JP2008202104A - Copper alloy - Google Patents

Copper alloy Download PDF

Info

Publication number
JP2008202104A
JP2008202104A JP2007040206A JP2007040206A JP2008202104A JP 2008202104 A JP2008202104 A JP 2008202104A JP 2007040206 A JP2007040206 A JP 2007040206A JP 2007040206 A JP2007040206 A JP 2007040206A JP 2008202104 A JP2008202104 A JP 2008202104A
Authority
JP
Japan
Prior art keywords
ppm
copper
wire
copper alloy
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007040206A
Other languages
Japanese (ja)
Other versions
JP4924084B2 (en
Inventor
Noriaki Kubo
範明 久保
Taichiro Nishikawa
太一郎 西川
Minoru Nakamoto
稔 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007040206A priority Critical patent/JP4924084B2/en
Publication of JP2008202104A publication Critical patent/JP2008202104A/en
Application granted granted Critical
Publication of JP4924084B2 publication Critical patent/JP4924084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy having excellent softening resistance, to provide a method for manufacturing a copper rough drawn wire composed of this copper alloy and also to provide a copper rough drawn wire and a conductor for electric wire each composed of the copper alloy. <P>SOLUTION: The copper alloy has a composition consisting of, by mass ratio, 100 to 1,000 ppm, in total, of Sn, Pb, Fe, Ag, Ni and Zn, further 100 to 650 ppm oxygen and the balance copper with inevitable impurities. The respective content of the elements Sn, Pb, Fe, Ag, Ni and Zn, by mass ratio, 0 to 800 ppm Sn, 0 to 30 ppm Pb, 0 to 50 ppm Fe, 0 to 300 ppm Ag, 0 to 100 ppm Ni, and 0 to 100 ppm Zn. With the inclusion of the specific amount of additive elements, even oxygen-containing copper has softening resistance equal to or higher than that of oxygen-free copper. The copper rough drawn wire can be manufactured by applying continuous casting and rolling to a molten metal composed of the copper alloy which is prepared using a batch furnace. The conductor for electric wire can be manufactured by applying drawing to the copper rough drawn wire. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐軟化性に優れる銅合金、この銅合金からなる銅荒引線の製造方法、この銅合金からなる銅荒引線及び電線用導体に関するものである。   The present invention relates to a copper alloy having excellent softening resistance, a method for producing a copper rough wire made of this copper alloy, a copper rough wire made of this copper alloy, and a conductor for electric wires.

架空被覆配電線や電子電気機器用電線といった電線に用いられる導体は、従来、銅荒引線をスタート材料とし、これに伸線加工を施したり、得られた伸線材に更に撚線加工を施したりして製造される。銅荒引線は、高純度のタフピッチ銅が用いられ、低コストで生産性に優れる連続鋳造圧延により製造される。   Conventionally, conductors used in wires such as overhead sheathed distribution wires and electric and electronic equipment wires have been made with copper rough wire as the starting material, and this has been subjected to wire drawing processing, and the resulting wire drawing material has been further subjected to stranded wire processing. Manufactured. The copper rough wire is made of high-purity tough pitch copper, and is manufactured by continuous casting and rolling which is low in cost and excellent in productivity.

架空被覆配電線の絶縁被覆は、架橋ポリエチレンが代表的である。ポリエチレンの架橋には、熱架橋がある。熱架橋は、導体の外周にポリエチレンを押出被覆した後、ポリエチレンを短時間高温にして架橋する。この架橋時の加熱により、伸線加工により加工硬化した導体の強度が低下する、即ち、軟化することが知られている(特許文献1参照)。そこで、特許文献1に記載の技術は、タフピッチ銅にテルル(Te)を5〜30ppm(質量割合)添加することで、耐軟化性の向上を図っている。一方、特許文献2には、銀(Ag)を0.10〜1.0wt%(1000〜10000ppm)含有した銅合金からなる電線用導体が開示されている。このように大量のAgを添加した銅合金は、耐軟化性に優れる。その他、耐軟化性に優れる銅合金として、Snを添加した銅合金(Snの含有量:0.3〜0.6質量%)が挙げられる。   A typical example of the insulation coating of the overhead-covered distribution line is cross-linked polyethylene. Polyethylene crosslinking includes thermal crosslinking. In thermal crosslinking, polyethylene is extrusion coated on the outer periphery of a conductor, and then the polyethylene is crosslinked at a high temperature for a short time. It is known that the strength of a conductor that is work-hardened by wire drawing decreases, that is, softens due to heating during the crosslinking (see Patent Document 1). Accordingly, the technique described in Patent Document 1 aims to improve softening resistance by adding 5 to 30 ppm (mass ratio) of tellurium (Te) to tough pitch copper. On the other hand, Patent Document 2 discloses a conductor for electric wires made of a copper alloy containing 0.10 to 1.0 wt% (1000 to 10,000 ppm) of silver (Ag). Thus, the copper alloy to which a large amount of Ag is added is excellent in softening resistance. In addition, as a copper alloy having excellent softening resistance, a copper alloy to which Sn is added (Sn content: 0.3 to 0.6 mass%) can be given.

特開昭58-31051号公報JP 58-31051 A 特開2002-275562号公報JP 2002-275562 A

耐軟化性の向上には、上述のようにTeやAg,Snの添加が効果的である。しかし、Teを大量に添加すると、連続鋳造圧延時や荒引線に圧延や伸線を施す際などで、被加工材に割れが生じ易い。Agを大量に添加すると、製造コストの上昇を招く。Snを大量に添加すると、導電率の低下を招き、電線用導体といった高導電率が望まれるものの材料に不適である。   To improve softening resistance, addition of Te, Ag, or Sn is effective as described above. However, when a large amount of Te is added, cracks are likely to occur in the workpiece during continuous casting and rolling, or when rolling or drawing the drawn wire. Addition of a large amount of Ag causes an increase in manufacturing cost. Addition of a large amount of Sn causes a decrease in electrical conductivity, which is unsuitable for materials that require high electrical conductivity such as conductors for electric wires.

従って、本発明の主目的は、耐軟化性に優れていながら、加工時に割れが生じ難く、低コストであり、導電率が高い銅合金を提供することにある。また、本発明の目的の一つは、耐軟化性に優れる電線用導体を提供することにある。更に、本発明の目的の一つは、上記電線用導体に適した銅荒引線及びその製造方法を提供することにある。   Accordingly, a main object of the present invention is to provide a copper alloy that is excellent in softening resistance but hardly cracks during processing, is low in cost, and has high conductivity. Another object of the present invention is to provide an electric wire conductor having excellent softening resistance. Furthermore, one of the objects of the present invention is to provide a copper roughing wire suitable for the conductor for electric wires and a method for producing the same.

