent in heat conduction, the molten liquid is strongly cooled immediately after it contacts the ring, and therefore, an air gap caused by solidification shrinkage immediately occurs, and cooling is hindered from being cooled. The unevenness causes the thickness of the solidified outer casing to be not fixed. As a result, surface defects of the thick wire are caused, resulting in wire breakage during stretching. Therefore, the inventors have considered that the conductivity of the casting ring is lowered, and it is considered that the electrical conductivity, that is, the casting ring having poor thermal conductivity, is slower in solidification speed, & more stable initial cooling, and the treated copper or copper alloy The relationship between the electrical conductivity and the electrical conductivity of the cast ring was investigated. The results of the study using various alloys having different electrical conductivity indicate that the electrical conductivity (% IACS) of the 201111068 casting ring is preferably 2% by % or less and less than 5% by weight. That is, in the preferred embodiment of the present invention, by using a specific low conductivity copper alloy casting ring, the generation of the air gap immediately after the liquid injection can be extremely effectively suppressed. Therefore, the air gap at the initial stage of solidification can be alleviated to hinder the heat transfer, and the stable cold portion can be formed, and as a result, a stable solidified shell of a uniform sentence without a weak portion can be formed. In addition, since the supercooling becomes large, the nucleation frequency becomes high, and the rust block structure near the surface of the ram block can be made fine. By virtue of this equivalent, the surface quality of the ingot can be improved, and cracks on the surface of the ingot can be suppressed. Further, by improving the ingot I, it is possible to suppress the surface defect of the thick wire, and it is possible not only to improve the quality of the thick wire but also to improve the yield. According to the above, in the case of copper or copper alloy, it is preferable to select a material having a conductivity of 20% IACS or more and 5〇% iacs or less (preferably % IACS or more and 40% IACS or less). It is preferable that the cooling efficiency can be sufficiently ensured by the above lower limit value. It is preferable to maintain the quality of the surface of the ingot well below the above upper limit value. Further, in the present invention, the conductivity refers to a value measured by the measurement method employed in the examples unless otherwise specified. In a preferred embodiment of the present invention, it is preferred to set the electrical conductivity of the cast alloy and the cast ring to the range of the following formula (Π). 20 S b < 0.225xa + 27.5 (Π) a : Casting alloy conductivity (% IACs) b : Casting ring conductivity IACS) The technical significance of the above lower limit is as described above. The formula constituting the right side of the upper limit is an experimentally derived one. By the following, it is possible to make a good casting alloy without breaking the wire without performing peeling. (Alloy) If considering the above-mentioned museums ^., -Η, contention, the alloy material constituting the casting ring is preferably Cu-Cr-Zr~A1 person a. ^ A1 alloy, Cu-Cr alloy, Cu__ Be alloy, phosphor bronze steel, Carson, π + -Zn alloy, etc. The preferred compositions of the various alloys are described below. • Cu—Cr(— Zr— Ai) alloy

Cr 0.2質量%〜2·〇暂晷0//± „ - f $ 較佳為0.3質量%〜1.5 % 〜0.30 質量%,更佳為0.5質量5質量 Zr 〇質量%〜〇·5質量 f t%) 量义(較佳為0.08質量 量%) A1 〇質量%〜3.0質量%(較佳為〇3質量 %〜2.0質 殘餘部分銅及不可避免之雜質 • Cu - Be合金 Β"·3質量%〜3.0質量%( 質量%) 質量%〜2.〇 C° ο.1質量%〜丨.〇質量%(較估炎 質量%) 為〇.2質量%〜0.6 殘餘部分銅及不可避免之雜質 •磷青銅Cr 0.2% by mass to 2% 〇 晷 0//± „ - f $ is preferably 0.3% by mass to 1.5% 〜0.30% by mass, more preferably 0.5 mass 5 mass Zr 〇 mass % 〇 · 5 mass ft% Quantitative (preferably 0.08 mass%) A1 〇 mass% to 3.0 mass% (preferably 〇3 mass% to 2.0 mass residual copper and unavoidable impurities • Cu-Be alloy Β"·3 mass% ~3.0% by mass (% by mass) Mass%~2. 〇C° ο.1% by mass% 丨.〇% by mass (% estimated inflammatory mass%) 〇.2% by mass to 0.6% residual copper and inevitable impurities • Phosphor bronze

Sn 1質量%〜5質量%(較佳為1質〇 P 0.03質量%〜〇.4質量%(較 量%〜4質量%) 質量%) 為〇·03質量%〜〇] 9 201111068 殘餘部分銅及不可避免之雜質 •卡遜合金Sn 1% by mass to 5% by mass (preferably 1 mass 〇P 0.03 mass% to 〇.4 mass% (comparative % to 4 mass%) mass%) 〇·03 mass% 〇] 9 201111068 residual copper And inevitable impurities • Carson alloy

Ni 2質量%〜5質量%(較佳為3 Si 0.5質量%〜i.3質量% f量質 質量為°‘7質量%?; 殘餘部分銅及不可避免之雜質 • Cu — Zn合金 %)Ni 2% by mass to 5% by mass (preferably 3 Si 0.5% by mass to i.3% by mass f. Mass mass is ° '7 mass%?; residual copper and unavoidable impurities • Cu - Zn alloy %)

Zn 1〇質量%〜40質量%(較佳Α 1主為2 ο曾昏0/ 貞量%〜4〇質量 殘餘部分銅及不可避免之雜質 [缚造合金] 考慮到如上述之輪帶法中之特性及其鑄造時之現象, 於應用本發明之鑄造環之铸造方法中,鎮造如下述之合金 特別有效,故較佳。 • Cu ~ Sn合金Zn 1〇% by mass to 40% by mass (preferably Α 1 mainly 2 ο 曾 0 0 / 贞 quantity % 〜 4 〇 mass residual copper and unavoidable impurities [binding alloy] Considering the wheel method as described above The characteristics of the casting and the phenomenon at the time of casting, in the casting method of the casting ring to which the present invention is applied, it is preferable to granulate the alloy as described below.

