JP2009215683A - ナノファイバ製造方法、ナノファイバ製造装置 - Google Patents

ナノファイバ製造方法、ナノファイバ製造装置 Download PDF

Info

Publication number
JP2009215683A
JP2009215683A JP2008062725A JP2008062725A JP2009215683A JP 2009215683 A JP2009215683 A JP 2009215683A JP 2008062725 A JP2008062725 A JP 2008062725A JP 2008062725 A JP2008062725 A JP 2008062725A JP 2009215683 A JP2009215683 A JP 2009215683A
Authority
JP
Japan
Prior art keywords
gas flow
nanofiber
pressure
unit
nanofibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062725A
Other languages
English (en)
Other versions
JP4892508B2 (ja
Inventor
Hiroto Sumita
寛人 住田
Takahiro Kurokawa
崇裕 黒川
Kazunobu Ishikawa
和宜 石川
Yoshiaki Tominaga
善章 冨永
Mikio Takezawa
幹夫 竹澤
Mitsuhiro Takahashi
光弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008062725A priority Critical patent/JP4892508B2/ja
Publication of JP2009215683A publication Critical patent/JP2009215683A/ja
Application granted granted Critical
Publication of JP4892508B2 publication Critical patent/JP4892508B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

【課題】性能が安定したナノファイバの堆積物を供給する。
【解決手段】原料液300を噴射する噴射手段201と、原料液300を帯電させる帯電手段202と、気体流を発生させる気体流発生手段203と、ナノファイバ301が堆積される堆積手段101と、堆積手段101を移動させる搬送手段104と、ナノファイバ301を案内する案内手段206と、気体流を吸引する吸引手段102と、吸引領域を規制する領域規制手段103と、案内手段206内方の圧力を測定する第一圧力測定手段241と、領域規制手段103内方の圧力を測定する第二圧力測定手段107とを備えるナノファイバ製造装置100を用いて行うナノファイバ製造方法であって、第一圧力測定手段241と前記第二圧力測定手段107との測定結果の差を圧力差として算出する圧力差算出工程と、算出された圧力差に基づきナノファイバ製造条件を制御する製造条件制御工程とを含む。
【選択図】図5

