JP2009224734A - Mos semiconductor device having trench gate structure, and its manufacturing method - Google Patents

Mos semiconductor device having trench gate structure, and its manufacturing method Download PDF

Info

Publication number
JP2009224734A
JP2009224734A JP2008070536A JP2008070536A JP2009224734A JP 2009224734 A JP2009224734 A JP 2009224734A JP 2008070536 A JP2008070536 A JP 2008070536A JP 2008070536 A JP2008070536 A JP 2008070536A JP 2009224734 A JP2009224734 A JP 2009224734A
Authority
JP
Japan
Prior art keywords
trench
gate electrode
region
gate
meandering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070536A
Other languages
Japanese (ja)
Other versions
JP5470726B2 (en
Inventor
Yuji Sano
祐司 佐野
Isao Yoshikawa
功 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2008070536A priority Critical patent/JP5470726B2/en
Publication of JP2009224734A publication Critical patent/JP2009224734A/en
Application granted granted Critical
Publication of JP5470726B2 publication Critical patent/JP5470726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MOS semiconductor device having a trench gate structure capable of directly and definitely detecting the presence or absence of the wire severance of a gate electrode immediately after the formation process of the gate electrode, and its manufacturing method. <P>SOLUTION: One zigzag trench 5 is formed on an n semiconductor substrate 1. The gate electrode 7 is formed by embedding polysilicon in the trench 5. Disconnection determination electrodes a, b are formed at the end of the one gate electrode 7. The presence or absence of the wire severance of the gate electrode 7 can be detected by investigating electric continuity between the disconnection determination electrodes a, b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、縦型構造のMOS型半導体装置において、製造工程の途中でゲート電極の断線の有無を判定できるトレンチゲート構造を有するMOS型半導体装置およびその製造方法に関わる。   The present invention relates to a MOS semiconductor device having a trench gate structure and a method of manufacturing the same in a vertical structure MOS semiconductor device that can determine whether or not a gate electrode is disconnected during the manufacturing process.

