JP2009213210A - Vibrating motor - Google Patents

Vibrating motor Download PDF

Info

Publication number
JP2009213210A
JP2009213210A JP2008051523A JP2008051523A JP2009213210A JP 2009213210 A JP2009213210 A JP 2009213210A JP 2008051523 A JP2008051523 A JP 2008051523A JP 2008051523 A JP2008051523 A JP 2008051523A JP 2009213210 A JP2009213210 A JP 2009213210A
Authority
JP
Japan
Prior art keywords
magnet
main magnet
yoke
movable part
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008051523A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Keiji Oshima
恵司 大嶋
Satoyuki Matsushita
智行 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008051523A priority Critical patent/JP2009213210A/en
Publication of JP2009213210A publication Critical patent/JP2009213210A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce only restoring force, without causing reduction in the thrust increasing effect of a secondary main magnet, and thereby enabling reduction in the size and the price and enhancement of efficiency. <P>SOLUTION: The vibrating motor includes a movable part and two leg parts, opposed to the movable part with a void part in-between. The movable part includes: a substantially cylindrical first main magnet comprised of a permanent magnet magnetized in the radial direction; a substantially cylindrical sub-magnet comprising a permanent magnet magnetized in the axial direction; and a substantially cylindrical second main magnet comprising a permanent magnet magnetized in a polarity opposite that of the first main magnet. The sub-magnet and the second main magnet are coaxially and disposed symmetrically, with respect to the first main magnet. The motor further includes an excitation yoke disposed coaxially with the movable part; an exciting coil that is wound on the excitation yoke and produces magnetic flux at the leg parts; and a cylindrical back yoke, placed so as to oppose the excitation yoke, with the movable part in-between. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スターリング冷凍機の振動型圧縮機等に使用可能な振動型モータに関するものである。   The present invention relates to a vibration type motor that can be used in a vibration type compressor of a Stirling refrigerator.

従来から、この種の振動型モータとして、可動磁石型のリニアモータ(以下、単に可動磁石型モータともいう)が使用されている。
図5,図6は、可動磁石型モータの駆動原理を説明するための概略的な構成図であり、何れもほぼ円筒状のモータの中心軸Cに沿った断面図の一部を示している。
図5において、101は励磁ヨーク、102は励磁コイル、103はバックヨーク、104は励磁ヨーク101とバックヨーク103との間の空隙部に配置され、かつ内周側及び外周側が異極に着磁された円筒状の永久磁石からなる可動部、110は可動部104による磁束である。可動部104の内部に記載された矢印は磁化方向(矢印先端がN極、矢印後端がS極)を示している。なお、可動部104を支持するケーシングは図示を省略してある。
多くの可動磁石型モータでは、図示する如く可動部104として単極着磁された単一の永久磁石が使用されており、この可動部104はピストン(図示せず)と一体的に連結されていると共に、可動部104の軸方向両端部は、励磁ヨーク101の脚幅内に収められている。
図5に示すように、可動部104の外周側をN極、内周側をS極とした場合、外周側から発生した磁束110は可動部104の外側を回って内周側に戻る。このため、可動部104の軸方向両端部では、上記の磁束110が、あたかも紙面垂直方向にそれぞれ逆向きに電流を流した場合に発生する磁束と等価になる。これを、永久磁石の等価電流IMと呼ぶ。
Conventionally, a movable magnet type linear motor (hereinafter also simply referred to as a movable magnet type motor) has been used as this type of vibration type motor.
FIG. 5 and FIG. 6 are schematic configuration diagrams for explaining the driving principle of the movable magnet type motor, and all show a part of a sectional view along the central axis C of the substantially cylindrical motor. .
In FIG. 5, 101 is an exciting yoke, 102 is an exciting coil, 103 is a back yoke, 104 is disposed in a gap between the exciting yoke 101 and the back yoke 103, and the inner and outer peripheral sides are magnetized to have different polarities. The movable part 110 made of a cylindrical permanent magnet is a magnetic flux generated by the movable part 104. The arrow written inside the movable portion 104 indicates the magnetization direction (the arrow tip is the N pole, and the arrow rear end is the S pole). The casing that supports the movable portion 104 is not shown.
In many movable magnet type motors, a single permanent magnet magnetized as the movable part 104 is used as shown in the figure, and this movable part 104 is integrally connected to a piston (not shown). In addition, both end portions in the axial direction of the movable portion 104 are accommodated within the leg width of the excitation yoke 101.
As shown in FIG. 5, when the outer peripheral side of the movable part 104 is an N pole and the inner peripheral side is an S pole, the magnetic flux 110 generated from the outer peripheral side goes around the outer side of the movable part 104 and returns to the inner peripheral side. For this reason, at the both ends in the axial direction of the movable portion 104, the magnetic flux 110 is equivalent to the magnetic flux generated when current flows in the opposite direction in the direction perpendicular to the paper surface. This is called the equivalent current I M of the permanent magnet.