Sn 0.1質量%〜〇.8質量% 殘餘部分銅及不可避免之雜質 • Cu~ Ag合金 Αδ 0.02質量%〜4.0質量% 殘餘部分銅及不可避免之雜質 •卡遜合金Sn 0.1% by mass to 8.8% by mass Residual part of copper and unavoidable impurities • Cu~ Ag alloy Αδ 0.02% by mass to 4.0% by mass Residual part of copper and unavoidable impurities • Carson alloy

Ni 1.5質量%〜5.0質量%Ni 1.5% by mass to 5.0% by mass

Si 0.4質量%〜1.3質量% 殘餘部分銅及不可避免之雜質 10 201111068 • Cr合金Si 0.4% by mass to 1.3% by mass Residual part of copper and unavoidable impurities 10 201111068 • Cr alloy

Cr 〇·3質量%〜1.5質量% 殘餘部分銅及不可避免之雜質 • Cu- Cr- Zr 合金Cr 〇·3 mass% to 1.5 mass% residual copper and unavoidable impurities • Cu-Cr-Zr alloy

Cr 0.5質量%〜l.5質量%Cr 0.5% by mass to 1.5% by mass

Zr 〇·〇5質量%〜〇.5質量% 殘餘部分銅及不可避免之雜質 [實施例] 其次’根據實施例進一步詳細說明本發明,但例如樣 品及其製作條件等僅為具體之一例,本發明並不限定於此。 [實施例1 ] 如表1〜3所示,使用分別具有13〜80% IACS之導電 率且鎮塊剖面積3220mm2之鑄造環。將構成該鑄造環之人 金的成分組成與以下之實施例、比較例一起匯總記载於最 後。以20ton/小時之鑄造速度,藉由SCr法,製造φ 之含有0.7% Sn之精銅(參照表1)、Cu - l%Cr合金(參照表 2)及Cu—2.5%Ni—〇.6%Si卡遜合金(參照表3)之合金粗拉 線,進行拉伸至(D〇.lmm〇表1〜3表示根據製造粗拉線時 之渦流探傷器的檢測結果與進行粗拉線剝皮並進行拉伸時 有無斷線進行判定成品之良否的結果。 [導電率之測量] 鑄造環之導電率係使用GE inspection technologies公 司製造之AutoSigma3 000來測量鑄造環之研磨面。鑄造環 之導電率測量,係於室溫(23°C )進行。 201111068 表1〜3所示之渦流探傷器之檢測結果,於不進行剝皮 之情形時’將不至於斷線之微小缺陷設為「s」,將極少引 起斷線之缺陷設為「m」,將成為斷線原因之嚴重缺陷設為 「1」,計數每lton所檢測出之各別的個數。進而,將各種 缺陷加權為s=l、m = 20、1=1 〇〇,以其合計值d進行探傷 結果之綜合評價。將該合計值d未達5〇者評價為「◎」, 50以上者評價為「〇」,1〇〇以上者則評價為「χ」。又, 剝皮量與斷線判定,係於將φ 8mm之粗拉線5〇〇〇kg如表示 般以單侧0〜〇.3mm之厚度進行剝皮並拉伸至Φ 0.1mm時, 將斷線者評價為「χ」,未斷線者評價為「〇」^ 於表1〜3最右攔之「評價」中,將單側之剝皮為〇mm 或0.1mm時未斷線者評價為「〇」,單側之剝皮為〇mm及 〇’lmm時斷線、單側之剝皮為〇.2mm時未斷線者評價為 △」’單侧之剝皮為〇.2mm時斷線者則評價為「χ」。 12 201111068 [表i] 0.7%Sn-TPC 鑄造速度:20ton/hour 毯後剖面積:3220mm 鑄造環 探傷缺 治(個/ton;^l 探傷缺陷評價(※之) 剝皮量(钔) 評價 導電率 S m 1 d 良否判定 mm ◎ 0 〇 25 28 0.1 0 30 0.1 〇 〇 0.2 〇 30 17 0 〇 0.1 0 19 ◎ 0.1 〇 〇 本發明例 0.2 Ο 39 25 0.1 0 〇 0 27 ◎ 0.1 〇. 〇 0.2 Ο 45 44 0.2 84 〇 0 〇 1 0.1 〇 〇 0.2 Π 15 C1 0.9 0.1 79 〇 0 X ^ 1 0.1 X X 0.2 X 56 75 3.1 0.5 187 0 X X 0.1 X Δ 0.2 〇 比較例 rc 97 3.4 0.7 235 0 ·— 一 〇J X 0.1 X Λ 0.2 〇 ----—_ 73 115 4.1 1.4 337 X 0.1 0.2 0 3 >r v X 80 142 6.1 2.4 504 X 0.1 A 0.2 Ω飞 X v ~ X — 1 Λ 〜_ ※之 s:不影響斷線之缺陷 m:極少引起斷線之缺陷 1 :引起斷線之缺陷※3 ※3 〇:^+10°"敝量:單側 ◎:未達50 X : 100以上 將<D8mm粗拉線5000 kg拉伸至(DO.lmm時之斷線判定 Ο :無斷線 X :有斷線 13 201111068 [表2]Zr 〇·〇5 mass%~〇.5 mass% Residual copper and unavoidable impurities [Examples] Next, the present invention will be described in further detail based on examples, but for example, samples and production conditions thereof are merely specific examples. The present invention is not limited to this. [Example 1] As shown in Tables 1 to 3, cast rings each having a conductivity of 13 to 80% IACS and a cross-sectional area of 3220 mm 2 were used. The composition of the human gold constituting the casting ring is collectively described in the following examples and comparative examples. Manufacture of φ of 0.7% Sn-containing refined copper (refer to Table 1), Cu -l%Cr alloy (refer to Table 2) and Cu-2.5% Ni-〇.6 by the SCr method at a casting speed of 20 ton/hour. The alloy thick wire of %Si Carson alloy (refer to Table 3) is stretched to (D〇.lmm) Tables 1 to 3 show the detection results of the eddy current flaw detector according to the manufacture of the thick wire and the rough wire stripping. The result of determining whether the finished product is good or not when the skin is stretched. [Measurement of Conductivity] The conductivity of the casting ring is measured using the AutoSigma 3 000 manufactured by GE Inspection Technologies to measure the polished surface of the casting ring. The rate measurement is carried out at room temperature (23 ° C.) 201111068 The results of the eddy current flaw detector shown in Tables 1 to 3, when the skin is not peeled, 'the micro defects that will not be broken are set to s The defect that causes the disconnection is rarely set to "m", and the serious defect that causes the disconnection is "1", and the number of each detected by each lton is counted. Further, the various defects are weighted to s. =l, m = 20, 1=1 〇〇, comprehensive evaluation of the flaw detection results with their total value d When the total value d is less than 5, the evaluation is "◎", the 50 or more is evaluated as "〇", and the one or more is evaluated as "χ". Further, the amount of peeling and the disconnection are determined. When the thickness of the φ 8 mm thick wire 5 〇〇〇 kg is peeled and stretched to Φ 0.1 mm on the one side of 0 to 〇. 3 mm, the wire breaker is evaluated as "χ", and the wire is not broken. The evaluation is "〇" ^ In the "Evaluation" of the rightmost block in Tables 1 to 3, when the one side is peeled to 〇mm or 0.1mm, the unbroken person is evaluated as "〇", and the one side is peeled. When 〇mm and 〇'lmm are broken, the unilateral peeling is 〇. When 2mm is not broken, the evaluation is △"" unilateral peeling is 〇. 2mm, the disconnected person is evaluated as "χ". 201111068 [Table i] 0.7%Sn-TPC Casting speed: 20ton/hour After-wafer area: 3220mm Casting ring flaw detection (number / ton; ^l flaw detection evaluation (※) Peeling amount (钔) Evaluation of conductivity S m 1 d Good or not judged mm ◎ 0 〇25 28 0.1 0 30 0.1 〇〇0.2 〇30 17 0 〇0.1 0 19 ◎ 0.1 〇〇Inventive example 0.2 Ο 39 25 0.1 0 〇0 27 ◎ 0.1 〇. 〇0.2 Ο 45 44 0.2 84 〇0 〇1 0.1 〇〇0.2 Π 15 C1 0.9 0.1 79 〇0 X ^ 1 0.1 XX 0.2 X 56 75 3.1 0.5 187 0 XX 0.1 X Δ 0.2 〇Comparative example rc 97 3.4 0.7 235 0 ·— 一〇JX 0.1 X Λ 0.2 〇-----_ 73 115 4.1 1.4 337 X 0.1 0.2 0 3 >rv X 80 142 6.1 2.4 504 X 0.1 A 0.2 Ω fly X v ~ X — 1 Λ ~ _ s s: does not affect the defect of the disconnection m: the defect that causes the disconnection very rarely 1 : the defect that caused the disconnection ※3 *3 〇:^+10°"敝 quantity: one side ◎: not Up to 50 X: 100 or more will stretch <D8mm thick wire 5000 kg to (D.lmm break determination Ο: no break X: broken wire 13 201111068 [Table 2]