Description

本願発明は、エレクトロスピニング法(静電爆発)を用いてナノファイバを製造するナノファイバ製造方法に関し、特に、ナノファイバを所定の性能を発揮できる状態で収集するナノファイバ製造方法に関する。
高分子物質などから成り、サブミクロンスケールの直径を有する糸状(繊維状)物質(ナノファイバ)を製造する方法として、エレクトロスピニング(電荷誘導紡糸)法が知られている。
このエレクトロスピニング法とは、溶媒中に高分子物質などを分散または溶解させた原料液を空間中にノズルなどにより噴射(吐出)させるとともに、原料液に電荷を付与して帯電させ、空間を飛行中の原料液を静電爆発させることにより、ナノファイバを得る方法である。
より具体的には、帯電され噴射された原料液は、空間を飛行中の原料液の粒から溶媒が蒸発するに伴い原料液の体積は減少していく。一方、原料液に付与された電荷は原料液に留まる。この結果として、空間を飛行中の原料液の粒は、電荷密度が上昇することとなる。そして、原料液中の溶媒は、継続して蒸発し続けるため、原料液の粒の電荷密度がさらに高まり、原料液の粒の中に発生する反発方向のクーロン力が原料液の表面張力より勝った時点で高分子溶液が爆発的に線状に延伸される現象(静電爆発)が生じる。この静電爆発が、空間において次々とねずみ算式に発生することで、直径がサブミクロンの高分子から成るナノファイバが製造される。
ここで、前記エレクトロスピニング法により製造されるナノファイバをフィルタの原料として用いる場合、収集されたナノファイバが所定の性能を発揮している必要がある。そのため、特許文献1に記載の発明においては、レーザー式の非接触厚み計を用いて収集されたナノファイバの厚みを計測し、当該計測結果に基づいてノズルから噴射される原料液の噴射量が制御されている。
特開2007−92237号公報
ところが、収集されたナノファイバの厚みを測るだけでは、収集されたナノファイバをフィルタなどに適用する場合にフィルタとしての性能を類推するに留まり、十分な性能が得られているか否かは不明である。
そこで発明者らは別途発明している製造されたナノファイバを気体流で搬送し、堆積手段に思い至り、さらに鋭意研究の結果、ナノファイバを製造している途中においても堆積されたナノファイバの性能を計測できることを見いだした。
すなわち、本願発明は、ナノファイバを製造している途中において、堆積されたナノファイバの性能を測定し、その結果を用いて所望の性能を奏することのできるナノファイバの収集物を安定して製造することを目的としている。
上記目的を達成するために、本願発明にかかるナノファイバ製造装置は、ナノファイバの原料となる原料液を空間中に噴射する噴射手段と、前記原料液に電荷を付与して帯電させる帯電手段と、前記ナノファイバを案内する気体流を発生させる気体流発生手段と、前記ナノファイバを堆積可能で、前記気体流を挿通可能なシート状の堆積手段と、前記堆積手段を移動させて堆積したナノファイバを搬送する搬送手段と、製造されたナノファイバを前記堆積手段まで案内する風洞を形成する案内手段と、前記堆積手段に対し前記案内手段と反対側に配置され、前記気体流を吸引する吸引手段と、前記吸引手段の吸引領域を規制する領域規制手段と、前記案内手段内方の気体流の圧力を測定する第一圧力測定手段と、前記領域規制手段内方の気体流の圧力を測定する第二圧力測定手段と、前記第一圧力測定手段の第一測定結果と前記第二圧力測定手段の第二測定結果との差に基づきナノファイバ製造条件を制御する製造条件制御手段とを備えることを特徴とする。
これにより、ナノファイバの製造途中においても堆積されたナノファイバの気体流の通過量を、気体流が堆積されたナノファイバを通過する前後の圧力差として読み取ることができる。従って、堆積されたナノファイバの性能を正確に把握したうえでナノファイバ製造条件を調整することができるため、所定の性能を発揮するナノファイバの堆積物を安定して製造することが可能となる。
前記製造条件制御手段は、前記搬送手段を制御する搬送制御手段を備えることが好ましい。
これにより、容易かつ効果的に堆積されるナノファイバの性能を調整することが可能となる。
また、上記目的を達成するために、本願発明にかかるナノファイバ製造方法は、ナノファイバの原料となる原料液を空間中に噴射する噴射手段と、前記原料液に電荷を付与して帯電させる帯電手段と、前記ナノファイバを案内する気体流を発生させる気体流発生手段と、前記ナノファイバを堆積可能で、前記気体流を挿通可能なシート状の堆積手段と、前記堆積手段を移動させて堆積したナノファイバを搬送する搬送手段と、製造されたナノファイバを前記堆積手段まで案内する風洞を形成する案内手段と、前記堆積手段に対し前記案内手段と反対側に配置され、前記気体流を吸引する吸引手段と、前記吸引手段の吸引領域を規制する領域規制手段と、前記案内手段内方の気体流の圧力を測定する第一圧力測定手段と、前記領域規制手段内方の気体流の圧力を測定する第二圧力測定手段とを備えるナノファイバ製造装置を用いて行うナノファイバ製造方法であって、前記第一圧力測定手段の第一測定結果と前記第二圧力測定手段の第二測定結果との差を圧力差として算出する圧力差算出工程と、算出された前記圧力差に基づきナノファイバ製造条件を制御する製造条件制御工程とを含むことを特徴とする。
これにより、ナノファイバの製造途中においても堆積されたナノファイバの気体流の通過量を、気体流が堆積されたナノファイバを通過する前後の圧力差として読み取ることができる。従って、堆積されたナノファイバの性能を正確に把握したうえでナノファイバ製造条件を調整することができるため、所定の性能を発揮するナノファイバの堆積物を安定して製造することが可能となる。
前記製造条件制御工程は、前記堆積されたナノファイバの搬送量を制御する搬送制御工程を含むことが好ましい。
これにより、容易かつ効果的に堆積されるナノファイバの性能を調整することが可能となる。
また前記搬送制御工程は、前記圧力差が所定の設定上限値よりも高くならないように搬送量を増加させ、前記圧力差が所定の設定下限値よりも低くならないように搬送量を減少させるように搬送手段を制御することが好ましい。
これによれば、きめ細かに搬送量を制御し、所定の性能を有するナノファイバを長尺状態で収集することが可能となる。
また、前記搬送制御工程は、前記圧力差が所定の設定上限値よりも高くなった場合に所定量搬送し、前記圧力差が前記設定上限値よりも低い間は搬送を行わないように搬送手段を制御することが好ましい。
これによれば、制御が容易で、所定の性能を有するナノファイバを短尺状態で多数収集することが可能となる。
前記製造条件制御工程は、前記噴射手段における原料液の噴射量を制御する噴射制御工程を含むことが好ましい。
これにより、堆積するナノファイバの堆積方向の性能ばかりでなく堆積する面方向の性能をも調整しながら堆積することが可能となる。
また、前記製造条件制御工程は、前記気体流発生手段における気体流の流量を制御する流量制御工程を含むことが好ましい。
これによれば、堆積されるナノファイバの絡み具合(風合い)を調整しながらナノファイバを収集することが可能となる。
また、前記製造条件制御工程は、前記噴射手段が噴射容器を回転させて小穴から噴射する噴射手段である場合において、前記噴射容器の回転数を制御する噴射制御工程を含むことが好ましい。