図6に示す如く、励磁コイル102に交流電流を加えて磁束Φを発生させ、この磁束Φを等価電流IMが存在する空隙部Gに鎖交させると、空隙部Gに配置された可動部104は、フレミングの左手の法則に従い、図の左右方向の力(推力)を受けて往復運動する。
上記の推力Fは、簡易的に数式1によって算出することができる。
As shown in FIG. 6, when an alternating current is applied to the exciting coil 102 to generate a magnetic flux Φ and this magnetic flux Φ is linked to the gap G where the equivalent current I M exists, the movable part disposed in the gap G In accordance with Fleming's left-hand rule, 104 reciprocates in response to a horizontal force (thrust) in the figure.
The thrust F can be simply calculated by Equation 1.

Figure 2009213210
ここで、Bは空隙部Gに発生させた磁束Φの磁束密度、LMは可動部104の周方向の平均長さである。
数式1において、通常のB・I・L則と異なって等価電流IMが2倍されているのは、本モデルでは可動部104の軸方向両端部の2箇所に等価電流IMが存在するためである。
一方、可動部104は、図示していない軸方向に適正なばね力を持つ機械ばね(例えば、コイルばねや板ばね)を設置している(特許文献2参照)。これは、機械振動の共振点で運転させることで、入力電力を抑えることができるからである。一般的には、スターリング冷凍機では、40〜80Hzの比較的低周波数で運転される。
単純なばね質量系の固有周波数fは、ばね定数k、可動質量mとして次式で与えられる。
Figure 2009213210
Here, B is the magnetic flux density of the magnetic flux Φ generated in the gap G, and L M is the average length in the circumferential direction of the movable portion 104.
In Equation 1, the equivalent current I M is doubled unlike the normal B · I · L rule. In this model, the equivalent current I M exists at two positions on both ends of the movable portion 104 in the axial direction. Because.
On the other hand, the movable part 104 is provided with a mechanical spring (for example, a coil spring or a leaf spring) having an appropriate spring force in the axial direction (not shown) (see Patent Document 2). This is because the input power can be suppressed by operating at the resonance point of mechanical vibration. Generally, a Stirling refrigerator is operated at a relatively low frequency of 40 to 80 Hz.
The natural frequency f of a simple spring mass system is given by the following equation as a spring constant k and a movable mass m.

Figure 2009213210
また、本発明の振動型モータを圧縮機として使用する場合、ばね定数kは以下のように表される。
Figure 2009213210
When the vibration type motor of the present invention is used as a compressor, the spring constant k is expressed as follows.

Figure 2009213210
ここで、
spは機械ばねによるばね定数、
magは可動部磁石の復元力によるばね定数、
gasは圧縮ガスによるばね定数である。
そのうち、kgasは要求される冷凍出力により、作動ガスの封入圧力と圧縮比でほぼ決まってしまうため、意図的に調整することは困難である。図5,図6のように、可動部104が単極着磁された単一の永久磁石の場合には、磁石の復元力は可動領域においてほとんど作用しないため、実用上kmagを考慮する必要は無い。したがって、機械ばね定数kspの調整可能範囲が広く、設計が比較的容易である。
ところで、モータの体格を変えずに(LM=一定)、推力Fを大きくするためには、数式1から明らかなように、空隙部の磁束密度Bまたは等価電流IMを増加させればよい。
まず、磁束密度Bを増加させるには、空隙部のギャップ長を短くするか、励磁コイル102を流れる励磁電流を増加させる必要がある。しかし、前者の方法は、可動部104及びそれを支える部材が薄くなるため強度不足や加工コストの上昇を招き易く、後者の方法はジュール熱損失(I2R)が増大して性能の低下を招くという問題がある。
Figure 2009213210
here,
k sp is a spring constant by a mechanical spring,
k mag is the spring constant due to the restoring force of the moving part magnet,
k gas is a spring constant by compressed gas.
Of these, k gas is almost determined by the pressure and compression ratio of the working gas depending on the required refrigeration output, so it is difficult to adjust it intentionally. As shown in FIGS. 5 and 6, in the case where the movable part 104 is a single permanent magnet magnetized with a single pole, the restoring force of the magnet hardly acts in the movable region, so it is necessary to consider k mag practically. There is no. Therefore, the adjustable range of the mechanical spring constant ksp is wide and the design is relatively easy.
By the way, in order to increase the thrust F without changing the physique of the motor (L M = constant), it is sufficient to increase the magnetic flux density B or the equivalent current I M in the air gap as is apparent from Equation 1. .
First, in order to increase the magnetic flux density B, it is necessary to shorten the gap length of the gap or increase the exciting current flowing through the exciting coil 102. However, in the former method, the movable part 104 and the member supporting it are thinned, so that the strength is insufficient and the processing cost is likely to increase. The latter method increases Joule heat loss (I 2 R) and decreases performance. There is a problem of inviting.