Cu—l%Cr鎮造速度:20ton/hour 铸塊剖面積:3220mm2Cu-1%Cr production speed: 20ton/hour Ingot casting area: 3220mm2

鑄造環 探傷缺陷(個/ton^l 探傷缺陷評價(※之) 剝皮量丨※〗) 評價 導電率 S m 1 d 良否判定 mm 0 〇 25 25 0.1 0 27 ◎ 0.1 〇 〇 0.2 〇 0 〇 32 27 0.8 0.07 50 ◎ 0.1 〇 〇 本發明例 0.2 〇 0 〇 38 38 1.1 0.08 68 ◎ 0.1 〇 〇 0.2 〇 0 X 44 51 1.6 0.14 97 〇 0.1 〇 〇 0.2 〇 0 X 13 45 1.1 0.3 97 〇 0.1 X X 0.2 X 0 X 58 68 2.1 0.2 130 X 0.1 X Δ 0.2 〇 0 X 比較例 66 101 3.5 0.7 241 X 0.1 X Δ 0.2 〇 0.1 X 72 124 4 1.5 354 X 0.2 X X 0.3 X 0.1 X 80 142 6.1 2.4 504 X 0.2 X X 0.3 X 14 201111068 [表3] _Cu—2.5%Ni —0.6%Si 鑄造速度:20ton/hour 鎮塊斷面積:3220mm2Casting ring flaw detection (one /ton^l flaw detection evaluation (※) Peeling amount 丨 ※〗) Evaluation of conductivity S m 1 d Good or not judgement mm 0 〇25 25 0.1 0 27 ◎ 0.1 〇〇0.2 〇0 〇32 27 0.8 0.07 50 ◎ 0.1 〇〇 Inventive Example 0.2 〇0 〇38 38 1.1 0.08 68 ◎ 0.1 〇〇0.2 〇0 X 44 51 1.6 0.14 97 〇0.1 〇〇0.2 〇0 X 13 45 1.1 0.3 97 〇0.1 XX 0.2 X 0 X 58 68 2.1 0.2 130 X 0.1 X Δ 0.2 〇 0 X Comparative Example 66 101 3.5 0.7 241 X 0.1 X Δ 0.2 〇 0.1 X 72 124 4 1.5 354 X 0.2 XX 0.3 X 0.1 X 80 142 6.1 2.4 504 X 0.2 XX 0.3 X 14 201111068 [Table 3] _Cu—2.5%Ni—0.6%Si Casting speed: 20ton/hour Town block sectional area: 3220mm2