縦型構造のパワーデバイスでトレンチゲート構造を有するMOS型半導体装置として、パワーMOSFETやIGBT(絶縁ゲート型バイポーラトランジスタ)などがある。
図10〜図14は、従来のトレンチゲート構造を有するMOS型半導体装置の構成図であり、図10は半導体チップの要部平面図、図11は図10のB部の詳細図、図12は図11のX−X線で切断した要部断面図、図13は図11のY−Y線で切断した要部断面図、図14は図11のZ−Z線で切断した要部断面図である。これらの図は模式図であり、このMOS型半導体装置はIGBT200を例として挙げた。また、ここではトレンチ55の平面形状がループ状になっている例を挙げたが、複数本の終端のある直線状の場合もある。
図10および図11において、複数のループ状のトレンチ55を形成し、各トレンチ55内壁にゲート絶縁膜56(図12参照)を介してゲート電極57が形成される。ループ状のトレンチ55の内側と外側にはpウェル領域54が形成され、ループ内側のpウェル領域54の表面層に高濃度のp領域68が形成される。このp領域68はループ内側のpウェル領域54の表面層の全域に形成した場合で示したが選択的に形成しても構わない。
ループ状のトレンチ55の外側でトレンチ55に挟まれたpウェル領域54の表面層にnエミッタ領域58およびpコンタクト領域59が形成される。ループ内側の高濃度のp領域68は、層間絶縁膜61に形成したコンタクトホール62を介して断線判定電極cと接続する。
ループ外側に形成される各nエミッタ領域58および各pコンタクト領域59は、層間絶縁膜61に形成したコンタクトホール62を介してエミッタ電極63と接続する。ループ状のトレンチ55の端部(曲率部)のゲート電極57に接続する引き出し電極60はゲート電極57と同時に形成され、引き出し電極60にコンタクトホール62を介して接続するゲートライナー64と、これと接続するゲートパッド67はアルミニウムなどの金属膜で同時に形成される。
図12〜14において、n半導体基板51の表面層にpウェル領域54が形成され、pウェル領域54を貫通してn半導体基板51に達するループ状のトレンチ55が複数形成される。ループ状のトレンチ55内側のpウェル領域54の表面層に高濃度のp領域68が形成され、ループ状のトレンチ55外側でトレンチ55に挟まれるpウェル領域54の表面層にnエミッタ領域58とpコンタクト領域59が形成される。トレンチ55の内壁にゲート絶縁膜56が形成され、ゲート絶縁膜56を介してトレンチ55にゲート電極57となるポリシリコンが充填される。表面に層間絶縁膜61が形成され、nエミッタ領域58上とpコンタクト領域59上および高濃度のp領域68上の層間絶縁膜61にコンタクトホール62を形成し、その上にエミッタ電極63および断線判定電極cが形成される。このループ状のトレンチ内側に形成されたゲート電極57はポリシリコンからなる引き出し電極60と接続し、引き出し電極60はコンタクトホール62を介してゲートライナー64と接続し、ゲートライナー64はゲートパッド67と接続する。
n半導体基板51の裏面側にpコレクタ領域65が形成され、pコレクタ領域65上にコレクタ電極66が形成される。尚、図中の52はpリサーフ領域、53はフィールド酸化膜である。これらは、図1の耐圧構造部に形成される。
前記のエミッタ電極63と断線判定電極cの間に所定の電圧を印加し、導通の有無でトレンチ55がpウェル領域54を貫通しているか否かを判定する。もし、導通しなければ、トレンチ55がpウェル領域54を貫通しており(pウェル領域54とn半導体基板51で形成されるpn接合で導通を阻止する)、全てのトレンチ55が正常に形成されていることが分かる。正常にトレンチ55が形成されていると、トレンチ55に埋め込まれているゲート電極57も断線せずに正常に形成されているものと判定する。
一方、導通すれば、多数あるトレンチ55の内いずれかのトレンチ55がpウェル領域54を貫通していないことになり、正常に形成されていないトレンチ55が存在することになる。トレンチ55がpウェル領域54を貫通せず浅く形成されると、その中に形成されるゲート電極57の厚さも薄くなり、抵抗値が増加する。さらにトレンチ55が形成されていない箇所があるとゲート電極57はその箇所で形成されないことになり、断線と判定される。尚、これらの内容は特許文献1にも開示されている。
特開2005−150426号公報
As a MOS type semiconductor device having a trench gate structure as a vertical type power device, there are a power MOSFET, an IGBT (insulated gate type bipolar transistor) and the like.
10 to 14 are configuration diagrams of a conventional MOS type semiconductor device having a trench gate structure. FIG. 10 is a plan view of a principal part of a semiconductor chip. FIG. 11 is a detailed view of a portion B in FIG. 11 is a cross-sectional view of the main part cut along line XX in FIG. 11, FIG. 13 is a cross-sectional view of the main part cut along line YY in FIG. 11, and FIG. 14 is a cross-sectional view of the main part cut along line ZZ in FIG. It is. These figures are schematic views, and this MOS type semiconductor device is exemplified by an IGBT 200. In addition, although the example in which the planar shape of the trench 55 is a loop shape is given here, there may be a linear shape having a plurality of ends.
10 and 11, a plurality of loop-like trenches 55 are formed, and a gate electrode 57 is formed on the inner wall of each trench 55 via a gate insulating film 56 (see FIG. 12). A p-well region 54 is formed inside and outside the loop-shaped trench 55, and a high-concentration p-region 68 is formed in the surface layer of the p-well region 54 inside the loop. The p region 68 is shown as being formed over the entire surface layer of the p well region 54 inside the loop, but may be selectively formed.
An n emitter region 58 and a p contact region 59 are formed on the surface layer of the p well region 54 sandwiched between the trenches 55 outside the loop-shaped trench 55. The high-concentration p region 68 inside the loop is connected to the disconnection determination electrode c through a contact hole 62 formed in the interlayer insulating film 61.
Each n emitter region 58 and each p contact region 59 formed outside the loop are connected to the emitter electrode 63 through a contact hole 62 formed in the interlayer insulating film 61. A lead electrode 60 connected to the gate electrode 57 at the end (curvature portion) of the loop-shaped trench 55 is formed at the same time as the gate electrode 57, and a gate liner 64 connected to the lead electrode 60 via a contact hole 62, The gate pad 67 to be connected is formed simultaneously with a metal film such as aluminum.
12 to 14, a p-well region 54 is formed in the surface layer of an n semiconductor substrate 51, and a plurality of loop-shaped trenches 55 that penetrate the p-well region 54 and reach the n semiconductor substrate 51 are formed. A high-concentration p region 68 is formed in the surface layer of the p-well region 54 inside the loop-shaped trench 55, and an n-emitter region 58 is formed on the surface layer of the p-well region 54 sandwiched by the trench 55 outside the loop-shaped trench 55. A p contact region 59 is formed. A gate insulating film 56 is formed on the inner wall of the trench 55, and the trench 55 is filled with polysilicon serving as the gate electrode 57 through the gate insulating film 56. Interlayer insulating film 61 is formed on the surface, contact hole 62 is formed in interlayer insulating film 61 on n emitter region 58, p contact region 59, and high concentration p region 68, and emitter electrode 63 and disconnection are formed thereon. A determination electrode c is formed. A gate electrode 57 formed inside the loop-shaped trench is connected to a lead electrode 60 made of polysilicon, the lead electrode 60 is connected to a gate liner 64 through a contact hole 62, and the gate liner 64 is connected to a gate pad 67. Connecting.
A p collector region 65 is formed on the back side of the n semiconductor substrate 51, and a collector electrode 66 is formed on the p collector region 65. In the figure, 52 is a p-resurf region, and 53 is a field oxide film. These are formed in the breakdown voltage structure portion of FIG.
A predetermined voltage is applied between the emitter electrode 63 and the disconnection determination electrode c, and it is determined whether or not the trench 55 penetrates the p-well region 54 based on the presence or absence of conduction. If not conducting, the trench 55 penetrates the p well region 54 (conduction is prevented by a pn junction formed by the p well region 54 and the n semiconductor substrate 51), and all the trenches 55 are formed normally. You can see that. If the trench 55 is formed normally, it is determined that the gate electrode 57 embedded in the trench 55 is also formed normally without disconnection.
On the other hand, if conduction is established, any one of the numerous trenches 55 does not penetrate the p-well region 54, and there is a trench 55 that is not normally formed. If the trench 55 is formed shallowly without penetrating the p-well region 54, the thickness of the gate electrode 57 formed therein is also reduced, and the resistance value is increased. Further, if there is a portion where the trench 55 is not formed, the gate electrode 57 is not formed at that portion, and it is determined that the wire is disconnected. These contents are also disclosed in Patent Document 1.
JP 2005-150426 A

しかし、前記のように断線判定電極cを形成すると、そのために専用のスペースが必要となりチップサイズが大きくなる。
また、工程の最終段階で断線の良否を判定するので、ゲート電極形成工程で断線していても最終工程まで流れるので、その間費やしたコストが無駄になり製造コストの増大を招く。また、最終段階でゲート電極の断線が判定されるのでゲート電極形成工程へのフィードバックに時間が掛かる。
また、従来の方法では、トレンチ55の深さが浅いことで、ゲート電極57の断線を判断しているため、トレンチ55が正常に形成されていて、ゲート電極57の形成工程で何らかの異常が発生してゲート電極57が正常に形成されず、断線が発生した場合には、断線の有無を判定できないという問題がある。
この発明の目的は、前記の課題を解決して、ゲート電極形成工程の直後にゲート電極の断線の有無を直接的に、且つ確実に判定できるトレンチゲート構造を有するMOS型半導体装置およびその製造方法を提供することにある。
However, when the disconnection determination electrode c is formed as described above, a dedicated space is required for this purpose, and the chip size increases.
In addition, since the quality of the disconnection is determined at the final stage of the process, even if the disconnection occurs in the gate electrode formation process, the process flows to the final process, so that the cost spent during that time is wasted and the manufacturing cost is increased. In addition, since the disconnection of the gate electrode is determined at the final stage, it takes time to feed back to the gate electrode formation process.
Further, in the conventional method, since the depth of the trench 55 is shallow, the disconnection of the gate electrode 57 is judged, so that the trench 55 is normally formed and some abnormality occurs in the process of forming the gate electrode 57. When the gate electrode 57 is not formed normally and a disconnection occurs, there is a problem that the presence or absence of the disconnection cannot be determined.
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a MOS type semiconductor device having a trench gate structure that can directly and reliably determine the presence or absence of disconnection of the gate electrode immediately after the gate electrode forming step, and a method for manufacturing the same. Is to provide.