一方、等価電流IMを増加させるには、可動部104としての永久磁石の厚さを変えるほか、磁力がより大きい永久磁石を使うことが考えられるが、いずれもコストを上昇させる原因となる。
そこで、推力Fを大きくするための別の方法として、図7に示すような構造が考えられる。この可動磁石型モータは、円筒状の一次主磁石105の軸方向両端部に、一次主磁石105とは逆方向に着磁された円筒状の一対の二次主磁石107を同軸状かつ一体的に接合して可動部104Aを形成し、等価電流IMを仮想的に増加させたものである。
なお、図7の構造によると、非励磁状態において一次主磁石105と二次主磁石107との接合部分において磁束が打ち消し合うことにより、図5,図6の構造に比べて可動部104Aの中立位置における保持力が強くなり、いわゆる自動中立位置決め(セルフセンタリング)が容易になるという利点もある。
図7に示したように、一次主磁石と一対の二次主磁石とからなる可動部を備えた従来技術として、特許文献1に記載された可動磁石型モータが公知となっている。
図8は、特許文献1に記載された可動磁石型モータの構成図である。図8において、201はバックヨーク、202は励磁コイル、203は励磁ヨーク、204は可動部、205は一次主磁石、207は二次主磁石、300はスターリングエンジン、301はケーシング、302はピストン、303はディスプレイサーである。また、210は可動部204の中立位置を示す。
米国特許第5148066号明細書(Fig.1) 特開2005−9397号公報
On the other hand, in order to increase the equivalent current I M , it is conceivable to use a permanent magnet having a larger magnetic force in addition to changing the thickness of the permanent magnet as the movable portion 104. However, both of them cause an increase in cost.
Therefore, as another method for increasing the thrust F, a structure as shown in FIG. 7 can be considered. In this movable magnet type motor, a pair of cylindrical secondary main magnets 107 magnetized in the opposite direction to the primary main magnet 105 are coaxially and integrally formed at both axial ends of the cylindrical primary main magnet 105. Are joined to each other to form a movable portion 104A, and the equivalent current I M is virtually increased.
According to the structure of FIG. 7, the magnetic flux cancels out at the joint portion between the primary main magnet 105 and the secondary main magnet 107 in the non-excited state, so that the neutral portion of the movable portion 104A is compared with the structures of FIGS. There is also an advantage that the holding force at the position becomes strong and so-called automatic neutral positioning (self-centering) becomes easy.
As shown in FIG. 7, a movable magnet type motor described in Patent Document 1 is known as a prior art provided with a movable portion including a primary main magnet and a pair of secondary main magnets.
FIG. 8 is a configuration diagram of the movable magnet type motor described in Patent Document 1. In FIG. In FIG. 8, 201 is a back yoke, 202 is an excitation coil, 203 is an excitation yoke, 204 is a movable part, 205 is a primary main magnet, 207 is a secondary main magnet, 300 is a Stirling engine, 301 is a casing, 302 is a piston, Reference numeral 303 denotes a display server. Reference numeral 210 denotes a neutral position of the movable unit 204.
US Pat. No. 5,148,066 (FIG. 1) Japanese Patent Laid-Open No. 2005-9397

図8に示した従来技術によると、可動部204を軸方向に変位させた場合、可動部204に大きな復元力が働くためにピストンストロークを十分に確保できない場合がある。
上記の復元力を緩和する対策として、特許文献1のFig.7A,8Aには、二次主磁石を三角形に形成したり厚さを薄くする等の方法により形状、構造を変化させることが開示されているが、これらの形状等を最適値に設計するためにはパラメータが非常に多くなり、二次主磁石の設計が困難になるという問題があった。また、二次主磁石を三角形にする等の方法を採ると、等価電流IMが減少し、復元力だけでなく推力増大効果も低減させてしまうという問題もあった。
一方、何ら復元力を緩和する対策を施さない場合には、一次主磁石と二次主磁石に大きな復元力が働くため、数式3に示したkmagを考慮しなければならない。数式2および数式3から明らかなように、kmagが大きくなると機械振動の共振を調整するための機械ばねの設計要求範囲が狭くなり、低周波数共振の設計が困難となる。
この場合、支持ばね(機械ばね)の径方向の保持力を小さくして全体のばね力を弱める、数式2における可動質量mを大きくする、といったことも考えられる。しかし、これらの対策では、ピストンとシリンダを非接触に支持することができない、全体の重量が重くなり大型化する、といった問題がある。
According to the prior art shown in FIG. 8, when the movable part 204 is displaced in the axial direction, a large restoring force acts on the movable part 204, so that a sufficient piston stroke may not be ensured.
As a measure for alleviating the restoring force, FIG. 7A and 8A disclose that the shape and structure are changed by a method such as forming the secondary main magnet into a triangle or reducing the thickness, but in order to design these shapes to the optimum values. Has a problem that the number of parameters becomes very large and the design of the secondary main magnet becomes difficult. Further, when a method such as making the secondary main magnet into a triangle is adopted, there is a problem that the equivalent current I M is reduced, and not only the restoring force but also the thrust increasing effect is reduced.
On the other hand, when no measures are taken to mitigate the restoring force, a large restoring force acts on the primary main magnet and the secondary main magnet, so the k mag shown in Equation 3 must be considered. As is clear from Equations 2 and 3, when k mag is increased, the design requirement range of the mechanical spring for adjusting the resonance of the mechanical vibration becomes narrow, and the design of the low frequency resonance becomes difficult.
In this case, it is conceivable that the holding force in the radial direction of the support spring (mechanical spring) is reduced to weaken the overall spring force, or the movable mass m in Formula 2 is increased. However, these measures have problems that the piston and the cylinder cannot be supported in a non-contact manner, and that the overall weight increases and the size increases.