本発明者らは、Te,Ag,Snを大量に添加しなくても耐軟化性に優れる銅合金を得るために添加元素を検討し、複数種の元素を組み合わせて添加することが好ましいとの知見を得た。この知見に基づき、本発明を規定する。   The present inventors have studied the additive elements in order to obtain a copper alloy that is excellent in softening resistance without adding a large amount of Te, Ag, Sn, and it is preferable to add a combination of a plurality of elements. Obtained knowledge. Based on this finding, the present invention is defined.

本発明銅合金は、質量割合で、Sn,Pb,Fe,Ag,Ni及びZnを合計100ppm以上1000ppm以下含有し、更に、酸素を100ppm以上650ppm以下含有し、残部が銅及び不可避的不純物からなる。上記Sn,Pb,Fe,Ag,Ni及びZnの各元素の含有量は、質量割合で、Sn:0超800ppm以下、Pb:0超30ppm以下、Fe:0超50ppm以下、Ag:0超300ppm以下、Ni:0超100ppm以下、Zn:0超100ppm以下である。本発明銅合金は、更に、質量割合でTeを5ppm未満含有してもよい。   The copper alloy of the present invention contains Sn, Pb, Fe, Ag, Ni, and Zn in a mass ratio of 100 ppm or more and 1000 ppm or less, further contains oxygen of 100 ppm or more and 650 ppm or less, and the balance is made of copper and inevitable impurities. . Content of each element of the above Sn, Pb, Fe, Ag, Ni and Zn is a mass ratio, Sn: more than 0800ppm, Pb: more than 30ppm, Fe: 0 more than 50ppm, Ag: 0 more than 300ppm In the following, Ni: more than 0: 100 ppm or less, Zn: more than 0: 100 ppm or less. The copper alloy of the present invention may further contain less than 5 ppm of Te by mass.

本発明銅合金は、複数種の添加元素(Sn,Pb,Fe,Ag,Ni及びZn)を特定の範囲で含有することで、耐軟化性に優れる。また、本発明銅合金は、Teを添加しない、或いは添加しても極微量であるため、連続鋳造圧延時や伸線時などの加工時に被加工材に割れが生じることを低減できる。更に、本発明銅合金は、Agを大量に添加しないことから、製造コストを低減することができる。加えて、本発明銅合金は、Snを大量に添加しないことから、導電率の低下を低減することができる。   The copper alloy of the present invention is excellent in softening resistance by containing plural kinds of additive elements (Sn, Pb, Fe, Ag, Ni and Zn) in a specific range. In addition, since the copper alloy of the present invention does not contain Te or is extremely small even if it is added, it is possible to reduce the occurrence of cracks in the workpiece during processing such as during continuous casting and rolling or wire drawing. Furthermore, since the copper alloy of the present invention does not add a large amount of Ag, the manufacturing cost can be reduced. In addition, since the copper alloy of the present invention does not add a large amount of Sn, a decrease in conductivity can be reduced.

このような本発明銅合金は、銅荒引線や電線用導体に好適に利用することができる。特に、熱架橋により形成される絶縁被覆を具える電線の材料に本発明銅合金を利用すると、架橋時の加熱による導体の軟化を低減でき、加工硬化により高めた導体の強度を維持できる。従って、本発明銅合金からなる導体と熱架橋による絶縁被覆とを具える電線は、強度に優れる。以下、本発明をより詳しく説明する。   Such a copper alloy of the present invention can be suitably used for copper roughing wires and electric wire conductors. In particular, when the copper alloy of the present invention is used as a material for an electric wire having an insulating coating formed by thermal crosslinking, the softening of the conductor due to heating during crosslinking can be reduced, and the strength of the conductor increased by work hardening can be maintained. Therefore, an electric wire including a conductor made of the copper alloy of the present invention and an insulating coating by thermal crosslinking is excellent in strength. Hereinafter, the present invention will be described in more detail.

本発明銅合金の母材となる銅は、酸素を含有する純銅、具体的には、タフピッチ銅(JIS合金番号C1100、Cuが99.9質量%以上、酸素を0.02〜0.05質量%含有)と同程度の組成からなる純銅から構成される。純銅の原料には、例えば、電気銅が利用できる。本発明銅合金は、複数種の添加元素を含有するため、タフピッチ銅といった酸素含有銅から構成されていても、耐軟化性に優れる無酸素銅(JIS合金番号C1020)と同等以上の耐軟化性を有する。   Copper as the base material of the copper alloy of the present invention is pure copper containing oxygen, specifically, tough pitch copper (JIS alloy number C1100, Cu is 99.9% by mass or more, oxygen is contained by 0.02 to 0.05% by mass) It is comprised from the pure copper which consists of these compositions. For example, electrolytic copper can be used as a raw material for pure copper. Since the copper alloy of the present invention contains multiple types of additive elements, even if it is composed of oxygen-containing copper such as tough pitch copper, it has softening resistance equivalent to or better than oxygen-free copper (JIS alloy number C1020), which is excellent in softening resistance. Have

本発明銅合金は、Sn,Pb,Fe,Ag,Ni及びZnの全ての元素を添加元素とする。Snは、耐軟化性の向上に効果があるが、多過ぎると導電率の低下を招くため、含有量の上限を質量割合で800ppmとする。Agも耐軟化性の向上に効果があるが、多過ぎると導電率の低下に加えコスト高を招くため、含有量の上限を質量割合で300ppmとする。Sn及びAgに加えて、Pbを30ppm以下、Feを50ppm以下、Niを100ppm以下、Znを100ppm以下含有することで本発明銅合金は、SnやAgの含有量が少なくても、耐軟化性を向上できる。Pbが30ppm超であると、圧延時に熱間割れが生じ易くなり、Feが50ppm超であると、鋳造時に疵が生じ易く、この疵により圧延時や伸線時に被加工材に割れが生じ易くなる。Niが100ppm超又はZnが100ppm超であると、導電率が低下したり、耐軟化性の向上効果が得られ難くなる。更に、Teを含有させた銅合金は、耐軟化性がより向上する。しかし、Teの大量添加は、圧延時に被加工材に熱間割れが生じ易いため、Teを添加する場合、質量割合で5ppm未満とする。   The copper alloy of the present invention includes all elements of Sn, Pb, Fe, Ag, Ni and Zn as additive elements. Sn is effective in improving softening resistance, but if it is too much, the conductivity is lowered, so the upper limit of the content is set to 800 ppm by mass. Ag is also effective in improving softening resistance, but if it is too much, the cost is increased in addition to the decrease in conductivity, so the upper limit of the content is set to 300 ppm by mass ratio. In addition to Sn and Ag, Pb is 30 ppm or less, Fe is 50 ppm or less, Ni is 100 ppm or less, and Zn is 100 ppm or less, so that the copper alloy of the present invention is resistant to softening even if the content of Sn or Ag is small. Can be improved. If Pb exceeds 30 ppm, hot cracking is likely to occur during rolling, and if Fe exceeds 50 ppm, flaws are likely to occur during casting. Become. If Ni is more than 100 ppm or Zn is more than 100 ppm, the electrical conductivity is lowered, and it is difficult to obtain the effect of improving softening resistance. Furthermore, the copper alloy containing Te is further improved in softening resistance. However, since a large amount of Te is likely to cause hot cracks in the workpiece during rolling, when Te is added, the mass ratio is less than 5 ppm.

