JPH11330469A - Insulated gate type of semiconductor - Google Patents

Insulated gate type of semiconductor

Info

Publication number
JPH11330469A
JPH11330469A JP10139390A JP13939098A JPH11330469A JP H11330469 A JPH11330469 A JP H11330469A JP 10139390 A JP10139390 A JP 10139390A JP 13939098 A JP13939098 A JP 13939098A JP H11330469 A JPH11330469 A JP H11330469A
Authority
JP
Japan
Prior art keywords
island
semiconductor
layer
semiconductor layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10139390A
Other languages
Japanese (ja)
Inventor
Yasuto Ninomiya
康人 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Original Assignee
Renesas Semiconductor Manufacturing Co Ltd
Kansai Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Semiconductor Manufacturing Co Ltd, Kansai Nippon Electric Co Ltd filed Critical Renesas Semiconductor Manufacturing Co Ltd
Priority to JP10139390A priority Critical patent/JPH11330469A/en
Publication of JPH11330469A publication Critical patent/JPH11330469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To uniformly embed gate electrode without increasing on-resistance. SOLUTION: Chain-shaped active regions 10 are made by coupling insular active regions 1 adjacent in one direction, in the oblique direction of the insular active regions arranged in matrix form one row by one row through narrow coupling parts 2, and the grooves 23 made between these chain-shaped active regions 10 are made roughly parallel striped patterns along the shape of the chained active regions 10. The island active region 1 exposes its n<+> -type source region 27 in annular form on the surface, and exposes its p-type base region 26 at this center. The contour 3 is a region, where the source electrode is brought to ohmic contact with the source region 27 and the base region 26 at the surface of the semiconductor body. The coupling part 2 exposes the n<+> -type semiconductor region 27' as being the same layer as the source region 27 over the entire surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゲート電極を溝の
内部に形成した縦型のMOSFETやIGBT(Ins
ulated Gate Bipolar Transi
stor)等の絶縁ゲート型半導体装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a vertical MOSFET or IGBT (Ins) having a gate electrode formed inside a groove.
ullated Gate Bipolar Transi
Stor) or the like.

【0002】[0002]

【従来の技術】この種の絶縁ゲート型半導体装置の代表
例としての電力用のMOSFETでは、トランジスタ機
能を有する多数のユニットセルが並列接続された構造が
一般的である。このMOSFETはチャネルが半導体本
体の溝方向に形成されており、チャネルが半導体本体の
面方向に形成されるゲートプレーナ型のMOSFETに
比較してユニットセルの高集積化が可能であり、単位面
積あたりのチャネル幅を大きくとれ、素子の低オン抵抗
化に非常に有効であることが知られている。このMOS
FETのゲート電極はゲート酸化膜を介して溝の内部に
埋め込まれ、半導体本体表面には表面層に形成されたベ
ース領域及びその表面層にベース領域を一部残して形成
したソース領域にソース電極がオーム接触で接続される
が、このソース電極は、ゲート電極と電気的に絶縁分離
するためにゲート電極を被覆した層間絶縁膜上にも連続
形成される。そしてこのソース電極の一部を外部への電
気的接続のためのソースパッドとしている。また、ゲー
ト電極は溝の終端でチップ上に所定パターンで形成した
ゲート配線を介して外部へ電気的接続するためのゲート
パッドに接続されているのが一般的である。このMOS
FETの溝の平面パターンとしては、格子状パターンと
ストライプ状パターンとがあるが、前者は、単位面積あ
たりのチャネル幅を大きくとれる点で有利である。
2. Description of the Related Art A power MOSFET as a typical example of this type of insulated gate semiconductor device generally has a structure in which a number of unit cells having a transistor function are connected in parallel. In this MOSFET, the channel is formed in the groove direction of the semiconductor body, and the unit cell can be highly integrated compared to a gate planar type MOSFET in which the channel is formed in the surface direction of the semiconductor body. It is known that a large channel width can be obtained, which is very effective in reducing the on-resistance of the device. This MOS
The gate electrode of the FET is buried in the trench through a gate oxide film, and the source electrode is formed on the surface of the semiconductor body on the base region formed on the surface layer and on the source region formed on the surface layer by leaving a part of the base region. Are connected in ohmic contact, but this source electrode is also formed continuously on the interlayer insulating film covering the gate electrode in order to electrically insulate and separate from the gate electrode. A part of the source electrode is used as a source pad for external electrical connection. The gate electrode is generally connected to a gate pad for electrical connection to the outside via a gate wiring formed in a predetermined pattern on the chip at the end of the groove. This MOS
The planar pattern of the trench of the FET includes a lattice pattern and a stripe pattern. The former is advantageous in that the channel width per unit area can be increased.

【0003】[0003]

【発明が解決しようとする課題】ところで、格子状パタ
ーンの場合、正方格子であれば水平方向及び垂直方向で
の隣接するユニットセル間の溝幅に対して溝が十字型に
交差する部分での斜め方向での隣接するユニットセル間
の溝幅は約1.4倍となる。このため、溝が交差する部分
ではゲート電極や層間絶縁膜の埋め込みが不十分となり
やすく、その上に形成されたソースパッドに金属線とし
て例えば金線をボンディングすると、そのときソースパ
ッド下に均一に圧力が加わらず、部分的にストレスが集
中し、ソースパッド下のゲート酸化膜や半導体本体等に
クラックが発生する虞があり、製造工程での電気的特性
良品率や製品での信頼性を高くする上で問題となる可能
性があった。また、溝のパターンが格子状パターンの場
合、多数のユニットセルが格子状パターンの溝で独立し
ているため、1個のユニットセルでもソース電極とベー
ス領域とのオーム接触が不十分であるとそのユニットセ
ルは耐圧低下及びその結果として耐圧破壊を起こしチッ
プ全体として電気的特性不良になるという問題があっ
た。さらに、溝のパターンが格子状パターンの場合、溝
の内壁に角部を有し、この角部にチャネルを形成する
と、その角部におけるゲート酸化膜の膜厚や膜質が直線
部分に対しばらつき、電気的特性に影響するという問題
があった。本発明は、上述の問題点に着目してなされた
ものであり、その目的は、製品の低オン抵抗を確保した
上で、製造工程での電気的特性不良率が低く製品の信頼
性が高い絶縁ゲート型半導体装置を提供することにあ
る。
By the way, in the case of a lattice pattern, a square lattice means that the groove crosses the groove width between adjacent unit cells in the horizontal and vertical directions in a cross-shaped manner. The groove width between adjacent unit cells in the oblique direction is about 1.4 times. For this reason, at the intersection of the grooves, the gate electrode and the interlayer insulating film are likely to be insufficiently buried, and when a metal wire, for example, a gold wire is bonded to the source pad formed thereon, the uniformity is obtained under the source pad at that time. Pressure is not applied, stress is partially concentrated, and cracks may occur in the gate oxide film under the source pad, the semiconductor body, etc., and the ratio of non-defective electrical characteristics in the manufacturing process and the reliability of the product are increased. Could be a problem in doing so. Further, when the groove pattern is a lattice pattern, a large number of unit cells are independent of each other in the lattice pattern, so that even one unit cell has insufficient ohmic contact between the source electrode and the base region. The unit cell has a problem that the withstand voltage is reduced and as a result, the withstand voltage is destroyed, and the electrical characteristics of the entire chip become poor. Further, when the groove pattern is a lattice pattern, the groove has a corner at the inner wall, and when a channel is formed at this corner, the thickness and film quality of the gate oxide film at the corner vary with respect to the linear portion, There is a problem that it affects the electrical characteristics. The present invention has been made in view of the above-described problems, and its object is to secure a low on-resistance of a product and to reduce the defect rate of electrical characteristics in a manufacturing process and to increase the reliability of the product. An insulated gate semiconductor device is provided.