また、二次主磁石がある場合、バックヨーク内を通過する磁束が増大するため、磁束通過方向のバックヨーク断面積を増大させる必要が生じ、大型化するといった問題があった。さらには、軸方向への往復運動時のバックヨーク内の磁束変化も大きくなるため、バックヨーク内に発生する渦電流により効率が低下するといった問題もあった。
そこで、本発明の解決課題は、二次主磁石による推力増大効果を低減させずに復元力のみを低減させて振動型モータの共振設計を容易にし、かつ、バックヨーク内に発生する渦電流を低減させ、推力の増大、及び小型化、高効率化を可能にした振動型モータを提供することにある。
Further, when there is a secondary main magnet, since the magnetic flux passing through the back yoke increases, it is necessary to increase the cross-sectional area of the back yoke in the magnetic flux passing direction, resulting in a problem that the size is increased. Furthermore, since the change in magnetic flux in the back yoke during reciprocating motion in the axial direction also increases, there is a problem in that the efficiency decreases due to eddy currents generated in the back yoke.
Therefore, the problem to be solved by the present invention is to make the resonance design of the vibration type motor easy by reducing only the restoring force without reducing the thrust increase effect by the secondary main magnet, and to reduce the eddy current generated in the back yoke. An object of the present invention is to provide a vibration type motor that can reduce the thrust, increase the size, and reduce the size and increase the efficiency.

上記課題を解決するため、請求項1に係る発明は、径方向に着磁された永久磁石からなるほぼ円筒状の第1の主磁石と、軸方向に着磁された永久磁石からなるほぼ円筒状の副磁石と、前記第1の主磁石と逆極性に着磁された永久磁石からなるほぼ円筒状の第2の主磁石とが、第1の主磁石を中心として副磁石と第2の主磁石が同軸上対称に配置された可動部、空隙部を介して前記可動部に対向する二つの脚部を備え、前記可動部と同軸上に配置される励磁ヨーク、前記励磁ヨークに巻装され、前記脚部に磁束を発生させる励磁コイル、前記可動部を間に挟んで、前記励磁ヨークと対向するように配置された円筒状のバックヨークを備え、前記励磁コイルに交流電流を通流して前記可動部を軸方向に往復動させるようにしたことを特徴とする。
請求項2に係る発明は、請求項1に記載した振動型モータにおいて、前記第1の主磁石と前記第2の主磁石による磁束と、前記副磁石による磁束とが、前記励磁ヨーク側では同じ方向となり、前記バックヨーク側では逆方向となるように、各磁石を配置することを特徴とする。
請求項3に係る発明は、請求項1または2に記載した振動型モータにおいて、前記第1の主磁石と前記第2の主磁石の軸方向長さの比が2:1であることを特徴とする。
In order to solve the above-mentioned problems, the invention according to claim 1 is a substantially cylindrical first main magnet made of a permanent magnet magnetized in the radial direction and a substantially cylinder made of a permanent magnet magnetized in the axial direction. And a substantially cylindrical second main magnet composed of a permanent magnet magnetized in the opposite polarity to the first main magnet, the sub magnet and the second magnet centering on the first main magnet. The main magnet is provided with a movable part coaxially arranged symmetrically, and two leg parts facing the movable part via a gap, and is wound around the excitation yoke and coaxially arranged with the movable part. An excitation coil for generating a magnetic flux in the leg portion, and a cylindrical back yoke arranged to face the excitation yoke with the movable portion interposed therebetween, and an alternating current is passed through the excitation coil. The movable portion is reciprocated in the axial direction.
The invention according to claim 2 is the vibration type motor according to claim 1, wherein the magnetic flux generated by the first main magnet and the second main magnet and the magnetic flux generated by the sub magnet are the same on the excitation yoke side. Each magnet is arranged so as to be in the direction and in the opposite direction on the back yoke side.
The invention according to claim 3 is the vibration type motor according to claim 1 or 2, wherein a ratio of axial lengths of the first main magnet and the second main magnet is 2: 1. And

請求項4に係る発明は、請求項1乃至3に記載した振動型モータにおいて、前記副磁石の軸方向長さの1/2と前記可動部の軸方向の最大変位量を足した値が、前記励磁ヨークの脚部の軸方向長さの1/2よりも小さくなるように構成したことを特徴とする。   According to a fourth aspect of the present invention, in the vibration type motor according to the first to third aspects, a value obtained by adding 1/2 of the axial length of the sub-magnet and the maximum displacement amount of the movable portion in the axial direction is: The excitation yoke is configured to be smaller than ½ of the axial length of the leg portion.