上記添加元素の合計含有量は、質量割合で100ppm以上1000ppm以下とする。合計含有量が100ppm未満では、耐軟化性の向上効果が得られにくく、1000ppmを超えると、導電率の低下や被加工材の割れを招く。より好ましい範囲は、質量割合で300ppm以上900ppm以下である。   The total content of the additive elements is 100 ppm to 1000 ppm by mass ratio. When the total content is less than 100 ppm, it is difficult to obtain an effect of improving softening resistance. When the total content exceeds 1000 ppm, the conductivity is lowered and the work material is cracked. A more preferable range is 300 ppm or more and 900 ppm or less by mass ratio.

添加元素となる各元素は、純銅の溶湯に元素のままで添加してもよいし、予め添加元素を含む銅合金からなる添加材を作製しておき、この添加材を上記溶湯に添加してもよい。特に、Teは、酸素と結合し易く、そのままで添加し難いため、合金にして添加することが好ましい。添加材の材料には、添加元素となる各元素を含むスクラップ銅を利用することができる。   Each element to be an additive element may be added as it is to a pure copper molten metal, or an additive made of a copper alloy containing the additive element is prepared in advance, and this additive is added to the molten metal. Also good. In particular, Te is preferable to be added as an alloy because Te is easily bonded to oxygen and difficult to add as it is. As the additive material, scrap copper containing each element as an additive element can be used.

本発明銅合金は、酸素(O)を含有する。酸素は、銅合金中に酸化銅として存在する。酸素の含有量は、質量割合で100ppm以上650ppm以下とする。含有量が650ppm超であると、酸化銅の粒が大きくなり、この粗粒を起点として伸線時などに断線が発生し易く、100ppm未満であると、添加元素が大きく影響して導電率の低下を招いたり、圧延時に被加工材に割れが生じたり、表面品質の低下を招く。より好ましい酸素の含有量は、質量割合で、200ppm以上500ppm以下である。酸素の含有量は、例えば、原料となる銅の溶湯に酸化還元処理を適宜施すことで調整できる。   The copper alloy of the present invention contains oxygen (O). Oxygen is present as copper oxide in the copper alloy. The oxygen content is 100 ppm to 650 ppm by mass. If the content exceeds 650 ppm, the copper oxide grains become large, and breakage is likely to occur at the time of wire drawing, etc. starting from these coarse grains.If the content is less than 100 ppm, the additive element greatly affects the conductivity. It causes a decrease, cracks occur in the work material during rolling, and the surface quality deteriorates. A more preferable oxygen content is 200 ppm or more and 500 ppm or less by mass ratio. The oxygen content can be adjusted, for example, by appropriately applying a redox treatment to the molten copper as a raw material.

ここで、従来、連続鋳造圧延により銅荒引線を製造する場合、縦型シャフト炉を用いて溶湯を作製し、この溶湯を連続鋳造機に注湯して鋳造材を作製する。そこで、本発明者らも、本発明銅合金と同様の組成の溶湯を縦型シャフト炉により作製し、連続鋳造圧延により銅荒引線を作製し、更に、この銅荒引線に伸線加工を施して線材を作製したところ、鋳造時や圧延時、伸線時に被加工材が割れることがあるとの知見を得た。この原因は、縦型シャフト炉では、添加元素が銅に十分に溶け込まなかったためと考えられる。そこで、本発明者らは、縦型シャフト炉ではなくバッチ炉を用いて溶湯を作製し、連続鋳造圧延及び伸線を同様に行って線材を作製したところ、圧延などの加工時に被加工材に割れが生じることを低減することができた。   Here, conventionally, when producing a copper roughing wire by continuous casting and rolling, a molten metal is produced using a vertical shaft furnace, and this molten metal is poured into a continuous casting machine to produce a cast material. Therefore, the present inventors also prepared a molten metal having the same composition as that of the copper alloy of the present invention in a vertical shaft furnace, prepared a copper roughing wire by continuous casting and rolling, and further performed a drawing process on this copper roughing wire. As a result, it was found that the workpiece may be cracked during casting, rolling, and wire drawing. This is thought to be because the additive element did not sufficiently dissolve in copper in the vertical shaft furnace. Therefore, the present inventors produced a molten metal using a batch furnace instead of a vertical shaft furnace, and produced a wire by performing continuous casting and rolling in the same manner. It was possible to reduce the occurrence of cracks.

また、連続鋳造には、ツインベルト法、ベルトアンドホイール法などがある。ベルトアンドホイール法は、鋳造材が湾曲した状態で形成されるため、鋳造材の組成によっては割れが生じ易い。一方、ツインベルト法は、鋳造材の軸方向が直線状となるように鋳造材が形成されるため、割れが生じ難い。   Continuous casting includes a twin belt method and a belt and wheel method. Since the belt-and-wheel method is formed in a state where the cast material is curved, cracks are likely to occur depending on the composition of the cast material. On the other hand, in the twin belt method, since the cast material is formed so that the axial direction of the cast material is linear, cracks are unlikely to occur.

上記知見に基づき、本発明銅荒引線の製造方法は、上記銅合金の溶湯をバッチ炉で作製すると共に、連続鋳造をツインベルト法とする。具体的には、本発明銅荒引線の製造方法は、連続鋳造圧延により銅荒引線を製造するものであり、バッチ炉で原料を溶解し、上述した組成を有する本発明銅合金からなる溶湯を準備する工程と、得られた溶湯をツインベルト法で連続鋳造し、続いて連続圧延することで銅荒引線を製造する工程とを具える。   Based on the above knowledge, the copper rough drawn wire manufacturing method of the present invention produces the above-described molten copper alloy in a batch furnace and uses continuous casting as the twin belt method. Specifically, the method for producing a copper rough drawn wire of the present invention is a method for producing a copper rough drawn wire by continuous casting and rolling, in which a raw material is melted in a batch furnace, and a molten metal comprising the copper alloy of the present invention having the above-described composition is prepared. A step of preparing, and a step of continuously casting the obtained molten metal by a twin belt method and then continuously rolling to produce a copper roughing wire.