鑄造環 鑄造環 探傷缺陷(個/ton)※l 探傷缺陷評價(※之) 剝皮量(※3) 評價 No. 導電率 S m 1 d 良否判定 mm 0 〇 1-1 26 21 0.3 0 27 ◎ 0.1 〇 〇 0.2 〇 0 X 1-2 31 35 1.1 0.08 65 ◎ 0.1 〇 〇 本發明例 0.2 〇 0 X 1-3 39 44 1 0.2 84 〇 0.1 〇 〇 0.2 〇 0 X 1-4 43 49 2 0 89 〇 0.1 〇 〇 0.2 〇 0 X 1-5 16 38 0.8 0.2 74 〇 0.1 X X 0.2 X 0 X 1-6 55 58 1.4 0.3 116 X 0.1 X Δ 0.2 〇 0 X 比較例 1—7 62 88 2.7 0.5 192 X 0.1 X Δ 0.2 〇 0.1 X 1-8 71 101 4 1.5 331 X 0.2 X X 0.3 X 0.3 X 1-9 80 97 3.4 1.2 285 X 0.2 X X 0.3 X 15 201111068 任一合金於使用2〇%以上、5〇%IACS#下之鑄造環時 之探傷結果、斷線判定均為優異之結果。另外,於使用未 達20%IACS之鑄造環之情形時,由於冷卻能力不充分,故 向鎮塊中心部之炼融液供給不足,此造成大收縮而成為斷 線不良之原因。可知未超過50%1似之鑄造環,可如上述 般防止鑄塊表面產生細微裂縫導致表面品質惡化,故較佳二 [實施例2] 對於具有表4所不之導電率的各種合金,使用具有所 表示之導電率的鑄造環,利用與實施例丨相同之條件實施 f造、拉伸,與實施例丨同樣進行評價。將其結果中尤其 是結果良好者與並非如此者示於表4與圖4。再者,表4所 不之「更理想之導電率b」,係指使合金導電率3符合下述 式(II)之(0.22 5xa+ 27·5)之值,相對於此,「鑄造環導電率」, 係指實際上所使用之鑄造環的導電率。於此情形時,「與b 相符合」意為「實際上使用之鑄造環的導電率與下述式(Η) 相符σ」’將實際上所使用之鑄造環的導電率處於下述式(η) 之b的範圍内者評價為「〇」,將實際上所使用之鑄造環 的導電率大於下述式(11)之b的上限且在5〇%IACS以下者 評價為「△」。 以導電率不同之各種合金進行試驗的結果可知,特別 理想的是根據下式(11)來選擇鑄造環材質。 20 ^ b < 〇.225xa+ 27.5 (II) a:鑄造合金導電率(% I ACS) b :鑄造環導電率(% IACS) 201111068 ΝεαΙ0ίΝ(Ν£ :艇喵磁衮浓 Jnoq\uos3 :妨^帘浓 剝皮量(※3) 斷線判定 〇 〇 〇 〇 〇 〇 〇 〇 〇 X 〇 〇 X 〇 〇 X 〇 〇 mm 〇 5 (N 〇 o <N o o cs o o o (N d o r—< (N 〇 o o (N 〇 探傷缺陷評價(:※2) 良否判定 ◎ ◎ ◎ 〇 O 〇 Ό S\ s 探傷缺陷(個/抝幻※! — 〇 o o 0.12 0.14 CN 〇 E 〇 1—1 m o VO Vi (N 9 m 5 與b相 符合 〇 〇 〇 0 0 <] 鑄造環 |導電率 cn ^T) (N 鑄造環 No. <N <N (N 2-3 寸 I (N 2-5 v〇 1 (N 更理想之 導電率b in m m (N m in ΓΛ ΓΛ <N m 合金 導電率a (N r- (N 合金種類 0.3%Sn-TPC Cu—l%Cr Cu-2.5%Ni-0.6%Si 1 i 0.3%Sn—TPC Cu-l%Cr Cu-2.5%Ni-0.6%Si 本發明例1 本發明例2 τχ-t 〇〇一 : x os坩咚:◎ T3 OS :〇 χοοι+εχοίΝ+SHP ㈡※ 绍袅W錄备破ΙΛΓ>: 1 .. ε ^¥r?诸备齙磙K·: s 一※ 诸备杯:X 驽益璀:〇wf# 璲备 ν^εε「οφ^φ43>Ι 〇〇〇ς 诸与璁 εωοοφ 实 ! i 201111068 [實施例3 ] 係使鑄造速度變化時之實施例。 以鎮塊剖面積3220mm2,使用具有表5所示之導電率 之各種鑄造環,改變鑄造速度,除此以外與實施例1同樣 地鑄造Cu — 2.5%Ni—0.6%Si之卡遜合金。 利用8〇% iACS之鑄造環,以通常之铸造速度V〇(200mm /秒)為基I ’藉由所實施之鑄造速度V ’來評價作為相對 速度之鎮造速度Vr。Vr=V/V〇。 若鑄造速度相對於冷卻速度過快,則鑄塊溫度會變得 過高,鑄塊強度下降而產生裂縫’或者於鎮塊中心部殘存 較大之收縮’而成為斷線之原因。因此’實施結果之良否 判定,係將對φ 8mm之粗拉線5000kg進行單側0.1mm剝皮 並拉伸時未斷線者評價為「〇」,將斷線者評價為「X」。 結果示於表5。 [表5] 鑄塊剖面積:3200mm2鑄造合金:— 2.5%Ni —0.6%SiCasting ring casting ring flaw detection defect (number / ton) ※l flaw detection evaluation (※) peeling amount (*3) evaluation No. Conductivity S m 1 d good or bad judgment mm 0 〇1-1 26 21 0.3 0 27 ◎ 0.1 〇〇0.2 〇0 X 1-2 31 35 1.1 0.08 65 ◎ 0.1 〇〇Inventive Example 0.2 〇0 X 1-3 39 44 1 0.2 84 〇0.1 〇〇0.2 〇0 X 1-4 43 49 2 0 89 〇0.1 〇〇0.2 〇0 X 1-5 16 38 0.8 0.2 74 〇0.1 XX 0.2 X 0 X 1-6 55 58 1.4 0.3 116 X 0.1 X Δ 0.2 〇0 X Comparative Example 1-7 62 88 2.7 0.5 192 X 0.1 X Δ 0.2 〇0.1 X 1-8 71 101 4 1.5 331 X 0.2 XX 0.3 X 0.3 X 1-9 80 97 3.4 1.2 285 X 0.2 XX 0.3 X 15 201111068 Any alloy used above 2〇%, 〇5% The results of the flaw detection and the judgment of the broken wire in the casting ring under IACS# are excellent results. Further, in the case of using a casting ring of less than 20% IACS, the cooling capacity is insufficient, so that the supply of the smelting liquid to the center of the block is insufficient, which causes a large shrinkage and causes a disconnection failure. It can be seen that the casting ring which does not exceed 50% 1 can prevent the surface from deteriorating due to the occurrence of fine cracks on the surface of the ingot as described above. Therefore, it is preferable that [the second embodiment] is used for various alloys having electrical conductivity not shown in Table 4. The casting ring having the indicated electrical conductivity was evaluated by the same conditions as in Example 实施, and evaluated in the same manner as in Example 。. Among the results, especially those with good results and not the same are shown in Table 4 and Figure 4. In addition, the "better conductivity b" in Table 4 means that the electrical conductivity of the alloy 3 satisfies the value of (0.22 5xa + 27·5) of the following formula (II), whereas the "casting ring conductivity" "" means the conductivity of the casting ring actually used. In this case, "consistent with b" means "the conductivity of the casting ring actually used is in accordance with the following formula (Η) σ"'. The conductivity of the casting ring actually used is in the following formula ( In the range of b of η), it is evaluated as "〇", and the conductivity of the casting ring actually used is larger than the upper limit of b of the following formula (11), and is evaluated as "Δ" when it is 5 % IACS or less. As a result of tests conducted on various alloys having different electrical conductivity, it is particularly preferable to select a material of the casting ring according to the following formula (11). 20 ^ b < 〇.225xa+ 27.5 (II) a: Conductivity of cast alloy (% I ACS) b : cast ring conductivity (% IACS) 201111068 ΝεαΙ0ίΝ (Ν£: boat 衮 衮 J Jnoq\uos3 : ^ ^ Thickness of the curtain (*3) Disconnection judgment 〇〇〇〇〇〇〇〇〇X 〇〇X 〇〇X 〇〇mm 〇5 (N 〇o <N oo cs ooo (N dor-< ( N 〇oo (N 〇 flaw detection evaluation (:※2) Good or not ◎ ◎ ◎ 〇O 〇Ό S\ s flaw detection (one / 拗 ※ ※! — 〇oo 0.12 0.14 CN 〇E 〇1—1 mo VO Vi (N 9 m 5 and b are in accordance with 〇〇〇0 0 <] casting ring|conductivity cn ^T) (N casting ring No. <N < N (N 2-3 inch I (N 2-5 V〇1 (N more ideal conductivity b in mm (N m in ΓΛ ΓΛ <N m alloy conductivity a (N r- (N alloy type 0.3% Sn-TPC Cu-1% Cr Cu-2.5% Ni -0.6% Si 1 i 0.3% Sn-TPC Cu-l% Cr Cu-2.5% Ni-0.6% Si Inventive Example 1 The present invention 2 τχ-t 〇〇一: x os坩咚: ◎ T3 OS : 〇χοοι+εχοίΝ+SHP (2) ※ 绍袅W录备ΙΛΓ ΙΛΓ>: 1 .. ε ^¥r? 龅磙 龅磙 K·: s一※ 诸杯:X 驽益璀:〇wf# 璲 ν^εε“οφ^φ43>Ι 诸 璁 and 璁εωοοφ real! i 201111068 [Example 3] Implementation of casting speed change In the same manner as in Example 1, Cu- 2.5% Ni-0.6% Si-Carson alloy was cast in the same manner as in Example 1 except that the casting speed was changed by using various casting rings having the electrical conductivity shown in Table 5 at a cross-sectional area of 3120 mm2. The casting speed Vr as the relative speed is evaluated by the casting speed V' of the conventional casting speed V〇 (200 mm/sec) using a casting ring of 8〇% iACS. Vr = V / V 〇. If the casting speed is too fast with respect to the cooling rate, the ingot temperature becomes too high, and the strength of the ingot is lowered to cause a crack 'or a large shrinkage at the center of the block, which is a cause of disconnection. Therefore, it is judged whether or not the 5,000 mm thick wire 5000 kg is unilaterally peeled by 0.1 mm, and the unbroken one is evaluated as "〇", and the disconnected person is evaluated as "X". The results are shown in Table 5. [Table 5] Ingot section area: 3200 mm2 casting alloy: - 2.5% Ni - 0.6% Si