請求項1の発明によれば、推力増大効果を維持したまま軸方向復元力を低減させることができる。
請求項2の発明によれば、バックヨーク側の発生磁束を低減させることができ、バックヨーク内の渦電流によるロスが低減できるため、高効率化を図ることができる。
請求項3の発明によれば、第1の主磁石と第2の主磁石の総磁束が一致し、励磁ヨークの通過磁束を低減できるため、励磁ヨークの外周部の断面積を小さくすることが可能なり、小型化することができる。さらに、通過磁束の減少により、渦電流によるロスを低減させることができる。
請求項4の発明によれば、往復運動時において第1の主磁石および第2の主磁石の端部が常に脚部内に収まることで、等価電流IMを推力増大要素として確実に利用できる。
According to the first aspect of the present invention, the axial restoring force can be reduced while maintaining the thrust increasing effect.
According to the invention of claim 2, since the magnetic flux generated on the back yoke side can be reduced and the loss due to the eddy current in the back yoke can be reduced, high efficiency can be achieved.
According to the invention of claim 3, since the total magnetic fluxes of the first main magnet and the second main magnet coincide with each other and the passing magnetic flux of the exciting yoke can be reduced, the cross-sectional area of the outer peripheral portion of the exciting yoke can be reduced. It is possible to reduce the size. Furthermore, loss due to eddy current can be reduced by reducing the passing magnetic flux.
According to the fourth aspect of the present invention, the end portions of the first main magnet and the second main magnet are always within the leg during the reciprocating motion, so that the equivalent current I M can be reliably used as the thrust increasing element.

以下、図に沿って本発明の実施形態を説明する。
図1は本発明の主要部を示す構成図であり、図5〜図8と同様に、ほぼ円筒状のモータの中心軸Cに沿った断面図の一部を示している。
図1において、1は励磁ヨーク、2は励磁ヨーク1に巻装された励磁コイル、3はバックヨーク、4は励磁ヨーク1とバックヨーク3との間の空隙部に配置された円筒状の永久磁石からなる可動部である。なお、可動部4を支持するケーシングは図示を省略してある。
可動部4は、外周側をN極、内周側をS極に着磁した円筒状の一次主磁石5と、軸方向内側をN極、軸方向外側をS極に着磁した一対の円筒状の副磁石6と、一次主磁石5とは逆方向に着磁された一対の円筒状の二次主磁石7とが、一次主磁石5を中心として、副磁石6、二次主磁石7の順番で対称に連結して構成されている。なお、一次主磁石5、副磁石6、一次主磁石7の内部に記載された矢印は磁化方向(矢印先端がN極、矢印後端がS極)を示しており、可動部4は磁化方向を90度変えて配列されたハルバッハ型磁石となっている。
なお、一次主磁石5、二次主磁石7、副磁石6には、例えばネオジウムやサマリウムといった希土類の永久磁石が用いられる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a main part of the present invention, and shows a part of a sectional view along a central axis C of a substantially cylindrical motor, similarly to FIGS.
In FIG. 1, 1 is an excitation yoke, 2 is an excitation coil wound around the excitation yoke 1, 3 is a back yoke, and 4 is a cylindrical permanent arranged in a gap between the excitation yoke 1 and the back yoke 3. It is a movable part made of a magnet. In addition, the casing which supports the movable part 4 is abbreviate | omitting illustration.
The movable portion 4 includes a cylindrical primary main magnet 5 magnetized with an N pole on the outer peripheral side and an S pole on the inner peripheral side, and a pair of cylinders magnetized with an N pole on the inner side in the axial direction and an S pole on the outer side in the axial direction. A sub-magnet 6 and a pair of cylindrical secondary main magnets 7 magnetized in the opposite direction to the primary main magnet 5, with the primary main magnet 5 as the center, the sub-magnet 6 and the secondary main magnet 7. In this order, they are connected symmetrically. In addition, the arrow described inside the primary main magnet 5, the submagnet 6, and the primary main magnet 7 has shown the magnetization direction (the arrow tip is N pole and the arrow back end is S pole), and the movable part 4 is a magnetization direction. It is a Halbach magnet arranged by changing 90 degrees.
For the primary main magnet 5, the secondary main magnet 7, and the secondary magnet 6, for example, rare earth permanent magnets such as neodymium and samarium are used.