溶湯を作製するバッチ炉は、所定量の原料を溶解して、所定量の溶湯を作製することが可能な溶解炉である。このバッチ炉は、原料を連続投入して連続的に溶湯を作製することが可能なシャフト炉と異なり、炉内の温度を制御し易い、即ち、炉内の温度を一定に保持し易いため、添加元素を十分に溶解することができ、均一的な組成の溶湯を作製することができる。更に、バッチ炉内の溶湯を撹拌することでより均一な組成の溶湯を作製することができる。溶湯の作製は、大気雰囲気や窒素ガスやアルゴンガスといった不活性ガス雰囲気で行うことが挙げられる。バッチ炉を用いて大気雰囲気で溶解を行う場合、炉内で酸化還元処理を行うことで、所望の酸素濃度の溶湯を作製することができる。炉内での酸化還元処理は、例えば、以下のように行う。原料を溶解した後、空気などの酸素含有ガスを溶湯に吹き込むことで酸化処理を行い、溶湯の酸素濃度(質量割合)を1000〜1500ppm程度にする。酸素濃度が1000ppmよりも小さいと、溶湯に酸素を十分に混合することができず、1500ppmよりも大きいと、溶湯中の添加元素が酸化されて除去され易い。上記酸素濃度の溶湯に除滓を行った後、重油などを用いて還元処理を行い、所望の酸素濃度となるように調整する。また、バッチ炉で作製した溶湯は、保持炉に移送した際、適宜成分の調整を行うことができる。一方、不活性ガス雰囲気で溶解を行うと、溶湯中にスラグ(酸化物)が発生することを抑制できる。   A batch furnace for producing a molten metal is a melting furnace capable of producing a predetermined amount of molten metal by melting a predetermined amount of raw material. This batch furnace, unlike a shaft furnace capable of continuously charging a raw material by continuously charging raw materials, is easy to control the temperature in the furnace, that is, to keep the temperature in the furnace constant, The additive element can be sufficiently dissolved, and a molten metal having a uniform composition can be produced. Furthermore, the molten metal of a more uniform composition can be produced by stirring the molten metal in the batch furnace. The production of the molten metal may be performed in an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas. When melting in an air atmosphere using a batch furnace, a melt having a desired oxygen concentration can be produced by performing oxidation-reduction treatment in the furnace. For example, the oxidation-reduction treatment in the furnace is performed as follows. After the raw material is melted, an oxygen-containing gas such as air is blown into the molten metal to carry out an oxidation treatment so that the molten metal has an oxygen concentration (mass ratio) of about 1000 to 1500 ppm. When the oxygen concentration is lower than 1000 ppm, oxygen cannot be sufficiently mixed with the molten metal, and when it is higher than 1500 ppm, the additive element in the molten metal is easily oxidized and removed. After removing the molten metal having the oxygen concentration, reduction treatment is performed using heavy oil or the like to adjust the oxygen concentration to a desired value. Moreover, when the molten metal produced by the batch furnace is transferred to the holding furnace, the components can be appropriately adjusted. On the other hand, when melting is performed in an inert gas atmosphere, generation of slag (oxide) in the molten metal can be suppressed.

ツインベルト法は、対向配置される一対のエンドレスベルトと、両ベルトに挟持される一対のダムブロック連とでつくられる空間を鋳型とする鋳造方法である。   The twin belt method is a casting method in which a space formed by a pair of endless belts arranged opposite to each other and a pair of dam block trains sandwiched between both belts is used as a mold.

本発明銅合金は、導電率が高いことから、上記製造方法により得られた本発明銅荒引線も導電率が高い(100%IACS以上)。また、本発明銅合金は、耐軟化性に優れることから、本発明銅荒引線も耐軟化性に優れる。具体的には、本発明銅荒引線は、スパイラルエロンゲーション値(以下、SE値と呼ぶ)が150以下である。銅荒引線のSE値は、以下のように評価する。   Since the copper alloy of the present invention has high conductivity, the copper rough drawn wire of the present invention obtained by the above production method also has high conductivity (100% IACS or more). Moreover, since the copper alloy of the present invention is excellent in softening resistance, the copper roughened wire of the present invention is also excellent in softening resistance. Specifically, the copper rough drawn wire of the present invention has a spiral elongation value (hereinafter referred to as SE value) of 150 or less. The SE value of the copper rough wire is evaluated as follows.

<SE値の評価>
1. 銅荒引線(直径φ8mm)を用意し、この銅荒引線に伸線加工を施して直径φ2.6mmの銅線を作製する。得られた銅線を切断して、1400mmの銅線材を作製する。
2. 得られた銅線材に220℃×1hの熱処理を施す。
3. 熱処理後、線材に標点距離1000mmの印をつける。
4. 線材をマンドレル(マンドレル径D×10mm)にコイル状に巻きつける。このとき、コイル部分に上記印が含まれるようにする。Dは、線材の直径である。
5. マンドレルに巻きつけた線材の端部に、(700×π×D×2)/4(g)の錘を落下速度が5cm/sec以下となるように線材に衝撃を与えないようにゆっくり負荷する。
6. 線材に錘を1min負荷した後、除荷し、その30sec後にコイル状の線材の標点距離(mm)を測定する。
この測定値をSE値とする。SE値が小さいほど、耐軟化性に優れ、高強度となる。
<Evaluation of SE value>
1. Prepare a copper rough wire (diameter φ8mm) and apply a wire drawing process to the copper rough wire to make a copper wire with a diameter φ2.6mm. The obtained copper wire is cut to produce a 1400 mm copper wire.
2. The obtained copper wire is heat-treated at 220 ° C for 1h.
3. After heat treatment, mark the wire with a gauge distance of 1000mm.
4. Wrap the wire around the mandrel (mandrel diameter D x 10mm) in a coil. At this time, the above mark is included in the coil portion. D is the diameter of the wire.
5. At the end of the wire wound around the mandrel, put a weight of (700 x π x D x 2) / 4 (g) slowly so as not to impact the wire so that the falling speed is 5 cm / sec or less. To load.
6. After applying a weight to the wire for 1 min, unload it, and after 30 seconds, measure the gauge distance (mm) of the coiled wire.
This measured value is taken as the SE value. The smaller the SE value, the better the softening resistance and the higher the strength.

上記SE値は、銅荒引線から作製した線材を撚り合わせてなる撚線を導体とする電線を吊架した状態を想定した評価値であることから、SE値が小さく、導電率が高い上記銅荒引線は、電線用導体の材料に好適である。また、熱架橋により形成される絶縁被覆を具える電線の導体に求められるSE値は、150以下であると考えられる。従って、本発明銅荒引線は、このような電線用導体の材料に最適である。但し、SE値が50未満であると、耐軟化性は十分であるが、加工性が低下する可能性がある。従って、銅荒引線のSE値は、50以上150以下が好ましく、より好ましくは、50以上100以下である。   Since the SE value is an evaluation value assuming a state in which an electric wire having a stranded wire as a conductor formed by twisting wires prepared from a copper rough wire is used, the above-mentioned copper having a small SE value and a high electrical conductivity. The rough drawn wire is suitable for the material of the conductor for electric wires. In addition, the SE value required for a conductor of an electric wire having an insulating coating formed by thermal crosslinking is considered to be 150 or less. Therefore, the copper rough wire of the present invention is most suitable as a material for such a conductor for electric wires. However, if the SE value is less than 50, the softening resistance is sufficient, but the workability may be reduced. Therefore, the SE value of the copper rough wire is preferably 50 or more and 150 or less, and more preferably 50 or more and 100 or less.