これによれば、製造されるナノファイバの量が制御され、面方向に均一にナノファイバを収集することも可能となる。
本願発明によれば、堆積したナノファイバの性能を正確に把握しながら製造条件を調整することができるため、所望の性能を備えたナノファイバの堆積物を正確にかつ安定した状態で製造することが可能となる。
次に、本願発明にかかる実施の形態について、図面を参照しつつ説明する。
(実施の形態1)
図1は、本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。
同図に示すように、ナノファイバ製造装置100は、噴射手段201と、帯電手段202と、案内手段206と、気体流発生手段203と、堆積手段101と、搬送手段104と、吸引手段102と、領域規制手段103と、第一圧力測定手段241と、第二圧力測定手段107と、製造条件制御手段302とを備えている。
噴射手段201は、同図及び図2、図3に示すように、原料液300を空間中に噴射する装置であり、本実施の形態では、原料液300を遠心力により放射状に噴射する装置である。噴射手段201は、噴射容器211と、回転軸体212と、モータ213とを備えている。
ここで、ナノファイバを製造するための原料液については原料液300と記し、製造されたナノファイバについてはナノファイバ301と記すが、製造に際しては原料液300が静電爆発しながらナノファイバ301に変化していくため、原料液300とナノファイバ301との境界は曖昧であり、明確に区別できるものではない。
噴射容器211は、原料液300が内方に注入されながら自身の回転による遠心力により空間中に原料液300を噴射することのできる容器であり、一端が閉塞された円筒形状となされ、周壁には噴射口216を多数備えている。噴射容器211は、貯留する原料液300に電荷を付与するため、導電体で形成されている。噴射容器211は支持体(図示せず)に設けられるベアリング(図示せず)により回転可能に支持されている。
具体的には、噴射容器211の直径は、10mm以上200mm以下の範囲から採用されることが好適である。あまり大きすぎると気体流により原料液300やナノファイバ301を集中させることが困難になるからである。一方、小さすぎると遠心力により原料液300を噴射させるための回転を高めなければならず、モータの負荷や振動など問題が発生するためである。さらに噴射容器211の直径は、20mm以上80mm以下の範囲から採用することが好ましい。また、噴射口216の形状は円形が好ましく、その直径は、0.01mm以上2mm以下の範囲から採用することが好適である。
回転軸体212は、噴射容器211を回転させ遠心力により原料液300を噴射させるための駆動力を伝達するための軸体であり、噴射容器211の他端から噴射容器211の内部に挿通され、噴射容器211の閉塞部と一端部が接合される棒状体である。また、他端はモータ213の回転軸と接合されている。
モータ213は、遠心力により原料液300を噴射口216から噴射させるために、回転軸体212を介して噴射容器211に回転駆動力を付与する装置である。なお、噴射容器211の回転数は、噴射口216の口径や使用する原料液300の粘度や原料液内の高分子物質の種類などとの関係により、数rpm以上、10000rpm以下の範囲から採用することが好ましく、本実施の形態のようにモータ213と噴射容器211とが直動の時はモータ213の回転数は、噴射容器211の回転数と一致する。
帯電手段202は、同図及び図2、図3に示すように、原料液300に電荷を付与して帯電させる装置である。本実施の形態の場合、帯電手段202は、誘導電極221と、誘導電源222と、接地手段223とを備えている。また、噴射容器211も帯電手段202の一部として機能している。
誘導電極221は、自身がアースに対し高い電圧となることで、近傍に配置され接地されている噴射容器211に電荷を誘導するための部材であり、噴射容器211の先端部分を取り囲むように配置される円環状の部材である。また、誘導電極221は、気体流発生手段203からの気体流を案内しナノファイバ301を案内する案内手段206としても機能している。
誘導電極221の大きさは、噴射容器211の直径よりも大きい必要があるが、その直径は、200mm以上、800mm以下の範囲から採用されることが好適である。
誘導電源222は、誘導電極221に高電圧を印加することのできる電源である。なお、誘導電源222は、一般には、直流電源が好ましい。特に、発生させるナノファイバ301の帯電極性に影響受けないような場合、生成したナノファイバ301の帯電を利用して、電極上に回収するような場合には、直流電源が好ましい。また、それ以外の場合には、交流電源でもかまわない。また、誘導電源222が直流電源である場合、誘導電源222が誘導電極221に印加する電圧は、10KV以上、200KV以下の範囲の値から設定されるのが好適である。特に、電界強度が重要であり、1KV/cm以上の電界強度になるように印加電圧や誘導電極の配置を行うことが好ましい。
接地手段223は、噴射容器211と電気的に接続され、噴射容器211を接地電位に維持することができる部材である。接地手段223の一端は、噴射容器211が回転状態であっても電気的な接続状態を維持することができるようにブラシとして機能するものであり、他端は大地と接続されている。
本実施の形態のように帯電手段202に誘導方式を採用すれば、噴射容器211を接地電位に維持したまま原料液300に電荷を付与することができる。噴射容器211が接地電位の状態であれば、噴射容器211に接続される回転軸体212やモータ213などの部材を噴射容器211から電気的に絶縁する必要が無くなり、噴射手段201として簡単な構造を採用しうることになり好ましい。
なお、帯電手段202として、噴射容器211に電源を接続し、噴射容器211を高電圧に維持して原料液300に電荷を付与してもよい。また、噴射容器211を絶縁体で形成すると共に、噴射容器211に貯留される原料液300に直接接触する電極を噴射容器211内部に配置し、当該電極を用いて原料液300に電荷を付与するものでもよい。
案内手段206は、気体流を所定の流路で堆積手段101まで案内すると共に、当該気体流に乗せて製造されたナノファイバ301を堆積手段101まで案内する機能を備える風洞を形成する筒状の部材である。本実施の形態の場合、案内手段206は、変更部260と、合流部261と、除電部264と、加速部265とを備えている。
変更部260は、案内する気体流により噴射手段201から噴射される原料液300の飛行方向を変更する機能を備える案内手段206の部分であり、誘導電極221もこの変更部260に属している。変更部260は、端部の開口部に気体流発生手段203が接続され、外形が円錐台形状の筒体であり、変更部260の内方には噴射手段201が配置されている。
合流部261は、複数箇所で噴射される原料液300や製造されるナノファイバ301を、案内する気体流と共に一つにまとめる機能を備える案内手段206の部分である。合流部261は、変更部260と接続される比較的小さな筒体と、前記筒体が集合される比較的大きな筒体で形成されている。本実施の形態の場合、変更部260は、噴射手段201に対応して二つ備えられているため、二つの小さな筒体と一つの大きな筒体とでY字状の流路を形成するものとなっている。