鑄造環 No. 鑄造環導電率 (%IACS) 鑄造 速度:以EC80%IACS之鑄造速度為 基準之相對速度 0.9 1 1.05 1.1 1.15 12 本發明例 3-1 44 〇 〇 〇 〇 〇 〇 3-2 31 〇 〇 〇 〇 〇 〇 3 — 3 25 〇 〇 〇 Ο X 比較例 3-4 80 〇 〇 X X X X 3-5 71 〇 〇 X X ~~~X~ X 3 — 6 ___ 65 〇 〇 〇 X ---- X 3-7 _ 55 〇 〇 〇 X -W— X 3 — 8 ____15 X X X V 对租拉踩進行〇·1ηιιη剝皮後拉伸s , )Π 1 mm /\ Π主今 χ X X:有斷線 201111068 具有本發明中所規定之範圍之導電率的鑄造環,由於 可抑制空氣隙之生成,故於凝固初期階段更能較高導電率 之鑄造環進行強力地冷卻’並且因導電率高於鐵製鑄造 環,因此可使整體之冷卻能力高於高導電率環。於使用各 種導電率之鑄造環之實驗中,於導電率20〜50%IACS之區 域可較現狀提高最大1.2倍之鑄造速度。 [實施例4] 使用導電率不同之鑄造環,與實施例1同樣地對各種 合金進行鑄造、壓延、拉伸。於與距離鑄塊表面2mm之位 置之結晶粒的成長方向垂直之方向上利用交線法測量鑄塊 之結晶粒徑U m)。另外,與實施例同樣地進行評價。 所得之結果示於表6。 19 201111068 εΕ0<Ν<Ν£ :*喵眾衮浓 Jnoq\uoo<N:^t«/^浓Casting Ring No. Casting Ring Conductivity (% IACS) Casting Speed: Relative Speed Based on EC80% IACS Casting Speed 0.9 1 1.05 1.1 1.15 12 Inventive Example 3-1 44 〇〇〇〇〇〇3-2 31 〇〇〇〇〇〇3 — 3 25 〇〇〇Ο X Comparative Example 3-4 80 〇〇XXXX 3-5 71 〇〇XX ~~~X~ X 3 — 6 ___ 65 〇〇〇X ---- X 3-7 _ 55 〇〇〇X -W— X 3 — 8 ____15 XXXV 租·1ηιιη peeling and stretching s after the renting step, Π 1 mm /\ Π主今χ XX: There is a broken line 201111068 The casting ring having the conductivity in the range specified in the present invention can suppress the formation of the air gap, so that the casting ring of higher conductivity can be strongly cooled in the initial stage of solidification, and the conductivity is higher than that of iron. The casting ring allows the overall cooling capacity to be higher than the high conductivity ring. In experiments using casting rings of various conductivity, the casting speed of the current conductivity of 20 to 50% IACS can be increased by a maximum of 1.2 times compared with the current state. [Example 4] Various alloys were cast, rolled, and drawn in the same manner as in Example 1 using casting rings having different electrical conductivity. The crystal grain size U m) of the ingot was measured by a line method in a direction perpendicular to the growth direction of the crystal grains at a position 2 mm from the surface of the ingot. Further, evaluation was performed in the same manner as in the examples. The results obtained are shown in Table 6. 19 201111068 εΕ0<Ν<Ν£:*喵众衮浓 Jnoq\uoo<N:^t«/^