上記本発明銅合金からなる銅荒引線に伸線加工などの延伸加工を施して線材とし、この線材を用いることで、本発明電線用導体を製造することができる。延伸加工は、断面積の減少を伴う加工、例えば、伸線や圧延が代表的である。その他、延伸加工は、断面積を実質的に変化させること無く被加工材の形状を変化させる加工、例えば、テープ状線材の形成に利用される圧延などがある。このような延伸加工を施してなる線材をそのまま電線用導体としてもよいし、複数の線材を撚り合わせて電線用導体としてもよい。   The conductor for wire of the present invention can be manufactured by subjecting the copper rough wire made of the copper alloy of the present invention to a wire rod such as wire drawing and using this wire. The drawing process is typically a process involving a reduction in the cross-sectional area, such as wire drawing or rolling. In addition, the stretching process includes a process for changing the shape of the workpiece without substantially changing the cross-sectional area, for example, a rolling process used for forming a tape-shaped wire. The wire formed by such stretching may be used as the electric wire conductor as it is, or a plurality of wires may be twisted to form the electric wire conductor.

本発明電線用導体は、引張強さが300MPa以上である。このような高強度の導体は、延伸加工の条件(減面率など)を適宜調整して、加工硬化により線材の引張強度を高めることで製造することができる。   The electric wire conductor of the present invention has a tensile strength of 300 MPa or more. Such a high-strength conductor can be manufactured by appropriately adjusting the drawing process conditions (area reduction ratio, etc.) and increasing the tensile strength of the wire by work hardening.

本発明電線用導体は、300MPa以上と高強度であることに加えて、導電性に優れる本発明銅合金からなることから、伸線加工に伴う導電率の低下が低減され、高い導電率を有する(97%IACS以上)。かつ、本発明電線用導体は、耐軟化性に優れる本発明銅合金からなることから、熱架橋などにより加熱されても、軟化され難い。従って、本発明電線用導体は、このような高強度、高導電率が要求され、熱架橋による絶縁被覆が施されるような電線、例えば、架空被覆配電線の導体に好適に利用することができる。   In addition to having high strength of 300 MPa or more, the conductor for electric wires of the present invention is made of the copper alloy of the present invention having excellent conductivity, so that the decrease in the conductivity accompanying the wire drawing is reduced and the electric conductor has high conductivity. (97% IACS or higher). And since the conductor for this invention electric wire consists of this invention copper alloy excellent in softening resistance, even if it heats by thermal bridge | crosslinking etc., it is hard to be softened. Accordingly, the electric wire conductor of the present invention is preferably used for such an electric wire that is required to have such a high strength and high electrical conductivity and is provided with an insulation coating by thermal crosslinking, for example, an aerial coated distribution line conductor. it can.

本発明銅合金や本発明銅荒引線は、耐軟化性に優れる。そのため、本発明銅合金や本発明銅荒引線を用いて形成された本発明電線用導体は、熱架橋などの加熱により軟化され難く、このような加熱による強度の低下を低減して、強度に優れる。本発明銅荒引線の製造方法は、上記本発明銅合金を利用すると共に、ツインベルト法で連続鋳造することで、圧延時やその後の二次加工時に被加工材に割れが生じ難い。   The copper alloy of the present invention and the copper rough wire of the present invention are excellent in softening resistance. Therefore, the inventive conductor for electric wires formed using the inventive copper alloy or the inventive copper roughing wire is difficult to be softened by heating such as thermal crosslinking, and the strength reduction due to such heating is reduced. Excellent. The copper rough-drawing wire manufacturing method of the present invention utilizes the above-described copper alloy of the present invention, and is continuously cast by a twin belt method, so that it is difficult for a workpiece to crack during rolling or subsequent secondary processing.

[銅荒引線の作製]
連続鋳造圧延により銅荒引線を作製し、得られた銅荒引線のSE値を測定した。
<実施例,比較例1>
純銅と添加材とを用意して、バッチ炉で溶解し、表1に示す組成(質量割合ppm)の銅合金の溶湯(100t)を作製した。純銅は、電気銅を用いた。添加材は、Sn,Pb,Fe,Ag,Ni及びZnを含有するスクラップ銅と電気銅とからなる銅合金を用いて作製した。バッチ炉により、電気銅と添加材とを大気雰囲気で溶解した後、得られた溶湯に酸化還元処理を炉内で実施し、酸素の含有量を調整した。酸化還元処理は、材料を溶解した溶湯に空気を吹き込んで酸素濃度(質量割合)を1000ppm程度とした後、除滓してから重油を用いて還元することで行った。
[Preparation of copper drawn wire]
A copper rough wire was produced by continuous casting and rolling, and the SE value of the obtained copper rough wire was measured.
<Example, Comparative Example 1>
Pure copper and an additive were prepared and melted in a batch furnace to prepare a molten copper alloy (100 t) having the composition (mass ratio ppm) shown in Table 1. As pure copper, electrolytic copper was used. The additive was produced using a copper alloy made of scrap copper containing Sn, Pb, Fe, Ag, Ni and Zn and electrolytic copper. After the electrolytic copper and the additive were melted in an air atmosphere by a batch furnace, the resulting molten metal was subjected to oxidation-reduction treatment in the furnace to adjust the oxygen content. The oxidation-reduction treatment was performed by blowing air into the molten metal in which the material was dissolved to reduce the oxygen concentration (mass ratio) to about 1000 ppm, and then reducing the mixture using heavy oil after removing it.

得られた溶湯を連続鋳造圧延して、直径φ8mmの銅荒引線を得た(実施例:試料No.1〜9,比較例1:試料No.21〜28)。連続鋳造は、ツインベルト式連続鋳造機を用いて行った。この点は、以下の比較例2,3についても同様である。なお、試料No.28及び比較例2の無酸素銅は、圧延すると割れが生じ易いため、連続鋳造のみ行って銅荒引線を作製した。   The obtained molten metal was continuously cast and rolled to obtain a copper drawn wire having a diameter of 8 mm (Example: Sample No. 1 to 9, Comparative Example 1: Sample No. 21 to 28). Continuous casting was performed using a twin belt type continuous casting machine. This also applies to Comparative Examples 2 and 3 below. Note that the oxygen-free copper of Sample No. 28 and Comparative Example 2 was prone to cracking when rolled, so that only a continuous casting was performed to produce a copper roughing wire.