除電部264は、製造されたナノファイバ301の帯電を除去する機能を備えた部分であり、合流部261に続いて接続される案内手段206の部分である。ナノファイバ301を除電する手段としては、ナノファイバ301を案内する流路を長くして自然放電により除電する長い除電部264であってもよく、また、除電手段207を用いて積極的にナノファイバ301を除電するものでもよい。
除電手段207は、帯電しているナノファイバ301を除電する装置である。除電手段207は、例えば帯電しているナノファイバ301の極性と逆の極性を備えるイオンや粒子を空間中に放出することができる装置を挙示することができる。具体的には、コロナ放電方式や電圧印加方式、交流方式、定常直流方式、パルス直流方式、自己放電式、軟X線方式、紫外線式、放射線方式など任意の方式からなる除電手段207を採用して良い。また、除電手段207は静電爆発が終了した後のナノファイバ301に対して除電を行う必要がある。
加速部265は、合流部261で合流され、除電部264で除電されたナノファイバ301の飛行速度を高める案内手段206の部分であり、気体流導入口233を介して第二気体流発生手段232が接続されている。加速部265は、除電部264に接続される筒状の部材であり、第二気体流発生手段232で発生する気体流を気体流導入口233を介して内方に導入することが可能なものとなっている。加速部265は、全体として漏斗形状となっており、加速部265に導入されたナノファイバ301を気体流と共に圧縮し、導出部に向かって圧力を高めるものとなっている。
なお、加速部265の上流側(導入側)の端部形状は、除電手段207の端部形状と合致する円環状である。一方、加速部265の下流側(吐出側)の端部形状は、矩形である。また、加速部265の下流側(吐出側)の端部形状は、堆積手段101の幅方向(同図紙面と垂直方向)全体に渡って延び、堆積手段101の移動方向は前記幅方向に対して狭い。加速部265は、環状の上流端から矩形状の下流端に向かって徐々に形状が変化するものとなっている。
第二気体流発生手段232は、高圧ガスを加速部265内部に導入することで気体流を発生させる装置である。本実施の形態では、第二気体流発生手段232は、高圧ガスを貯留しうるタンク(ボンベ)と、タンク内の高圧ガスの圧力を調節するバルブ235を有するガス導出手段を備える装置が採用されている。
なお、第二気体流発生手段232が供給するガスは、空気でもかまわないが、酸素含有比率が空気よりも低い安全ガスが望ましい。原料液300から蒸発する溶媒による爆発を回避するためである。安全ガスとしては、空気から樹脂膜(中空糸膜)により酸素をある程度除去した低酸素濃度ガスや、過熱水蒸気を挙示することができる。なお、本記載は酸素の含有がほとんどない高純度なガスなどの使用を除外するものではなく、液体や気体等の状態でボンベに封入された高純度な窒素やドライアイスから供給される二酸化炭素なども利用可能である。
また、第二気体流発生手段232により発生する気体流を加熱する加熱手段を設けてもかまわない。
気体流発生手段203は、噴射容器211から噴射される原料液300の飛行方向を案内手段206の軸に沿う方向に変更するための気体流を発生させる装置である。気体流発生手段203は、案内手段206の端部に取り付けられ、変更部260から加速部265に向かう気体流を発生させる。気体流発生手段203は、噴射容器211から径方向に噴射される原料液300が誘導電極221に到達するまでに前記原料液300を軸方向に変更することができる風力を発生させることができるものとなっている。図2において、気体流は矢印で示している。本実施の形態の場合、気体流発生手段203として、周囲にある雰囲気を強制的に送風する軸流ファンを備える送風機が採用されている。
なお、気体流発生手段203は、シロッコファンなど他の送風機により構成してもかまわない。また、高圧ガスを導入することにより噴射された原料液300の方向を変更するものでもかまわない。また、後述の吸引手段102や第二気体流発生手段232などにより案内手段206内方に気体流を発生させるものでもかまわない。この場合、気体流発生手段203は積極的に気体流を発生させる装置を有しないこととなるが、本願発明の場合、案内手段206の内方に気体流が発生していることをもって気体流発生手段203が存在しているものとする。
堆積手段101は、静電爆発により製造され飛来するナノファイバ301が堆積される対象となる部材である。堆積手段101は、気体流により案内されるナノファイバ301を気体流と分離して収集する部材であり、気体流を挿通可能でナノファイバ301を挿通しにくい部材が採用される。本実施の形態の場合、堆積手段101は、堆積したナノファイバ301と容易に分離可能な材質で構成された薄く柔軟性のある長尺のシート状の部材である。具体的には、堆積手段101として、アラミド繊維からなる長尺の網を例示することができる。さらに、堆積手段101の表面にテフロン(登録商標)コートを行うと、堆積したナノファイバ301を堆積手段101から剥ぎ取る際の剥離性が向上するため好ましい。また、堆積手段101は、ロール状に巻き付けられた状態で供給ロール111から供給されるものとなっている。
搬送手段104は、長尺の堆積手段101を巻き取りながら供給ロール111から引き出し、堆積するナノファイバ301と共に堆積手段101を搬送する回転可能なロールとなっている。本実施の形態の場合、搬送手段104は、モータ(図示せず)で駆動されており、前記モータを制御することにより、堆積手段101の移動量を制御することができるものとなっている。搬送手段104は、ナノファイバ301が堆積している不織布を堆積手段101とともに巻き取ることができるものとなっている。
吸引手段102は、堆積手段101のナノファイバ301が堆積される側と反対側、すなわち、案内手段206が配置される側と反対側に配置され、変更部260から加速部265を経て流れ来る気体流を堆積手段101に強制的に通過させて吸引する装置である。本実施の形態では、ナノファイバ製造装置100は、吸引手段102として、シロッコファンや軸流ファンなどの送風機が採用されており、領域規制手段103からダクト121に向かう気体流を発生させている。また、吸引手段102は、ダクト121と連通状態で配置されており、加速部265から導出される気体流であって、原料液300から蒸発した溶媒が混ざったほとんどの気体流を吸引し、ダクト121を通過して溶剤回収装置106まで搬送することができるものとなっている。
領域規制手段103は、吸引手段102の吸引領域を規制する機能を有し、堆積手段101のナノファイバ301が収集される側と反対側にあって、堆積手段101と吸引手段102との間に配置される両端が開放状態の筒体である。領域規制手段103の一方の端部は堆積手段101にほぼ塞がれる状態で配置され、他方の端部は吸引手段102が接続されている。従って、堆積手段101に挿通される気体流の量が減少すると、領域規制手段103内方の圧力が低下することとなる。領域規制手段103の形状は、案内手段206の端部形状に対応することが好ましい。本実施の形態の場合、加速部265の導出端開口部の形状が矩形であるので、領域規制手段103も前記形状に対応する矩形の筒体が採用されている。なお、前記導出端部の形状が環状であれば、領域規制手段103も円筒形を採用すればよい。