励磁ヨーク1は、軟磁性材を切削加工されたブロック、鉄板や珪素鋼板などを積層したもの、または軟磁性材料を焼結して形成したもので形成されている。振動型モータのように交番磁界が加わる場合には、磁束に垂直な方向に渦電流が発生して性能を低下させるため、積層鋼板等を用いて磁束に垂直な方向を絶縁することが好ましい。
バックヨーク3は軟磁性体材料で形成され、軸方向端部は図示するように励磁ヨークの脚部11の軸方向外端部と一致している。
次に、可動部4にハルバッハ型磁石を採用したことによる効果について説明する。
図1に示すように、本発明では、一次主磁石5と二次主磁石7による磁束21と副磁石6による磁束22が発生する。磁束21と磁束22は、励磁ヨーク側では同じ方向のため磁束を強めあうが、バックヨーク側では逆方向のために弱めあうこととなり、バックヨーク3を通過する磁束が大幅に低減される。これにより、バックヨーク3を薄く構成することが可能となり、また、軸方向の磁気による復元力も小さくなることで機械ばねの共振設計の範囲を広く取ることができる。さらに、バックヨークをリングで製作した場合でも、磁石の往復運動による磁束変化が小さくなるため、渦電流を低減することができる。
図2は本発明の動作時の原理を示した図である。
The excitation yoke 1 is formed of a block obtained by cutting a soft magnetic material, a laminate of iron plates, silicon steel plates, or the like, or a sintered soft magnetic material. When an alternating magnetic field is applied like a vibration type motor, an eddy current is generated in a direction perpendicular to the magnetic flux to deteriorate the performance. Therefore, it is preferable to insulate the direction perpendicular to the magnetic flux using a laminated steel plate or the like.
The back yoke 3 is made of a soft magnetic material, and its axial end coincides with the axial outer end of the leg 11 of the exciting yoke as shown.
Next, the effect by adopting the Halbach magnet for the movable part 4 will be described.
As shown in FIG. 1, in this invention, the magnetic flux 21 by the primary main magnet 5 and the secondary main magnet 7, and the magnetic flux 22 by the submagnet 6 generate | occur | produce. Since the magnetic flux 21 and the magnetic flux 22 are in the same direction on the exciting yoke side, the magnetic flux is strengthened, but on the back yoke side, the magnetic flux is weakened in the opposite direction, so that the magnetic flux passing through the back yoke 3 is greatly reduced. As a result, the back yoke 3 can be made thin, and the restoring force due to the magnetism in the axial direction is reduced, so that the range of resonance design of the mechanical spring can be widened. Furthermore, even when the back yoke is manufactured by a ring, the change in magnetic flux due to the reciprocating motion of the magnet is reduced, so that eddy current can be reduced.
FIG. 2 is a diagram showing the principle of operation of the present invention.

図2の如く、コイルに紙面垂直下向き方向に電流を流した場合、励磁ヨークには図に示すような時計回り方向に励磁磁束31が発生し、図示した一次主磁石5、副磁石6、二次主磁石7の等価電流IMにより、可動部4はフレミングの左手の方向により励磁ヨーク1の2つの脚部11で左向きに力を受ける。なお、副磁石6は両方向の等価電流IMを持っているために力は相殺され、一次主磁石5と二次主磁石7で構成することにより得られる推力増大効果を減少することはない。また、励磁コイル2に逆向き(紙面垂直上向き方向)の電流を流せば、右側に力が発生する。したがって、励磁コイル2に正弦波電流を流すことで、往復運動を実現する。
次に、ハルバッハ型磁石を採用してより大きな効果を奏するため、さらに各永久磁石は以下のように構成する。
図3は本発明の実施形態における脚部付近の拡大図である。
図3に示すように、可動部4の軸方向中心と励磁ヨーク2の軸方向中心が一致する場合(励磁コイル2が無励磁状態)において、各副磁石6の軸方向中心と各励磁ヨーク脚部11の軸方向中心が一致するように構成され、かつ、副磁石6の長さLa、可動部4の最大変位量Ymax、励磁ヨーク脚部11の軸方向幅Lyは、Ymax+La/2<Ly/2の関係を満たすように構成されている。これにより、往復運動時において一次主磁石5および二次主磁石7の端部が脚部11内に収まることで、等価電流IMを推力増大要素として利用できるためである。
As shown in FIG. 2, when a current is passed through the coil in a direction perpendicular to the plane of the drawing, an exciting magnetic flux 31 is generated in the exciting yoke in the clockwise direction as shown in the figure, and the primary main magnet 5, submagnet 6, Due to the equivalent current I M of the next main magnet 7, the movable part 4 receives a force in the left direction at the two legs 11 of the exciting yoke 1 in the direction of the left hand of Fleming. Since the secondary magnet 6 has an equivalent current I M in both directions, the force is canceled out, and the effect of increasing the thrust obtained by comprising the primary main magnet 5 and the secondary main magnet 7 is not reduced. Further, when a current in the reverse direction (vertical upward direction in the drawing) is passed through the exciting coil 2, a force is generated on the right side. Therefore, a reciprocating motion is realized by passing a sine wave current through the exciting coil 2.
Next, in order to obtain a greater effect by employing the Halbach magnet, each permanent magnet is further configured as follows.
FIG. 3 is an enlarged view of the vicinity of the legs in the embodiment of the present invention.
As shown in FIG. 3, when the axial center of the movable part 4 and the axial center of the excitation yoke 2 coincide (excitation coil 2 is in a non-excited state), the axial center of each submagnet 6 and each excitation yoke leg. And the length La of the submagnet 6, the maximum displacement Ymax of the movable portion 4, and the axial width Ly of the exciting yoke leg 11 are Ymax + La / 2 <Ly. It is comprised so that the relationship of / 2 may be satisfy | filled. Thereby, the end portions of the primary main magnet 5 and the secondary main magnet 7 are accommodated in the leg portion 11 during the reciprocating motion, so that the equivalent current I M can be used as a thrust increasing element.