<比較例2 無酸素銅>
電気銅をバッチ炉で溶解し、表2に示す組成(質量割合ppm)の純銅(無酸素銅に相当)の溶湯を作製し、この溶湯を連続鋳造して、直径φ8mmの銅荒引線を得た(試料No.111〜117)。
<比較例3 タフピッチ銅>
電気銅をバッチ炉で溶解し、表3に示す組成(質量割合ppm)の純銅(タフピッチ銅に相当)の溶湯を作製し、この溶湯を連続鋳造圧延して、直径φ8mmの銅荒引線を得た(試料No.121)。
<Comparative Example 2 oxygen-free copper>
Electrolytic copper was melted in a batch furnace to produce a molten copper (corresponding to oxygen-free copper) with the composition (ppm by mass) shown in Table 2, and this molten metal was continuously cast to obtain a copper rough wire with a diameter of 8 mm. (Sample Nos. 111 to 117).
<Comparative example 3 tough pitch copper>
Electrolytic copper was melted in a batch furnace to produce a molten copper (corresponding to tough pitch copper) with the composition shown in Table 3 (mass ratio ppm), and this molten metal was continuously cast and rolled to obtain a copper rough wire with a diameter of 8 mm. (Sample No. 121).

[SE値の評価]
得られた実施例,比較例1〜3の銅荒引線について、以下のようにスパイラルエロンゲーション値(SE値)を評価した。図1は、SE値の測定方法を説明する説明図である。得られた銅荒引線に伸線加工を施して、直径φ2.6mmの銅線を作製し、この銅線を切断して、図1(I)に示すように長さl=1400mmの銅線材100を作製する。この銅線材100に熱処理(220℃×1h)を施した後、線材100に標点距離L0=1000mmの印101をつける。この線材100をマンドレル径:(線材の直径D×10)mmのマンドレル(図示せず)にコイル状に巻きつける。巻きつけは、図1(II)に示すように線材100がつくる各ターンの線材100間に隙間が無いように、即ち、線材100同士が接するように行うと共に、コイル部分に印101が含まれるように行う。次に、巻きつけた線材100の端部に錘200を取り付け、錘200の落下速度が5cm/sec以下となるように、かつ線材100に衝撃を与えないように線材100にゆっくり負荷する。線材100に錘200を1min負荷した後除荷し、その30sec後に図1(III)に示すように線材100の標点距離Lを測定し、この測定値をSE値とする。測定結果を表1〜3に示す。また、実施例,比較例1の導電率を測定した。その結果を表1に示す。
[SE value evaluation]
The spiral elongation values (SE values) of the obtained copper roughened wires of Examples and Comparative Examples 1 to 3 were evaluated as follows. FIG. 1 is an explanatory diagram for explaining a method of measuring the SE value. The resulting copper roughing wire is drawn to produce a copper wire with a diameter of φ2.6mm, and this copper wire is cut to have a length l = 1400mm as shown in FIG. 1 (I) Make 100. After the copper wire 100 is heat-treated (220 ° C. × 1 h), the wire 100 is marked 101 with a gauge distance L 0 = 1000 mm. The wire 100 is wound around a mandrel (not shown) having a mandrel diameter: (wire diameter D × 10) mm in a coil shape. As shown in FIG. 1 (II), the winding is performed so that there is no gap between the wires 100 of each turn made by the wire 100, that is, the wires 100 are in contact with each other, and a mark 101 is included in the coil portion. Do as follows. Next, a weight 200 is attached to the end of the wound wire rod 100, and the wire rod 100 is slowly loaded so that the falling speed of the weight 200 is 5 cm / sec or less and no impact is applied to the wire rod 100. After the weight 200 is loaded on the wire 100 for 1 minute, the load is unloaded, and 30 seconds later, the gauge distance L of the wire 100 is measured as shown in FIG. 1 (III), and this measured value is taken as the SE value. The measurement results are shown in Tables 1-3. In addition, the conductivity of Example and Comparative Example 1 was measured. The results are shown in Table 1.

Figure 2008202104
Figure 2008202104

Figure 2008202104
Figure 2008202104

Figure 2008202104
Figure 2008202104

表1〜3に示す結果から、無酸素銅や高純度のタフピッチ銅からなる試料No.111〜117,121と比較して、特定の組成を有する銅合金からなる試料No.1〜9は、SE値が小さく、耐軟化性に優れる。また、試料No.1〜9のうち、Teを含有する試料は、Agなどが少なくてもSE値が小さい。   From the results shown in Tables 1 to 3, compared with sample Nos. 111 to 117,121 made of oxygen-free copper or high-purity tough pitch copper, sample Nos. 1 to 9 made of a copper alloy having a specific composition are SE values. Is small and excellent in softening resistance. Further, among the sample Nos. 1 to 9, the sample containing Te has a small SE value even if Ag is small.

更に、試料No.1〜9は、通常、銅荒引線に望まれる導電率:100%IACS以上を満たすが、Sn,Ag,Ni,Znが多すぎたり、酸素が少な過ぎる試料は、導電率が低い。PbやTeが多過ぎる試料は、圧延時、熱間割れが多発した。Feが多過ぎる試料は、鋳造時に疵が多く発生し、圧延時、この疵に起因すると思われる割れが生じた。また、酸素を多くしたところ(質量割合で1000ppm)、圧延時、割れが多発した。   Furthermore, sample Nos. 1 to 9 usually satisfy the desired conductivity for copper roughing wire: 100% IACS or more, but samples with too much Sn, Ag, Ni, Zn or too little oxygen have conductivity Is low. Samples with too much Pb or Te experienced hot cracking during rolling. Samples with too much Fe produced a lot of defects during casting, and cracks that were thought to be caused by these defects during rolling. Further, when oxygen was increased (1000 ppm by mass ratio), many cracks occurred during rolling.

[電線用導体及び電線の作製]
試料No.1〜9の銅荒引線を用いて電線用導体を作製し、この導体に絶縁被覆を施して被覆電線を作製して、電線の導電率と引張強さとを測定した。電線用導体は、試料No.1〜9の銅荒引線(直径φ8mm)に伸線加工を施して、直径φ2.0mmの銅線を作製し、これら銅線を19本撚り合わせて作製した。得られた電線用導体の引張強さを測定したところ、450〜480MPaであった。得られた電線用導体の外周にポリエチレンを押し出して熱架橋し、被覆電線を作製した。得られた被覆電線はいずれも導電率が高く、98%IACSであった。また、得られた被覆電線の引張強さは、400〜440MPaであり、熱架橋後であっても300MPa以上の高強度を維持していた。比較のため、試料No.121の銅荒引線を用いて試料No.1〜9と同様に被覆電線を作製し、熱架橋後の電線用導体の引張強さを測定したところ、290MPaであり、300MPa未満であった。
[Production of conductors and wires for electric wires]
The conductor for electric wires was produced using the copper rough wire of sample No. 1-9, the insulation coating was given to this conductor, the covered electric wire was produced, and the electrical conductivity and tensile strength of the electric wire were measured. The conductor for electric wires was prepared by subjecting the copper rough wires (diameter φ8 mm) of Sample Nos. 1 to 9 to wire drawing to produce copper wires having a diameter of φ2.0 mm and twisting 19 of these copper wires. It was 450-480 MPa when the tensile strength of the obtained conductor for electric wires was measured. Polyethylene was extruded to the outer periphery of the obtained electric wire conductor and thermally crosslinked to produce a covered electric wire. All of the obtained covered electric wires had high electrical conductivity and were 98% IACS. Moreover, the tensile strength of the obtained covered electric wire was 400 to 440 MPa, and a high strength of 300 MPa or more was maintained even after thermal crosslinking. For comparison, a coated electric wire was prepared in the same manner as sample Nos. 1 to 9 using the copper rough wire of sample No. 121, and the tensile strength of the conductor for the electric wire after thermal crosslinking was measured. It was less than 300 MPa.