図4は、ナノファイバ製造装置の主要な機構部と機能部とを模式的に示す図である。
同図に示すように、案内手段206の端部内方には第一圧力測定手段241が設けられており、領域規制手段103の内方には第二圧力測定手段107が設けられている。一方、ナノファイバ製造装置100は、機能部として製造条件制御手段302を備えている。
第一圧力測定手段241は、案内手段206内方であって堆積手段101近傍の圧力を測定し第一測定結果を出力する装置である。ここで圧力とは、気体流により発生する圧力である。第一圧力測定手段241の圧力測定方法は特に限定されるものではない。例えば、ブルドン管を用いるものや、ダイヤフラムを用いるもの、ベローを用いるものなどを挙示することができる。
第二圧力測定手段107は、領域規制手段103の内方であって堆積手段101近傍の圧力を測定し第二測定結果を出力する装置である。なお、圧力の測定方法については第一圧力測定手段241と同様である。
製造条件制御手段302は、ナノファイバ製造装置100の機構部を制御することでナノファイバ製造条件を制御する機能部であって、コンピュータにより実現されるプログラムである。製造条件制御手段302は、圧力差算出部321と、搬送制御部322と、吸引制御部323と、帯電制御部324、噴射量制御部325、流量制御部326とを備えている。
圧力差算出部321は、第一圧力測定手段241から取得した第一測定結果と第二圧力測定手段107から取得した第二測定結果との差分を算出し、算出結果を出力する処理部である。
搬送制御部322は、堆積手段101に堆積されたナノファイバ301の搬送量を圧力差算出部321の算出結果に基づき制御する処理部であり、搬送手段104を駆動するモータ(図示せず)を制御し、堆積手段101を移動させることにより、ナノファイバ301の搬送量を制御している。なお、具体的な制御方法については後述する。
吸引制御部323は、吸引手段102による気体流の吸引量を圧力差算出部321の算出結果に基づき制御する処理部であり、吸引手段102が備えるファンの回転速度を制御し、吸引手段102の吸引量を制御している。
帯電制御部324は、帯電手段202による原料液300の帯電量を圧力差算出部321の算出結果に基づき制御する処理部であり、帯電手段202が備える誘導電源222の出力電圧を制御し、噴射手段201に誘導される電荷量を制御している。
噴射量制御部325は、噴射手段201からの原料液300の噴射量を圧力差算出部321の算出結果に基づき制御する処理部であり、噴射手段201が備えるモータ213の回転速度を制御し、噴射容器211から噴射されるされる原料液300の量を制御している。
流量制御部326は、案内手段206の内方を流れる気体の流量を圧力差算出部321の算出結果に基づき制御する処理部であり、気体流発生手段203が備えるモータ(図示せず)の回転速度を制御したり、第二気体流発生手段232のガス圧を制御することにより、気体の流量を制御している。
なお、案内手段206側と吸引手段102側との圧力を測定し、第一測定結果と第二測定結果を演算して差圧を算出したが、これに限定されるわけではない。例えば、製造条件制御手段302が圧力差算出部321を備えることなく、2箇所の圧力差を直接測定することのできる差圧計からの測定結果を受信し、受信した値に基づき各制御部が機構部を制御するものでもよい。
次に、ナノファイバ301の製造方法の概略を説明する。
まず、各気体流発生手段203や第二気体流発生手段232により、各案内手段206内部に気体流を発生させる。一方、吸引手段102により、堆積手段101よりも下流側から前記気体流を吸引する。
次に、各噴射容器211に原料液300を供給する。原料液300は、別途タンク(図示せず)に蓄えられており、各原料液供給路217(図2参照)を通過して各噴射容器211の他端部から噴射容器211内部に供給される。次に、各誘導電源222により各噴射容器211に貯留される原料液300に電荷を供給しつつ、各噴射容器211を各モータ213により回転させて、遠心力により噴射口216から帯電した原料液300を噴射する。
噴射容器211の径方向放射状に噴射された原料液300は、気体流により飛行方向が変更される。原料液300は静電爆発によりナノファイバ301に変化しつつあり、製造されるナノファイバ301は、案内手段206の中を気体流に乗って堆積手段101に向かって案内される。
本実施の形態の場合、噴射手段201が二箇所に分かれて設けられているため、各噴射手段201から放出され静電爆発により製造されたナノファイバ301は、合流部261により気体流と共に合流する。そして、合流部261の内方を気体流に乗って搬送される。この段階で、ナノファイバ301は、第一段階の高密度状態となる。次に、ナノファイバ301は、除電手段207により帯電が除去され、加速部265に到達する。
加速部265内方を通過するナノファイバ301は、高圧ガスの噴流により加速されつつ、加速部265の内方が狭くなるにつれて徐々に圧縮され第二段階の高密度状態となって堆積手段101に到達する。
次に、ナノファイバ301は、堆積手段101により気体流と分離されて堆積手段101上に堆積し、気体流は、堆積手段101を通過するとともに吸引手段102により吸引される。堆積手段101は、気体流を通過可能ではあるものの気体流の通過の際に抵抗を生じさせるため、堆積手段101の前方と背方では気体流による圧力に差が生じる。さらに、堆積手段101にナノファイバ301が堆積していくと、前記抵抗が増加して前記圧力差も増大する。
最後に、堆積手段101上に十分に堆積したナノファイバ301は、ナノファイバ301が到達する場所外に搬送され、堆積が不十分な堆積手段101の部分に新たなナノファイバ301が到達するように堆積手段101を移動させる。
次に、堆積手段101上に堆積するナノファイバ301の搬送量の制御について説明する。なお、以下において、堆積手段101上に堆積されたナノファイバ301を「堆積ファイバ」と記す。
図5は、堆積手段を挟んだ位置の圧力差と堆積ファイバの搬送速度とを示す図である。
同図下段のグラフは、第一圧力測定手段241と第二圧力測定手段107とから取得した測定結果に基づき圧力差算出部321が算出した圧力差Pを縦軸にとり、経過時間を横軸にとったものである。同図上段のグラフは、前記圧力差算出部321の算出結果に基づき搬送制御部322が制御する堆積手段101の移動速度、すなわち堆積ファイバの搬送速度Vを縦軸にとり、下段のグラフと同じ経過時間を横軸にとったものである。
同図に示すように、圧力差Pが第一設定値P1を越えると、堆積ファイバの搬送速度をV(T2)となるように搬送制御部322は、搬送手段104を駆動するモータを制御する。ナノファイバ301は、この間も堆積手段101上に堆積され続けるため、圧力差Pが増加していく。つまり、堆積手段101上の堆積ファイバの厚みが厚くなり、気体流の通過が阻害されていく。
次に、圧力差Pが第二設定値P2を越えると、搬送速度Vを徐々に早めていく。これにより堆積ファイバの厚みの薄い部分が多くなるため、ある時刻を境目として圧力差Pが減少に転じる。そして、圧力差Pが第二設定値P2を下回ると、搬送速度VをV(T4)として一定に維持する。
次に、圧力差Pが第一設定値P1を下回ると搬送速度Vを徐々に遅くする。そして、圧力差が第一設定値P1を越えると搬送速度VをV(T5)として一定に維持する。