【0004】[0004]

【課題を解決するための手段】本発明に係る絶縁ゲート
型半導体装置は、一導電型の第1半導体層及びこの第1
半導体層上にマトリックス状に配列した島状能動領域を
有し島状能動領域間に第1半導体層までの溝を形成した
半導体本体と、溝にゲート酸化膜を介して形成したゲー
ト電極とを具備した絶縁ゲート型半導体装置において、
島状能動領域の斜め方向に1方向で隣接する島状能動領
域間を第1半導体層上に形成した幅狭な連結部により1
列ずつ連結して鎖状能動領域を構成し、溝の平面パター
ンを鎖状能動領域間で鎖状能動領域の平面パターンに沿
った平行又は略平行のストライプ状パターンとしたこと
を特徴とする。本発明に係る上記の絶縁ゲート型半導体
装置において、島状能動領域は他導電型の第2半導体層
とこの表面層に形成した一導電型の第3半導体層とを含
み、連結部は第2半導体層と同層である他導電型の第4
半導体層とこの表面層に形成し第3半導体層と同層であ
る一導電型の第5半導体層とを含むことを特徴とする。
本発明に係る上記の絶縁ゲート型半導体装置において、
島状能動領域の平面パターンが正方形の角を傾斜辺に切
り掻いた8角形で、連結部の平面パターンが斜め方向に
1方向で隣接する島状能動領域の対向する傾斜辺を対辺
とする四辺形で、傾斜辺を溝の幅が略一定となる寸法に
するとよい。また、島状能動領域の平面パターンが正方
形の角をその角を成す2辺に所定半径で内接する円弧で
切り掻いた形状で、連結部の平面パターンが前記島状能
動領域の斜め方向に1方向で隣接する島状能動領域の対
向する2個の円弧とこれらの円弧の端で外接する円弧と
で囲まれた形状としてもよい。このとき、所定半径を正
方形の一辺の半分の寸法とすることにより島状能動領域
の平面パターンを円形とすることができる。本発明に係
る上記の絶縁ゲート型半導体装置において、半導体本体
が半導体基板上に形成されたエピタキシャル層である
か、又は半導体基板のみであってもよい。本発明に係る
上記の絶縁ゲート型半導体装置において、半導体本体が
半導体基板上に形成されたエピタキシャル層で、半導体
基板が高濃度一導電型の場合、この絶縁ゲート型半導体
装置は具体的にはMOSFETであり、半導体基板が高
濃度他導電型の場合、この絶縁ゲート型半導体装置は具
体的にはIGBTである。
According to the present invention, there is provided an insulated gate semiconductor device comprising: a first semiconductor layer of one conductivity type;
A semiconductor body having island-like active regions arranged in a matrix on a semiconductor layer and having a groove extending to the first semiconductor layer between the island-like active regions, and a gate electrode formed in the groove with a gate oxide film interposed therebetween. In the insulated gate type semiconductor device provided,
A narrow connecting portion formed on the first semiconductor layer connects between the island-shaped active regions obliquely adjacent to the island-shaped active region in one direction.
It is characterized in that a chain-like active area is formed by connecting the rows, and the plane pattern of the groove is a parallel or substantially parallel stripe pattern along the plane pattern of the chain-like active area between the chain-like active areas. In the above-described insulated gate semiconductor device according to the present invention, the island-shaped active region includes a second semiconductor layer of another conductivity type and a third semiconductor layer of one conductivity type formed on this surface layer, and the connecting portion is formed of the second semiconductor layer. The fourth of the other conductivity type which is the same layer as the semiconductor layer
It is characterized by including a semiconductor layer and a fifth semiconductor layer of one conductivity type which is formed on the surface layer and is the same layer as the third semiconductor layer.
In the above insulated gate semiconductor device according to the present invention,
The planar pattern of the island-shaped active area is an octagon in which the corners of a square are cut into inclined sides, and the planar pattern of the connecting portion is a diagonally opposite side of the opposite inclined side of the island-shaped active area adjacent in one direction in one direction. In the shape, the inclined side may have a dimension such that the width of the groove is substantially constant. Further, the planar pattern of the island-shaped active region has a shape obtained by cutting a corner of a square with an arc inscribed at two sides forming the corner with a predetermined radius, and the plane pattern of the connecting portion is formed in the oblique direction of the island-shaped active region by one. A shape surrounded by two arcs facing each other in the island-like active region adjacent in the direction and arcs circumscribing the ends of these arcs may be used. At this time, the plane pattern of the island-shaped active region can be made circular by setting the predetermined radius to half the size of one side of the square. In the above insulated gate semiconductor device according to the present invention, the semiconductor body may be an epitaxial layer formed on the semiconductor substrate, or may be only the semiconductor substrate. In the above-described insulated gate semiconductor device according to the present invention, when the semiconductor body is an epitaxial layer formed on a semiconductor substrate and the semiconductor substrate is of a high-concentration one conductivity type, the insulated gate semiconductor device is specifically a MOSFET. When the semiconductor substrate is of a high-concentration other conductivity type, this insulated gate semiconductor device is specifically an IGBT.

【0005】[0005]

【発明の実施の形態】本実施の形態の最大の特徴は、ユ
ニットセルを構成する島状能動領域が格子状パターンの
溝で独立してマトリックス状に配置されている従来例と
異なり、一導電型の第1半導体層上にマトリックス状に
配置した島状能動領域の斜め方向に1方向で隣接する島
状能動領域同士を1列ずつ連結部で連結して鎖状能動領
域を形成し、これらの鎖状能動領域間に形成された溝の
平面パターンを鎖状能動領域の平面パターンに沿った平
行又は略平行のストライプ状パターンとしたことであ
る。ここで、島状能動領域は他導電型の第2半導体層と
この表面層に形成した一導電型の第3半導体層とを含
み、連結部は第2半導体層と同層である他導電型の第4
半導体層とこの表面層に形成し第3半導体層と同層であ
る一導電型の第5半導体層とを含む。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The most significant feature of this embodiment is that, unlike the conventional example in which the island-shaped active regions constituting the unit cell are independently arranged in a matrix by grooves of a grid-like pattern, one conductive layer is formed. The island-shaped active regions arranged in a matrix on the first semiconductor layer of the mold are connected one by one at a connecting portion to the island-shaped active regions adjacent to each other in one direction in a diagonal direction to form a chain-shaped active region. Is that the plane pattern of the grooves formed between the chain-like active areas is a parallel or substantially parallel stripe pattern along the plane pattern of the chain-like active area. Here, the island-shaped active region includes a second semiconductor layer of another conductivity type and a third semiconductor layer of one conductivity type formed on this surface layer, and the connecting portion is another conductivity type of the same layer as the second semiconductor layer. 4th of
The semiconductor device includes a semiconductor layer and a fifth semiconductor layer of one conductivity type formed on the surface layer and the same layer as the third semiconductor layer.

【0006】本構成とすることにより、島状能動領域が
格子状パターンの溝で独立してマトリックス状に配置さ
れている従来例と同等のチャネル幅を確保したままで、
溝幅を一定又は略一定とすることができ、溝へのゲート
電極や層間絶縁膜の埋め込みが均一に行え、電極パッド
へのボンディング時の電極パッド下のゲート酸化膜や半
導体本体等にクラックが発生する虞が減少する。また、
1個のユニットセルで第1及び第2半導体層との接続電
極と第2半導体層とのオーム接触が万が一、不十分であ
っても、このユニットセルを構成する島状能動領域の第
2半導体層が同じ鎖状能動領域内で連結部の同層の第4
半導体層により別のユニットセルを構成する島状能動領
域の第2半導体層と連結しておりその第2半導体層とで
オーム接触が取れれば、耐圧低下及びその結果として耐
圧破壊は起こらずチップ全体として特性良品となる。さ
らに、溝の内壁面に直角の角部が無くなり、チャネルが
形成される部分におけるゲート酸化膜の膜厚や膜質のば
らつきが小さくなる。その結果、製品の低オン抵抗を確
保した上で、製造工程での電気的特性不良率が低く製品
の信頼性が高い絶縁ゲート型半導体装置が得られる。
[0006] With this configuration, the channel width equivalent to that of the conventional example in which the island-shaped active regions are independently arranged in the form of a matrix by the grooves of the lattice-shaped pattern is secured,
The groove width can be made constant or almost constant, the gate electrode and interlayer insulating film can be buried uniformly in the groove, and cracks occur in the gate oxide film and semiconductor body under the electrode pad when bonding to the electrode pad. The risk of occurrence is reduced. Also,
Even if the ohmic contact between the connection electrode with the first and second semiconductor layers and the second semiconductor layer in one unit cell is insufficient, the second semiconductor in the island-shaped active region constituting this unit cell The fourth layer of the same layer of the connection part is in the same chain active area.
The semiconductor layer is connected to the second semiconductor layer of the island-shaped active region constituting another unit cell, and if ohmic contact is established with the second semiconductor layer, the breakdown voltage does not decrease and as a result, the breakdown voltage does not occur and the entire chip does not occur. The product has excellent characteristics. Further, there is no right-angled corner on the inner wall surface of the groove, and the thickness and quality of the gate oxide film in the portion where the channel is formed are reduced. As a result, it is possible to obtain an insulated gate semiconductor device having a low rate of defective electrical characteristics in a manufacturing process and a high product reliability while ensuring a low on-resistance of the product.