また、二次主磁石7の長さは、可動部4の変位が最大変位量Ymaxに達した場合においても二次主磁石7の最外端が励磁ヨーク脚部11内に達しない長さを有する。二次主磁石7の長さが短い場合、二次主磁石7の外端に存在する等価電流IM(図3参照)による反力が発生し、推力増大効果が低減してしまうからである。
さらに、図4に示すように二次主磁石7の軸方向長さが、一次主磁石5の軸方向長さの1/2となっていない場合には、可動時における励磁ヨーク1およびバックヨーク3の通過磁束は励磁コイル2による磁束31と一次主磁石5および二次主磁石7からの漏洩磁束32が通過することとなる。しかし、二次主磁石7の軸方向長さを、一次主磁石5の軸方向長さの1/2にすることにより、一次主磁石5と二次主磁石7の発生磁束が一致するため、励磁ヨーク1およびバックヨーク3の通過磁束は漏洩磁束32がなくなり励磁コイル2より発生する磁束31のみとなるため、励磁ヨーク外周部の断面積を小さくすることが可能となり、振動モータを小型化できる。
上述した実施形態では、励磁ヨーク1を可動部4の円半径方向外側、バックヨーク3を可動部4の円半径方向内側に配置してあるが、励磁ヨーク1とバックヨーク3を逆に配置しても良い。
Further, the length of the secondary main magnet 7 is such that the outermost end of the secondary main magnet 7 does not reach the inside of the excitation yoke leg 11 even when the displacement of the movable portion 4 reaches the maximum displacement amount Ymax. Have. This is because, when the length of the secondary main magnet 7 is short, a reaction force due to the equivalent current I M (see FIG. 3) existing at the outer end of the secondary main magnet 7 is generated, and the thrust increasing effect is reduced. .
Furthermore, when the axial length of the secondary main magnet 7 is not ½ of the axial length of the primary main magnet 5 as shown in FIG. 3 passes through the magnetic flux 31 generated by the exciting coil 2 and the leakage magnetic flux 32 from the primary main magnet 5 and the secondary main magnet 7. However, since the axial length of the secondary main magnet 7 is ½ of the axial length of the primary main magnet 5, the generated magnetic fluxes of the primary main magnet 5 and the secondary main magnet 7 coincide with each other. Since the magnetic flux passing through the excitation yoke 1 and the back yoke 3 is only the magnetic flux 31 generated from the excitation coil 2 without the leakage magnetic flux 32, the sectional area of the outer periphery of the excitation yoke can be reduced, and the vibration motor can be downsized. .
In the embodiment described above, the excitation yoke 1 is arranged on the outer side in the circular radial direction of the movable part 4 and the back yoke 3 is arranged on the inner side in the circular radial direction of the movable part 4. However, the excitation yoke 1 and the back yoke 3 are arranged oppositely. May be.

また、本発明に係る振動型モータは、スターリング冷凍機の振動型圧縮機等に適用することができる。   The vibration type motor according to the present invention can be applied to a vibration type compressor of a Stirling refrigerator.

本発明の実施形態を示す構成図Configuration diagram showing an embodiment of the present invention 本発明の動作時の状態を示した図The figure which showed the state at the time of operation | movement of this invention 本発明の実施形態における脚部付近の拡大図The enlarged view near the leg in the embodiment of the present invention 二次主磁石7の軸方向長さが、一次主磁石5の軸方向長さの1/2となっていない場合における磁束を表した図The figure showing the magnetic flux in the case where the axial length of the secondary main magnet 7 is not ½ of the axial length of the primary main magnet 5 可動磁石型モータの構成図Configuration diagram of movable magnet type motor 可動磁石型モータの駆動原理を説明するための図The figure for explaining the drive principle of the movable magnet type motor 従来技術を示す構成図Configuration diagram showing conventional technology 特許文献1に記載された従来技術を示す構成図The block diagram which shows the prior art described in patent document 1

符号の説明Explanation of symbols

1,101,201:励磁ヨーク
2,102,202:励磁コイル
3,103,203:バックヨーク
4,104,104A,204:可動部
5,105,205:一次主磁石
6:副磁石
7,107,207:二次主磁石
11:脚部
1, 101, 201: Excitation yoke 2, 102, 202: Excitation coil 3, 103, 203: Back yoke 4, 104, 104A, 204: Movable part 5, 105, 205: Primary main magnet 6: Sub magnet 7, 107 207: Secondary main magnet 11: Leg part

Claims (4)

径方向に着磁された永久磁石からなるほぼ円筒状の第1の主磁石と、軸方向に着磁された永久磁石からなる一対のほぼ円筒状の副磁石と、前記第1の主磁石と逆極性に着磁された永久磁石からなる一対のほぼ円筒状の第2の主磁石とが、第1の主磁石を中心として第1の主磁石両端に副磁石、第2の主磁石の順番で同軸上対称に配置された可動部、
空隙部を介して前記可動部に対向する二つの脚部を備え、前記可動部と同軸上に配置される励磁ヨーク、
前記励磁ヨークに巻装され、前記脚部に磁束を発生させる励磁コイル、
前記可動部を間に挟んで、前記励磁ヨークと対向するように配置された円筒状のバックヨークを備え、
前記励磁コイルに交流電流を通流して前記可動部を軸方向に往復動させるようにしたことを特徴とする振動型モータ。
A substantially cylindrical first main magnet composed of a permanent magnet magnetized in the radial direction, a pair of substantially cylindrical submagnets composed of a permanent magnet magnetized in the axial direction, and the first main magnet; A pair of substantially cylindrical second main magnets composed of permanent magnets magnetized in opposite polarities are arranged in the order of sub magnets and second main magnets at both ends of the first main magnet with the first main magnet as the center. Movable parts arranged coaxially and symmetrically at
An excitation yoke provided with two legs facing the movable part via a gap, and arranged coaxially with the movable part;
An exciting coil wound around the exciting yoke and generating magnetic flux in the leg;
A cylindrical back yoke arranged so as to face the excitation yoke with the movable part interposed therebetween,
An oscillation type motor characterized in that an alternating current is passed through the excitation coil to reciprocate the movable part in the axial direction.
前記第1の主磁石と前記第2の主磁石による磁束と、前記副磁石による磁束とが、前記励磁ヨーク側では同じ方向となり、前記バックヨーク側では逆方向となるように、各磁石を配置することを特徴とする請求項1に記載した振動型モータ。   The magnets are arranged so that the magnetic flux generated by the first main magnet and the second main magnet and the magnetic flux generated by the sub magnet are in the same direction on the excitation yoke side and in the opposite directions on the back yoke side. The vibration type motor according to claim 1. 前記第1の主磁石と前記第2の主磁石の軸方向長さの比が2:1であることを特徴とする請求項1または2に記載した振動型モータ。   3. The vibration type motor according to claim 1, wherein a ratio of axial lengths of the first main magnet and the second main magnet is 2: 1. 4. 前記励磁コイルが無励磁の状態において、
前記励磁ヨークの各脚部の軸方向中心と、前記副磁石の軸方向中心とが一致するように各磁石を配置し、
前記副磁石の軸方向長さの1/2と前記可動部の軸方向の最大変位量を足した値が、前記励磁ヨークの一の脚部の軸方向長さの1/2よりも小さくなるように構成したことを特徴とする請求項1乃至3のいずれか1項に記載した振動型モータ。
In the state where the excitation coil is not excited,
The magnets are arranged so that the axial center of each leg of the excitation yoke coincides with the axial center of the sub-magnet,
A value obtained by adding 1/2 of the axial length of the secondary magnet and the maximum axial displacement of the movable portion is smaller than 1/2 of the axial length of one leg of the excitation yoke. The vibration type motor according to claim 1, wherein the vibration type motor is configured as described above.
JP2008051523A 2008-03-03 2008-03-03 Vibrating motor Withdrawn JP2009213210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051523A JP2009213210A (en) 2008-03-03 2008-03-03 Vibrating motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051523A JP2009213210A (en) 2008-03-03 2008-03-03 Vibrating motor

Publications (1)

Publication Number Publication Date
JP2009213210A true JP2009213210A (en) 2009-09-17

Family

ID=41185827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051523A Withdrawn JP2009213210A (en) 2008-03-03 2008-03-03 Vibrating motor

Country Status (1)

Country Link
JP (1) JP2009213210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851266B1 (en) * 2017-11-06 2018-04-23 주식회사 블루콤 Vibration motor with halbach magnet array
DE102021104761A1 (en) 2021-02-26 2022-09-01 Nachum Zabar Linear motor for linear pumps and linear compressors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101851266B1 (en) * 2017-11-06 2018-04-23 주식회사 블루콤 Vibration motor with halbach magnet array
DE102021104761A1 (en) 2021-02-26 2022-09-01 Nachum Zabar Linear motor for linear pumps and linear compressors
DE102021104761B4 (en) 2021-02-26 2024-02-29 Nachum Zabar Linear motor for linear pumps and linear compressors

Similar Documents

Publication Publication Date Title
JP5130947B2 (en) Axial gap type rotary electric machine and rotary drive device
JP4962040B2 (en) Vibration type motor
JP2007037273A (en) Vibratory linear actuator
JP2000253640A (en) Linear vibration motor
JP2022501988A (en) Linear electric machine
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
JP3818243B2 (en) Linear vibrator
JP2004056972A (en) Linear actuator
JP2001330329A (en) Linear compressor
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
JP2001251835A (en) Linear vibration actuator
US20080203829A1 (en) Vibrating-type motor
JP2010035315A (en) Actuator
US5903069A (en) Synchronous reciprocating electric machines
JP2009213210A (en) Vibrating motor
JP2009065754A (en) Vibrating-type motor
JP5391706B2 (en) Linear electromagnetic drive
JP2006034057A (en) Toroidal coil linear motor, cylinder compressor and pump using the same
US8049375B2 (en) Electromagnetic transducer apparatus
JP2010213431A (en) Linear electromagnetic device
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JP3624109B2 (en) Compressor for cryogenic refrigerator and armature coil used therefor
JP4770183B2 (en) Linear compressor
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
JP2002112519A (en) Electromagnetially reciprocating driver

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20101215

A711 Notification of change in applicant

Effective date: 20110422

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121226