なお、上述した実施例は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。   The above-described embodiments can be appropriately changed without departing from the gist of the present invention, and are not limited to the above-described configuration.

本発明銅合金及び本発明銅荒引線は、耐軟化性が要求される電線用導体の材料に好適に利用できる。本発明銅荒引線の製造方法は、耐軟化性が要求される電線用導体のスタート材料となる銅荒引線の製造に好適に利用できる。本発明電線用導体は、絶縁被覆を熱架橋により形成する電線の導体に好適に利用できる。   The copper alloy of the present invention and the copper rough wire of the present invention can be suitably used as a material for a conductor for electric wires that requires softening resistance. The method for producing a copper rough drawn wire of the present invention can be suitably used for producing a copper rough drawn wire that is a starting material for a conductor for electric wires that requires softening resistance. The conductor for electric wires of the present invention can be suitably used as a conductor of electric wires in which an insulating coating is formed by thermal crosslinking.

SE値の測定方法を説明する説明図であり、(I)は、標点距離の印を付した線材、(II)は、コイル状に巻きつけた線材に錘を取り付けた状態、(III)は、除荷後に標点距離を測定する状態を示す。It is explanatory drawing explaining the measuring method of SE value, (I) is a wire with a mark of the gauge distance, (II) is a state where a weight is attached to a wire wound around a coil, (III) Indicates a state in which the gauge distance is measured after unloading.

符号の説明Explanation of symbols

100 線材 101 印 200 錘   100 wire 101 mark 200 spindle

Claims (5)

質量割合で、Sn,Pb,Fe,Ag,Ni及びZnを合計100ppm以上1000ppm以下含有し、更に、酸素を100ppm以上650ppm以下含有し、残部が銅及び不可避的不純物からなり、
前記Sn,Pb,Fe,Ag,Ni及びZnの各元素の含有量は、質量割合で、Sn:0超800ppm以下、Pb:0超30ppm以下、Fe:0超50ppm以下、Ag:0超300ppm以下、Ni:0超100ppm以下、Zn:0超100ppm以下であることを特徴とする銅合金。
In a mass proportion, Sn, Pb, Fe, Ag, Ni and Zn are contained in total 100 ppm or more and 1000 ppm or less, further oxygen is contained 100 ppm or more and 650 ppm or less, and the balance consists of copper and inevitable impurities,
Content of each element of the Sn, Pb, Fe, Ag, Ni and Zn is a mass ratio, Sn: more than 0800ppm, Pb: more than 30ppm, Fe: 0 more than 50ppm, Ag: 0 more than 300ppm Hereinafter, a copper alloy characterized in that Ni is more than 100 ppm and Zn is more than 100 ppm and Zn is more than 100 ppm.
更に、質量割合でTeを5ppm未満含有することを特徴とする請求項1に記載の銅合金。   2. The copper alloy according to claim 1, further comprising less than 5 ppm of Te by mass ratio. 連続鋳造圧延により銅荒引線を製造する銅荒引線の製造方法であって、
バッチ炉で原料を溶解し、質量割合で、Sn,Pb,Fe,Ag,Ni及びZnを合計100ppm以上1000ppm以下含有し、更に、酸素を100ppm以上650ppm以下含有し、残部が銅及び不可避的不純物からなる銅合金の溶湯を準備する工程と、
得られた溶湯をツインベルト法で連続鋳造し、続いて連続圧延することで銅荒引線を製造する工程とを具え、
前記Sn,Pb,Fe,Ag,Ni及びZnの各元素の含有量は、質量割合で、Sn:0超800ppm以下、Pb:0超30ppm以下、Fe:0超50ppm以下、Ag:0超300ppm以下、Ni:0超100ppm以下、Zn:0超100ppm以下であることを特徴とする銅荒引線の製造方法。
A method for producing a copper rough wire by continuous casting and rolling, comprising:
The raw material is melted in a batch furnace, and Sn, Pb, Fe, Ag, Ni and Zn are contained in a mass ratio of 100 ppm or more and 1000 ppm or less, oxygen is contained 100 ppm or more and 650 ppm or less, and the balance is copper and inevitable impurities Preparing a molten copper alloy comprising:
The resulting molten metal is continuously cast by a twin belt method, followed by continuous rolling to produce a copper roughing wire,
Content of each element of the Sn, Pb, Fe, Ag, Ni and Zn is a mass ratio, Sn: more than 0800ppm, Pb: more than 30ppm, Fe: 0 more than 50ppm, Ag: 0 more than 300ppm Hereinafter, a method for producing a copper roughing wire, wherein Ni is more than 100 ppm and Zn is more than 100 ppm and Zn is more than 100 ppm.
質量割合で、Sn,Pb,Fe,Ag,Ni及びZnを合計100ppm以上1000ppm以下含有し、更に、酸素を100ppm以上650ppm以下含有し、残部が銅及び不可避的不純物からなる銅合金から構成され、
前記Sn,Pb,Fe,Ag,Ni及びZnの各元素の含有量は、質量割合で、Sn:0超800ppm以下、Pb:0超30ppm以下、Fe:0超50ppm以下、Ag:0超300ppm以下、Ni:0超100ppm以下、Zn:0超100ppm以下であり、
スパイラルエロンゲーション値が150以下であることを特徴とする銅荒引線。
In a mass proportion, Sn, Pb, Fe, Ag, Ni and Zn are contained in total from 100 ppm to 1000 ppm, further oxygen is contained from 100 ppm to 650 ppm, the remainder is composed of copper and an inevitable impurity copper alloy,
Content of each element of the Sn, Pb, Fe, Ag, Ni and Zn is a mass ratio, Sn: more than 0800ppm, Pb: more than 30ppm, Fe: 0 more than 50ppm, Ag: 0 more than 300ppm Below, Ni: 0 more than 100ppm, Zn: more than 0100ppm,
Copper rough wire with a spiral elongation value of 150 or less.
質量割合で、Sn,Pb,Fe,Ag,Ni及びZnを合計100ppm以上1000ppm以下含有し、更に、酸素を100ppm以上650ppm以下含有し、残部が銅及び不可避的不純物からなる銅合金から構成され、
前記Sn,Pb,Fe,Ag,Ni及びZnの各元素の含有量は、質量割合で、Sn:0超800ppm以下、Pb:0超30ppm以下、Fe:0超50ppm以下、Ag:0超300ppm以下、Ni:0超100ppm以下、Zn:0超100ppm以下であり、
引張強さが300MPa以上であることを特徴とする電線用導体。
In a mass proportion, Sn, Pb, Fe, Ag, Ni and Zn are contained in total from 100 ppm to 1000 ppm, further oxygen is contained from 100 ppm to 650 ppm, the remainder is composed of copper and an inevitable impurity copper alloy,
Content of each element of the Sn, Pb, Fe, Ag, Ni and Zn is a mass ratio, Sn: more than 0800ppm, Pb: more than 30ppm, Fe: 0 more than 50ppm, Ag: 0 more than 300ppm Below, Ni: 0 more than 100ppm, Zn: more than 0100ppm,
A conductor for electric wires characterized by a tensile strength of 300 MPa or more.
JP2007040206A 2007-02-21 2007-02-21 Copper rough wire and method for manufacturing the same, conductor for electric wire Active JP4924084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007040206A JP4924084B2 (en) 2007-02-21 2007-02-21 Copper rough wire and method for manufacturing the same, conductor for electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007040206A JP4924084B2 (en) 2007-02-21 2007-02-21 Copper rough wire and method for manufacturing the same, conductor for electric wire

Publications (2)

Publication Number Publication Date
JP2008202104A true JP2008202104A (en) 2008-09-04
JP4924084B2 JP4924084B2 (en) 2012-04-25

Family

ID=39779900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007040206A Active JP4924084B2 (en) 2007-02-21 2007-02-21 Copper rough wire and method for manufacturing the same, conductor for electric wire

Country Status (1)

Country Link
JP (1) JP4924084B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109228A (en) * 2010-10-20 2012-06-07 Hitachi Cable Ltd Method of manufacturing insulated wire and cable
WO2012120982A1 (en) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 COPPER OR COPPER ALLOY REDUCED IN α-RAY EMISSION, AND BONDING WIRE OBTAINED FROM COPPER OR COPPER ALLOY AS RAW MATERIAL
JP2013052434A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Method for manufacturing copper stock for wire rod
CN108273973A (en) * 2018-03-22 2018-07-13 宁波金田铜业(集团)股份有限公司 A method of tellurium bronze stick is produced using horizontal continuous casting process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070152B (en) * 2014-07-23 2016-05-25 贵州钢绳股份有限公司 Portable rigging casting method and device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831051A (en) * 1981-08-18 1983-02-23 Sumitomo Electric Ind Ltd Tough pitch copper for electric wire with softening resistance
JPH0331437A (en) * 1989-06-27 1991-02-12 Furukawa Electric Co Ltd:The Copper alloy for sliding and electrification excellent in heat resistance and wear resistance and its production
JP2000355720A (en) * 1999-06-11 2000-12-26 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831051A (en) * 1981-08-18 1983-02-23 Sumitomo Electric Ind Ltd Tough pitch copper for electric wire with softening resistance
JPH0331437A (en) * 1989-06-27 1991-02-12 Furukawa Electric Co Ltd:The Copper alloy for sliding and electrification excellent in heat resistance and wear resistance and its production
JP2000355720A (en) * 1999-06-11 2000-12-26 Nippon Mining & Metals Co Ltd Rolled copper foil for flexible printed circuit board, and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109228A (en) * 2010-10-20 2012-06-07 Hitachi Cable Ltd Method of manufacturing insulated wire and cable
WO2012120982A1 (en) * 2011-03-07 2012-09-13 Jx日鉱日石金属株式会社 COPPER OR COPPER ALLOY REDUCED IN α-RAY EMISSION, AND BONDING WIRE OBTAINED FROM COPPER OR COPPER ALLOY AS RAW MATERIAL
CN103415633A (en) * 2011-03-07 2013-11-27 吉坤日矿日石金属株式会社 Copper or copper alloy reduced in a-ray emission, and bonding wire obtained from copper or copper alloy as raw material
CN103415633B (en) * 2011-03-07 2015-09-09 吉坤日矿日石金属株式会社 The manufacture method of copper or copper alloy, bonding wire, the manufacture method of copper, the manufacture method of copper alloy and bonding wire
US9597754B2 (en) 2011-03-07 2017-03-21 Jx Nippon Mining & Metals Corporation Copper or copper alloy, bonding wire, method of producing the copper, method of producing the copper alloy, and method of producing the bonding wire
PH12017501498A1 (en) * 2011-03-07 2019-01-14 Jx Nippon Mining & Metals Corp COPPER OR COPPER ALLOY REDUCED IN a-RAY EMISSION, AND BONDING WIRE OBTAINED FROM COPPER OR COPPER ALLOY AS RAW MATERIAL
JP2013052434A (en) * 2011-09-06 2013-03-21 Sumitomo Electric Ind Ltd Method for manufacturing copper stock for wire rod
CN108273973A (en) * 2018-03-22 2018-07-13 宁波金田铜业(集团)股份有限公司 A method of tellurium bronze stick is produced using horizontal continuous casting process

Also Published As

Publication number Publication date
JP4924084B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
JP6226097B2 (en) Copper alloy for electronic and electrical equipment, copper alloy sheet material for electronic and electrical equipment, electronic and electrical equipment parts, terminals, bus bars, and movable pieces for relays
JP4479510B2 (en) Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor
US6627009B1 (en) Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
JP6201815B2 (en) Method for producing copper alloy stranded wire
KR101919677B1 (en) Copper alloy strand, copper alloy twisted wire, and automotive electric wire
KR101982913B1 (en) Aluminum alloy conductor wire, aluminum alloy twisted wire, sheathed electrical cable, wire harness, and method for manufacturing aluminum alloy conductor wire
JP5380117B2 (en) Wire conductor manufacturing method, wire conductor, insulated wire, and wire harness
JP2006193807A5 (en)
JP2006274383A (en) Method for manufacturing copper material, and copper material
JP4924084B2 (en) Copper rough wire and method for manufacturing the same, conductor for electric wire
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP4809934B2 (en) Dilute copper alloy wire, plated wire and stranded wire
JP5652741B2 (en) Copper wire and method for producing the same
US20120097904A1 (en) Dilute copper alloy material and method of manufacturing dilute copper alloy member excellent in characteristics of resistance to hydrogen embrittlement
JP2006307307A (en) Wiring cable for moving part in robot
JP3903899B2 (en) Method for producing copper alloy conductor for train line and copper alloy conductor for train line
JP2008255416A (en) Method for manufacturing copper material, and copper material
JP5617521B2 (en) Method for producing enameled wire using dilute copper alloy material
JP5376396B2 (en) Wire conductor for wire harness
JP5510879B2 (en) Wire conductor and wire
JP5686084B2 (en) Insulated wire manufacturing method and cable manufacturing method
JP2004188429A (en) Method for producing copper rough-drawn wire and copper wire
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250