【0007】以下に、本発明を用いた絶縁ゲート型半導
体装置の第1実施例としてのMOSFETを図1乃至図
3を参照して説明する。先ず平面構造を説明すると、図
1は半導体本体の表面(ソース電極、層間絶縁膜は図示
せず)が描かれており、1はマトリックス状に配列され
平面パターンが正方形の角を45度の傾斜辺a,bに切
り掻いて8角形とした島状能動領域で、この島状能動領
域1を斜め方向に1方向で隣接する島状能動領域1の対
向する傾斜辺bを対辺とする四辺形、本実施例では方形
の幅狭な連結部2により1列ずつ連結して鎖状能動領域
10を構成する。尚、傾斜辺は45度でなくてもよい。
これらの鎖状能動領域10間は溝23を構成しており、
島状能動領域1の傾斜辺a,bの寸法を所定値とするこ
とにより鎖状能動領域10の平面パターンに沿って溝幅
略一定で連続する略平行ストライプ状の平面パターンと
している。溝23にはゲート酸化膜(図示せず)を介し
てゲート電極29が埋め込まれている。島状能動領域1
は図1では図示されない低濃度一導電型の第1半導体層
であるn- 型ドレイン領域上に他導電型の第2半導体層
であるp型ベース領域26とこのベース領域26の表面
層に形成し高濃度一導電型の第3半導体層であるn+ 型
ソース領域27とを含み、この表面にベース領域26が
十字型に交差したパターンで露出するようにソース領域
27を略4等分し所定の一定幅で離隔したパターンで露
出している。3はソース電極が半導体本体表面でソース
領域27とベース領域26にオーム接触する領域の輪郭
を示している。連結部2は、図1では図示しないn- 型
ドレイン領域上にp型ベース領域26と同層であり図1
では図示しない他導電型の第4半導体層であるp型半導
体層と、ソース領域27と同層でありこのp型半導体層
の表面層に形成した高濃度一導電型の第5半導体層であ
るn+ 型半導体層27'とを含み、表面全面にn+ 型半
導体層27'を露出している。尚、島状能動領域1にお
いて、ドレイン領域及びソース領域の表面パターンはこ
の第1実施例に限定されることなく、他のパターンであ
ってもよい。このとき第4半導体層をチャネルとして機
能させるにはソース領域と第5半導体層が層として繋が
っていることが望ましい。
Hereinafter, a MOSFET as a first embodiment of an insulated gate semiconductor device using the present invention will be described with reference to FIGS. First, a planar structure will be described. FIG. 1 shows the surface of a semiconductor body (a source electrode and an interlayer insulating film are not shown), 1 is arranged in a matrix, and a planar pattern is formed by inclining a square corner by 45 degrees. An octagonal island-shaped active region which is cut off on sides a and b, and a quadrilateral having the island-shaped active region 1 as a diagonal and the opposite inclined side b of the island-shaped active region 1 adjacent in one direction in an oblique direction. In the present embodiment, the chain-shaped active regions 10 are connected one by one by the rectangular narrow connecting portion 2. Note that the inclined side need not be 45 degrees.
A groove 23 is formed between these chain-like active regions 10,
By setting the dimensions of the inclined sides a and b of the island-shaped active region 1 to predetermined values, a substantially parallel stripe-shaped plane pattern is formed along the plane pattern of the chain-shaped active region 10 and has a substantially constant groove width. A gate electrode 29 is buried in the groove 23 via a gate oxide film (not shown). Island active area 1
Is formed on a p-type base region 26, which is a second semiconductor layer of another conductivity type, on an n @-type drain region, which is a first semiconductor layer of low concentration one conductivity type, not shown in FIG. 1, and a surface layer of this base region 26. And an n @ + -type source region 27, which is a third semiconductor layer of high-concentration one conductivity type. The source region 27 is divided into approximately four parts so that the base region 26 is exposed in a cross-shaped pattern. It is exposed in a pattern separated by a predetermined constant width. Reference numeral 3 denotes a contour of a region where the source electrode makes ohmic contact with the source region 27 and the base region 26 on the surface of the semiconductor body. The connecting portion 2 is the same layer as the p-type base region 26 on the n − -type drain region not shown in FIG.
Here, a p-type semiconductor layer, which is a fourth semiconductor layer of another conductivity type (not shown), and a fifth semiconductor layer of high concentration one conductivity type, which is the same layer as the source region 27 and is formed on the surface layer of this p-type semiconductor layer. and an n + type semiconductor layer 27 'is exposed on the entire surface. In the island-shaped active region 1, the surface pattern of the drain region and the source region is not limited to the first embodiment, but may be another pattern. At this time, in order for the fourth semiconductor layer to function as a channel, it is desirable that the source region and the fifth semiconductor layer are connected as a layer.

【0008】次に断面構造を説明する。 (1)図1のA−A断面を図2を参照して説明する。2
1は半導体本体で、n+型半導体基板22と、この半導
体基板22上に設け表面に溝23が形成されたエピタキ
シャル層24とを有している。エピタキシャル層24は
エピタキシャル層24の初期層で低濃度一導電型の第1
半導体層であるn- 型ドレイン領域25と、このドレイ
ン領域25上に達する溝23の両側のドレイン領域25
上に設けた島状能動領域1とを有し、島状能動領域1は
ドレイン領域25上に設けたp型ベース領域26と、こ
のベース領域26の表面層に設けたn+ 型ソース領域2
7とを含んでいる。溝23内面にはゲート酸化膜28を
設け、このゲート酸化膜28を介して溝23内にはポリ
シリコンのゲート電極29を埋設している。エピタキシ
ャル層24上にはゲート電極29を被覆するように層間
絶縁膜30を設け、更にその上にソース領域27及びベ
ース領域26表面と図1で示す3の輪郭内でオーミック
接触により電気的接続するソース電極31を設けてい
る。半導体基板22の裏面にはドレイン電極32が設け
られている。
Next, a sectional structure will be described. (1) The AA cross section of FIG. 1 will be described with reference to FIG. 2
Reference numeral 1 denotes a semiconductor body having an n + type semiconductor substrate 22 and an epitaxial layer 24 provided on the semiconductor substrate 22 and having a groove 23 formed on the surface. The epitaxial layer 24 is an initial layer of the epitaxial layer 24 and is a low-concentration one conductivity type first layer.
An n − -type drain region 25 which is a semiconductor layer, and drain regions 25 on both sides of the groove 23 reaching the drain region 25.
And a p-type base region 26 provided on the drain region 25 and an n @ + -type source region 2 provided on the surface layer of the base region 26.
7 is included. A gate oxide film 28 is provided on the inner surface of the groove 23, and a polysilicon gate electrode 29 is buried in the groove 23 via the gate oxide film 28. An interlayer insulating film 30 is provided on the epitaxial layer 24 so as to cover the gate electrode 29, and is further electrically connected to the surfaces of the source region 27 and the base region 26 by ohmic contact within the outline of 3 shown in FIG. A source electrode 31 is provided. On the back surface of the semiconductor substrate 22, a drain electrode 32 is provided.