前記の目的を達成するために、第1導電型の半導体基板の表面層に配置される第2導電型の第1半導体領域(ウェル領域)と、該第1半導体領域(ウェル領域)を貫通して前記半導体基板に達する蛇行した1条のトレンチと、該トレンチの側壁に接して前記第1半導体領域(ウェル領域)の表面層に選択的に配置される第1導電型の第2半導体領域(エミッタ領域)と、前記トレンチの内壁に配置されるゲート絶縁膜を介して前記トレンチに埋め込まれる蛇行した1条のゲート電極と、を具備する構成とする。
また、前記蛇行した1条のゲート電極の平面形状が、平行する直線部分と該直線部分と繋がる蛇行する曲率部分からなり、前記蛇行する1条のゲート電極の両端部が曲率部分をなすとよい。
また、第1導電型の半導体基板の表面層に配置される第2導電型の第1半導体領域ウェル領域と、該第1半導体領域ウェル領域を貫通して前記半導体基板に達する蛇行した1条のトレンチと、該トレンチの側壁に接して前記第1半導体領域ウェル領域の表面層に選択的に配置される第1導電型の第2半導体領域エミッタ領域と、前記トレンチの内壁に配置されるゲート絶縁膜を介して前記トレンチに埋め込まれる蛇行した1条のゲート電極と、を具備するトレンチゲート構造を有するMOS型半導体装置の製造方法において、前記の蛇行した1条のゲート電極の両端に所定の電圧を印加して所定の電流が流れることで前記ゲート電極の断線の有無を判断する工程を含む製造方法とする。
In order to achieve the above object, a second conductivity type first semiconductor region (well region) disposed in a surface layer of a first conductivity type semiconductor substrate, and the first semiconductor region (well region) are penetrated. A meandering trench that reaches the semiconductor substrate, and a second semiconductor region of a first conductivity type that is selectively disposed on a surface layer of the first semiconductor region (well region) in contact with the sidewall of the trench. An emitter region), and a meandering gate electrode buried in the trench through a gate insulating film disposed on the inner wall of the trench.
The planar shape of the meandering gate electrode may be composed of a parallel straight portion and a meandering curvature portion connected to the straight portion, and both ends of the meandering gate electrode may be a curvature portion. .
Also, a second conductivity type first semiconductor region well region disposed in a surface layer of the first conductivity type semiconductor substrate, and a single meandering meander that passes through the first semiconductor region well region and reaches the semiconductor substrate. A trench, a second semiconductor region emitter region of a first conductivity type selectively disposed in a surface layer of the first semiconductor region well region in contact with a sidewall of the trench, and a gate insulation disposed on an inner wall of the trench In a manufacturing method of a MOS type semiconductor device having a trench gate structure comprising a meandering gate electrode embedded in the trench through a film, a predetermined voltage is applied across the meandering gate electrode. And a predetermined current flows to determine whether or not the gate electrode is disconnected.

また、前記の蛇行した1条のゲート電極の一端と前記第2半導体領域エミッタ領域の間に電圧を印加して耐圧の有無を判断する工程を付加するとよい。   Further, it is preferable to add a step of applying a voltage between one end of the meandering gate electrode and the second semiconductor region emitter region to determine the presence or absence of withstand voltage.

この発明によれば、蛇行した1条のトレンチにゲート電極を形成し、その1条のゲート電極の端部に断線判定電極を形成することで、従来構造のように専用の断線判定電極を形成する必要がなくなり、チップサイズを小型化できる。
また、ゲート電極を形成した直後にゲート電極の断線の有無を判定できるので、ゲート電極形成工程以前の工程に迅速に判定情報のフィードバックをかけることができる。
また、ゲート電極形成後に不良品を選別できるので、その後の工程に不良品を流さずに済むために製造コストを低減できる。
また、ゲート電極の断線の有無を従来のようにトレンチの深さから間接的に判断するのではなく、ゲート電極自身の断線を調べて判断するので、従来より確実な判断ができる。
According to this invention, a gate electrode is formed in one meandering trench, and a disconnection determination electrode is formed at an end of the one gate electrode, thereby forming a dedicated disconnection determination electrode as in the conventional structure. Therefore, the chip size can be reduced.
In addition, since the presence or absence of the disconnection of the gate electrode can be determined immediately after forming the gate electrode, the determination information can be quickly fed back to the process before the gate electrode forming process.
In addition, since defective products can be selected after forming the gate electrode, it is not necessary to send defective products to subsequent processes, so that the manufacturing cost can be reduced.
In addition, the presence / absence of disconnection of the gate electrode is not indirectly determined from the depth of the trench as in the prior art, but is determined by examining the disconnection of the gate electrode itself.

実施の形態を以下の実施例で説明する。   Embodiments will be described in the following examples.