【9<J 1評價I ◎ ◎ ◎ X X X 剝皮量(※3) 斷線判定 〇 〇 〇 〇 〇 〇 〇 〇 〇 X X X X X X X X X mm 〇 5 (N 〇 o CN 〇 o <N 〇 o o (N d o d <N 〇 o o <N 〇 探傷缺陷評價(※之) 良否判定 ◎ ◎ ◎ X X X *〇 二 342 m 338 探傷缺陷(個/ton;^l — 〇 o o h in ε 〇 o — <N <N (Λ κη (N ss 鑄塊表面2mm ; 之結晶粒徑(μπι) 0.44 0.36 0.42 1.21 o 1.14 鑄造環 @電率 3 κη (N IQ r- 合金種類 0.3%Sn-TPC Cu-l%Cr Cu-2.5%Ni-0.6Si 0.3%Sn-TPC Cu-l%Cr Cu-2.5%Ni-0.6Si 本發明例 比較例 201111068 可知與比較例相比,可知藉由使用本發明中所規定之 範圍之低導電率的鑄造環,鑄模附近之過冷會變大,成核 頻率變高,鑄塊表面附近之鑄塊組織細微化,而可提高鑄 塊表面品質。其結果,可減少表面缺陷,即使為更少之剝 皮量,亦可不發生斷線而進行拉伸。 以下,表示實施例1〜3中所使用之鑄造環的導電率(單 位:% IACS)與組成。該組成為以銅合金來形成鑄造環之情 形的一例,只要滿足導電率之條件,則亦可利用其他銅合 金等來形成。 再者,表7係對應於表3,表8係對應於表4,表9則 對應於表5。 [表7](實施例1) 單位質量% 鑄造環 導電率 Ni Si Sn P Cr Zr A1 Co Be Zn 殘餘部分 1-1 26 0.5 2 Cu不可避免之雜質 1-2 31 1.5 0.3 2.0 Cu不可避免之雜質 1-3 39 1.5 0.3 1.0 Cu不可避免之雜質 1-4 43 2.8 0.7 Cu不可避免之雜質 1—5 16 6 0.03 Cu不可避免之雜質 1-6 55 1.8 0.5 Cu不可避免之雜質 1-7 62 1.2 0,3 Cu不可避免之雜質 1-8 71 0.4 Cu不可避免之雜質 1-9 80 0.7 0.06 Cu不可避免之雜質 [表8](實施例2) 單位質量% 鑄造環 導電率 Ni Si Sn P Cr Zr A1 Co Be Zn 殘餘部分 2-1 35 Cu不可避免之雜質 2-2 25 0.6 2 Cu不可避免之雜質 2-3 25 40 Cu不可避免之雜質 2-4 47 10 Cu不可避免之雜質 2-5 48 1.0 0.2 0.5 Cu不可避免之雜質 2-6 45 2.5 0.5 Cu不可避免之雜質 21 201111068 [表9](實施例3) 鑄造環 導電率[9<J 1 evaluation I ◎ ◎ ◎ XXX peeling amount (*3) Disconnection judgment 〇〇〇〇〇〇〇〇〇XXXXXXXXX mm 〇5 (N 〇o CN 〇o <N 〇oo (N dod &lt ;N 〇oo <N 〇 flaw detection evaluation (※) Good or not ◎ ◎ ◎ XXX *〇二342 m 338 flaw detection (/ton;^l — 〇ooh in ε 〇o — <N <N (Λ κη (N ss ingot surface 2mm; crystal grain size (μπι) 0.44 0.36 0.42 1.21 o 1.14 casting ring @electricity 3 κη (N IQ r- alloy type 0.3%Sn-TPC Cu-l%Cr Cu- 2.5% Ni-0.6Si 0.3% Sn-TPC Cu-l% Cr Cu-2.5% Ni-0.6Si Inventive Example Comparative Example 201111068 It is understood that compared with the comparative example, it is understood that the range specified by the present invention is low. The casting ring of conductivity, the supercooling near the mold becomes larger, the nucleation frequency becomes higher, the ingot structure near the surface of the ingot is finer, and the surface quality of the ingot can be improved. As a result, surface defects can be reduced. The amount of peeling may be reduced, and stretching may be performed without breaking. Hereinafter, the electrical conductivity (unit: % IACS) and composition of the casting ring used in Examples 1 to 3 are shown. An example of the case where the alloy forms a casting ring may be formed by using another copper alloy or the like as long as the condition of the electrical conductivity is satisfied. Further, Table 7 corresponds to Table 3, and Table 8 corresponds to Table 4, and Table 9 corresponds to Table 4. Corresponding to Table 5. [Table 7] (Example 1) Unit mass% Casting ring conductivity Ni Si Sn P Cr Zr A1 Co Be Zn Residual portion 1-1 26 0.5 2 Cu unavoidable impurities 1-2 31 1.5 0.3 2.0 Cu inevitable impurities 1-3 39 1.5 0.3 1.0 Cu inevitable impurities 1-4 43 2.8 0.7 Cu inevitable impurities 1 - 5 16 6 0.03 Cu inevitable impurities 1-6 55 1.8 0.5 Cu inevitable Impurity 1-7 62 1.2 0,3 Cu unavoidable impurities 1-8 71 0.4 Cu unavoidable impurities 1-9 80 0.7 0.06 Cu unavoidable impurities [Table 8] (Example 2) Unit mass % Cast ring conductive Ni Si Sn P Cr Zr A1 Co Be Zn Residual part 2-1 35 Cu unavoidable impurity 2-2 25 0.6 2 Cu unavoidable impurity 2-3 25 40 Cu unavoidable impurity 2-4 47 10 Cu unavoidable impurity 2-5 48 1.0 0.2 0.5 Cu unavoidable impurities 2-6 45 2.5 0.5 Cu inevitable impurities 21 201111068 [Table 9] (Example 3) Casting ring conductivity

Si SnSi Sn

CrCr

ZrZr

Co 2.5 0.6 殘餘部分 1-2 3 — 3 3-4 31 1〇" 1.5 0,3 0.6 0.7 0.1 71 0.4 3 — 6 卜7 1 — 8 65 55ΤΓ 1.8 0.3 0.4 gu不可避免之雜y _Cu不可避免之雜哲 Cu不可避免之雜辞 0.03Co 2.5 0.6 Residual part 1-2 3 — 3 3-4 31 1〇" 1.5 0,3 0.6 0.7 0.1 71 0.4 3 — 6 Bu 7 1 — 8 65 55ΤΓ 1.8 0.3 0.4 gu Inevitable miscellaneous y _Cu is inevitable Miscellaneous essays Cu inevitable vocabulary 0.03

Cu不可避免之雜晳_ Cu不可避免之雜暂 以上雖說明本發明與其實施態樣,但只要本發明沒有 特別指^,則即使在說明本發明之任—細部中用 限定本發明者,且、音g 政 者且八要在不違反本案申請專利範圍所示之 發明精神與範圍下,應作最大範圍的解釋。 本案係主張基於2009年7月1{)日於日本提㈣請之 特願2_ — i 64248之優先權者’本發明係參照此申請案並 將其内容加入作為本說明書之記載的一部份。 【圖式簡單說明】 *圖1’係表示本發明之利用輪帶法之連續鑄造方法一實 施態樣中製造線材之步驟的概略說明圖。 圖2’係示意地表示本發明之連續鑄造方法中所使用的 輪帶鑄造機之較佳實施形態的剖面圖。 圖3’係圓2所示之鑄造機之出—⑴線剖面的放大剖 面圖。 圖4’係表示所鎮造之合金之導電率與鑄造環之導電率 22 201111068 【主要元件符號說明】 1 豎爐 2 導流槽 3 餵槽 4 注液口 5 熔融液 6 輸送帶 7 滾輪 8 輪帶鑄造機 9 鑄塊 10 連續壓延機 11 粗拉線材 12 拉伸壓延機 13 拉伸材 14 托板 21 滾輪 22 輸送帶 23 鑄造環 24 驅動輥 25 注液口 26 熔融液 27 鑄塊 23The inevitable ambiguity of Cu _ Cu is unavoidable. Although the present invention and its embodiment are described above, the present invention is not limited thereto, and even if it is used in the description of the present invention, The politicians and politicians should make the widest interpretation in the spirit and scope of the invention not in violation of the scope of the patent application in this case. The present invention claims to be based on the priority of the Japanese Patent Application No. 2_i 64248 on July 1st, 2009. The present invention refers to this application and adds its contents as part of the description of this specification. . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic explanatory view showing a step of manufacturing a wire in a continuous casting method using a belt method according to the present invention. Fig. 2' is a cross-sectional view schematically showing a preferred embodiment of the belt casting machine used in the continuous casting method of the present invention. Fig. 3' is an enlarged cross-sectional view showing a section of the casting machine shown by the circle 2, taken along line (1). Figure 4' shows the conductivity of the alloy and the conductivity of the cast ring. 22 201111068 [Main component symbol description] 1 Shaft furnace 2 Guide chute 3 Feed tank 4 Filling port 5 Melt 6 Conveyor belt 7 Roller 8 Belt casting machine 9 Ingot 10 Continuous calender 11 Thick wire rod 12 Tensile calender 13 Tensile material 14 Pallet 21 Roller 22 Conveyor belt 23 Casting ring 24 Drive roller 25 Filling port 26 Melt 27 Ingot 23

Claims (1)

201111068 七、申請專利範圍: 1.一種連續鑄造方法,係於以輪帶法鑄造銅或銅合金 時’使用導電率20% IACS以上、50%IACS以下之鑄造環。 2_如申請專利範圍第1項之連續鑄造方法,係使用具有 相對於铸造金屬之導電率IACS),滿足下述式⑴之導 電率B(%IACS)者作為該鑄造環, 20^ B< 0.225XA+ 27.5 (I) A:鑄造金屬之導電率(%IACS) B:鑄造環之導電率(% IACS)。 3. 如申請專利範圍第丨或2項之連續鑄造方法,其中, δ亥輪帶法係如下之鑄造方法:將餵槽内之熔融液自注液口 入至由利用旋轉輥進行旋動之輸送帶與滾輪所構成的輪 帶鑄造機内,冷卻固化而製成鑄塊,將該鑄塊自該鑄模連 續地抽出;使用具有該特定導電率之鑄造環作為構成該滾 輪之鑄造環。 4. 一種鑄造環,係於以輪帶法連續鑄造銅或銅合金時所 所使用之導電率2〇%IACS以上、5〇%iacs以下之鑄造環。 5. 一種連續鑄造裝置,係使用於銅或銅合金之連續缚造 的輪帶型連續鑄造裝置,其特徵在於: 使用導電率20%IACS以上、50%IACS以下之鱗造環。 6. 如申請專利範圍第5項之連續鑄造裝置,其中,該輪 帶型連續鑄造裝置具備:將餵槽内之熔融液注入之注液 :鏟:由利用旋轉輥進行旋動之輸送帶及滾輪所構成的: 鳞造機,該滾輪係具備有滚輪本體及具有該特定導電率 24 201111068 之鑄造環而成。 八、圖式· (如次頁) 25201111068 VII. Patent application scope: 1. A continuous casting method, when casting copper or copper alloy by the wheel method, using a casting ring with a conductivity of 20% IACS or more and 50% IACS or less. 2_ As in the continuous casting method of claim 1, the conductivity (IACS) with respect to the cast metal is used, and the conductivity B (% IACS) satisfying the following formula (1) is used as the casting ring, 20^B< 0.225XA+ 27.5 (I) A: Conductivity of cast metal (%IACS) B: Conductivity of cast ring (% IACS). 3. The continuous casting method of claim 2 or 2, wherein the δHai belt method is a casting method in which the molten liquid in the feeding tank is fed from the liquid injection port to the rotation by the rotating roller. The belt casting machine consisting of a conveyor belt and a roller is cooled and solidified to form an ingot, and the ingot is continuously withdrawn from the mold; a casting ring having the specific conductivity is used as a casting ring constituting the roller. 4. A casting ring which is a casting ring having a conductivity of 2% by weight or more and 15% by weight or less, which is used for continuous casting of copper or a copper alloy by a belt method. A continuous casting apparatus which is a continuous belt-type continuous casting apparatus for copper or copper alloy, characterized in that: a scale-forming ring having a conductivity of 20% IACS or more and 50% IACS or less is used. 6. The continuous casting apparatus according to claim 5, wherein the belt type continuous casting apparatus comprises: an injection liquid for injecting a molten liquid in the feeding tank: a shovel: a conveyor belt that is rotated by a rotating roller and The roller is composed of: a scale machine, which is provided with a roller body and a casting ring having the specific conductivity 24 201111068. Eight, schema · (such as the next page) 25
TW99122688A 2009-07-10 2010-07-09 Method for continuous casting of bronze or bronze alloy and casting ring used therefor TW201111068A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164248A JP2012179607A (en) 2009-07-10 2009-07-10 Method for continuous casting of bronze or bronze alloy and casting ring used therefor

Publications (1)

Publication Number Publication Date
TW201111068A true TW201111068A (en) 2011-04-01

Family

ID=43429312

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99122688A TW201111068A (en) 2009-07-10 2010-07-09 Method for continuous casting of bronze or bronze alloy and casting ring used therefor

Country Status (3)

Country Link
JP (1) JP2012179607A (en)
TW (1) TW201111068A (en)
WO (1) WO2011004888A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789459A (en) * 2021-09-02 2021-12-14 宁波博威合金材料股份有限公司 Copper-nickel-tin alloy and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012096238A1 (en) * 2011-01-11 2012-07-19 古河電気工業株式会社 Continuous casting method for copper or copper alloy
JP7404991B2 (en) * 2020-04-21 2023-12-26 株式会社プロテリアル Copper wire manufacturing equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5355865B2 (en) * 2006-06-01 2013-11-27 古河電気工業株式会社 Copper alloy wire manufacturing method and copper alloy wire
JP5515313B2 (en) * 2009-02-16 2014-06-11 三菱マテリアル株式会社 Method for producing Cu-Mg-based rough wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789459A (en) * 2021-09-02 2021-12-14 宁波博威合金材料股份有限公司 Copper-nickel-tin alloy and preparation method and application thereof

Also Published As

Publication number Publication date
WO2011004888A1 (en) 2011-01-13
JP2012179607A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
US11913105B2 (en) High-efficiency and short-process method for preparing a high-strength and high-conductivity copper alloy
KR101450916B1 (en) Process for manufacturing copper alloy wire rod and copper alloy wire rod
JP5147040B2 (en) Method for producing copper alloy conductor
CN100491555C (en) Cu alloy material, method of manufacturing cu alloy conductor using the same, cu alloy conductor obtained by the method, and cable or trolley wire using the cu alloy conductor
JP5800300B2 (en) Copper alloy wire
TW201229256A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRON MATERIAL AND METHOD FOR PRODUCING SAME
JP5935856B2 (en) Copper alloy foil, flexible printed circuit board using the same
CN105603242A (en) Copper silver magnesium alloy contact wire and preparation method thereof
JP2022028597A (en) Continuous extrusion method of high-strength and high-conductivity copper alloy, application of the same, and mold material
WO2016192227A1 (en) Cable for shielding electromagnetic wave and preparation method for copper- iron alloy of cable
JP2022023782A (en) High efficiency production method of high strength and high conductivity copper alloy
TW201111068A (en) Method for continuous casting of bronze or bronze alloy and casting ring used therefor
JP2008202104A (en) Copper alloy
JP5617521B2 (en) Method for producing enameled wire using dilute copper alloy material
JP2010163677A (en) Aluminum alloy wire rod
TWI556888B (en) Copper or copper alloy continuous casting method
JP2012087376A (en) Recycling method of copper scrap material
US10718037B2 (en) Copper alloy material and production method therefor
JP5356974B2 (en) Cast material, manufacturing method thereof, copper wire for magnet wire using the same, magnet wire and manufacturing method thereof
CN108130446A (en) A kind of directional solidification silver alloy and preparation method thereof
JP2996378B2 (en) Manufacturing method of copper alloy rod for conductive wire rolled by cold rolling
JP2010095777A (en) Copper alloy conductor, trolley wire and cable using the same and method for manufacturing the copper alloy conductor
JP2006156129A (en) Method for manufacturing copper or copper alloy extrafine wire
JP2011012301A (en) Copper alloy and method for producing copper alloy
JP2013040385A (en) Dilute copper alloy wire