【0009】(2)図1のB−B断面を図3を参照して
説明する。図2と同一部分には同一符号を付して説明を
省略する。溝23と溝23間にはドレイン領域25上に
連結部2が設けられている。この連結部2はベース領域
26と同層で連続して形成した第4半導体層であるp型
半導体層26'と、この表面層全面にソース領域27と
同層で形成したn+ 型半導体層27'とを含んでいる。
連結部2表面はゲート電極29を被覆する層間絶縁膜3
0により被覆されている。
(2) A section taken along line BB of FIG. 1 will be described with reference to FIG. The same parts as those in FIG. The connection part 2 is provided on the drain region 25 between the grooves 23. The connecting portion 2 includes a p-type semiconductor layer 26 ′ which is a fourth semiconductor layer continuously formed in the same layer as the base region 26, and an n + type semiconductor layer formed in the same layer as the source region 27 over the entire surface layer. 27 '.
The surface of the connecting portion 2 has an interlayer insulating film 3 covering the gate electrode 29.
0.

【0010】上記構成によれば、島状能動領域が格子状
パターンの溝で独立してマトリックス状に配置されてい
る従来例と同等のチャネル幅を確保したままで、溝幅を
略一定とすることができ、溝23へのゲート電極29や
層間絶縁膜30の埋め込みが均一に行え、ソースパッド
へのボンディング時のソースパッド下のゲート酸化膜2
8や半導体本体21等にクラックが発生する虞が減少す
る。また、1個のユニットセルでソース電極31とベー
ス領域26とのオーム接触が万が一、不十分であっても
このユニットセルを構成する島状能動領域1のベース領
域26が同じ鎖状能動領域内10で連結部2の同層のp
型半導体層26'により別のユニットセルを構成する島
状能動領域1のベース領域26と連結しておりそのベー
ス領域26とでオーム接触が取れれば、耐圧低下及びそ
の結果として耐圧破壊は起こらずチップ全体として特性
良品となる。さらに、溝23の内壁面に直角の角部が無
くなり、チャネルが形成される部分におけるゲート酸化
膜28の膜厚や膜質のばらつきが小さくなる。その結
果、製品の低オン抵抗を確保した上で、製造工程での電
気的特性不良率が低く製品の信頼性が高いMOSFET
が得られる。
According to the above configuration, the groove width is made substantially constant while the channel width equivalent to that of the conventional example in which the island-shaped active regions are independently arranged in the form of a matrix in the form of a lattice pattern is secured. The gate electrode 29 and the interlayer insulating film 30 can be uniformly buried in the groove 23, and the gate oxide film 2 under the source pad at the time of bonding to the source pad can be formed.
8 and the possibility that cracks occur in the semiconductor body 21 and the like are reduced. Even if the ohmic contact between the source electrode 31 and the base region 26 is insufficient in one unit cell, the base region 26 of the island-like active region 1 constituting this unit cell is in the same chain-like active region. At 10, p of the same layer of the connecting portion 2
The semiconductor region 26 'is connected to the base region 26 of the island-shaped active region 1 constituting another unit cell. If ohmic contact is established with the base region 26, the breakdown voltage does not decrease and as a result, the breakdown voltage does not occur. The chip as a whole has excellent characteristics. In addition, there is no right-angled corner on the inner wall surface of the groove 23, and the thickness and quality of the gate oxide film 28 at the portion where the channel is formed are reduced. As a result, while ensuring a low on-resistance of the product, a MOSFET with a low electrical characteristic failure rate in the manufacturing process and a high product reliability
Is obtained.

【0011】次に、本発明を用いた絶縁ゲート型半導体
装置の第2実施例としてのMOSFETを図4を参照し
て説明する。尚、断面構造は第1実施例と同様であるた
め平面構造のみを説明する。図4は半導体本体の表面
(ソース電極、層間絶縁膜は図示せず)が描かれてお
り、41はマトリックス状に配列され平面パターンが正
方形の角をその角を成す2辺に所定半径で内接する円弧
a,bで切り掻いた形状の島状能動領域で、この島状能
動領域41を斜め方向に1方向で隣接する島状能動領域
41の対向する2個の円弧bとこれらの円弧bの端で外
接する円弧cとで囲まれた形状の幅狭な連結部42によ
り1列ずつ連結して鎖状能動領域50を構成する。これ
らの鎖状能動領域50間は鎖状能動領域50の形状に沿
った溝63を構成しており、島状能動領域41と連結部
42間の曲線状溝の幅は同心の円弧a,cの半径差、す
なわち島状能動領域41間の直線状溝の幅に等しく溝幅
一定で連続する平行ストライプ状の平面パターンとして
いる。溝63にはゲート酸化膜(図示せず)を介してゲ
ート電極69が埋め込まれている。島状能動領域41は
図4では図示されない低濃度一導電型の第1半導体層で
あるn- 型ドレイン領域上に他導電型の第2半導体層で
あるp型ベース領域66とこのベース領域66の表面層
に形成した高濃度一導電型の第3半導体層であるn+ 型
ソース領域67とを含み、この表面にベース領域66が
十字型に交差したパターンで露出するようにソース領域
67を略4等分し所定の一定幅で離隔したパターンで露
出している。43はソース電極が半導体本体表面でソー
ス領域67とベース領域66にオーム接触する領域の輪
郭を示している。連結部2は、図4では図示しないn-
型ドレイン領域上にp型ベース領域66と同層であり図
4では図示しない他導電型の第4半導体層であるp型半
導体層と、ソース領域67と同層でありこのp型半導体
層の表面層に形成した高濃度一導電型の第5半導体層で
あるn+ 型半導体層67'とを含み、表面全面にn+ 型
半導体層67'を露出している。尚、島状能動領域41
において、ドレイン領域及びソース領域の表面パターン
はこの第2実施例に限定されることなく、他のパターン
であってもよい。このとき第4半導体層をチャネルとし
て機能させるにはソース領域と第5半導体層が層として
繋がっていることが望ましい。
Next, a MOSFET as a second embodiment of the insulated gate semiconductor device using the present invention will be described with reference to FIG. Since the sectional structure is the same as that of the first embodiment, only the planar structure will be described. FIG. 4 shows the surface of the semiconductor body (a source electrode and an interlayer insulating film are not shown). Reference numeral 41 denotes a matrix which is arranged in a matrix and whose plane pattern has a square corner with two corners forming the corner at a predetermined radius. This is an island-shaped active area having a shape cut off by arcs a and b in contact with each other. The island-shaped active area 41 is formed by two opposite arcs b of the island-shaped active area 41 adjacent in one direction in an oblique direction and these arcs b Are connected one by one by a narrow connecting portion 42 having a shape surrounded by a circular arc c circumscribing at the end of the active region 50. A groove 63 is formed between the chain-like active regions 50 along the shape of the chain-like active region 50, and the width of the curved groove between the island-like active region 41 and the connecting portion 42 is concentric arcs a and c. , That is, the width of the linear groove between the island-shaped active regions 41 is equal to the width of the linear groove, and the groove width is constant and a continuous parallel stripe-shaped plane pattern is formed. A gate electrode 69 is buried in the groove 63 via a gate oxide film (not shown). The island-shaped active region 41 has a p-type base region 66 as a second semiconductor layer of another conductivity type and an n-type drain region as a first semiconductor layer of low concentration one conductivity type, not shown in FIG. And an n @ + -type source region 67, which is a high-concentration one-conductivity type third semiconductor layer formed on the surface layer of the semiconductor device. The source region 67 is formed on this surface so that the base region 66 is exposed in a cross-shaped pattern. It is divided into approximately four equal parts and is exposed in a pattern separated by a predetermined constant width. Reference numeral 43 denotes an outline of a region where the source electrode makes ohmic contact with the source region 67 and the base region 66 on the surface of the semiconductor body. The connecting portion 2 is not shown in FIG.
The p-type semiconductor layer, which is the same layer as the p-type base region 66 and is not shown in FIG. 4, is a fourth semiconductor layer of another conductivity type, and the same layer as the source region 67 on the type drain region. An n + -type semiconductor layer 67 ′ is exposed on the entire surface, including an n + -type semiconductor layer 67 ′ which is a high-concentration one conductivity type fifth semiconductor layer formed on the surface layer. Incidentally, the island-shaped active area 41
In the above, the surface patterns of the drain region and the source region are not limited to the second embodiment, but may be other patterns. At this time, in order for the fourth semiconductor layer to function as a channel, it is desirable that the source region and the fifth semiconductor layer are connected as a layer.