上記の工程を繰り返すことにより、圧力差Pが設定上限値Pmaxよりも高くならず、設定下限値Pminよりも低くならないように、堆積ナノファイバの単位時間当たりの搬送量である搬送速度を制御することが可能となる。これにより、通気性能が所定の範囲内で一定した長尺の堆積ナノファイバを安定して供給することが可能となる。
なお、ナノファイバ301を構成する高分子物質としては、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフタレート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ナイロン、アラミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等を例示できる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記高分子物質に限定されるものではない。
原料液300に使用される溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、ピリジン、水等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記高分子物質に限定されるものではない。
さらに、原料液300に骨材や可塑剤などの添加剤を添加してもよい。当該添加剤としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、耐熱性、加工性などの観点から酸化物を用いることが好ましい。当該酸化物としては、Al23、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B23、P25、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb23、As23、CeO2、V25、Cr23、MnO、Fe23、CoO、NiO、Y23、Lu23、Yb23、HfO2、Nb25等を例示することができる。また、上記より選ばれる一種でもよく、また、複数種類が混在してもかまわない。なお、上記は例示であり、本願発明は上記高分子物質に限定されるものではない。
溶媒と高分子との混合比率は、溶媒と高分子により異なるが、溶媒量は、約60%から98%の間が望ましい。
(実施の形態2)
次に、本願発明にかかる他の実施の形態を説明する。
図6は、本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。
同図に示すナノファイバ製造装置100は、上記実施の形態1で示したナノファイバ製造装置100とほぼ同様である。上記実施の形態1との相違点は、案内手段206に拡散部266が存在する点と、領域規制手段103の形状である。従って、本実施の形態2では相違点のみ説明する。
拡散部266は、加速部265に続いて設けられ、ナノファイバ301を広く拡散させる部分であり、加速部265で加速したナノファイバ301の速度を減速させるフード状の部分である。拡散部266は、気体流が導入される上流端側の矩形の開口部と、気体流を放出する下流端側の矩形の開口部とを備え、下流端側の開口部の開口面積は、上流端側の開口部の開口面積よりも大きい設定となっている。拡散部266は、上流端側の開口部から下流端側の開口部に向けて徐々に面積が大きくなるような形状が採用されている。下流端側の開口部は、堆積手段101の幅に対応する幅を有し、堆積手段101の移動方向に長く延びた形状となっている。
領域規制手段103は、堆積手段101側に拡散手段240の導出側開口端と同じ形状、同じ面積の開口部を備え、吸引手段102に接続される側の開口部は、吸引手段102に対応する円形となっている。
次に、本実施の形態2にかかるナノファイバ製造装置100を用いる場合の、堆積手段101上に堆積するナノファイバ301の搬送量の制御について説明する。
図7は、堆積手段を挟んだ位置の圧力差と堆積ファイバの搬送速度とを示す図である。
同図下段のグラフは、第一圧力測定手段241と第二圧力測定手段107とから取得した測定結果に基づき圧力差算出部321が算出した圧力差Pを縦軸にとり、経過時間を横軸にとったものである。同図上段のグラフは、前記圧力差算出部321の算出結果に基づき搬送制御部322が制御する堆積手段101の移動速度、すなわち堆積ファイバの搬送速度Vを縦軸にとり、下段のグラフと同じ経過時間を横軸にとったものである。
同図に示すように、圧力差Pが設定上限値Pmaxを越えるまでは、堆積ファイバの搬送速度をゼロ、すなわち堆積手段101が移動しないように搬送制御部322は、搬送手段104を駆動するモータを制御する。
次に、圧力差Pが設定上限値Pmaxを越えた時点で堆積ファイバを搬送する。堆積ファイバ搬送量は、案内手段206の導出側先端部、すなわち拡散部266の堆積手段101の移動方向の長さ以上である。体積ファイバの搬送中は、搬送制御部322は、搬送手段104を駆動するモータを制御し搬送手段104を速度Vaで移動させる。
上記の工程を繰り返すことにより、通気性能が所定の範囲内で一定した短尺の堆積ナノファイバを安定して供給することができ、得られた短尺の体積ナノファイバの面方向の広い範囲で性能の安定した体積ナノファイバを供給することが可能となる。
また、実施の形態2においては、合流手段130により合流したナノファイバ301を加速手段230に接続し、その後、拡散手段240でナノファイバ301を拡散するように構成したが、合流手段130により合流したナノファイバ301を直接拡散手段240に接続して、ナノファイバ301を堆積手段101に堆積させてもよい。
本発明は、ナノファイバ製造装置や、製造されたナノファイバを用いて紡糸する装置、製造されたナノファイバを用いて不織布を製造する装置などに利用可能である。
本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。 放出手段を示す断面図である。 放出手段を示す斜視図である。 ナノファイバ製造装置の主要な機構部と機能部とを模式的に示す図である。 堆積手段を挟んだ位置の圧力差と堆積ファイバの搬送速度とを示す図である。 本願発明の実施の形態であるナノファイバ製造装置を模式的に示す断面図である。 堆積手段を挟んだ位置の圧力差と堆積ファイバの搬送速度とを示す図である。
符号の説明
100 ナノファイバ製造装置
101 堆積手段
102 吸引手段
103 領域規制手段
104 搬送手段
106 溶剤回収装置
107 第二圧力測定手段
111 供給ロール
121 ダクト
201 噴射手段
202 帯電手段
203 気体流発生手段
206 案内手段
207 除電手段
211 噴射容器
212 回転軸体
213 モータ
216 噴射口
217 原料液供給路
221 誘導電極
222 誘導電源
223 接地手段
232 第二気体流発生手段
233 気体流導入口
235 バルブ
240 拡散手段
241 第一圧力測定手段
260 変更部
261 合流部
264 除電部
265 加速部
266 拡散部
300 原料液
301 ナノファイバ
302 製造条件制御手段
321 圧力差算出部
322 搬送制御部
323 吸引制御部
324 帯電制御部
325 噴射量制御部
326 流量制御部