図1〜図3は、この発明の一実施例におけるトレンチゲート構造を有するMOS型半導体装置の構成図であり、図1は半導体チップの要部平面図、図2はトレンチとゲート電極の平面図、図3(a)は図1のA部の詳細図、図3(b)は図3(a)のX−X線で切断した要部断面図、図3(c)は図3(a)のY−Y線で切断した要部断面図である。このMOS型半導体装置はIGBT100を例として挙げた。このIGBT100では耐圧構造部がリサーフ構造の場合を示したが、ガードリング構造など他の構造の場合もある。ゲートライナー14は実際は極めて幅が狭いがここでは分かり易くするために幅を誇張して示した。
図1〜図3(a)において、pウェル領域4を貫通してn半導体基板1に達し、蛇行した1条のトレンチ5を形成し、トレンチ5内にゲート絶縁膜8を介して蛇行した1条のゲート電極9が形成される。蛇行した1条のトレンチ5は平行して走る直線部分と折返し箇所の曲率部分で構成され、隣接する直線部分のトレンチに挟まれたpウェル領域4が複数形成され、一つおきのpウェル領域4の表面層にnエミッタ領域8およびpコンタクト領域9が形成される。
各nエミッタ領域8上および各pコンタクト領域9上の層間絶縁膜11にそれぞれコンタクトホール12を開口し、このコンタクトホール12を介して各nエミッタ領域8および各pコンタクト領域9に接続するエミッタ電極13が形成される。蛇行する1条のトレンチ5の曲率部分のゲート電極7と接続する引き出し電極10が形成される。この引き出し電極10はゲートライナー13にコンタクトホール12を介して接続しこのゲートライナー13にゲートパッド17を接続する。このようにゲートパッド17とゲートライナー17を別々に形成する代わりに、ゲートライナー13にゲートパッド17の働きを兼ねさせて、ゲートパッド17を削除してもよい。そうすると、ゲートパッド17の占める面積が不要となりチップ面積を縮小化できる。尚、ゲートライナー13およびゲートパッド17は例えばアルミニウムなどの金属膜で形成される。
また、pウェル領域4の外周部はpリサーフ領域2と接続し、pリサーフ領域2上にはフィールド酸化膜3が形成される(図3(c)参照)。
尚、前記のトレンチ5の直線部分の間隔を等間隔として示したが、nエミッタ領域8が形成されるpウェル領域4を挟むトレンチ5間の間隔よりもnエミッタ領域8が形成されないpウェル領域4を挟むトレンチ5間の間隔の方が広い場合もある。
図3(b)および図3(c)において、n半導体基板1の外周部の表面層にpリサーフ領域2が形成され、その上にフィールド酸化膜3が形成される。さらに、このフィールド酸化膜3をマスクとしてpウェル領域4が形成され、pウェル領域4を貫通してn半導体基板1に達する蛇行した1条のトレンチ5が形成される。pウェル領域4はpリサーフ領域2に接し、pリサーフ領域2はチップの外周部に形成され図1に示す耐圧構造部を構成する。
トレンチ5の内、隣接して平行して走っている2本のトレンチを1組として1組おきにトレンチに挟まれたpウェル領域4の表面層にnエミッタ領域8およびpコンタクト領域9が形成される。1組おきにnエミッタ領域8を形成することで、チャネルで制限される電流を抑制して、短絡負荷耐量を増大させる。
トレンチ5の内壁にゲート絶縁膜6を介して蛇行する1条のゲート電極7が形成される。表面に層間絶縁膜11が形成され、nエミッタ領域8上とpコンタクト領域9上の層間絶縁膜11にコンタクトホール12を形成し、その上にエミッタ電極13が形成される。ゲート電極7と同時に形成される引き出し電極10はコンタクトホール12を介してゲートライナー14とゲートパッド17に接続する。ここではゲートパッド17はゲートライナー14も兼ねているが、ゲートライナー14を兼ねないで個別に形成される場合もある。
また、n半導体基板1の裏面側にpコレクタ領域15およびコレクタ電極16が形成される。
1 to 3 are configuration diagrams of a MOS type semiconductor device having a trench gate structure according to an embodiment of the present invention. FIG. 1 is a plan view of a main part of a semiconductor chip, and FIG. 2 is a plan view of a trench and a gate electrode. 3A is a detailed view of the portion A in FIG. 1, FIG. 3B is a cross-sectional view taken along line XX in FIG. 3A, and FIG. 3C is FIG. It is principal part sectional drawing cut | disconnected by the YY line | wire of (). As this MOS type semiconductor device, IGBT 100 is taken as an example. In this IGBT 100, the case where the pressure-resistant structure portion has the RESURF structure is shown, but there may be other structures such as a guard ring structure. The gate liner 14 is actually very narrow, but here the width is exaggerated for the sake of clarity.
In FIG. 1 to FIG. 3A, a single meandering trench 5 is formed through the p-well region 4 to reach the n semiconductor substrate 1, and the meandering 1 is formed in the trench 5 via the gate insulating film 8. A striped gate electrode 9 is formed. The meandering trench 5 is composed of a straight line portion that runs in parallel and a curvature portion of the folded portion, and a plurality of p-well regions 4 sandwiched between adjacent straight-line trenches are formed. 4, an n emitter region 8 and a p contact region 9 are formed.
Contact holes 12 are opened in interlayer insulating films 11 on each n emitter region 8 and each p contact region 9, and emitter electrodes connected to each n emitter region 8 and each p contact region 9 through this contact hole 12. 13 is formed. A lead electrode 10 connected to the gate electrode 7 in the curvature portion of the meandering trench 5 is formed. The lead electrode 10 is connected to the gate liner 13 through the contact hole 12, and the gate pad 17 is connected to the gate liner 13. Instead of forming the gate pad 17 and the gate liner 17 separately as described above, the gate pad 17 may be deleted by making the gate liner 13 also function as the gate pad 17. Then, the area occupied by the gate pad 17 becomes unnecessary, and the chip area can be reduced. The gate liner 13 and the gate pad 17 are formed of a metal film such as aluminum.
Further, the outer peripheral portion of the p well region 4 is connected to the p RESURF region 2, and a field oxide film 3 is formed on the p RESURF region 2 (see FIG. 3C).
Although the interval between the straight portions of the trench 5 is shown as an equal interval, the p well region where the n emitter region 8 is not formed more than the interval between the trenches 5 sandwiching the p well region 4 where the n emitter region 8 is formed. In some cases, the interval between the trenches 5 sandwiching 4 is wider.
3B and 3C, p-resurf region 2 is formed on the surface layer of the outer peripheral portion of n semiconductor substrate 1, and field oxide film 3 is formed thereon. Further, p well region 4 is formed using field oxide film 3 as a mask, and a meandering trench 5 penetrating through p well region 4 and reaching n semiconductor substrate 1 is formed. The p-well region 4 is in contact with the p-resurf region 2, and the p-resurf region 2 is formed on the outer periphery of the chip and constitutes the breakdown voltage structure shown in FIG.
An n emitter region 8 and a p contact region 9 are formed on the surface layer of the p well region 4 between two trenches 5 which are adjacent to each other and run parallel to each other as a pair. Is done. By forming the n emitter regions 8 every other group, the current limited by the channel is suppressed, and the short-circuit load resistance is increased.
A single gate electrode 7 is formed on the inner wall of the trench 5 through the gate insulating film 6. Interlayer insulating film 11 is formed on the surface, contact hole 12 is formed in interlayer insulating film 11 on n emitter region 8 and p contact region 9, and emitter electrode 13 is formed thereon. The lead electrode 10 formed simultaneously with the gate electrode 7 is connected to the gate liner 14 and the gate pad 17 through the contact hole 12. Here, the gate pad 17 also serves as the gate liner 14, but may be formed individually without serving as the gate liner 14.
A p collector region 15 and a collector electrode 16 are formed on the back side of the n semiconductor substrate 1.

図4〜図8は、図1〜図3のトレンチゲート構造を有するMOS型半導体装置の製造方法であり、工程順に示した要部製造工程図である。このMOS型半導体装置は図1〜図3で示したIGBTである。各図の(a)は図3(b)に相当する図であり、(b)は図3(c)に相当する図である。
まず、図4に示すように、n半導体基板1の最外周の表面層に図示しないマスクを用いてpリサーフ領域2を形成する。続いて、その上にフィールド酸化膜3を形成し、これをマスクにpリサーフ領域2と接するようにpウェル領域4を形成する。
つぎに、図5に示すように、トレンチパターンを基にpウェル領域4を貫通しn半導体基板1に達する蛇行する1条のトレンチ5を形成する。このトレンチは図2に示すように平行して走る直線部分と折り返し箇所の曲率部分で構成される。曲率部分を設けているのは電界集中を防止するためである。また、1条のトレンチ5の両端も電界集中を抑制するために曲率部分を設けている。
つぎに、図6に示すように、トレンチエッチングによるダメージ層を除去した後、トレンチ5内壁にゲート絶縁膜6を形成し、ポリシリコンをトレンチ5内に埋め込み、このポリシリコンで表面を被覆する。続いて、図示しないパターンを用いパターニングを行い、トレンチ5内に埋め込まれた蛇行する1条のゲート電極7と表面に露出する引き出し電極10および断線判定電極a、bをエッチングで形成する。トレンチ5の直線部分と曲率部分には引き出し電極10を形成し、トレンチ5の両端には、断線判定電極a、bをゲート電極7と同時に形成する。トレンチ5の直線部分に形成される引き出し電極10は互いに接触しないように形成する。
ここで、ゲート電極7の断線の有無を判断するための初期評価を行なう。評価は1条のトレンチの両端に形成された断線判定電極a、b(PCM:Pattern Check Monitor)を用いて行なう。具体的には断線判定電極a、bの間に所定の電圧を印加し、導通する電流が所定の値以下である場合、断線と判断する。
この評価に合わせて、トレンチ5の深さがpウェル領域4の深さに対して浅くなっていることを判断するために、断線判定電極a、bにパルス電圧信号を印加して、この電極間でパルス電圧信号のやり取りを行い、信号の反射・減衰の程度でトレンチ5の深さの判定を行なうこともできる。
つぎに、図7に示すように、ゲート絶縁膜6を除去し、図示しない犠牲酸化膜を形成し図示しないマスクを用いて、nエミッタ領域8およびpコンタクト領域9を形成する。その後、犠牲酸化膜を除去する。但し、その前に温度センスなどの別回路を組み込んでもよい。また、nエミッタ領域8が形成されていない箇所のトレンチ5で挟まれたpウェル領域4は電位的にはフローティングとする。参考までに、図7(b)に示すようにnエミッタ領域8の位置を点線で示した。
最後に、図8に示すように、表面に層間絶縁膜11を形成し、この層間絶縁膜11にコンタクトホール12を開口し、nエミッタ領域8およびpコンタクト領域9と接続するエミッタ電極13、引き出し電極10と接続するゲートライナー14およびこれと接続するゲートパッド17を形成し、裏面にpコレクタ領域15を形成し、pコレクタ領域15と接続するコレクタ電極16を形成してIGBT100のウェハプロセスは終了する。その後、組立工程および試験工程などを経て製品として出来上がる。尚、pリサーフ領域2とpウェル領域4は接続している例で説明したが、図9に示すようにpリサーフ領域2とpウェル領域4を離して形成する場合もある。
本発明では、図1および図2に示すように、全てのゲート電極7を蛇行する1本の線状(1条)に形成し、ゲート電極7を形成した後で、ゲート電極7の断線の有無を判断する。前記したように、断線の有無はゲート電極7の両端に形成した断線判定電極a、b間に電圧を印加して行なう。
このように、ゲート電極7の両端に電圧を印加して直接導通を調べるために、断線の有無の判断を従来法より確実に行なうことができる。
また、一方の断線判定電極a、bとnエミッタ領域8の間に電圧を印加するとゲート耐圧の評価も行なうことができる。このように断線の有無やゲート耐圧の評価を工程の途中(nエミッタ領域8の形成する前)で行なうことで、最終工程で行う場合より製造コストが低減でき、またゲート電極7を形成する工程へのフィードバックを迅速に行なうことができる。
尚、引き出し電極10に接続するゲートライナー13とそれと接続するゲートパッド17は、ゲート電極7形成工程後に例えば、アルミニウムのような金属で形成する。IGBTチップの面積が大きくなった場合は、図1および図2で示すように、ゲート電極の直線部分(トレンチ5の直線部分)の中間に引き出し電極10を形成し、ゲートランナー13とコンタクトホール12を介して接続することで、IGBT100のゲート抵抗を低くすることができる。
本発明は、トレンチ5で挟まれたpウェル領域4の全ての箇所にnエミッタ領域8を形成したIGBTにも適用できる。また、トレンチゲート構造を有するパワーMOSFETの場合にも適用できる。さらに、図3において、トレンチ5の直線部分に挟まれた箇所で、nエミッタ領域8が形成されないpウェル領域4の方がnエミッタ領域8が形成されるpウェル領域4よりも広い場合に、広い方のpウェル領域4にn半導体基板1に達するループ状のトレンチを新たに追加形成してトレンチの直線部分の間隔を均等化にしたIGBTの場合にも適用できる。トレンチ間隔を均等化することで素子耐圧を向上させることが期待される。
4 to 8 are manufacturing methods of the MOS type semiconductor device having the trench gate structure shown in FIGS. 1 to 3, and are main part manufacturing process diagrams shown in the order of processes. This MOS type semiconductor device is the IGBT shown in FIGS. (A) of each figure is a figure equivalent to FIG.3 (b), (b) is a figure equivalent to FIG.3 (c).
First, as shown in FIG. 4, the p-resurf region 2 is formed on the outermost surface layer of the n semiconductor substrate 1 using a mask (not shown). Subsequently, a field oxide film 3 is formed thereon, and a p-well region 4 is formed in contact with the p-resurf region 2 using this as a mask.
Next, as shown in FIG. 5, a meandering trench 5 that penetrates the p-well region 4 and reaches the n semiconductor substrate 1 is formed based on the trench pattern. As shown in FIG. 2, this trench is composed of a straight line portion that runs in parallel and a curvature portion at a turn-back portion. The reason why the curvature portion is provided is to prevent electric field concentration. Further, both ends of the single trench 5 are also provided with a curvature portion in order to suppress electric field concentration.
Next, as shown in FIG. 6, after removing the damaged layer by trench etching, a gate insulating film 6 is formed on the inner wall of the trench 5, polysilicon is buried in the trench 5, and the surface is covered with this polysilicon. Subsequently, patterning is performed using a pattern (not shown) to form a meandering gate electrode 7 embedded in the trench 5, the extraction electrode 10 exposed on the surface, and the disconnection determination electrodes a and b by etching. Lead electrodes 10 are formed on the straight and curved portions of the trench 5, and disconnection determination electrodes a and b are formed on both ends of the trench 5 simultaneously with the gate electrode 7. The extraction electrodes 10 formed on the straight portions of the trench 5 are formed so as not to contact each other.
Here, an initial evaluation for determining whether or not the gate electrode 7 is disconnected is performed. The evaluation is performed using disconnection determination electrodes a and b (PCM: Pattern Check Monitor) formed at both ends of the single trench. Specifically, a predetermined voltage is applied between the disconnection determination electrodes a and b, and when the conducting current is equal to or less than a predetermined value, the disconnection is determined.
In accordance with this evaluation, in order to determine that the depth of the trench 5 is shallower than the depth of the p-well region 4, a pulse voltage signal is applied to the disconnection determination electrodes a and b. It is also possible to exchange pulse voltage signals between them and determine the depth of the trench 5 based on the degree of signal reflection / attenuation.
Next, as shown in FIG. 7, the gate insulating film 6 is removed, a sacrificial oxide film (not shown) is formed, and an n emitter region 8 and a p contact region 9 are formed using a mask (not shown). Thereafter, the sacrificial oxide film is removed. However, another circuit such as a temperature sense may be incorporated before that. The p well region 4 sandwiched between the trenches 5 where the n emitter region 8 is not formed is floating in terms of potential. For reference, the position of the n emitter region 8 is indicated by a dotted line as shown in FIG.
Finally, as shown in FIG. 8, an interlayer insulating film 11 is formed on the surface, a contact hole 12 is opened in the interlayer insulating film 11, an emitter electrode 13 connected to the n emitter region 8 and the p contact region 9, and a lead The gate liner 14 connected to the electrode 10 and the gate pad 17 connected to the electrode 10 are formed, the p collector region 15 is formed on the back surface, the collector electrode 16 connected to the p collector region 15 is formed, and the wafer process of the IGBT 100 is completed. To do. Then, it is completed as a product through an assembly process and a test process. The p-resurf region 2 and the p-well region 4 have been described as being connected. However, the p-resurf region 2 and the p-well region 4 may be formed separately as shown in FIG.
In the present invention, as shown in FIGS. 1 and 2, all the gate electrodes 7 are formed in a meandering line (one line), and after the gate electrode 7 is formed, the gate electrode 7 is disconnected. Judgment is made. As described above, the presence / absence of disconnection is determined by applying a voltage between the disconnection determination electrodes a and b formed at both ends of the gate electrode 7.
As described above, since the voltage is applied to both ends of the gate electrode 7 to directly check the conduction, the presence / absence of disconnection can be determined more reliably than in the conventional method.
Further, when a voltage is applied between one of the disconnection determination electrodes a and b and the n emitter region 8, the gate breakdown voltage can also be evaluated. Thus, by evaluating the presence or absence of disconnection and the gate breakdown voltage in the middle of the process (before the formation of the n emitter region 8), the manufacturing cost can be reduced compared to the case of performing the final process, and the process of forming the gate electrode 7 Feedback can be made quickly.
Note that the gate liner 13 connected to the extraction electrode 10 and the gate pad 17 connected thereto are formed of a metal such as aluminum after the gate electrode 7 formation step. When the area of the IGBT chip is increased, as shown in FIGS. 1 and 2, the extraction electrode 10 is formed in the middle of the straight portion of the gate electrode (the straight portion of the trench 5), and the gate runner 13 and the contact hole 12 are formed. By connecting via, the gate resistance of the IGBT 100 can be lowered.
The present invention can also be applied to an IGBT in which an n emitter region 8 is formed in all locations of the p well region 4 sandwiched between the trenches 5. The present invention can also be applied to a power MOSFET having a trench gate structure. Further, in FIG. 3, when the p-well region 4 where the n-emitter region 8 is not formed is wider than the p-well region 4 where the n-emitter region 8 is formed at a portion sandwiched between the straight portions of the trench 5. The present invention can also be applied to an IGBT in which a loop-shaped trench reaching the n semiconductor substrate 1 is newly formed in the wider p-well region 4 and the intervals between the straight portions of the trench are made uniform. It is expected to improve the device breakdown voltage by equalizing the trench interval.

この発明の一実施例におけるトレンチゲート構造を有するMOS型半導体装置の半導体チップの要部平面図The principal part top view of the semiconductor chip of the MOS type semiconductor device which has a trench gate structure in one Example of this invention 図1におけるトレンチとゲート電極の平面図Plan view of trench and gate electrode in FIG. この発明の一実施例のトレンチゲート構造を有するMOS型半導体装置の構成図であり、(a)は図1のA部の詳細図、(b)は(a)のX−X線で切断した要部断面図、(c)は(a)のY−Y線で切断した要部断面図It is a block diagram of the MOS type semiconductor device which has a trench gate structure of one Example of this invention, (a) is detail drawing of the A section of FIG. 1, (b) was cut | disconnected by the XX line of (a) Cross-sectional view of the main part, (c) is a cross-sectional view of the main part taken along line YY of (a). 図1〜図3のトレンチゲート構造を有するMOS型半導体装置の要部製造工程図Manufacturing process diagram of main part of MOS type semiconductor device having trench gate structure of FIGS. 図4に続く、図1〜図3のトレンチゲート構造を有するMOS型半導体装置の要部製造工程図FIG. 4 is a manufacturing process diagram of a main part of the MOS semiconductor device having the trench gate structure of FIGS. 図5に続く、図1〜図3のトレンチゲート構造を有するMOS型半導体装置の要部製造工程図FIG. 5 is a manufacturing process diagram of a main part of the MOS type semiconductor device having the trench gate structure of FIGS. 図6に続く、図1〜図3のトレンチゲート構造を有するMOS型半導体装置の要部製造工程図FIG. 6 is a manufacturing process diagram of a main part of the MOS type semiconductor device having the trench gate structure of FIGS. 図7に続く、図1〜図3のトレンチゲート構造を有するMOS型半導体装置の要部製造工程図FIG. 7 is a manufacturing process diagram of a main part of the MOS type semiconductor device having the trench gate structure of FIGS. pリサーフ領域2とpウェル領域4を離して形成した場合の要部断面図。The principal part sectional view at the time of forming p resurf field 2 and p well field 4 apart. 従来のトレンチゲート構造を有するMOS型半導体装置の半導体チップの要部平面図Plan view of relevant part of a semiconductor chip of a MOS type semiconductor device having a conventional trench gate structure 図10のB部の詳細図Detailed view of part B in FIG. 図11のX−X線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the XX line of FIG. 図11のY−Y線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the YY line of FIG. 図11のZ−Z線で切断した要部断面図Sectional drawing of the principal part cut | disconnected by the ZZ line of FIG.

符号の説明Explanation of symbols

1 n半導体基板
2 pリサーフ領域
3 フィールド酸化膜
4 pウェル領域
5 トレンチ(1条)
6 ゲート絶縁膜
7 ゲート電極(1条)
8 nエミッタ領域
9 pコンタクト領域
10 引き出し電極
11 層間絶縁膜
12 コンタクトホール
13 エミッタ電極
14 ゲートライナー
15 pコレクタ電極
16 コレクタ電極
17 ゲートパッド
a、b 断線判定電極
1 n semiconductor substrate 2 p RESURF region 3 field oxide film 4 p well region 5 trench (one)
6 Gate insulation film 7 Gate electrode (1 item)
8 n emitter region 9 p contact region 10 lead electrode 11 interlayer insulating film 12 contact hole 13 emitter electrode 14 gate liner 15 p collector electrode 16 collector electrode 17 gate pad a, b disconnection judgment electrode

Claims (4)

第1導電型の半導体基板の表面層に配置される第2導電型の第1半導体領域と、該第1半導体領域を貫通して前記半導体基板に達する蛇行した1条のトレンチと、該トレンチの側壁に接して前記第1半導体領域の表面層に選択的に配置される第1導電型の第2半導体領域と、前記トレンチの内壁に配置されるゲート絶縁膜を介して前記トレンチに埋め込まれる蛇行した1条のゲート電極と、を具備することを特徴とするトレンチゲート構造を有するMOS型半導体装置。 A second conductivity type first semiconductor region disposed in a surface layer of the first conductivity type semiconductor substrate; a meandering trench that penetrates the first semiconductor region and reaches the semiconductor substrate; and A second semiconductor region of a first conductivity type that is selectively disposed on a surface layer of the first semiconductor region in contact with a side wall, and a meander embedded in the trench via a gate insulating film disposed on an inner wall of the trench A MOS type semiconductor device having a trench gate structure. 前記蛇行した1条のゲート電極の平面形状が、平行する直線部分と該直線部分と繋がる蛇行する曲率部分からなり、前記蛇行する1条のゲート電極の両端部が曲率部分をなすことを特徴とする請求項1に記載のトレンチゲート構造を有するMOS型半導体装置。 The planar shape of the meandering gate electrode is composed of parallel straight portions and meandering curvature portions connected to the straight portions, and both end portions of the meandering gate electrode form curvature portions. A MOS semiconductor device having a trench gate structure according to claim 1. 第1導電型の半導体基板の表面層に配置される第2導電型の第1半導体領域と、該第1半導体領域を貫通して前記半導体基板に達する蛇行した1条のトレンチと、該トレンチの側壁に接して前記第1半導体領域の表面層に選択的に配置される第1導電型の第2半導体領域と、前記トレンチの内壁に配置されるゲート絶縁膜を介して前記トレンチに埋め込まれる蛇行した1条のゲート電極と、を具備するトレンチゲート構造を有するMOS型半導体装置の製造方法において、
前記の蛇行した1条のゲート電極の両端に所定の電圧を印加して所定の電流が流れることで前記ゲート電極の断線の有無を判断する工程を含むことを特徴とするトレンチゲート構造を有するMOS型半導体装置の製造方法。
A first semiconductor region of a second conductivity type disposed in a surface layer of the semiconductor substrate of the first conductivity type; a meandering trench that penetrates the first semiconductor region and reaches the semiconductor substrate; and A second semiconductor region of a first conductivity type that is selectively disposed on a surface layer of the first semiconductor region in contact with a side wall, and a meander embedded in the trench via a gate insulating film disposed on an inner wall of the trench In the method of manufacturing a MOS type semiconductor device having a trench gate structure comprising:
A MOS having a trench gate structure comprising a step of applying a predetermined voltage to both ends of the meandering gate electrode to determine whether or not the gate electrode is disconnected by flowing a predetermined current. Type semiconductor device manufacturing method.
前記の蛇行した1条のゲート電極の一端と前記第2半導体領域の間に電圧を印加して耐圧の有無を判断する工程を付加することを特徴とする請求項3に記載のトレンチゲート構造を有するMOS型半導体装置の製造方法。
4. The trench gate structure according to claim 3, further comprising a step of applying a voltage between one end of the meandering gate electrode and the second semiconductor region to determine the presence or absence of a withstand voltage. A method for manufacturing a MOS semiconductor device having the same.
JP2008070536A 2008-03-19 2008-03-19 Manufacturing method of MOS type semiconductor device having trench gate structure Active JP5470726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070536A JP5470726B2 (en) 2008-03-19 2008-03-19 Manufacturing method of MOS type semiconductor device having trench gate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070536A JP5470726B2 (en) 2008-03-19 2008-03-19 Manufacturing method of MOS type semiconductor device having trench gate structure

Publications (2)

Publication Number Publication Date
JP2009224734A true JP2009224734A (en) 2009-10-01
JP5470726B2 JP5470726B2 (en) 2014-04-16

Family

ID=41241180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070536A Active JP5470726B2 (en) 2008-03-19 2008-03-19 Manufacturing method of MOS type semiconductor device having trench gate structure

Country Status (1)

Country Link
JP (1) JP5470726B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183143A (en) * 2012-03-05 2013-09-12 Toyota Motor Corp Method for manufacturing semiconductor device, and semiconductor device
JP2015115452A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Semiconductor device
US9741838B2 (en) 2016-01-27 2017-08-22 Kabushiki Kaisha Toshiba Semiconductor device
CN111584632A (en) * 2019-02-19 2020-08-25 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
JP2020145288A (en) * 2019-03-05 2020-09-10 富士電機株式会社 Insulated gate type semiconductor device and manufacturing method of the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214968A (en) * 1997-01-31 1998-08-11 Hitachi Ltd Semiconductor device
JPH11330469A (en) * 1998-05-21 1999-11-30 Nec Kansai Ltd Insulated gate type of semiconductor
JP2001168329A (en) * 1999-12-13 2001-06-22 Fuji Electric Co Ltd Trench mos semiconductor device
JP2001217419A (en) * 2000-02-03 2001-08-10 Denso Corp Semiconductor device
JP2001352066A (en) * 2000-04-06 2001-12-21 Denso Corp Insulated-gate power ic
JP2002050760A (en) * 2000-08-03 2002-02-15 Sanyo Electric Co Ltd Insulating gate field effect transistor
JP2004031859A (en) * 2002-06-28 2004-01-29 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2004221269A (en) * 2003-01-14 2004-08-05 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005150426A (en) * 2003-11-17 2005-06-09 Fuji Electric Device Technology Co Ltd Manufacturing method and testing method of semiconductor device
JP2005338540A (en) * 2004-05-28 2005-12-08 Toshiba Matsushita Display Technology Co Ltd Inspection substrate for active matrix type liquid crystal display
JP2006310607A (en) * 2005-04-28 2006-11-09 Denso Corp Evaluation method to evaluate position relation of pn junction face of semiconductor with bottom portion of trench

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214968A (en) * 1997-01-31 1998-08-11 Hitachi Ltd Semiconductor device
JPH11330469A (en) * 1998-05-21 1999-11-30 Nec Kansai Ltd Insulated gate type of semiconductor
JP2001168329A (en) * 1999-12-13 2001-06-22 Fuji Electric Co Ltd Trench mos semiconductor device
JP2001217419A (en) * 2000-02-03 2001-08-10 Denso Corp Semiconductor device
JP2001352066A (en) * 2000-04-06 2001-12-21 Denso Corp Insulated-gate power ic
JP2002050760A (en) * 2000-08-03 2002-02-15 Sanyo Electric Co Ltd Insulating gate field effect transistor
JP2004031859A (en) * 2002-06-28 2004-01-29 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing the same
JP2004221269A (en) * 2003-01-14 2004-08-05 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2005150426A (en) * 2003-11-17 2005-06-09 Fuji Electric Device Technology Co Ltd Manufacturing method and testing method of semiconductor device
JP2005338540A (en) * 2004-05-28 2005-12-08 Toshiba Matsushita Display Technology Co Ltd Inspection substrate for active matrix type liquid crystal display
JP2006310607A (en) * 2005-04-28 2006-11-09 Denso Corp Evaluation method to evaluate position relation of pn junction face of semiconductor with bottom portion of trench

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183143A (en) * 2012-03-05 2013-09-12 Toyota Motor Corp Method for manufacturing semiconductor device, and semiconductor device
JP2015115452A (en) * 2013-12-11 2015-06-22 三菱電機株式会社 Semiconductor device
US9741838B2 (en) 2016-01-27 2017-08-22 Kabushiki Kaisha Toshiba Semiconductor device
CN111584632A (en) * 2019-02-19 2020-08-25 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
JP2020136461A (en) * 2019-02-19 2020-08-31 株式会社東芝 Semiconductor device
JP7193371B2 (en) 2019-02-19 2022-12-20 株式会社東芝 semiconductor equipment
CN111584632B (en) * 2019-02-19 2023-11-10 株式会社东芝 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2020145288A (en) * 2019-03-05 2020-09-10 富士電機株式会社 Insulated gate type semiconductor device and manufacturing method of the same
JP7351086B2 (en) 2019-03-05 2023-09-27 富士電機株式会社 Insulated gate semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP5470726B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US10121866B2 (en) Semiconductor device
CN105023845B (en) Manufacture method, evaluation method and the semiconductor device of semiconductor device
US9847409B2 (en) Semiconductor device and manufacturing method for the same
US10403554B2 (en) Method for manufacturing semiconductor device
KR101470530B1 (en) A semiconductor wafer and a semiconductor devices including merged guard ring patterns and a process monitoring pattern
US9870965B2 (en) Semiconductor device
JP6056202B2 (en) Semiconductor device, semiconductor device control method, and semiconductor device evaluation method
CN102208367B (en) Semiconductor device manufacturing method
JP2010050211A (en) Method of manufacturing semiconductor device
JP5470726B2 (en) Manufacturing method of MOS type semiconductor device having trench gate structure
JP2013183143A (en) Method for manufacturing semiconductor device, and semiconductor device
US20160172301A1 (en) Semiconductor device and manufacturing method therefor
JP5957171B2 (en) Semiconductor device and manufacturing method thereof
US9698103B2 (en) Semiconductor device and manufacturing method therefor
JP4449428B2 (en) Semiconductor device manufacturing method and semiconductor device testing method
JP2017050331A (en) Semiconductor device and manufacturing method of the same
JP6894544B2 (en) Manufacturing method of semiconductor devices
KR20150067509A (en) A semiconductor power device and method for manufacturing the same
CN102456741B (en) Semiconductor device
JP7304827B2 (en) Semiconductor device and crack detection method
WO2022054327A1 (en) Semiconductor device
JP6681948B2 (en) Method for manufacturing semiconductor device and method for evaluating semiconductor device
JP2015167207A (en) semiconductor device
KR102038626B1 (en) Power device chip and method of manufacturing the same
JP2021072360A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5470726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250