【0012】上記構成によれば、島状能動領域が格子状
パターンの溝で独立してマトリックス状に配置されてい
る従来例と同等のチャネル幅を確保したままで、溝幅を
一定とすることができ、溝63へのゲート電極69や層
間絶縁膜の埋め込みが均一に行え、ソースパッドへのボ
ンディング時のソースパッド下のゲート酸化膜や半導体
本体等にクラックが発生する虞が減少し、電気特性良品
率及び信頼性の高いMOSFETが得られる。また、1
個の島状能動領域41でソース電極とベース領域66と
のオーム接触が万が一不十分であっても、このユニット
セルを構成する島状能動領域41のベース領域66が同
じ鎖状能動領域内50で連結部42の同層のp型半導体
層により別のユニットセルを構成する島状能動領域41
のベース領域66と連結しておりそのベース領域66と
でオーム接触が取れれば、耐圧低下及びその結果として
耐圧破壊は起こらずチップ全体として特性良品となる。
また、溝63の平面パターンは直線及び円弧状で格子状
パターンのように角部を有していないので、チャネルが
形成される部分におけるゲート酸化膜の膜厚や膜質のば
らつきの問題が生じず、電気的特性良品率及び信頼性の
高いMOSFETが得られる。
According to the above configuration, the groove width is made constant while the channel width equivalent to that of the conventional example in which the island-shaped active regions are independently arranged in the form of a matrix in the form of a lattice pattern is secured. The gate electrode 69 and the interlayer insulating film can be uniformly buried in the groove 63, and the risk of cracks occurring in the gate oxide film and the semiconductor body under the source pad during bonding to the source pad is reduced, and A MOSFET with a high characteristic non-defective rate and high reliability can be obtained. Also, 1
Even if the ohmic contact between the source electrode and the base region 66 is insufficient in each of the island-shaped active regions 41, the base region 66 of the island-shaped active regions 41 constituting this unit cell must be within the same chain-shaped active region 50. The island-shaped active region 41 which forms another unit cell by the same p-type semiconductor layer of the connecting portion 42
If ohmic contact is made with the base region 66, the withstand voltage does not decrease and as a result, breakdown does not occur, and the chip as a whole has excellent characteristics.
In addition, since the planar pattern of the groove 63 is straight and circular and does not have corners like a lattice pattern, there is no problem of variation in the film thickness or film quality of the gate oxide film in the portion where the channel is formed. As a result, a MOSFET having a high non-defective product ratio and high electrical characteristics can be obtained.

【0013】次に、本発明を用いた絶縁ゲート型半導体
装置の第3実施例としてのMOSFETを図5を参照し
て説明する。尚、断面構造は第1実施例と同様であるた
め、平面構造のみを説明する。この実施例は第2実施例
において島状能動領域41の辺を無くして円弧のみとし
たもので、71はマトリックス状に配列され平面パター
ンが正方形の角をその辺の半分の半径で内接する円弧
(4分の1の円)a,bで切り掻いた形状、すなわち円
形の島状能動領域で、この島状能動領域71を斜め方向
に1方向で隣接する島状能動領域71の対向する2個の
円弧bとこれらの円弧bの端で外接する円弧(4分の1
の円)cとで囲まれた形状の幅狭な連結部72により1
列ずつ連結して鎖状能動領域80を構成する。これらの
鎖状能動領域80間は鎖状能動領域80の平面パターン
に沿った溝93を構成しており、島状能動領域71と連
結部72間の曲線状溝の幅は同心の円弧a,cの半径差
に等しく溝幅一定で連続する平行ストライプ状の平面パ
ターンとしている。溝93にはゲート酸化膜(図示せ
ず)を介してゲート電極99が埋め込まれている。島状
能動領域71は図5では図示されない低濃度一導電型の
第1半導体層であるn-型ドレイン領域上に他導電型の
第2半導体層であるp型ベース領域96とこのベース領
域96の表面層に形成した高濃度一導電型の第3半導体
層であるn+ 型ソース領域97とを含み、この表面にベ
ース領域96が十字型に交差したパターンで露出するよ
うにソース領域97を略4等分し所定の一定幅で離隔し
たパターンで露出している。73はソース電極が半導体
本体表面でソース領域97とベース領域96にオーム接
触する領域の輪郭を示している。連結部72は、図5で
は図示しないn- 型ドレイン領域上にp型ベース領域9
6と同層であり図5では図示しない他導電型の第4半導
体層であるp型半導体層と、ソース領域96と同層であ
りこのp型半導体層の表面層に形成した高濃度一導電型
の第5半導体層であるn+ 型半導体層97'とを含み、
表面全面にn+ 型半導体層97'を露出している。尚、
島状能動領域71において、ドレイン領域及びソース領
域の表面パターンはこの第3実施例に限定されることな
く、他のパターンであってもよい。このとき第4半導体
層をチャネルとして機能させるにはソース領域と第5半
導体層が層として繋がっていることが望ましい。
Next, a MOSFET as a third embodiment of the insulated gate semiconductor device according to the present invention will be described with reference to FIG. Since the sectional structure is the same as that of the first embodiment, only the planar structure will be described. This embodiment is different from the second embodiment in that the side of the island-shaped active region 41 is eliminated and only the arc is formed. The arc 71 is arranged in a matrix and the plane pattern inscribes the square corner with a half radius of the side. (Quarter circle) A shape cut off by a and b, that is, a circular island-shaped active region. Arcs b and arcs circumscribing at the ends of these arcs b (1/4
1) by a narrow connecting portion 72 having a shape surrounded by a circle c).
The chain-like active regions 80 are formed by connecting the columns. A groove 93 is formed between the chain-like active regions 80 along the plane pattern of the chain-like active region 80, and the width of the curved groove between the island-like active region 71 and the connecting part 72 is concentric arc a, It is a plane pattern of a continuous parallel stripe having a constant groove width equal to the radius difference of c. A gate electrode 99 is embedded in the groove 93 via a gate oxide film (not shown). The island-shaped active region 71 has a p-type base region 96 as a second semiconductor layer of another conductivity type and an n-type drain region as a first semiconductor layer of low concentration one conductivity type, not shown in FIG. And an n + -type source region 97 which is a high-concentration one-conductivity third semiconductor layer formed on the surface layer of the semiconductor device. The source region 97 is formed on this surface so that the base region 96 is exposed in a cross-shaped pattern. It is divided into approximately four equal parts and is exposed in a pattern separated by a predetermined constant width. Reference numeral 73 denotes an outline of a region where the source electrode makes ohmic contact with the source region 97 and the base region 96 on the surface of the semiconductor body. The connecting portion 72 has a p-type base region 9 on an n − -type drain region not shown in FIG.
6 and a p-type semiconductor layer which is a fourth semiconductor layer of another conductivity type (not shown in FIG. 5), and a high-concentration one conductive layer which is the same layer as the source region 96 and is formed on the surface layer of the p-type semiconductor layer. An n + type semiconductor layer 97 ′ that is a fifth semiconductor layer of
The n + type semiconductor layer 97 'is exposed on the entire surface. still,
In the island-shaped active region 71, the surface pattern of the drain region and the source region is not limited to the third embodiment, but may be another pattern. At this time, in order for the fourth semiconductor layer to function as a channel, it is desirable that the source region and the fifth semiconductor layer are connected as a layer.

【0014】上記構成によれば、島状能動領域が格子状
パターンの溝で独立してマトリックス状に配置されてい
る従来例と同等のチャネル幅を確保したままで、溝幅を
一定とすることができ、溝93へのゲート電極99や層
間絶縁膜の埋め込みが均一に行え、ソースパッドへのボ
ンディング時のソースパッド下のゲート酸化膜や半導体
本体等にクラックが発生する虞が減少し、電気特性良品
率及び信頼性の高いMOSFETが得られる。また、1
個の島状能動領域71でソース電極とベース領域96と
のオーム接触が万が一、不十分であっても、このユニッ
トセルを構成する島状能動領域71のベース領域96が
同じ鎖状能動領域内80で連結部72の同層のp型半導
体層により別のユニットセルを構成する島状能動領域7
1のベース領域96と連結しておりそのベース領域96
とでオーム接触が取れ、耐圧低下及びその結果として耐
圧破壊は起こらずチップ全体として特性良品となる。ま
た、溝93の平面パターンは円弧状で角部を有していな
いので、チャネルが形成される部分におけるゲート酸化
膜の膜厚や膜質のばらつきの問題が生じず、電気的特性
良品率及び信頼性の高いMOSFETが得られる。
According to the above structure, the groove width is made constant while the channel width equivalent to that of the conventional example in which the island-shaped active regions are independently arranged in the form of a matrix in the form of a lattice pattern is secured. The gate electrode 99 and the interlayer insulating film can be uniformly buried in the groove 93, and the risk of cracks occurring in the gate oxide film and the semiconductor body under the source pad during bonding to the source pad is reduced. A MOSFET with a high characteristic non-defective rate and high reliability can be obtained. Also, 1
Even if the ohmic contact between the source electrode and the base region 96 is insufficient in the island-shaped active regions 71, the base region 96 of the island-shaped active regions 71 constituting the unit cell is within the same chain-shaped active region. At 80, the island-shaped active region 7 constituting another unit cell by the same p-type semiconductor layer of the connecting portion 72 is formed.
1 base region 96 and the base region 96
And ohmic contact is obtained, and a reduction in withstand voltage and, as a result, no withstand voltage breakdown occur, and the chip as a whole has excellent characteristics. In addition, since the planar pattern of the groove 93 is arc-shaped and has no corners, there is no problem of variation in the film thickness or film quality of the gate oxide film in the portion where the channel is formed, and the electrical characteristic non-defective rate and reliability are improved. A MOSFET having high performance can be obtained.

【0015】次に上記第1実施例乃至第3実施例のMO
SFETの製造方法を説明するが平面パターンが異なる
以外は同様であるため、第1実施例のMOSFETの製
造方法の一例についてのみ図6(a)〜(d)を併用し
て説明する。尚、図6(a)〜(d)は図1のA−A断
面での工程変化を示す。先ず、第1工程はこの工程の完
了後の断面図を図6(a)に示すように、n+型半導体
基板22上にエピタキシャル層のn- 型初期層を形成
し、PRとドライエッチ法により選択的に初期層をエッ
チングし、表面に図1に示す平面パターンの溝23が複
数個(1個のみ図示)形成されたエピタキシャル層24
aを形成する。
Next, the MO of the first to third embodiments will be described.
The method of manufacturing the SFET will be described, except that the plane pattern is different. Therefore, only an example of the method of manufacturing the MOSFET of the first embodiment will be described with reference to FIGS. 6 (a) to 6 (d). 6 (a) to 6 (d) show process changes in the AA section of FIG. First, a first step is to form an n- type initial layer of an epitaxial layer on an n + type semiconductor substrate 22, as shown in the sectional view of FIG. Layer is selectively etched to form an epitaxial layer 24 having a plurality of grooves 23 (only one is shown) in the plane pattern shown in FIG.
a is formed.

【0016】次に、第2工程はこの工程の完了後の断面
図を図6(b)に示すように、溝23の内面及びエピタ
キシャル層24a表面に熱酸化法によりゲート酸化膜2
8を形成し、その上からCVD法によりポリシリコン膜
33を被覆し同時に溝23もポリシリコン膜34で埋め
込む。
Next, in the second step, as shown in FIG. 6 (b), a cross-sectional view after the completion of this step, the gate oxide film 2 is formed on the inner surface of the groove 23 and the surface of the epitaxial layer 24a by thermal oxidation.
8 is formed, and a polysilicon film 33 is coated thereon by the CVD method. At the same time, the trench 23 is filled with the polysilicon film 34.

【0017】次に、第3工程はこの工程の完了後の断面
図を図6(c)に示すように、ドライエッチ法によりポ
リシリコン膜33を溝23内のポリシリコン膜33がエ
ピタキシャル層24a表面に対し所定深さまで残るよう
にエッチバックして溝23内にゲート電極29を形成す
る。
Next, in a third step, as shown in FIG. 6 (c), a cross-sectional view after the completion of this step, the polysilicon film 33 in the trench 23 is replaced with the polysilicon layer 33a by the dry etching method. The gate electrode 29 is formed in the groove 23 by etching back to a predetermined depth with respect to the surface.

【0018】その後、第4工程はこの工程の完了後の断
面図を図6(d)に示すように、エピタキシャル層24
a表面に露出したゲート酸化膜28をウェットエッチ法
で除去し、その露出した表面に熱酸化法によりシリコン
酸化膜34を形成して後、ゲート電極29をマスクにし
てボロンをイオン注入及び熱拡散して溝23の両側に溝
23より浅くp型ベース領域26を形成する。尚、図示
しないが、このとき同時に図1のB−B断面での溝23
と溝23間のエピタキシャル層にベース領域26と同層
のp型半導体層26'が形成される。更にベース領域2
6にゲート電極29及びPRでのフォトレジスト膜でマ
スクして砒素をイオン注入しフォトレジストを除去後更
に熱拡散して図1に示すパターンのn+ 型ソース領域2
7を形成する。尚、図示しないが、このとき同時に図1
のB−B断面での溝23と溝23間のp型半導体層にソ
ース領域27と同層のn+ 型半導体層27'が形成され
る。この結果、図6(a)〜(d)のエピタキシャル層
24aは、表面に溝23が形成されエピタキシャル層の
初期層であるn- 型ドレイン領域25と、ベース領域2
6と、ソース領域27と、p型半導体層26'と、n型
半導体層27'とを含むエピタキシャル層24となる。
この後、以上の工程を経たエピタキシャル層24の表面
にCVD法により層間絶縁膜30を被覆する。
Thereafter, in a fourth step, as shown in FIG.
a) The gate oxide film 28 exposed on the surface is removed by a wet etch method, and a silicon oxide film 34 is formed on the exposed surface by a thermal oxidation method. Then, boron is ion-implanted and thermally diffused using the gate electrode 29 as a mask. Thus, a p-type base region 26 shallower than the groove 23 is formed on both sides of the groove 23. Although not shown, the groove 23 at the time of the BB section in FIG.
A p-type semiconductor layer 26 'in the same layer as the base region 26 is formed in the epitaxial layer between the groove 23 and the epitaxial layer. Base area 2
6 is masked with a photoresist film at the gate electrode 29 and PR, arsenic is ion-implanted, and the photoresist is removed.
7 is formed. Although not shown, at this time FIG.
An n @ + -type semiconductor layer 27 'in the same layer as the source region 27 is formed in the p-type semiconductor layer between the grooves 23 in the BB section of FIG. As a result, the epitaxial layer 24a shown in FIGS. 6A to 6D has an n @-type drain region 25 having a groove 23 formed on the surface and an initial layer of the epitaxial layer, and a base region 2a.
6, an epitaxial layer 24 including a source region 27, a p-type semiconductor layer 26 ', and an n-type semiconductor layer 27'.
Thereafter, the surface of the epitaxial layer 24 that has undergone the above steps is coated with an interlayer insulating film 30 by a CVD method.

【0019】続いて、第4工程はこの工程の完了後の断
面図を図2及び図3に示すように、ソース領域27表面
の一部及びベース領域26表面が図1に示す輪郭3内で
露出するように層間絶縁膜30及び酸化膜34(図2及
び図3では図示せず)にコンタクト窓を形成した後、以
上の工程を経たエピタキシャル層24の表面をスパッタ
法によりアルミニウム膜で被覆し、このアルミニウム膜
をPR及びドライエッチ法により選択的に除去して、ベ
ース領域26及びソース領域27と図1に示す3の輪郭
内でオーミック接触により電気的に接続するソース電極
31を形成する。半導体基板22の裏面にはドレイン電
極32を形成する。尚、図示しないがゲート電極29は
溝23の終端でチップ上に所定パターンで形成したゲー
ト配線を介して外部へ電気的接続するためのゲートパッ
ドに接続されている。
Next, in a fourth step, a part of the surface of the source region 27 and the surface of the base region 26 are within the contour 3 shown in FIG. After a contact window is formed in the interlayer insulating film 30 and the oxide film 34 (not shown in FIGS. 2 and 3) so as to be exposed, the surface of the epitaxial layer 24 that has undergone the above steps is covered with an aluminum film by sputtering. Then, the aluminum film is selectively removed by PR and dry etching to form a source electrode 31 which is electrically connected to the base region 26 and the source region 27 by ohmic contact within the contour shown in FIG. On the back surface of the semiconductor substrate 22, a drain electrode 32 is formed. Although not shown, the gate electrode 29 is connected to a gate pad for electrical connection to the outside via a gate wiring formed in a predetermined pattern on the chip at the end of the groove 23.