Claims (9)

  1. ナノファイバの原料となる原料液を空間中に噴射する噴射手段と、
    前記原料液に電荷を付与して帯電させる帯電手段と、
    前記ナノファイバを案内する気体流を発生させる気体流発生手段と、
    前記ナノファイバを堆積可能で、前記気体流を挿通可能なシート状の堆積手段と、
    前記堆積手段を移動させて堆積したナノファイバを搬送する搬送手段と、
    前記噴射手段により製造されたナノファイバを前記堆積手段まで案内する風洞を形成する案内手段と、
    前記堆積手段に対し前記案内手段と反対側に配置され、前記気体流を吸引する吸引手段と、
    前記吸引手段の吸引領域を規制する領域規制手段と、
    前記案内手段内方の気体流の圧力を測定する第一圧力測定手段と、
    前記領域規制手段内方の気体流の圧力を測定する第二圧力測定手段と、
    前記第一圧力測定手段の第一測定結果と前記第二圧力測定手段の第二測定結果との差に基づきナノファイバ製造条件を制御する製造条件制御手段と
    を備えるナノファイバ製造装置。
  2. 前記製造条件制御手段は、
    前記搬送手段を制御する搬送制御手段を備える
    請求項1に記載のナノファイバ製造装置。
  3. ナノファイバの原料となる原料液を空間中に噴射する噴射手段と、前記原料液に電荷を付与して帯電させる帯電手段と、前記ナノファイバを案内する気体流を発生させる気体流発生手段と、前記ナノファイバを堆積可能で、前記気体流を挿通可能なシート状の堆積手段と、前記堆積手段を移動させて堆積したナノファイバを搬送する搬送手段と、前記噴射手段により製造されたナノファイバを前記堆積手段まで案内する風洞を形成する案内手段と、前記堆積手段に対し前記案内手段と反対側に配置され、前記気体流を吸引する吸引手段と、前記吸引手段の吸引領域を規制する領域規制手段と、前記案内手段内方の気体流の圧力を測定する第一圧力測定手段と、前記領域規制手段内方の気体流の圧力を測定する第二圧力測定手段とを備えるナノファイバ製造装置を用いて行うナノファイバ製造方法であって、
    前記第一圧力測定手段の第一測定結果と前記第二圧力測定手段の第二測定結果との差を圧力差として算出する圧力差算出工程と、
    算出された前記圧力差に基づきナノファイバ製造条件を制御する製造条件制御工程と
    を含むナノファイバ製造方法。
  4. 前記製造条件制御工程は、
    前記堆積されたナノファイバの搬送量を制御する搬送制御工程を含む
    請求項3に記載のナノファイバ製造方法。
  5. 前記搬送制御工程は、
    前記圧力差が所定の設定上限値よりも高くならないように搬送量を増加させ、前記圧力差が所定の設定下限値よりも低くならないように搬送量を減少させるように搬送手段を制御する請求項4に記載のナノファイバ製造方法。
  6. 前記搬送制御工程は、
    前記圧力差が所定の設定上限値よりも高くなった場合に所定量搬送し、前記圧力差が前記設定上限値よりも低い間は搬送を行わないように搬送手段を制御する請求項4に記載のナノファイバ製造方法。
  7. 前記製造条件制御工程は、
    前記噴射手段における原料液の噴射量を制御する噴射制御工程を含む
    請求項3に記載のナノファイバ製造方法。
  8. 前記製造条件制御工程は、
    前記気体流発生手段における気体流の流量を制御する流量制御工程を含む
    請求項3に記載のナノファイバ製造方法。
  9. 前記製造条件制御工程は、
    前記噴射手段が噴射容器を回転させて小穴から噴射する噴射手段である場合において、前記噴射容器の回転数を制御する噴射制御工程を含む
    請求項3に記載のナノファイバ製造方法。
JP2008062725A 2008-03-12 2008-03-12 ナノファイバ製造方法、ナノファイバ製造装置 Expired - Fee Related JP4892508B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062725A JP4892508B2 (ja) 2008-03-12 2008-03-12 ナノファイバ製造方法、ナノファイバ製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062725A JP4892508B2 (ja) 2008-03-12 2008-03-12 ナノファイバ製造方法、ナノファイバ製造装置