【0020】上述の実施例において、半導体本体を半導
体基板に形成されたエピタキシャル層からなるもので説
明したが、半導体基板のみであってもよい。この場合、
溝の形成された半導体基板にドレイン領域、ベース領
域、ソース領域、一導電型半導体層及び他導電型半導体
層が含まれ、半導体基板の裏面側には高濃度一導電型層
が含まれる。また、半導体本体を半導体基板に形成され
たエピタキシャル層とした場合において、半導体基板は
高濃度一導電型で説明したが、高濃度他導電型であって
もよい。この場合は、IGBTに利用できる。半導体本
体を基板のみとした場合においては、半導体基板の裏面
側を高濃度他導電型とした場合にIGBTに利用でき
る。また、一導電型としてn型,他導電型としてp型で
説明したが、一導電型としてp型,他導電型としてn型
であってもよい。
In the above embodiment, the semiconductor body has been described as being composed of the epitaxial layer formed on the semiconductor substrate. However, the semiconductor body may be composed of only the semiconductor substrate. in this case,
The semiconductor substrate in which the groove is formed includes a drain region, a base region, a source region, a semiconductor layer of one conductivity type and a semiconductor layer of another conductivity type, and a back surface side of the semiconductor substrate includes a high-concentration one conductivity type layer. Further, in the case where the semiconductor body is an epitaxial layer formed on a semiconductor substrate, the semiconductor substrate has been described as a high-concentration one-conductivity type. In this case, it can be used for IGBT. When the semiconductor body is only a substrate, it can be used for an IGBT when the back side of the semiconductor substrate is of a high-concentration and other conductivity type. Also, the n-type is described as one conductivity type and the p-type as another conductivity type, but the p-type may be used as one conductivity type and the n-type may be used as another conductivity type.

【0021】[0021]

【発明の効果】本発明によれば、ユニットセルを構成す
る島状能動領域が格子状パターンの溝で独立してマトリ
ックス状に配置されている従来例と同等のチャネル幅を
確保したままで、溝幅を略一定とすることができ、溝へ
のゲート電極や層間絶縁膜の埋め込みが均一に行え、ま
た、1個のユニットセルで第1及び第2半導体層への接
続電極と第2半導体層とのオーム接触が万が一、不十分
であっても、このユニットセルを構成する島状能動領域
の第2半導体層が同じ鎖状能動領域内で連結部の同層の
第4半導体層により別のユニットセルを構成する島状能
動領域の第2半導体層と連結しておりその第2半導体層
とでオーム接触が取れ、さらに、溝の内壁面に直角の角
部が無くなり、チャネルが形成される部分におけるゲー
ト酸化膜の膜厚や膜質のばらつきが小さくなる。その結
果、製品の低オン抵抗を確保した上で、製造工程での電
気的特性不良率が低く製品の信頼性が高い絶縁ゲート型
半導体装置が得られる。
According to the present invention, while maintaining the same channel width as in the conventional example, the island-shaped active regions constituting the unit cell are independently arranged in a matrix by grooves of a lattice pattern. The groove width can be made substantially constant, the gate electrode and the interlayer insulating film can be uniformly buried in the groove, and the connection electrodes to the first and second semiconductor layers and the second semiconductor layer can be formed in one unit cell. Even if the ohmic contact with the layer is inadequate, the second semiconductor layer of the island-shaped active region constituting this unit cell is separated by the fourth semiconductor layer of the same layer of the connection portion in the same chain-shaped active region. Is connected to the second semiconductor layer of the island-shaped active region constituting the unit cell of the above, and an ohmic contact can be established with the second semiconductor layer, and further, the channel is formed without the right-angled corner on the inner wall surface of the groove. Thickness of the gate oxide film The variation in the quality is reduced. As a result, it is possible to obtain an insulated gate semiconductor device having a low rate of defective electrical characteristics in a manufacturing process and a high product reliability while ensuring a low on-resistance of the product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1実施例であるMOSFETの主
要部平面図。
FIG. 1 is a plan view of a main part of a MOSFET according to a first embodiment of the present invention.

【図2】 図1のA−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】 図1のB−B断面図。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】 本発明の第2実施例であるMOSFETの主
要部平面図。
FIG. 4 is a plan view of a main part of a MOSFET according to a second embodiment of the present invention.

【図5】 本発明の第3実施例であるMOSFETの主
要部平面図。
FIG. 5 is a plan view of a main part of a MOSFET according to a third embodiment of the present invention.

【図6】 図1に示すMOSFETの製造工程を示す主
要部断面図。
FIG. 6 is a main-portion cross-sectional view showing a manufacturing step of the MOSFET shown in FIG. 1;

【符号の説明】[Explanation of symbols]

1,41,71 島状能動領域 2,42,72 連結部 10,50,80 鎖状能動領域 21 半導体本体 22 半導体基板 23,63,93 溝 24 エピタキシャル層 25 第1半導体層(ドレイン領域) 26,66,96 第2半導体層(ベース領域) 27,67,97 第3半導体層(ソース領域) 26' 第4半導体層(p型半導体層) 27,67,97' 第5半導体層(n型半導体層) 28 ゲート酸化膜 29,69,99 ゲート電極 1, 41, 71 Island-shaped active region 2, 42, 72 Connecting portion 10, 50, 80 Chain-shaped active region 21 Semiconductor body 22 Semiconductor substrate 23, 63, 93 Groove 24 Epitaxial layer 25 First semiconductor layer (drain region) 26 , 66, 96 Second semiconductor layer (base region) 27, 67, 97 Third semiconductor layer (source region) 26 ′ Fourth semiconductor layer (p-type semiconductor layer) 27, 67, 97 ′ Fifth semiconductor layer (n-type Semiconductor layer) 28 Gate oxide film 29, 69, 99 Gate electrode

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】一導電型の第1半導体層及びこの第1半導
体層上にマトリックス状に配列した島状能動領域を有し
島状能動領域間に第1半導体層までの溝を形成した半導
体本体と、溝にゲート酸化膜を介して形成したゲート電
極とを具備した絶縁ゲート型半導体装置において、 前記島状能動領域の斜め方向に1方向で隣接する島状能
動領域間を前記第1半導体層上に形成した幅狭な連結部
により1列ずつ連結して鎖状能動領域を構成し、前記溝
の平面パターンを前記鎖状能動領域間で前記鎖状能動領
域の平面パターンに沿った平行又は略平行のストライプ
状パターンとしたことを特徴とする絶縁ゲート型半導体
装置。
A semiconductor having a first semiconductor layer of one conductivity type and island-shaped active regions arranged in a matrix on the first semiconductor layer, and a groove extending to the first semiconductor layer between the island-shaped active regions. An insulated gate semiconductor device comprising a main body and a gate electrode formed in a trench with a gate oxide film interposed therebetween, wherein the first semiconductor is disposed between the island-shaped active regions in one direction obliquely adjacent to the island-shaped active regions. Concatenated active areas are formed by connecting one row at a time by narrow connecting portions formed on the layers, and the plane pattern of the grooves is parallel between the chained active areas along the plane pattern of the chained active areas. Alternatively, an insulated gate semiconductor device having a substantially parallel stripe pattern.
【請求項2】前記島状能動領域は他導電型の第2半導体
層とこの表面層に形成した一導電型の第3半導体層とを
含み、 前記連結部は前記第2半導体層と同層である他導電型の
第4半導体層とこの表面層に形成し前記第3半導体層と
同層である一導電型の第5半導体層とを含むことを特徴
とする請求項1記載の絶縁ゲート型半導体装置。
2. The island-shaped active region includes a second semiconductor layer of another conductivity type and a third semiconductor layer of one conductivity type formed on the surface layer, and the connection portion is in the same layer as the second semiconductor layer. 2. The insulated gate according to claim 1, further comprising a fourth semiconductor layer of another conductivity type and a fifth semiconductor layer of one conductivity type formed on the surface layer and the same layer as the third semiconductor layer. Type semiconductor device.
【請求項3】前記島状能動領域の平面パターンが正方形
の角を傾斜辺に切り掻いた8角形で、前記連結部の平面
パターンが前記隣接する島状能動領域の対向する傾斜辺
を対辺とする四辺形で、前記傾斜辺を前記溝の幅が略一
定となる寸法にしたことを特徴とする請求項1記載の絶
縁ゲート型半導体装置。
3. The planar pattern of the island-shaped active region is an octagon in which a square corner is cut into an inclined side, and the plane pattern of the connecting portion is such that an opposite inclined side of the adjacent island-shaped active region is defined as an opposite side. 2. The insulated gate semiconductor device according to claim 1, wherein said inclined side has a dimension such that a width of said groove is substantially constant.
【請求項4】前記島状能動領域の平面パターンが正方形
の角をその角を成す2辺に所定半径で内接する円弧で切
り掻いた形状で、前記連結部の平面パターンが前記隣接
する島状能動領域の対向する2個の円弧とこれらの円弧
の端で外接する円弧とで囲まれた形状であることを特徴
とする請求項1記載の絶縁ゲート型半導体装置。
4. A planar pattern of the island-shaped active region has a shape obtained by cutting a corner of a square with a circular arc inscribed at two sides forming the corner with a predetermined radius, and the planar pattern of the connecting portion is formed on the adjacent island-shaped. 2. The insulated gate semiconductor device according to claim 1, wherein the semiconductor device has a shape surrounded by two opposing arcs of the active region and arcs circumscribing the ends of these arcs.
【請求項5】前記所定半径を前記正方形の一辺の半分の
寸法とすることにより前記島状能動領域の平面パターン
を円形としたことを特徴とする請求項4記載の絶縁ゲー
ト型半導体装置。
5. The insulated gate semiconductor device according to claim 4, wherein said predetermined radius is set to a half size of one side of said square, whereby a plane pattern of said island-shaped active region is made circular.
【請求項6】前記半導体本体が半導体基板上に形成され
たエピタキシャル層である請求項1記載の絶縁ゲート型
半導体装置。
6. The insulated gate semiconductor device according to claim 1, wherein said semiconductor body is an epitaxial layer formed on a semiconductor substrate.
【請求項7】前記半導体基板が高濃度一導電型である請
求項6記載の絶縁ゲート型半導体装置。
7. The insulated gate semiconductor device according to claim 6, wherein said semiconductor substrate is of a high concentration one conductivity type.
【請求項8】前記半導体基板が高濃度他導電型である請
求項6記載の絶縁ゲート型半導体装置。
8. The insulated gate semiconductor device according to claim 6, wherein said semiconductor substrate is of a high concentration and other conductivity type.
JP10139390A 1998-05-21 1998-05-21 Insulated gate type of semiconductor Pending JPH11330469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10139390A JPH11330469A (en) 1998-05-21 1998-05-21 Insulated gate type of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10139390A JPH11330469A (en) 1998-05-21 1998-05-21 Insulated gate type of semiconductor

Publications (1)

Publication Number Publication Date
JPH11330469A true JPH11330469A (en) 1999-11-30

Family

ID=15244195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10139390A Pending JPH11330469A (en) 1998-05-21 1998-05-21 Insulated gate type of semiconductor

Country Status (1)

Country Link
JP (1) JPH11330469A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088198A (en) * 2007-09-28 2009-04-23 Rohm Co Ltd Semiconductor device
JP2009224734A (en) * 2008-03-19 2009-10-01 Fuji Electric Device Technology Co Ltd Mos semiconductor device having trench gate structure, and its manufacturing method
WO2010004715A1 (en) * 2008-07-09 2010-01-14 パナソニック株式会社 Semiconductor element and manufacturing method therefor
WO2013161568A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Semiconductor device and method for manufacturing same
WO2014174911A1 (en) * 2013-04-23 2014-10-30 三菱電機株式会社 Semiconductor device
JP5687364B2 (en) * 2012-01-06 2015-03-18 三菱電機株式会社 Semiconductor device
CN108010963A (en) * 2016-10-27 2018-05-08 意法半导体股份有限公司 The vertical channel semiconductor devices of saturation voltage with reduction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8476702B2 (en) 2007-09-28 2013-07-02 Rohm Co., Ltd. Semiconductor device
JP2009088198A (en) * 2007-09-28 2009-04-23 Rohm Co Ltd Semiconductor device
JP2009224734A (en) * 2008-03-19 2009-10-01 Fuji Electric Device Technology Co Ltd Mos semiconductor device having trench gate structure, and its manufacturing method
WO2010004715A1 (en) * 2008-07-09 2010-01-14 パナソニック株式会社 Semiconductor element and manufacturing method therefor
JP4531861B2 (en) * 2008-07-09 2010-08-25 パナソニック株式会社 Semiconductor device and manufacturing method thereof
CN102084483A (en) * 2008-07-09 2011-06-01 松下电器产业株式会社 Semiconductor element and manufacturing method therefor
JPWO2010004715A1 (en) * 2008-07-09 2011-12-22 パナソニック株式会社 Semiconductor device and manufacturing method thereof
US8129758B2 (en) 2008-07-09 2012-03-06 Panasonic Corporation Semiconductor element and manufacturing method therefor
JPWO2013103051A1 (en) * 2012-01-06 2015-05-11 三菱電機株式会社 Semiconductor device
US9324782B2 (en) 2012-01-06 2016-04-26 Mitsubishi Electric Corporation Semiconductor device
JP5687364B2 (en) * 2012-01-06 2015-03-18 三菱電機株式会社 Semiconductor device
WO2013161568A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Semiconductor device and method for manufacturing same
JPWO2013161568A1 (en) * 2012-04-23 2015-12-24 三菱電機株式会社 Semiconductor device and manufacturing method thereof
WO2014174911A1 (en) * 2013-04-23 2014-10-30 三菱電機株式会社 Semiconductor device
CN108010963A (en) * 2016-10-27 2018-05-08 意法半导体股份有限公司 The vertical channel semiconductor devices of saturation voltage with reduction
CN108010963B (en) * 2016-10-27 2022-01-11 意法半导体股份有限公司 Vertical channel semiconductor device with reduced saturation voltage

Similar Documents

Publication Publication Date Title
US7800185B2 (en) Closed trench MOSFET with floating trench rings as termination
US7541642B2 (en) Semiconductor device with a gate electrode including a pair of polysilicon layers
US6706615B2 (en) Method of manufacturing a transistor
US7196376B2 (en) Trench-type power MOSFET with embedded region at the bottom of the gate and increased breakdown voltage
JPH07142729A (en) Lateral mosfet
US20060273390A1 (en) Gate contact and runners for high density trench MOSFET
KR20000004472A (en) Power semiconductor device of trench gate structure and method for fabricating same
JP2001102576A (en) Semiconductor device
JP2001339063A (en) Semiconductor device and its manufacturing method
JP2000277728A (en) Insulated-gate semiconductor device and its manufacture
US6906355B2 (en) Semiconductor device
US10340147B2 (en) Semiconductor device with equipotential ring contact at curved portion of equipotential ring electrode and method of manufacturing the same
US5592026A (en) Integrated structure pad assembly for lead bonding
JPH11330469A (en) Insulated gate type of semiconductor
JP2002043571A (en) Semiconductor device
JP2003526949A (en) Trench gate semiconductor device
JP2800884B2 (en) Semiconductor device having lateral DSA power MOSFET
JP3540691B2 (en) Semiconductor device and manufacturing method thereof
CN111834448A (en) Silicon carbide semiconductor device
JP2000277531A (en) Semiconductor device and its manufacture
JPH10270689A (en) Semiconductor device
JP3646343B2 (en) Manufacturing method of semiconductor device
JP4929559B2 (en) Semiconductor element
JP4133548B2 (en) Semiconductor device
JP2700870B2 (en) Electrostatic induction transistor and method of manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050511

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224