Publications (2)

Publication Number Publication Date
JP2009215683A true JP2009215683A (ja) 2009-09-24
JP4892508B2 JP4892508B2 (ja) 2012-03-07

Family

ID=41187816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062725A Expired - Fee Related JP4892508B2 (ja) 2008-03-12 2008-03-12 ナノファイバ製造方法、ナノファイバ製造装置

Country Status (1)

Country Link
JP (1) JP4892508B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144266A (ja) * 2008-12-17 2010-07-01 Panasonic Corp 高分子ウェブの製造方法及び装置
JP2012122151A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置及びナノ繊維製造方法
JP2012122154A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置
JP2012122152A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置
JP2012127008A (ja) * 2010-12-13 2012-07-05 Kurita Water Ind Ltd ナノファイバー不織布の製造方法及び装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270070A (ja) * 2003-03-07 2004-09-30 Osaka Gas Co Ltd 極細繊維フェルトの製造装置及びその製造方法
JP2006524739A (ja) * 2003-03-07 2006-11-02 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ポリマー配合物を静電加工する装置及び方法
JP2007505224A (ja) * 2003-09-08 2007-03-08 テクニカ ウニヴェルズィタ ブイ リベルシー 静電紡糸法によりポリマー溶液からナノファイバーを製造する方法およびその実施装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004270070A (ja) * 2003-03-07 2004-09-30 Osaka Gas Co Ltd 極細繊維フェルトの製造装置及びその製造方法
JP2006524739A (ja) * 2003-03-07 2006-11-02 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム ポリマー配合物を静電加工する装置及び方法
JP2007505224A (ja) * 2003-09-08 2007-03-08 テクニカ ウニヴェルズィタ ブイ リベルシー 静電紡糸法によりポリマー溶液からナノファイバーを製造する方法およびその実施装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144266A (ja) * 2008-12-17 2010-07-01 Panasonic Corp 高分子ウェブの製造方法及び装置
JP2012122151A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置及びナノ繊維製造方法
JP2012122154A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置
JP2012122152A (ja) * 2010-12-06 2012-06-28 Toptec Co Ltd ナノ繊維製造装置
JP2012127008A (ja) * 2010-12-13 2012-07-05 Kurita Water Ind Ltd ナノファイバー不織布の製造方法及び装置

Also Published As

Publication number Publication date
JP4892508B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
WO2009122669A1 (ja) ナノファイバ製造装置、ナノファイバ製造方法
US20100148405A1 (en) Nanofiber producing method and nanofiber producing apparatus
JP4877140B2 (ja) ナノファイバーの製造方法及び装置
JP4892508B2 (ja) ナノファイバ製造方法、ナノファイバ製造装置
JP2009270221A (ja) ナノファイバ製造装置
US20110278751A1 (en) Nanofiber production device and nanofiber production method
JP5226558B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4866872B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4960279B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5216551B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP5417285B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4780140B2 (ja) 不織布製造装置
JP4966932B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4939467B2 (ja) ナノファイバ製造方法、ナノファイバ製造装置
JP4934638B2 (ja) ナノファイバ製造装置
JP4837698B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4965521B2 (ja) ナノファイバ製造装置
JP4972027B2 (ja) ナノファイバ製造装置、不織布製造装置
JP4965533B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4965525B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法
JP4939478B2 (ja) ナノファイバ製造方法
JP2010163715A (ja) ナノファイバ製造装置、および製造方法
JP4879915B2 (ja) ナノファイバ製造装置、不織布製造装置
JP4907571B2 (ja) ナノファイバ製造装置、不織布製造装置
JP4927793B2 (ja) ナノファイバ製造装置、ナノファイバ製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4892508

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees