JP2010200522A - Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor - Google Patents

Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor Download PDF

Info

Publication number
JP2010200522A
JP2010200522A JP2009043641A JP2009043641A JP2010200522A JP 2010200522 A JP2010200522 A JP 2010200522A JP 2009043641 A JP2009043641 A JP 2009043641A JP 2009043641 A JP2009043641 A JP 2009043641A JP 2010200522 A JP2010200522 A JP 2010200522A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic flux
magnetic
piston
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009043641A
Other languages
Japanese (ja)
Inventor
Hideo Misawa
秀雄 三澤
Shinji Katsuragawa
真治 桂川
Akira Hirano
明良 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2009043641A priority Critical patent/JP2010200522A/en
Publication of JP2010200522A publication Critical patent/JP2010200522A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and light-weighted reciprocation driving mechanism which obtains high efficiency by reducing an iron loss of a linear motor to freely reciprocate a piston inserted into a cylinder, to provide a compact and light-weighted cold storage type refrigerator using the reciprocation driving mechanism, which obtains high efficiency, and to provide a compressor. <P>SOLUTION: The reciprocation driving mechanism is constituted of a moving member 30 and a stator 21, and the moving member 30 includes: permanent magnets 32, 34 formed by magnetizing an outer peripheral surface to an N-pole and an S-pole in the radial direction, respectively; the permanent magnet 33 arranged in an axial gap between the permanent magnets 32 and 34, and magnetized in the direction of the permanent magnet 32 from the permanent magnet 34; and a piston 36 inserted into the cylinder 40 and coupled with the moving member 30. A stator 21 is arranged on the outer peripheral side of the permanent magnets 32, 34 with a predetermined distance, and includes an outer yoke 25 having a pair of magnetic pole pieces 22a, 23a and a pair of magnetic pole pieces 23b, 24a which face each other, respectively, with a predetermined distance in the axial direction, and arranged with coils 26, 27. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、シリンダに挿設したピストンを自在に往復動させる往復動駆動機構と、その往復動駆動機構を使用したスターリング冷凍機あるいはスターリング型パルス管冷凍機等の蓄冷型冷凍機及び圧縮機に関する。   The present invention relates to a reciprocating drive mechanism for freely reciprocating a piston inserted in a cylinder, a regenerative refrigerator and a compressor such as a Stirling refrigerator or a Stirling pulse tube refrigerator using the reciprocating drive mechanism. .

従来技術の往復動駆動機構及び往復動駆動機構を用いた蓄冷型冷凍機として、アウターヨークと、アウターヨークの内側に対向して配備される軟磁性鉄粉を成型して形成されたインナーヨークと、アウターヨークに設けたコイル部と、アウターヨークとの間に配置され、コイル部が発生する磁束の変化に従い往復動する永久磁石と、永久磁石を支持する可動子とを備えた電磁式アクチュエータ(往復動駆動機構)において、インナーヨークとアウターヨークに渦電流の発生を防止する欠切部を設けたものがある。そして、この電磁式アクチュエータと、可動子に接続したピストンと、ピストンを収容するシリンダと、ピストンと位相差を有して往復動するディスプレーサとを備えたスターリング機関が開示されている(例えば、特許文献1参照。)。   As a regenerative refrigerator using a conventional reciprocating drive mechanism and a reciprocating drive mechanism, an outer yoke, and an inner yoke formed by molding soft magnetic iron powder disposed facing the inner side of the outer yoke, An electromagnetic actuator having a permanent magnet that is disposed between a coil portion provided on the outer yoke and the outer yoke and reciprocates in accordance with a change in magnetic flux generated by the coil portion, and a mover that supports the permanent magnet ( In some reciprocating drive mechanisms, an inner yoke and an outer yoke are provided with notched portions for preventing the generation of eddy currents. A Stirling engine is disclosed that includes the electromagnetic actuator, a piston connected to the mover, a cylinder that houses the piston, and a displacer that reciprocates with a phase difference from the piston (for example, a patent). Reference 1).

また、円筒形状の保持体の外周面に導磁性を有する材料で形成された可動ヨークを設けると共に可動ヨークの外周面に径方向に磁化された永久磁石を設けた往復動部材と、永久磁石の外周面側に近接して設けられる固定子コアと、この固定子コアを励磁する電磁コイルとにより電磁往復機構(往復動駆動機構)を構成し、往復動部材にピストンを接続して電磁往復機構によりピストンを往復動させるスターリング冷凍機が開示されている(例えば、特許文献2参照。)。   Further, a reciprocating member provided with a movable yoke formed of a material having magnetic conductivity on the outer peripheral surface of a cylindrical holder and a permanent magnet magnetized in the radial direction on the outer peripheral surface of the movable yoke, and a permanent magnet An electromagnetic reciprocating mechanism (reciprocating drive mechanism) is constituted by a stator core provided close to the outer peripheral surface side and an electromagnetic coil that excites the stator core. Discloses a Stirling refrigerator that reciprocates a piston (see, for example, Patent Document 2).

特開2005−20983号公報JP 2005-20983 A 特開2004−180377号公報JP 2004-180377 A

しかしながら、特許文献1によれば、インナーヨークに欠切部を設けることにより渦電流の発生を抑制できるが、欠切部よる磁束通過断面積の減少を補うため、インナーヨークの外径を増大させている。このため電磁式アクチュエータが大きくなり、スターリング機関(スターリング冷凍機)も大型になる問題がある。また、永久磁石の外径側の間隙(アウターヨークと永久磁石との間隙)と、永久磁石の内径側の間隙(インナーヨーク永久磁石との間隙)との2つの径の間隙がある。これらの間隙(磁気ギャップ)は磁気抵抗となるため、電磁式アクチュエータの効率が低下する問題と、これに伴いスターリング機関の効率も低下する問題がある。   However, according to Patent Document 1, generation of eddy current can be suppressed by providing a notch in the inner yoke, but the outer diameter of the inner yoke is increased in order to compensate for the decrease in the cross-sectional area of magnetic flux passing due to the notch. ing. For this reason, there is a problem that the electromagnetic actuator becomes larger and the Stirling engine (Stirling refrigerator) becomes larger. Further, there are gaps of two diameters, a gap on the outer diameter side of the permanent magnet (a gap between the outer yoke and the permanent magnet) and a gap on the inner diameter side of the permanent magnet (a gap with the inner yoke permanent magnet). Since these gaps (magnetic gaps) become magnetic resistances, there is a problem that the efficiency of the electromagnetic actuator is lowered, and accordingly, the efficiency of the Stirling engine is also lowered.

また、特許文献2によれば、電磁コイルで発生した交番磁束は、磁石を通過し可動ヨークに流れる。この交番磁束により可動ヨークに渦電流が発生し鉄損が増大して電磁往復機構の効率が低下する問題と、これに伴いスターリング機関の効率も低下する問題がある。   According to Patent Document 2, the alternating magnetic flux generated by the electromagnetic coil passes through the magnet and flows to the movable yoke. Due to this alternating magnetic flux, eddy currents are generated in the movable yoke, the iron loss increases, and the efficiency of the electromagnetic reciprocation mechanism decreases, and the efficiency of the Stirling engine also decreases accordingly.

本発明は上記問題点に鑑みてなされたものであり、シリンダに挿設したピストンを自在に往復動させるリニアモータの鉄損を減少させることで、高効率で小型軽量な往復動駆動機構、及び、その往復動駆動機構を用いた高効率で小型軽量な蓄冷型冷凍機と圧縮機を提供することを目的とする。   The present invention has been made in view of the above problems, and by reducing the iron loss of a linear motor that freely reciprocates a piston inserted in a cylinder, a highly efficient, small and light reciprocating drive mechanism, and An object of the present invention is to provide a high-efficiency, small and light-weight regenerative refrigerator and compressor using the reciprocating drive mechanism.

上記課題を解決するため、請求項1に記載の発明は、外周面Nで径方向に磁化した第1永久磁石と、第1永久磁石の軸方向に所定の間隔を持って同軸に配置すると共に第1永久磁石の磁化方向に対し反対方向に磁化した第2永久磁石と、第1永久磁石と第2永久磁石との間隙に配置され第1永久磁石の磁化方向と第2永久磁石の磁化方向とに直交する向きに磁化した第3永久磁石を備えた可動子と、第1永久磁石の外周側に所定の距離を持って配備されると共に軸方向に所定の距離を持って対面する一対の第1磁極片と、第2永久磁石の外周側に所定の距離を持って配備されると共に軸方向に所定の距離を持って対面する一対の第2磁極片とを有するアウターヨークと、アウターヨークに形成されるスロットに配備するコイルとから構成した固定子と、可動子に連結されるピストンと、ピストンを軸方向に往復動可能に挿設したシリンダとを備える。   In order to solve the above problem, the invention described in claim 1 is arranged such that the first permanent magnet magnetized in the radial direction on the outer peripheral surface N and the first permanent magnet are arranged coaxially with a predetermined interval in the axial direction. The second permanent magnet magnetized in the opposite direction to the magnetization direction of the first permanent magnet, and the magnetization direction of the first permanent magnet and the magnetization direction of the second permanent magnet disposed in the gap between the first permanent magnet and the second permanent magnet A pair of movers provided with a third permanent magnet magnetized in a direction perpendicular to the first permanent magnet, and a pair of surfaces arranged at a predetermined distance on the outer peripheral side of the first permanent magnet and facing each other with a predetermined distance in the axial direction An outer yoke having a first magnetic pole piece and a pair of second magnetic pole pieces arranged at a predetermined distance on the outer peripheral side of the second permanent magnet and facing each other with a predetermined distance in the axial direction; The coil is arranged in the slot formed in Comprising a stator, a piston coupled to the armature, and a movable reciprocally inserted the cylinder in the axial direction of the piston.

また、請求項2に記載の発明は、第1永久磁石と、第2永久磁石とに隣接する第3永久磁石を複数個配備する。   In the invention according to claim 2, a plurality of third permanent magnets adjacent to the first permanent magnet and the second permanent magnet are provided.

また、請求項3に記載の発明は、第1永久磁石と、第2永久磁石と、第3永久磁石は、内周面に磁性材からなる保持部材を配備する。   According to a third aspect of the present invention, the first permanent magnet, the second permanent magnet, and the third permanent magnet are provided with a holding member made of a magnetic material on the inner peripheral surface.

また、請求項4に記載の発明は、ピストンとシリンダとで形成され作動ガスを圧縮する圧縮室と、作動ガスの圧縮熱を放熱する放熱器と、作動ガスと熱交換する蓄冷器と、作動ガスが吸熱する吸熱器と、作動ガスが膨張する膨張室とを備える。   According to a fourth aspect of the present invention, there is provided a compression chamber formed of a piston and a cylinder for compressing the working gas, a radiator for radiating the compression heat of the working gas, a regenerator for exchanging heat with the working gas, and an operation A heat absorber that absorbs gas and an expansion chamber in which the working gas expands are provided.

また、請求項5に記載の発明は、蓄冷型冷凍機は、膨張側シリンダと膨張側シリンダに往復動可能に挿設される膨張側ピストンとで膨張室を形成したスターリング冷凍機、又は、パルス管とパルス管の高温側に連通する位相調整手段とを備えパルス管の低温側に膨張室を形成したスターリング型パルス管冷凍機のいずれか一方の冷凍機である。   In the invention according to claim 5, the regenerative refrigerator is a Stirling refrigerator in which an expansion chamber is formed by an expansion side cylinder and an expansion side piston inserted into the expansion side cylinder so as to be able to reciprocate, or a pulse One of the Stirling type pulse tube refrigerators having a tube and phase adjusting means communicating with the high temperature side of the pulse tube and having an expansion chamber formed on the low temperature side of the pulse tube.

また、請求項6に記載の発明は、ピストンとシリンダとで形成され作動ガスを圧縮する圧縮室と、圧縮室に接続され作動流体を圧縮室に吸入する吸入弁と、圧縮室に接続され吸入した作動ガスを圧縮して圧縮室から吐出する吐出弁とを備える。   According to a sixth aspect of the present invention, there is provided a compression chamber formed of a piston and a cylinder for compressing the working gas, a suction valve connected to the compression chamber and sucking the working fluid into the compression chamber, and a suction chamber connected to the compression chamber. A discharge valve that compresses the discharged working gas and discharges it from the compression chamber.

請求項1に記載の発明では、可動子は径方向で外周面がN極に磁化した第1永久磁石と、第1永久磁石の磁化方向に対し反対方向に磁化すると共に第1永久磁石と所定の間隔を持って同軸に第2永久磁石を配置し、第1永久磁石の磁化方向と第2永久磁石の磁化方向とに直交する向きに磁化され第1永久磁石と第2永久磁石との間隙に第3永久磁石を配備している。これにより、固定子の各スロットに配備したコイルに交番電流(方向が変わる電流)を通電した場合に、第2永久磁石から第3永久磁石を通過し第1永久磁石へ流れる一定方向の変動磁束(直流成分に交番成分が加わった磁束)が常に存在する。この一定方向の変動磁束の振幅と最大磁束量は、同じ磁気推力の下、従来技術による電磁式アクチュエータ(往復動駆動機構)の交番磁束(磁束の方向が変化する磁束)の振幅及び最大磁束量に比べ減少する。変動磁束の振幅の減少により第1、2、3永久磁石の鉄損が減少する。また、第2永久磁石から第3永久磁石を通過し第1永久磁石を流れる変動磁束の振幅が減少するので、アウターヨークを流れる交番磁束の振幅も減少し、アウターヨークの鉄損も減少する。結果、高い効率の往復動駆動機構を提供できる。   According to the first aspect of the present invention, the mover is magnetized in a direction opposite to the magnetization direction of the first permanent magnet, the first permanent magnet having the radial direction and the outer peripheral surface magnetized to the N pole, and the first permanent magnet and the predetermined direction. The second permanent magnets are arranged coaxially with an interval of, and are magnetized in a direction perpendicular to the magnetization direction of the first permanent magnet and the magnetization direction of the second permanent magnet, and the gap between the first permanent magnet and the second permanent magnet A third permanent magnet is provided. As a result, when alternating current (current changing direction) is applied to the coils arranged in the slots of the stator, the magnetic flux fluctuates in a certain direction flowing from the second permanent magnet to the first permanent magnet through the third permanent magnet. (Magnetic flux with alternating component added to DC component) always exists. The amplitude and the maximum magnetic flux amount of the fluctuation magnetic flux in a certain direction are the same as the amplitude of the alternating magnetic flux (the magnetic flux in which the direction of the magnetic flux changes) of the electromagnetic actuator (reciprocating drive mechanism) according to the conventional technology under the same magnetic thrust. Compared to The iron loss of the first, second and third permanent magnets is reduced by reducing the amplitude of the variable magnetic flux. Moreover, since the amplitude of the variable magnetic flux flowing from the second permanent magnet through the third permanent magnet and flowing through the first permanent magnet is reduced, the amplitude of the alternating magnetic flux flowing through the outer yoke is also reduced, and the iron loss of the outer yoke is also reduced. As a result, a highly efficient reciprocating drive mechanism can be provided.

また、アウターヨークを流れる交番磁束の最大磁束量も減少してアウターヨークの磁束通過断面積を縮小でき、アウターヨークが小型軽量になると共に、往復動駆動機構の効率が高いので、小型軽量な往復動駆動機構が提供できる。   In addition, the maximum magnetic flux amount of the alternating magnetic flux flowing through the outer yoke can be reduced to reduce the magnetic flux passage cross-sectional area of the outer yoke. The outer yoke becomes smaller and lighter and the efficiency of the reciprocating drive mechanism is high. A dynamic drive mechanism can be provided.

また、請求項2に記載の発明では、往復動駆動機構は、例えば、順次第1永久磁石と、第3永久磁石と、第2永久磁石とを配備した第2永久磁石の隣に、更に、第3永久磁石と、第1永久磁石とを順次配備するように、第1永久磁石と、第2永久磁石とに隣接する第3永久磁石を複数個配備する。これにより、第3永久磁石が1個の場合に得られる磁気推力に第3永久磁石の個数を掛けた大きな磁気推力が得られる。   Further, in the invention according to claim 2, the reciprocating drive mechanism is, for example, next to the second permanent magnet in which the first permanent magnet, the third permanent magnet, and the second permanent magnet are sequentially arranged. A plurality of third permanent magnets adjacent to the first permanent magnet and the second permanent magnet are arranged so as to sequentially arrange the third permanent magnet and the first permanent magnet. Thereby, a large magnetic thrust obtained by multiplying the magnetic thrust obtained when there is one third permanent magnet by the number of the third permanent magnets can be obtained.

また、請求項3に記載の発明では、保持部材が磁性材であるので、保持部材はインナーヨークとして作用し、各スロットに配備したコイルに交番電流を通電するにも拘らず、保持部材には一定方向(第3永久磁石の磁化方向)の変動磁束が常に流れる。これにより、保持部材を流れる変動磁束の振幅と最大磁束量は、従来技術による電磁式アクチュエータ(往復動駆動機構)の交番磁束の振幅及び最大磁束量に比べ減少する。変動磁束の振幅の減少により保持部材の鉄損が減少する。また、保持部材を流れる変動磁束の振幅が減少するので、アアウターヨークを流れる交番磁束の振幅も減少し、アウターヨークの鉄損も減少する。結果、高い効率の往復動駆動機構を提供できる。   In the invention according to claim 3, since the holding member is a magnetic material, the holding member acts as an inner yoke, and the holding member includes a coil arranged in each slot, although an alternating current is applied. Fluctuating magnetic flux in a constant direction (the magnetization direction of the third permanent magnet) always flows. Thereby, the amplitude and the maximum magnetic flux amount of the fluctuation magnetic flux flowing through the holding member are reduced compared to the amplitude and the maximum magnetic flux amount of the alternating magnetic flux of the electromagnetic actuator (reciprocating drive mechanism) according to the prior art. The iron loss of the holding member decreases due to the decrease in the amplitude of the fluctuation magnetic flux. Further, since the amplitude of the changing magnetic flux flowing through the holding member is reduced, the amplitude of the alternating magnetic flux flowing through the outer yoke is also reduced, and the iron loss of the outer yoke is also reduced. As a result, a highly efficient reciprocating drive mechanism can be provided.

また、保持部材の最大磁束量が従来技術の最大磁束量より減少するので、保持部材は従来技術に比べて少ない磁束通過断面積で磁気飽和が回避できる。これにより、可動子の外径が縮小でき、可動子は小型軽量になる。同様に、アウターヨークの最大磁束量も減少するので、アウターヨークは従来技術に比べて少ない磁束通過断面積で磁気飽和が回避できる。固定子の磁束通過断面積の減少と可動子の外径の縮小とにより、固定子が小型軽量になる。以上により、小型軽量なリニアモータが提供できる。   Further, since the maximum magnetic flux amount of the holding member is smaller than the maximum magnetic flux amount of the prior art, the holding member can avoid magnetic saturation with a smaller magnetic flux passage cross-sectional area than the prior art. Thereby, the outer diameter of a needle | mover can be reduced and a needle | mover becomes small and lightweight. Similarly, since the maximum amount of magnetic flux of the outer yoke is also reduced, the outer yoke can avoid magnetic saturation with a smaller magnetic flux passage cross-sectional area than the prior art. The stator becomes smaller and lighter by reducing the magnetic flux passage cross-sectional area of the stator and reducing the outer diameter of the mover. As described above, a small and light linear motor can be provided.

また、請求項4に記載の発明では、蓄冷型冷凍機は、効率が高く小型軽量な往復動駆動機構によって往復駆動されるピストンで作動ガスを圧縮し冷凍を得るので、高効率で小型軽量な蓄冷型冷凍機を提供できる。   In the invention according to claim 4, since the regenerative refrigerator is compressed with a piston that is reciprocally driven by a reciprocating drive mechanism that is highly efficient and small and light, and obtains refrigeration, it is highly efficient and small and light. A regenerative refrigerator can be provided.

また、請求項5に記載の発明では、スターリング冷凍機又はスターリング型パルス管冷凍機は高効率で、しかも効率が高く小型軽量な往復動駆動機構によって往復駆動されるピストンで作動ガスを圧縮し冷凍を得るので、高効率で小型軽量な蓄冷型冷凍機を提供できる。   In the invention according to claim 5, the Stirling refrigerator or the Stirling type pulse tube refrigerator is highly efficient, refrigerated by compressing the working gas with a piston that is reciprocated by a reciprocating drive mechanism that is highly efficient and small and light. Therefore, a highly efficient, small and light cold storage type refrigerator can be provided.

また、請求項6に記載の発明では、圧縮機は、効率が高く小型軽量な往復動駆動機構によって往復駆動されるピストンで作動ガスを圧縮するので、高効率で小型軽量な圧縮機を提供できる。   In the invention according to claim 6, since the compressor compresses the working gas with a piston that is reciprocally driven by a reciprocating drive mechanism that is highly efficient and small and lightweight, a highly efficient small and light compressor can be provided. .

本発明の実施例1に係る往復動駆動機構及びその往復動駆動機構を用いたスターリング冷凍機の説明図である。It is explanatory drawing of the Stirling refrigerator using the reciprocating drive mechanism which concerns on Example 1 of this invention, and its reciprocating drive mechanism. 図1のリニアモータの永久磁石によって生じる磁束の説明図である。It is explanatory drawing of the magnetic flux produced by the permanent magnet of the linear motor of FIG. コイル通電時に於けるの図1のリニアモータの磁束説明図である。It is magnetic flux explanatory drawing of the linear motor of FIG. 1 at the time of coil energization. コイル通電時に於けるの図1のリニアモータの磁束説明図である。It is magnetic flux explanatory drawing of the linear motor of FIG. 1 at the time of coil energization. 図1のリニアモータの主要寸法を示す部分断面図である。It is a fragmentary sectional view which shows the main dimensions of the linear motor of FIG. 図1のリニアモータの(インナーヨーク厚さ/永久磁石外径)と、推力係数及び(推力係数/インナーヨーク質量)の関係を示す図である。FIG. 2 is a diagram showing the relationship between (inner yoke thickness / permanent magnet outer diameter), thrust coefficient, and (thrust coefficient / inner yoke mass) of the linear motor of FIG. 1. 図1のリニアモータの(永久磁石厚さ/永久磁石外径)と、推力係数及び(推力係数/インナーヨーク質量)の関係を示す図である。FIG. 2 is a diagram showing a relationship between (permanent magnet thickness / permanent magnet outer diameter), thrust coefficient, and (thrust coefficient / inner yoke mass) of the linear motor of FIG. 1. 図1のリニアモータの可動子の変形例の部分断面図である。It is a fragmentary sectional view of the modification of the needle | mover of the linear motor of FIG. 図1の往復動駆動機構を用いたスターリング型パルス管冷凍機の説明図である。It is explanatory drawing of the Stirling type pulse tube refrigerator using the reciprocating drive mechanism of FIG. 図1の往復動駆動機構を用いた実施例2に係るスターリング冷凍機の説明図である。It is explanatory drawing of the Stirling refrigerator based on Example 2 using the reciprocating drive mechanism of FIG. 本発明の実施例3に係る往復動駆動機構を用いたスターリング冷凍機の説明図である。It is explanatory drawing of the Stirling refrigerator using the reciprocating drive mechanism which concerns on Example 3 of this invention. 図1の往復動駆動機構を用いた実施例4に係る圧縮機の説明図である。It is explanatory drawing of the compressor which concerns on Example 4 using the reciprocating drive mechanism of FIG.

以下に本発明の実施例を図面を参照しつつ詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

図1は、本発明の実施例1に係る往復動駆動機構及びその往復動駆動機構を用いたスターリング冷凍機の説明図である。図中、黒塗り矢印は永久磁石の磁化方向を示し、矢印先端側がN極である。図1に示すように、スターリング冷凍機1(蓄冷型冷凍機)は、圧縮部10と冷凍発生部50とを配管11で接続し、作動ガスとして例えばヘリウムが充填される。圧縮部10は、リニアモータ20(往復動駆動機構)と、リニアモータ20の可動子30を備える可動体35と、シリンダ40とから構成される。   FIG. 1 is an explanatory diagram of a reciprocating drive mechanism and a Stirling refrigerator using the reciprocating drive mechanism according to Embodiment 1 of the present invention. In the figure, the black arrow indicates the magnetization direction of the permanent magnet, and the tip of the arrow is the N pole. As shown in FIG. 1, the Stirling refrigerator 1 (cold storage type refrigerator) connects a compression unit 10 and a refrigeration generation unit 50 with a pipe 11 and is filled with, for example, helium as a working gas. The compression unit 10 includes a linear motor 20 (reciprocating drive mechanism), a movable body 35 including a mover 30 of the linear motor 20, and a cylinder 40.

リニアモータ20は、固定子21と可動子30とから構成される。固定子21は、円筒形状をなし、軸方向の断面がH型形状の磁性材のアウターヨーク素片23と、アウターヨーク素片23の軸方向の両端に固着する軸方向の断面が凹型形状の磁性材のアウターヨーク素片22、24とから構成したアウターヨーク25と、コイル26、27とを備える。アウターヨーク素片22、23、24の内周側は、それぞれ一対の磁極片22a(第1磁極片)、23a(第1磁極片)と一対の磁極片23b(第2磁極片)、24a(第2磁極片)を有し、磁極片22aと23aは対をなし空隙21a(距離)を介して互いに対面し、磁極片23bと24aも対をなし空隙21b(距離)を介して互いに対面する。コイル26は、被覆導線が磁極片22aと23aに固定子21の軸回りに巻回され、アウターヨーク素片22、23とから形成されるスロット28に挟持される。同様に、コイル27は、被覆導線が磁極片23bと24aに固定子21の軸回りに巻回され、アウターヨーク素片23、24とから形成されるスロット29に挟持される。尚、コイル26と、27は線径、全長、巻数が同じである。   The linear motor 20 includes a stator 21 and a mover 30. The stator 21 has a cylindrical shape, an outer yoke piece 23 made of a magnetic material having an H-shaped cross section in the axial direction, and a concave section in the axial direction fixed to both ends of the outer yoke piece 23 in the axial direction. An outer yoke 25 composed of magnetic material outer yoke pieces 22 and 24 and coils 26 and 27 are provided. The inner peripheral sides of the outer yoke element pieces 22, 23, 24 are respectively a pair of magnetic pole pieces 22a (first magnetic pole piece), 23a (first magnetic pole piece) and a pair of magnetic pole pieces 23b (second magnetic pole piece), 24a ( The magnetic pole pieces 22a and 23a make a pair and face each other through a gap 21a (distance), and the pole pieces 23b and 24a also make a pair and face each other through a gap 21b (distance). . In the coil 26, the coated conductor is wound around the magnetic pole pieces 22 a and 23 a around the axis of the stator 21, and is sandwiched between slots 28 formed by the outer yoke pieces 22 and 23. Similarly, the coil 27 is wound around a slot 29 formed by the outer yoke element pieces 23 and 24, with the coated conductors wound around the pole pieces 23b and 24a around the axis of the stator 21. The coils 26 and 27 have the same wire diameter, overall length, and number of turns.

可動子30は、円筒形状の保持部材31にそれぞれ円筒形状の永久磁石32(第1永久磁石)と、永久磁石33(第3永久磁石)と、永久磁石34(第2永久磁石)とが順次挿入される。そして、各永久磁石33〜34の内周面には接着材が塗布されており互いに密着固定される。これにより、永久磁石32〜34は、軸Xに同軸に配置される。永久磁石32と34は磁化方向が反対で径方向に磁化される。図1では永久磁石32は、外周面がN極、内周面がS極に磁化され、永久磁石34は外周面がS極、内周面がN極に磁化されるが、この逆でも良い。永久磁石33の磁化方向は、永久磁石32の内周面がS極、永久磁石34の内周面がN極の場合、軸X方向で、永久磁石33の永久磁石34側の端面がS極、永久磁石33の永久磁石32側の端面がN極に磁化される。即ち、永久磁石34から永久磁石32の向きに磁化される(図1)。永久磁石32の内周面がN極、永久磁石34の内周面がS極の場合、永久磁石33は、軸X方向で永久磁石32から永久磁石34の向きに磁化される(図示せず)。尚、軸Xは、保持部材31、永久磁石32〜34、ピストン36、ピストンガイド37、シリンダ40、およびアウターヨーク25の共通の軸である。   The mover 30 includes a cylindrical holding member 31, a cylindrical permanent magnet 32 (first permanent magnet), a permanent magnet 33 (third permanent magnet), and a permanent magnet 34 (second permanent magnet). Inserted. And the adhesive material is apply | coated to the internal peripheral surface of each permanent magnet 33-34, and it mutually fixes. Thereby, the permanent magnets 32 to 34 are arranged coaxially with the axis X. The permanent magnets 32 and 34 are magnetized in the radial direction with opposite magnetization directions. In FIG. 1, the permanent magnet 32 is magnetized to the N pole on the outer peripheral surface and the S pole on the inner peripheral surface, and the permanent magnet 34 is magnetized to the S pole on the outer peripheral surface and the N pole on the inner peripheral surface. . The permanent magnet 33 is magnetized in the direction of the axis X when the inner peripheral surface of the permanent magnet 32 is the S pole and the inner peripheral surface of the permanent magnet 34 is the N pole, and the end surface of the permanent magnet 33 on the permanent magnet 34 side is the S pole. The end surface of the permanent magnet 33 on the permanent magnet 32 side is magnetized to the N pole. That is, it is magnetized in the direction from the permanent magnet 34 to the permanent magnet 32 (FIG. 1). When the inner peripheral surface of the permanent magnet 32 is N-pole and the inner peripheral surface of the permanent magnet 34 is S-pole, the permanent magnet 33 is magnetized in the direction of the axis X from the permanent magnet 32 to the permanent magnet 34 (not shown). ). The axis X is a common axis for the holding member 31, the permanent magnets 32 to 34, the piston 36, the piston guide 37, the cylinder 40, and the outer yoke 25.

保持部材31は、磁性材あるいは非磁性材のいずれでも良い。後述するが、リニアモータ20の磁束量が大きい場合、保持部材31は磁性材が好ましく、可動体35が高い周波数で往復動する場合は、保持部材31は非磁性材が好ましい。   The holding member 31 may be either a magnetic material or a nonmagnetic material. As will be described later, when the amount of magnetic flux of the linear motor 20 is large, the holding member 31 is preferably a magnetic material, and when the movable body 35 reciprocates at a high frequency, the holding member 31 is preferably a non-magnetic material.

また、図1では、永久磁石32、33、34は各々別の部材であり、永久磁石33の両端にそれぞれ永久磁石32と永久磁石34の3つを固着して可動子30を構成しているが、一つの永久磁石で部分的に磁化方向を変えて成形しても良い。即ち、円筒形状の永久磁石の両側を径方向で互いに反対方向に磁化し、径方向で反対方向に磁化した間を軸方向で前述した向きに磁化しても良い。この場合、保持部材31を設けてもあるいは設けなくても良い。   In FIG. 1, the permanent magnets 32, 33, and 34 are separate members, and the movable magnet 30 is configured by fixing the permanent magnet 32 and the permanent magnet 34 to both ends of the permanent magnet 33. However, it may be formed by partially changing the magnetization direction with one permanent magnet. That is, both sides of the cylindrical permanent magnet may be magnetized in opposite directions in the radial direction, and the portion magnetized in the opposite direction in the radial direction may be magnetized in the above-described direction in the axial direction. In this case, the holding member 31 may or may not be provided.

また、永久磁石32、33、34は円筒形状で分割していないが、半径方向に分割あるいは軸方向に分割しても良い。   The permanent magnets 32, 33, and 34 are not divided in a cylindrical shape, but may be divided in the radial direction or in the axial direction.

また、永久磁石32、33、34は円筒形状であるが、板形状の永久磁石を同一円周上に等分に配置しても良い。   Moreover, although the permanent magnets 32, 33, and 34 are cylindrical, plate-shaped permanent magnets may be equally arranged on the same circumference.

可動体35は、可動子30の保持部材31の両端側の外周面に接着材を塗布してそれぞれ非磁性材で無潤滑摺動材からなるカップ形状のピストン36と、円筒形状のピストンガイド37とを挿入し接着固定される。永久磁石32、33、34の外径は等しく、ピストン36及びピストンガイド37の外径は、永久磁石32、33、34の外径より僅かに大きい。そして、シリンダ40は、一端にヘッド41aを有するシリンダ本体41の開口端に鏡板42を気密固定し構成され、シリンダ40の外周面には固定子21が装着される。シリンダ40の内周面には、ピストン36がヘッド41aに対面するように可動体35が軸X方向に往復動可能に挿設される。また、シリンダ40の内周面と、ピストン36及びピストンガイド37の外周面との間の微小間隙は、ヘリウムをシールするクリアランスシール機能を有する。   The movable body 35 includes a cup-shaped piston 36 made of a non-magnetic material and a non-lubricated sliding material by applying an adhesive to the outer peripheral surfaces of both ends of the holding member 31 of the movable element 30, and a cylindrical piston guide 37. And inserted and fixed. The outer diameters of the permanent magnets 32, 33, and 34 are equal, and the outer diameters of the piston 36 and the piston guide 37 are slightly larger than the outer diameters of the permanent magnets 32, 33, and 34. The cylinder 40 is configured by hermetically fixing the end plate 42 to the opening end of the cylinder body 41 having a head 41 a at one end, and the stator 21 is mounted on the outer peripheral surface of the cylinder 40. On the inner peripheral surface of the cylinder 40, the movable body 35 is inserted so as to be able to reciprocate in the axis X direction so that the piston 36 faces the head 41a. The minute gap between the inner peripheral surface of the cylinder 40 and the outer peripheral surfaces of the piston 36 and the piston guide 37 has a clearance seal function for sealing helium.

コイル26、27は、交流電流源(図示せず)に接続される。コイル26と27には振幅が同じで位相を180度ずらした電流を通電させる。コイル26、27の無通電時には、可動体35は中立位置にある。即ち、永久磁石32と34は軸方向でシリンダ40の管壁を介し、永久磁石32と磁極片22a、23a、及び、永久磁石34と磁極片24a、23bとがシリンダ40の管壁を介在しそれぞれ重なり代を持って位置する。この状態に於いては、可動子30の軸方向の中立位置と、アウターヨーク25の軸方向の中立位置とがシリンダ40の管壁を介し一致した状態となる。そして、シリンダ40と可動体35とにより、ピストン36のヘッド部分を境に図示左側に圧縮室43が形成され、図示右側にバッファ室44が形成される。圧縮室43は、シリンダ本体41のヘッド41aに設けた流路孔41bと配管11を介し冷凍発生部50に接続される。   The coils 26 and 27 are connected to an alternating current source (not shown). The coils 26 and 27 are energized with a current having the same amplitude and a phase shifted by 180 degrees. When the coils 26 and 27 are not energized, the movable body 35 is in the neutral position. That is, the permanent magnets 32 and 34 pass through the tube wall of the cylinder 40 in the axial direction, and the permanent magnet 32 and the magnetic pole pieces 22a and 23a, and the permanent magnet 34 and the magnetic pole pieces 24a and 23b intervene the tube wall of the cylinder 40. Each is located with an overlap. In this state, the neutral position in the axial direction of the mover 30 and the neutral position in the axial direction of the outer yoke 25 coincide with each other through the tube wall of the cylinder 40. The cylinder 40 and the movable body 35 form a compression chamber 43 on the left side of the drawing with the head portion of the piston 36 as a boundary, and a buffer chamber 44 on the right side of the drawing. The compression chamber 43 is connected to the refrigeration generating unit 50 via a flow path hole 41 b provided in the head 41 a of the cylinder body 41 and the pipe 11.

冷凍発生部50は、圧縮室51に順次、放熱器52、蓄冷器53、吸熱器54、および膨張室55に連通して構成される。膨張室55は、無潤滑摺動材からなるディスプレーサ56(膨張側ピストン)の図示上面側と、ディスプレーサシリンダ57(膨張側シリンダ)と、ケース58のヘッド58cとにより包囲される。そして、圧縮室51と放熱器52は、配管11を介し圧縮部10の圧縮室43へ連通される。圧縮室51は、ディスプレーサ56の図示下面側と、ディスプレーサシリンダ57と、隔壁59と、ディスプレーサ56の下面に連結したロッド63とにより包囲される。放熱器52は、蓄冷器53の図示下端とディスプレーサシリンダ57の図示下端との間のケース58の内周面58aにフィン部材52aを固着して構成される。蓄冷器53は、放熱器52と吸熱器54との間であって、ケース58とディスプレーサシリンダ57とで形成される円筒形状の空間に蓄冷材エレメント53aを充填することにより構成される。放熱器54は、蓄冷器53の図示上端とディスプレーサシリンダ57の図示上端との間のケース58の内周面58bにフィン部材54aを固着して構成される。   The refrigeration generator 50 is configured to communicate with the compression chamber 51 in sequence with a radiator 52, a regenerator 53, a heat absorber 54, and an expansion chamber 55. The expansion chamber 55 is surrounded by the upper surface side of the displacer 56 (expansion side piston) made of a non-lubricated sliding material, the displacer cylinder 57 (expansion side cylinder), and the head 58 c of the case 58. The compression chamber 51 and the radiator 52 are communicated with the compression chamber 43 of the compression unit 10 via the pipe 11. The compression chamber 51 is surrounded by a lower surface side of the displacer 56, a displacer cylinder 57, a partition wall 59, and a rod 63 connected to the lower surface of the displacer 56. The radiator 52 is configured by fixing a fin member 52 a to an inner peripheral surface 58 a of a case 58 between the lower end of the regenerator 53 and the lower end of the displacer cylinder 57. The regenerator 53 is configured by filling the cylindrical space formed by the case 58 and the displacer cylinder 57 between the radiator 52 and the heat absorber 54 with a regenerator element 53a. The radiator 54 is configured by fixing a fin member 54 a to an inner peripheral surface 58 b of the case 58 between the upper end of the regenerator 53 in the drawing and the upper end of the displacer cylinder 57 in the drawing.

ディスプレーサ56は、ロッド63を介してバッファ室64に設けた駆動手段60に接続される。駆動手段60は、隔壁59の孔を貫通してバッファ室64に突出するロッド63の端部に固定されたバネ保持部材61と、バネ保持部材61の両端面にそれぞれ一端が当接する圧縮コイルバネ62、62とから構成され、圧縮コイルバネ62、62の他端はそれぞれ隔壁59、ケース58の端面に当接する。   The displacer 56 is connected to driving means 60 provided in the buffer chamber 64 via a rod 63. The driving means 60 includes a spring holding member 61 fixed to an end portion of a rod 63 that passes through a hole of the partition wall 59 and protrudes into the buffer chamber 64, and a compression coil spring 62 in which one end abuts on both end faces of the spring holding member 61. 62, the other ends of the compression coil springs 62, 62 abut against the end surfaces of the partition wall 59 and the case 58, respectively.

バッファ室64は、ケース58と、隔壁59と、ロッド63と、隔壁59に設けたロッドシール65とから包囲して形成される。そして、バッファ室64と圧縮室51内のヘリウムはロッドシール65によりシールされる。また、圧縮室51と膨張室55のヘリウムのシールは、ディスプレーサシリンダ57の内周面とディスプレーサ56の外周面との間の微小間隙によるクリアランスシールで行われる。   The buffer chamber 64 is formed so as to be surrounded by a case 58, a partition wall 59, a rod 63, and a rod seal 65 provided on the partition wall 59. The helium in the buffer chamber 64 and the compression chamber 51 is sealed by the rod seal 65. The compression chamber 51 and the expansion chamber 55 are sealed with helium by a clearance seal formed by a minute gap between the inner peripheral surface of the displacer cylinder 57 and the outer peripheral surface of the displacer 56.

次に、本発明の実施例1に係るリニアモータ20の作動と効果について説明する。図2〜4は、リニアモータ20の作動の部分断面説明図で、判り易くするためシリンダ40、ピストン36、ピストンガイド37及び断面のハッチングを削除している。図2〜4に於いて、永久磁石32、33、34内の黒塗り矢印は、磁化方向を示し矢印先端側がN極になる。また、図3、4のコイル26、27内の丸に黒塗りの記号と丸にバツの記号は電流の流れる方向を示し、丸に黒塗りの記号は紙面の裏から表へ流れる電流流れを示し、丸にバツの記号は紙面の表から裏へ流れる電流流れを示す。前述したように保持部材31は、磁性材または非磁性材のいずれでも良いが、ここでは保持部材31の材質を磁性材とする。従って、保持部材31は可動子30のインナーヨークとして作用する。また、図2〜4に於いて、永久磁石32の左側とアウターヨーク素片22aとの間隙G1(距離)、永久磁石32の中央側から右側及び永久磁石33の左側とアウターヨーク素片23aとの間隙G2a(距離)、永久磁石34の中央側から左側及び永久磁石33の右側とアウターヨーク素片23bとの間隙G2b(距離)、永久磁石34の右側とアウターヨーク素片24aとの間隙G3(距離)は、磁束が通過する磁気ギャップを形成する。尚、間隙G1、G2a、G2b、G3はシリンダ40の管壁を介在した間隙である。   Next, the operation and effect of the linear motor 20 according to the first embodiment of the present invention will be described. 2 to 4 are partial cross-sectional explanatory views of the operation of the linear motor 20, in which the cylinder 40, the piston 36, the piston guide 37, and the cross-sectional hatching are omitted for easy understanding. 2 to 4, black arrows in the permanent magnets 32, 33, and 34 indicate the magnetization direction, and the tip side of the arrow is an N pole. 3 and 4, the black symbols on the circles and the cross symbol on the circles indicate the direction of current flow, and the black symbols on the circles indicate the current flow from the back of the paper to the front. The symbol X in the circle indicates the current flow flowing from the front to the back of the page. As described above, the holding member 31 may be either a magnetic material or a non-magnetic material, but here the material of the holding member 31 is a magnetic material. Therefore, the holding member 31 functions as an inner yoke of the mover 30. 2 to 4, the gap G1 (distance) between the left side of the permanent magnet 32 and the outer yoke piece 22a, the right side from the center side of the permanent magnet 32, the left side of the permanent magnet 33, and the outer yoke piece 23a. G2a (distance) of the permanent magnet 34, the gap G2b (distance) between the right side of the permanent magnet 33 and the right side of the permanent magnet 33 and the outer yoke piece 23b, and the gap G3 between the right side of the permanent magnet 34 and the outer yoke piece 24a. (Distance) forms a magnetic gap through which the magnetic flux passes. The gaps G1, G2a, G2b, and G3 are gaps through the tube wall of the cylinder 40.

図2は、可動子30の中立位置に於けるリニアモータ20の永久磁石32〜34によって生じる磁束の説明図である。図2(a)は永久磁石32〜34の磁化方向を示す。尚、図3、4の永久磁石32〜34の磁化方向は図2(a)と同じである。図2(b)は永久磁石32〜34により生じる磁束(太実線、太破線)を示し、矢印は磁束の流れを示す。   FIG. 2 is an explanatory diagram of magnetic flux generated by the permanent magnets 32 to 34 of the linear motor 20 at the neutral position of the mover 30. FIG. 2A shows the magnetization directions of the permanent magnets 32 to 34. 3 and 4 are the same as those in FIG. 2A. FIG. 2B shows the magnetic flux (bold solid line and bold broken line) generated by the permanent magnets 32 to 34, and the arrows show the flow of the magnetic flux.

図2(a)に示すように、永久磁石32は内周面がS極、外周面がN極に磁化され、永久磁石34は内周面がN極、外周面がS極に磁化される。永久磁石33は永久磁石34側の端面がS極、永久磁石32側の端面がN極に磁化される。   As shown in FIG. 2 (a), the permanent magnet 32 is magnetized to the south pole on the inner peripheral surface and the north pole on the outer peripheral surface, and the permanent magnet 34 is magnetized to the north pole on the inner peripheral surface and the outer peripheral surface to the south pole. . The permanent magnet 33 is magnetized so that the end surface on the permanent magnet 34 side is an S pole and the end surface on the permanent magnet 32 side is an N pole.

永久磁石32、34は保持力、寸法が同じであるので、アウターヨーク素片23の円板部23cでは、永久磁石32による磁束と永久磁石34による磁束とが反対方向で同じ磁束量であるので、磁束が互いに打消し合って磁束はほとんど発生しない。従って、図2(b)に示すように永久磁石32、34によって、アウターヨーク素片22、23、24と可動子30とには、太実線で示す右回りの閉ループの磁束Φが生る。磁束Φは、磁極片24aから間隙G3と永久磁石34を横切り、インナーヨークである保持部材31(以下、インナーヨーク31)に流入する。インナーヨーク31に流入した磁束Φは、インナーヨーク31内を通ってインナーヨーク31の左側に至り、そこから永久磁石32、間隙G1を横切り磁極片22aに流入し、順次アウターヨーク素片22、アウターヨーク素片23、アウターヨーク素片24を通って再び磁極片24aに戻り一巡する。また、永久磁石32、33、34によりアウターヨーク素片23と可動子30とには、太破線で示す右回りの磁束Ω、Γが生ずる。磁束Ωは、永久磁石32の右側から順次間隙G2a、磁極片23a、23b、間隙G2b、永久磁石34の左側、インナーヨーク31を通過して再び、永久磁石32の右側に戻る閉ループを形成する。磁束Γは、永久磁石33から順次永久磁石32の右端側、間隙G2a、磁極片23a、23b、間隙G2b、永久磁石34の左端側を通過して再び永久磁石33に戻る閉ループを形成する。そして永久磁石32、34による間隙G1と間隙G3の磁力線の疎密は同じで方向が反対である。また、永久磁石32、33、34による間隙G2aと間隙G2bの磁力線の疎密は同じで方向が反対になる。従って、コイル26、27の無通電時では、可動子30に往復動方向の磁気力は発生せず、可動子30は中立位置で留まっている。   Since the permanent magnets 32 and 34 have the same holding force and dimensions, the magnetic flux generated by the permanent magnet 32 and the magnetic flux generated by the permanent magnet 34 are the same in the opposite directions in the disk portion 23c of the outer yoke piece 23. The magnetic fluxes cancel each other and almost no magnetic flux is generated. Therefore, as shown in FIG. 2B, the permanent magnets 32 and 34 generate a clockwise closed-loop magnetic flux Φ indicated by a thick solid line in the outer yoke pieces 22, 23 and 24 and the mover 30. The magnetic flux Φ crosses the gap G3 and the permanent magnet 34 from the magnetic pole piece 24a and flows into the holding member 31 (hereinafter referred to as the inner yoke 31) which is an inner yoke. The magnetic flux Φ flowing into the inner yoke 31 passes through the inner yoke 31 to the left side of the inner yoke 31, and flows from there to the magnetic pole piece 22a across the permanent magnet 32 and the gap G1. After passing through the yoke piece 23 and the outer yoke piece 24, it returns to the magnetic pole piece 24a and makes a round. Further, the permanent magnets 32, 33, 34 generate the clockwise magnetic fluxes Ω, Γ indicated by thick broken lines in the outer yoke piece 23 and the mover 30. The magnetic flux Ω forms a closed loop that sequentially passes from the right side of the permanent magnet 32 to the right side of the permanent magnet 32 through the gap G2a, the magnetic pole pieces 23a and 23b, the gap G2b, the left side of the permanent magnet 34, and the inner yoke 31. The magnetic flux Γ sequentially forms a closed loop from the permanent magnet 33 that passes through the right end side of the permanent magnet 32, the gap G2a, the magnetic pole pieces 23a and 23b, the gap G2b, and the left end side of the permanent magnet 34 and returns to the permanent magnet 33 again. And the density of the magnetic force lines of the gaps G1 and G3 by the permanent magnets 32 and 34 is the same, but the directions are opposite. Moreover, the density of the magnetic lines of the gap G2a and the gap G2b by the permanent magnets 32, 33, and 34 is the same and the directions are opposite. Therefore, when the coils 26 and 27 are not energized, no magnetic force in the reciprocating direction is generated in the mover 30 and the mover 30 remains in the neutral position.

図3は、コイル通電時に於けるリニアモータ20の磁束の部分断面説明図で、永久磁石32〜34の磁化方向は図2と同じである。図3(a)は、コイル26、27の電流によって生じる磁束図を示す。図3(a)に示すように、可動子30が中立位置に位置する状態に於いて、コイル26、27には互いに反対方向で同じ電流値の直流電流を通電する。するとコイル26による太実線で示す右回りの閉ループの磁束Ψ1と、コイル27による太破線で示す左回りの閉ループの磁束Ψ2が生じる。磁束Ψ1は、永久磁石32の左側から順次間隙G1、磁極片22a、アウターヨーク素片22、アウターヨーク素片23の円板部23c、磁極片23b、間隙G2b、永久磁石34の左側、インナーヨーク31を通過して再び、永久磁石32の左側に戻り一巡する。磁束Ψ2は、永久磁石34の中央側から順次インナーヨーク31の右側、インナーヨーク31の右端側と磁極片24aの右端側の間隙G3b、磁極片24aの右端側、アウターヨーク素片24、アウターヨーク素片23の円板部23c、磁極片23b、間隙G2bを通過して再び永久磁石34の中央側に戻り一巡する。そして、磁束Ψ1は間隙G1と間隙G2bを通過し、磁束Ψ2は間隙G2bと間隙G3bを通過する。コイル26と27は線径、全長、巻数が同じで、間隙G3bの磁気抵抗は間隙G1の磁気抵抗より大きいので、磁束Ψ1の磁束量は磁束Ψ2の磁束量より大きい。   FIG. 3 is a partial cross-sectional explanatory diagram of the magnetic flux of the linear motor 20 when the coil is energized, and the magnetization directions of the permanent magnets 32 to 34 are the same as those in FIG. FIG. 3A shows a magnetic flux diagram generated by the currents of the coils 26 and 27. As shown in FIG. 3A, when the mover 30 is in the neutral position, the coils 26 and 27 are supplied with direct currents having the same current value in opposite directions. Then, a clockwise closed-loop magnetic flux Ψ1 indicated by a thick solid line by the coil 26 and a counterclockwise closed-loop magnetic flux Ψ2 indicated by a thick broken line by the coil 27 are generated. The magnetic flux Ψ1 is sequentially applied from the left side of the permanent magnet 32 to the gap G1, the magnetic pole piece 22a, the outer yoke piece 22, the disk portion 23c of the outer yoke piece 23, the magnetic pole piece 23b, the gap G2b, the left side of the permanent magnet 34, the inner yoke. After passing through 31, it returns to the left side of the permanent magnet 32 and makes a round. The magnetic flux Ψ2 is sequentially applied from the center side of the permanent magnet 34 to the right side of the inner yoke 31, the right end side of the inner yoke 31 and the right end side of the magnetic pole piece 24a, the right end side of the magnetic pole piece 24a, the outer yoke piece 24, the outer yoke. After passing through the disc portion 23c, the magnetic pole piece 23b, and the gap G2b of the element piece 23, it returns to the center side of the permanent magnet 34 and makes a round. The magnetic flux Ψ1 passes through the gap G1 and the gap G2b, and the magnetic flux Ψ2 passes through the gap G2b and the gap G3b. The coils 26 and 27 have the same wire diameter, overall length, and number of turns, and the magnetic resistance of the gap G3b is larger than the magnetic resistance of the gap G1, so that the magnetic flux amount of the magnetic flux ψ1 is larger than the magnetic flux amount of the magnetic flux ψ2.

図3(b)は、コイル通電時に於ける可動子30の移動方向の説明図で、可動子30の中立位置に於ける永久磁石32〜34による磁束Φ、Ω、Γを示す。図3(b)に示すように、コイル26、27に電流が流れると、コイル26は永久磁石32〜34の磁束Φ、Ω、Γとコイル27の磁束Ψ2とにより磁気力を受け、コイル27は永久磁石32〜34の磁束Φ、Ω、Γとコイル26の磁束Ψ1とにより磁気力を受ける。即ち、コイル26、27には互いに反対方向で同じ電流値の直流電流(図3(a))と同じ電流)を通電すると、フレミングの左手の法則に基づき、コイル26は間隙G1の磁束ΦによりJ方向の磁気力を受けるが、間隙G2aと間隙G2bの磁束Ω、Γによる磁気力は打消し合ってコイル26には殆ど作用せず、間隙G2bと間隙G3bの磁束Ψ2(図3(a)による磁気力も打消し合ってコイル26には殆ど作用しない。結果、コイル26は矢印J方向の磁気力を受ける。   FIG. 3B is an explanatory diagram of the moving direction of the mover 30 when the coil is energized, and shows magnetic fluxes Φ, Ω, and Γ by the permanent magnets 32 to 34 at the neutral position of the mover 30. As shown in FIG. 3B, when a current flows through the coils 26 and 27, the coil 26 receives magnetic force from the magnetic fluxes Φ, Ω, and Γ of the permanent magnets 32 to 34 and the magnetic flux Ψ 2 of the coil 27. Is subjected to magnetic force by the magnetic fluxes Φ, Ω, Γ of the permanent magnets 32 to 34 and the magnetic flux Ψ 1 of the coil 26. That is, when a direct current of the same current value (the same current as that in FIG. 3A) is applied to the coils 26 and 27 in opposite directions, the coil 26 is driven by the magnetic flux Φ of the gap G1 based on Fleming's left-hand rule. While receiving the magnetic force in the J direction, the magnetic forces due to the magnetic fluxes Ω and Γ in the gap G2a and G2b cancel each other and hardly act on the coil 26, and the magnetic flux Ψ2 in the gap G2b and the gap G3b (FIG. 3A). The magnetic forces generated by the two cancel each other and hardly act on the coil 26. As a result, the coil 26 receives the magnetic force in the direction of arrow J.

同様に、フレミングの左手の法則に基づき、コイル27は間隙G3の磁束ΦによりJ方向の磁気力を受けるが、間隙G2aと間隙G2bの磁束Ω、Γによる磁気力は打消し合ってコイル27には殆ど作用せず、間隙G2bと間隙G1の磁束Ψ1(図3(a)による磁気力も打消し合ってコイル27には殆ど作用しない。結果、コイル27は矢印J方向の磁気力を受ける。以上により、コイル26、27は、磁束Φにより矢印J方向の磁気力を受けるが、コイル26、27は固定子21に挟持され移動できないので、可動子30が矢印M方向の磁気力を受けて矢印M方向に移動する。   Similarly, based on Fleming's left-hand rule, the coil 27 receives a magnetic force in the J direction due to the magnetic flux Φ of the gap G3, but the magnetic forces due to the magnetic fluxes Ω and Γ of the gap G2a and the gap G2b cancel each other out. Hardly acts, and the magnetic force due to the magnetic flux Ψ1 (FIG. 3A) in the gap G2b and the gap G1 cancels each other and hardly acts on the coil 27. As a result, the coil 27 receives the magnetic force in the direction of arrow J. Thus, the coils 26 and 27 receive the magnetic force in the arrow J direction by the magnetic flux Φ, but the coils 26 and 27 are sandwiched by the stator 21 and cannot move, so the mover 30 receives the magnetic force in the arrow M direction and moves to the arrow. Move in the M direction.

図3(c)は、図3(a)のコイル26、27による磁束Ψ1、Ψ2と図3(b)の永久磁石32〜34による磁束Φ、Ω、Γとを合成した磁束図を示す。図3(c)に示すように、固定子21と可動子30の磁気回路には、太実線で示す右回りの閉ループの合成磁束(Ψ1+Φ)と、図示左回りの閉ループの合成磁束Λ2が生じると共に図示右回りの閉ループの磁束Ω、Γが残存する。磁束Φと磁束Ψ2との流れ方向が反対であるため、磁束(Ψ2−Φ)の磁束量は略0になり、磁束Λ2が合成されるが合成磁束Λ2の磁束量は合成磁束(Ψ1+Φ)に比べ小さい。そして、インナーヨーク31を流れる磁束量の大きい合成磁束(Ψ1+Φ)の方向は永久磁石33の磁化方向と同じである。   FIG. 3 (c) shows a magnetic flux diagram in which the magnetic fluxes Ψ1, Ψ2 by the coils 26, 27 in FIG. 3 (a) and the magnetic fluxes Φ, Ω, Γ by the permanent magnets 32-34 in FIG. 3 (b) are combined. As shown in FIG. 3 (c), in the magnetic circuit of the stator 21 and the mover 30, a clockwise closed loop combined magnetic flux (Ψ1 + Φ) indicated by a thick solid line and a counterclockwise closed loop combined magnetic flux Λ2 are generated. At the same time, a closed loop magnetic flux Ω, Γ in the clockwise direction in the figure remains. Since the flow directions of the magnetic flux Φ and the magnetic flux Ψ2 are opposite, the magnetic flux amount of the magnetic flux (ψ2-Φ) becomes substantially zero, and the magnetic flux Λ2 is synthesized, but the magnetic flux amount of the synthetic magnetic flux Λ2 is the combined magnetic flux (Ψ1 + Φ). Small compared. The direction of the combined magnetic flux (Ψ1 + Φ) having a large amount of magnetic flux flowing through the inner yoke 31 is the same as the magnetization direction of the permanent magnet 33.

図3(d)は、図3(c)の可動子30が矢印M方向に移動して可動子30に作用するN方向の外力FとM方向の磁気力Faが釣合い停止した状態を示す。図3(c)と同様に釣合い停止位置の永久磁石32〜34による磁束Φa(図示せず)と、コイル26、27よる磁束Ψa1、Ψa2(図示せず)とが合成される。この合成により、図3(d)に示すように太実線で示す右回りの閉ループの合成磁束(Ψa1+Φa)と、図示左回りの閉ループの合成磁束Λ2aが生じると共に図示右回りの閉ループの磁束Ωa、Γaが残存する。そして、インナーヨーク31を流れる合成磁束(Ψa1+Φa)の方向は永久磁石33の磁化方向と同じで、合成磁束Λ2aより磁束量が大きい。   FIG. 3D shows a state in which the mover 30 in FIG. 3C moves in the direction of arrow M and the external force F in the N direction acting on the mover 30 and the magnetic force Fa in the M direction are balanced and stopped. Similarly to FIG. 3C, the magnetic flux Φa (not shown) by the permanent magnets 32 to 34 at the balance stop position and the magnetic fluxes ψa1 and ψa2 (not shown) by the coils 26 and 27 are synthesized. As a result of this synthesis, as shown in FIG. 3D, a clockwise closed loop combined magnetic flux (Ψa1 + Φa) indicated by a thick solid line and a counterclockwise closed loop combined magnetic flux Λ2a are generated and a clockwise closed loop magnetic flux Ωa shown in FIG. Γa remains. The direction of the combined magnetic flux (Ψa1 + Φa) flowing through the inner yoke 31 is the same as the magnetization direction of the permanent magnet 33, and the amount of magnetic flux is larger than the combined magnetic flux Λ2a.

図4は、図3に対し反対方向で図3と同じ電流値の直流電流をコイル26、27に通電した場合の磁束の部分断面説明図である。図4(a)は、コイル26、27の電流によって生じる磁束図を示す。図4(a)に示すように、可動子30が中立位置に位置する状態に於いて、コイル26、27には互いに反対方向で同じ電流値の直流電流を通電する。するとコイル26による図示左回りの閉ループの磁束Ψ1と、コイル27による図示右回りの閉ループの磁束Ψ2が生じる。磁束Ψ1は、永久磁石32の中央側から順次間隙G2a、磁極片23a、アウターヨーク素片23の円板部23c、アウターヨーク素片22、磁極片22a、磁極片22a左端側とインナーヨーク31の左端側との間の間隙G1b、インナーヨーク31を通過して再び、永久磁石32の中央側に戻り一巡する。磁束Ψ2は、永久磁石34の右側から順次インナーヨーク31、永久磁石32の右側、間隙G2a、磁極片23a、アウターヨーク素片23の円板部23c、アウターヨーク素片24、アウターヨーク素片24の磁極片24a、間隙G3を通過して再び永久磁石34の右側に戻り一巡する。そして、磁束Ψ1は間隙G1bと間隙G2aを通過し、磁束Ψ2は間隙G2aと間隙G3を通過する。コイル26と、27は線径、全長、巻数が同じで、間隙G1bの磁気抵抗は間隙G3の磁気抵抗より大きいので、磁束Ψ2の磁束量は磁束Ψ1の磁束量より大きい。   FIG. 4 is a partial cross-sectional explanatory view of magnetic flux when a direct current having the same current value as that of FIG. FIG. 4A shows a magnetic flux diagram generated by the currents of the coils 26 and 27. As shown in FIG. 4A, in the state where the mover 30 is located at the neutral position, the coils 26 and 27 are supplied with direct currents having the same current value in opposite directions. As a result, a counterclockwise closed loop magnetic flux Ψ1 due to the coil 26 and a clockwise closed loop magnetic flux Ψ2 due to the coil 27 are generated. The magnetic flux Ψ1 is sequentially applied from the center side of the permanent magnet 32 to the gap G2a, the magnetic pole piece 23a, the disc portion 23c of the outer yoke piece 23, the outer yoke piece 22, the magnetic pole piece 22a, the left end side of the magnetic pole piece 22a and the inner yoke 31. After passing through the gap G1b between the left end side and the inner yoke 31, it returns to the center side of the permanent magnet 32 and makes a round. The magnetic flux Ψ2 is sequentially applied from the right side of the permanent magnet 34 to the inner yoke 31, the right side of the permanent magnet 32, the gap G2a, the magnetic pole piece 23a, the disk portion 23c of the outer yoke piece 23, the outer yoke piece 24, and the outer yoke piece 24. The magnetic pole piece 24a passes through the gap G3 and returns to the right side of the permanent magnet 34 to make a round. The magnetic flux Ψ1 passes through the gap G1b and the gap G2a, and the magnetic flux Ψ2 passes through the gap G2a and the gap G3. The coils 26 and 27 have the same wire diameter, total length, and number of turns, and the magnetic resistance of the gap G1b is larger than the magnetic resistance of the gap G3. Therefore, the magnetic flux amount of the magnetic flux ψ2 is larger than the magnetic flux amount of the magnetic flux ψ1.

図4(b)は、コイル通電時に於ける可動子30の移動方向の説明図で、可動子30の中立位置に於ける永久磁石32〜34による磁束Φ、Ω、Γを示す。図4(b)に示すように、コイル26、27に電流が流れると、コイル26は永久磁石32〜34の磁束Φ、Ω、Γとコイル27の磁束Ψ2(図4(a))とにより磁気力を受け、コイル27は永久磁石32〜34の磁束Φ、Ω、Γとコイル26の磁束Ψ1(図4(a))とにより磁気力を受ける。即ち、コイル26、27には互いに反対方向で同じ電流値の直流電流(図4(a)と同じ電流)を通電すると、フレミングの左手の法則に基づき、コイル27は間隙G3の磁束ΦによりK方向の磁気力を受けるが、間隙G2aと間隙G2bの磁束Ω、Γによる磁気力は打消し合ってコイル27には殆ど作用せず、間隙G2aと間隙G1bの磁束Ψ1(図4(a))による磁気力も打消し合ってコイル27には殆ど作用しない。結果、コイル27は矢印K方向の磁気力を受ける。   FIG. 4B is an explanatory diagram of the moving direction of the mover 30 when the coil is energized, and shows magnetic fluxes Φ, Ω, and Γ by the permanent magnets 32 to 34 at the neutral position of the mover 30. As shown in FIG. 4B, when current flows through the coils 26 and 27, the coil 26 is caused by the magnetic fluxes Φ, Ω, and Γ of the permanent magnets 32 to 34 and the magnetic flux Ψ2 of the coil 27 (FIG. 4A). Under the magnetic force, the coil 27 receives the magnetic force due to the magnetic fluxes Φ, Ω, Γ of the permanent magnets 32 to 34 and the magnetic flux ψ1 (FIG. 4A) of the coil 26. That is, when a direct current of the same current value (the same current as in FIG. 4A) is applied to the coils 26 and 27 in opposite directions, the coil 27 is subjected to K by the magnetic flux Φ of the gap G3 based on Fleming's left-hand rule. However, the magnetic forces due to the magnetic fluxes Ω and Γ in the gap G2a and the gap G2b cancel each other and hardly act on the coil 27, and the magnetic flux Ψ1 in the gap G2a and the gap G1b (FIG. 4A). The magnetic force due to the above cancels out and hardly acts on the coil 27. As a result, the coil 27 receives a magnetic force in the arrow K direction.

同様に、フレミングの左手の法則に基づき、コイル26は間隙G1の磁束ΦによりK方向の磁気力を受けるが、間隙G2aと間隙G2bの磁束Ω、Γによる磁気力は打消し合ってコイル27には殆ど作用せず、間隙G2aと間隙G3の磁束Ψ2(図4(a))による磁気力も打消し合ってコイル26には殆ど作用しない。結果、コイル26は矢印K方向の磁気力を受ける。以上により、コイル26、27は、磁束Φにより矢印K方向の磁気力を受けるが、コイル26、27は固定子21に挟持され移動できないので、可動子30が矢印N方向の磁気力を受けて矢印N方向に移動する。   Similarly, based on Fleming's left-hand rule, the coil 26 receives a magnetic force in the K direction due to the magnetic flux Φ in the gap G1, but the magnetic forces due to the magnetic fluxes Ω and Γ in the gap G2a and the gap G2b cancel each other. Almost does not act, the magnetic force due to the magnetic flux Ψ2 (FIG. 4A) in the gap G2a and the gap G3 cancels each other, and hardly acts on the coil 26. As a result, the coil 26 receives a magnetic force in the arrow K direction. As described above, the coils 26 and 27 receive the magnetic force in the arrow K direction due to the magnetic flux Φ, but the coils 26 and 27 are sandwiched by the stator 21 and cannot move, so that the mover 30 receives the magnetic force in the arrow N direction. Move in the direction of arrow N.

図4(c)は、図4(a)のコイル26、27による磁束Ψ1、Ψ2と図4(b)の永久磁石32〜34による磁束Φ、Ω、Γとを合成した磁束図を示す。図4(c)に示すように、固定子21と可動子30の磁気回路には、図示右回りの閉ループの合成磁束(Ψ2+Φ)と、図示左回りの閉ループの合成磁束Λ1が生じ、図示右回りの閉ループの磁束Ω、Γは残存する。磁束Φと磁束Ψ1との流れ方向が反対であるため、磁束(Ψ1−Φ)の磁束量は略0になり、磁束Λ1が合成されするが合成磁束Λ1の磁束量は合成磁束(Ψ2+Φ)に比べ小さい。そして、インナーヨーク31を流れる磁束量の大きい合成磁束(Ψ2+Φ)の方向は、永久磁石33の磁化方向と同じであり、又、インナーヨーク31を流れる図3(c)の合成磁束(Ψ1+Φ)の方向と同じである。   FIG. 4C shows a magnetic flux diagram in which the magnetic fluxes Ψ1, Ψ2 by the coils 26, 27 in FIG. 4A and the magnetic fluxes Φ, Ω, Γ by the permanent magnets 32-34 in FIG. 4B are combined. As shown in FIG. 4C, in the magnetic circuit of the stator 21 and the mover 30, a clockwise closed loop combined magnetic flux (Ψ2 + Φ) and a counterclockwise closed loop combined magnetic flux Λ1 are generated. The surrounding closed-loop magnetic flux Ω and Γ remain. Since the flow directions of the magnetic flux Φ and the magnetic flux Ψ1 are opposite, the magnetic flux amount of the magnetic flux (Ψ1-Φ) is substantially 0, and the magnetic flux Λ1 is synthesized, but the magnetic flux amount of the synthesized magnetic flux Λ1 is the combined magnetic flux (Ψ2 + Φ). Small compared. The direction of the combined magnetic flux (Ψ2 + Φ) having a large amount of magnetic flux flowing through the inner yoke 31 is the same as the magnetization direction of the permanent magnet 33, and the combined magnetic flux (Ψ1 + Φ) of FIG. Same as direction.

図4(d)は、図4(c)の可動子30が矢印N方向に移動し、可動子30に作用するM方向の外力FとN方向の磁気力Fbが釣合い停止した状態を示す。図4(c)と同様に釣合い停止位置の永久磁石32〜34による磁束Φb(図示せず)と、コイル26、27よる磁束Ψb1、Ψb2(図示せず)とが合成される。この合成により、図4(d)に示すように図示右回りの閉ループの合成磁束(Ψb2+Φb)と、図示左回りの閉ループの合成磁束Λ1bが生じると共に図示右回りの閉ループの磁束Ωb、Γbが残存する。インナーヨーク31を流れる合成磁束(Ψb2+Φb)の方向は永久磁石33の磁化方向と同じで、図3(d)のインナーヨーク31を流れる合成磁束(Ψa1+Φa)の向きと同じである。また、合成磁束(Ψb2+Φb)は合成磁束Λ1bの磁束量より大きい。そして、磁気力Fa(図3(d))と磁気力Fb(図4(d))は、大きさは同じで方向が反対で、通電時に於けるリニアモータ20が発生する磁気推力である。   FIG. 4D shows a state in which the mover 30 in FIG. 4C moves in the direction of arrow N, and the external force F in the M direction acting on the mover 30 and the magnetic force Fb in the N direction stop in balance. Similar to FIG. 4C, the magnetic flux Φb (not shown) by the permanent magnets 32 to 34 at the balance stop position and the magnetic fluxes ψb1 and ψb2 (not shown) by the coils 26 and 27 are synthesized. As a result of this synthesis, as shown in FIG. 4 (d), a combined magnetic flux (Ψb2 + Φb) in the clockwise direction shown in the drawing and a combined magnetic flux Λ1b in the counterclockwise direction in the drawing are generated, and magnetic fluxes Ωb and Γb in the clockwise clockwise loop remain. To do. The direction of the combined magnetic flux (Ψb2 + Φb) flowing through the inner yoke 31 is the same as the magnetization direction of the permanent magnet 33, and is the same as the direction of the combined magnetic flux (Ψa1 + Φa) flowing through the inner yoke 31 in FIG. Further, the composite magnetic flux (Ψb2 + Φb) is larger than the magnetic flux amount of the composite magnetic flux Λ1b. The magnetic force Fa (FIG. 3D) and the magnetic force Fb (FIG. 4D) are magnetic thrusts generated by the linear motor 20 when energized, having the same magnitude and opposite directions.

前述の図3、4の作動により、コイル26、27に位相が180度ずれた交流電流を通電すると、可動子30は往復動する。   3 and 4, when an alternating current whose phase is shifted by 180 degrees is applied to the coils 26 and 27, the mover 30 reciprocates.

以上により、次の効果が生じる。即ち、保持部材31が磁性材の場合、コイル26、27に対し互いに位相が180度ずれた交流電流を通電するにより、アウターヨーク25に互いに反対方向の磁束が生じる。この磁束は、電流が交番(電流が±変化)しているにも拘らず、インナーヨーク31には永久磁石33の磁化方向と同じ一方向で磁束量の大きな変動磁束(直流成分に交流成分が加わった磁束)が常に発生する。これに対し、従来技術のリニアモータ(電磁式アクチュエータ)では、インナーヨークに交番磁束(方向が代わる磁束)が発生する。従って、同じ磁気推力の下で、本発明のリニアモータ20のインナーヨーク31を流れる一定方向の磁束の振幅及び最大磁束量は、従来技術の交番磁束の振幅及び最大磁束量より減少する。この変動磁束の振幅及び最大磁束量の減少により、アウターヨーク25の変動磁束の振幅及び最大磁束量も減少する。結果、変動磁束によって発生するインナーヨーク31と、アウターヨーク25の各々の鉄損は減少するので、高い効率のリニアモータ20を提供できる。   As described above, the following effects are produced. That is, when the holding member 31 is a magnetic material, magnetic fluxes in opposite directions are generated in the outer yoke 25 by applying alternating currents that are 180 degrees out of phase to the coils 26 and 27. Although the current is alternating (the current is ± changed), this magnetic flux has a fluctuating magnetic flux with a large magnetic flux amount in the same direction as the magnetization direction of the permanent magnet 33 (the direct current component has an alternating current component). Applied magnetic flux) is always generated. On the other hand, in the conventional linear motor (electromagnetic actuator), an alternating magnetic flux (magnetic flux whose direction is changed) is generated in the inner yoke. Therefore, under the same magnetic thrust, the amplitude and the maximum amount of magnetic flux in a certain direction flowing through the inner yoke 31 of the linear motor 20 of the present invention are smaller than the amplitude and the maximum amount of magnetic flux in the prior art. Due to the decrease in the amplitude and the maximum magnetic flux amount of the fluctuation magnetic flux, the amplitude and the maximum magnetic flux amount of the fluctuation magnetic flux in the outer yoke 25 are also reduced. As a result, the iron loss of each of the inner yoke 31 and the outer yoke 25 generated by the fluctuating magnetic flux is reduced, so that a highly efficient linear motor 20 can be provided.

また、インナーヨーク31の最大磁束量が従来技術の最大磁束量より減少するので、インナーヨーク31は従来技術に比べ少ない磁束通過断面積で済み、磁気飽和を回避できる。これにより、可動子30の外径が縮小する。同様に、アウターヨーク25の最大磁束量も減少するので、アウターヨーク25は従来技術に比べ少ない磁束通過断面積で磁気飽和が回避できると共に可動子30の外径の縮小とにより、固定子21が小型軽量になる。以上とリニアモータ20が高効率であることにより、小型軽量なリニアモータ20が提供できる。   In addition, since the maximum magnetic flux amount of the inner yoke 31 is smaller than the maximum magnetic flux amount of the prior art, the inner yoke 31 can have a smaller magnetic flux passage cross-sectional area than the prior art, and magnetic saturation can be avoided. As a result, the outer diameter of the mover 30 is reduced. Similarly, since the maximum magnetic flux amount of the outer yoke 25 is also reduced, the outer yoke 25 can avoid magnetic saturation with a smaller magnetic flux passage cross-sectional area than the prior art, and the outer diameter of the mover 30 can be reduced. Smaller and lighter. Since the linear motor 20 is highly efficient as described above, a small and lightweight linear motor 20 can be provided.

また、従来技術のリニアモータでは、可動子の内周面側の磁気ギャップ(可動子の内周面とインナーヨークとの間の磁気ギャップ)と、可動子の外周面側の磁気ギャップ(可動子の外周面とアウターヨークとの間の磁気ギャップ)があるため、磁気回路の磁気抵抗が増大して所定の磁気推力を得るにはリニアモータが大型になる。しかし、本実施例のリニアモータ20は可動子30の外周面側の磁気ギャップ(可動子30の永久磁石32〜34の外周面と固定子21の内周面との一つの径の磁気ギャップ)だけあるので、磁気抵抗が減少しリニアモータ20は小型軽量になる。   In the linear motor of the prior art, the magnetic gap on the inner peripheral surface side of the mover (magnetic gap between the inner peripheral surface of the mover and the inner yoke) and the magnetic gap on the outer peripheral surface side of the mover (mover) Therefore, the linear motor becomes large in order to increase the magnetic resistance of the magnetic circuit and obtain a predetermined magnetic thrust. However, the linear motor 20 of the present embodiment has a magnetic gap on the outer peripheral surface side of the mover 30 (a magnetic gap having one diameter between the outer peripheral surface of the permanent magnets 32 to 34 of the mover 30 and the inner peripheral surface of the stator 21). Therefore, the magnetic resistance is reduced, and the linear motor 20 becomes smaller and lighter.

尚、前述までの作動、効果は保持部材31が磁性材の場合であるが、保持部材31が非磁性材の場合でも、前述の説明のインナーヨーク31(磁性材の保持部材31)を流れていたコイル26、27の交流電流によって生じる磁束と、永久磁石32〜34によって生じる磁束は、順次永久磁石34、33、32に流れるので、リニアモータ20は、保持部材31が磁性材の場合と同様な作用、効果を生じる。即ち、コイル26、27に位相が180度ずれた交流電流を通電するにより、コイル26、27に互いに反対方向の磁束が生じる。この磁束は、電流が交番しているにも拘らず、永久磁石34、33、34には永久磁石33の磁化方向と同じ一方向の変動磁束が常に発生する。この変動磁束の振幅、最大磁束量は従来技術の交番磁束の振幅、最大磁束量より減少するので、保持部材31が磁性材の場合と同じ効果を生じる。   The operations and effects described above are for the case where the holding member 31 is a magnetic material. However, even when the holding member 31 is a non-magnetic material, it flows through the inner yoke 31 (the magnetic material holding member 31) described above. Since the magnetic flux generated by the alternating current of the coils 26 and 27 and the magnetic flux generated by the permanent magnets 32 to 34 sequentially flow to the permanent magnets 34, 33, and 32, the linear motor 20 is the same as when the holding member 31 is a magnetic material. Effects and effects. That is, by applying an alternating current whose phase is shifted by 180 degrees to the coils 26 and 27, magnetic fluxes in opposite directions are generated in the coils 26 and 27. In spite of the alternating current of the magnetic flux, the permanent magnets 34, 33, 34 always generate a variable magnetic flux in the same direction as the magnetization direction of the permanent magnet 33. Since the amplitude and the maximum magnetic flux amount of the fluctuation magnetic flux are smaller than the amplitude and the maximum magnetic flux amount of the alternating magnetic flux of the prior art, the same effect as the case where the holding member 31 is a magnetic material is produced.

また、可動子30を備えた可動体35は、リニアモータ20の磁気バネと、可動体35の前面及び背面に作用するヘリウムのガスバネを合成したバネと、可動子30を含む可動体35の合計質量とで固有周波数を有する振動系を形成する。この固有周波数近傍で運転することにより、可動体35の往復動の振幅が増大してリニアモータ20の効率は向上する。さらには、保持部材31を樹脂等の軽量材を使用することで可動子30が軽量になり可動体35の固有周波数が高くなり、この高くなった固有周波数近傍で可動体35を往復駆動させる。結果、膨張室55で発生される冷凍量が増大する。   The movable body 35 including the movable element 30 is a total of a magnetic spring of the linear motor 20, a spring obtained by synthesizing a helium gas spring acting on the front surface and the rear surface of the movable body 35, and the movable body 35 including the movable element 30. A vibration system having a natural frequency with the mass is formed. By operating near this natural frequency, the amplitude of the reciprocating motion of the movable body 35 increases and the efficiency of the linear motor 20 is improved. Furthermore, by using a lightweight material such as resin for the holding member 31, the mover 30 becomes lighter and the natural frequency of the movable body 35 increases, and the movable body 35 is driven to reciprocate in the vicinity of the increased natural frequency. As a result, the amount of refrigeration generated in the expansion chamber 55 increases.

また、保持部材31が磁性材でコイル26、27による磁束Ψ1、Ψ2の磁束量が大きい場合、磁束Ψ1、Ψ2が保持部材31に流れるので、保持部材31の磁束通過断面積を適正に確保することにより、コストアップすることなく磁気飽和が回避できる。従って、コイル26、27による磁束Ψ1、Ψ2の磁束量が大きい場合に好適である。   Further, when the holding member 31 is a magnetic material and the amount of magnetic flux Ψ1, Ψ2 by the coils 26, 27 is large, the magnetic fluxes Ψ1, Ψ2 flow to the holding member 31, so that the magnetic flux passage cross-sectional area of the holding member 31 is appropriately secured. Thus, magnetic saturation can be avoided without increasing the cost. Therefore, it is suitable when the magnetic flux amount of the magnetic fluxes Ψ1, Ψ2 by the coils 26, 27 is large.

また、図1では、永久磁石33の両端に永久磁石32と永久磁石34とを固着し3つの永久磁石を備えた可動子30を、一つの永久磁石内に前述した3方向に磁化して可動子を構成しても良い。そして、永久磁石の内径面に保持部材31を配備し、保持部材31が磁性材である場合、作用及び効果は前述の保持部材31が磁性材の場合と同じである。また、保持部材31が非磁性材である場合、作用及び効果は前述の保持部材31が非磁性材の場合と同じである。保持部材31を配備しない場合の作用は、前述の保持部材31が非磁性材の場合と同じで、非磁性材と同じ効果に加え、可動子の構成が簡素になる。   Further, in FIG. 1, a permanent magnet 32 and a permanent magnet 34 are fixed to both ends of a permanent magnet 33, and a mover 30 provided with three permanent magnets is magnetized in one permanent magnet in the three directions described above to move. You may comprise a child. When the holding member 31 is provided on the inner diameter surface of the permanent magnet and the holding member 31 is a magnetic material, the operation and effect are the same as in the case where the holding member 31 is a magnetic material. Further, when the holding member 31 is a nonmagnetic material, the operation and effect are the same as in the case where the holding member 31 is a nonmagnetic material. The operation when the holding member 31 is not provided is the same as the case where the above-described holding member 31 is a nonmagnetic material, and in addition to the same effect as the nonmagnetic material, the structure of the mover is simplified.

図5は、図1のリニアモータ20の主要寸法を示す部分断面図で、保持部材31は磁性材のインナーヨークである。図5に於いて、Dは永久磁石32〜34の直径、t1はインナーヨーク(保持部材31が磁性材の場合)の厚さ、t2は永久磁石32〜34の厚さ、Cは永久磁石33の長さである。可動子30の中立位置に於いて、Aは永久磁石32と磁極片22aとの重なり代及び永久磁石34と磁極片24aの重なり代、Bは永久磁石32と磁極片23aとの重なり代及び永久磁石34と磁極片23bとの重なり代である。   FIG. 5 is a partial cross-sectional view showing the main dimensions of the linear motor 20 of FIG. 1, and the holding member 31 is an inner yoke made of a magnetic material. In FIG. 5, D is the diameter of the permanent magnets 32 to 34, t1 is the thickness of the inner yoke (when the holding member 31 is a magnetic material), t2 is the thickness of the permanent magnets 32 to 34, and C is the permanent magnet 33. Is the length of In the neutral position of the mover 30, A is the allowance for the permanent magnet 32 and the pole piece 22a and the allowance for the permanent magnet 34 and the pole piece 24a, and B is the allowance for the permanent magnet 32 and the pole piece 23a. This is the overlap margin between the magnet 34 and the magnetic pole piece 23b.

図6は、リニアモータ20の(インナーヨーク厚さ/永久磁石外径)と、推力係数及び(推力係数/インナーヨーク質量)の関係を示す図である。図7は、リニアモータ20の(永久磁石厚さ/永久磁石外径)と、推力係数及び(推力係数/インナーヨーク質量)の関係を示す図である。図6及び7に於いて、太実線は(推力係数/インナーヨーク質量)、実線は推力係数を示す。推力係数は、1AT(ATはアンペアターンで、電流はAの単位、Tはターンでコイルの巻数)当りの磁気推力、即ち電流1A(コイル26、27の電流の絶対値の1A)、コイル1巻当りの磁気推力である。   FIG. 6 is a diagram showing the relationship between (inner yoke thickness / permanent magnet outer diameter), thrust coefficient, and (thrust coefficient / inner yoke mass) of the linear motor 20. FIG. 7 is a diagram showing the relationship between (permanent magnet thickness / permanent magnet outer diameter), thrust coefficient, and (thrust coefficient / inner yoke mass) of the linear motor 20. 6 and 7, the thick solid line indicates (thrust coefficient / inner yoke mass), and the solid line indicates the thrust coefficient. The thrust coefficient is 1 AT (AT is an ampere turn, current is a unit of A, T is the number of turns of the coil in the turn), that is, current 1 A (1 A of the absolute value of the current of the coils 26 and 27), coil 1 Magnetic thrust per winding.

図6に示すように、(インナーヨーク厚さt1/永久磁石外径D)が20%以下であると、推力係数は急増加し、(推力係数/インナーヨーク質量)は高い値を維持する。そして、(インナーヨーク厚さt1/永久磁石外径D)が20%を超えると、推力係数は頭打ちになり、また、(推力係数/インナーヨーク質量)は低下する。従って、インナーヨーク31を小型軽量にするには、インナーヨーク厚さt1は永久磁石32〜34の外径Dの20%以下が好適である。   As shown in FIG. 6, when (inner yoke thickness t1 / permanent magnet outer diameter D) is 20% or less, the thrust coefficient increases rapidly, and (thrust coefficient / inner yoke mass) maintains a high value. When (inner yoke thickness t1 / permanent magnet outer diameter D) exceeds 20%, the thrust coefficient reaches a peak and (thrust coefficient / inner yoke mass) decreases. Therefore, in order to make the inner yoke 31 small and light, the inner yoke thickness t1 is preferably 20% or less of the outer diameter D of the permanent magnets 32-34.

図7に示すように、(永久磁石厚さt2/永久磁石外径D)が3%〜20%の範囲であると、推力係数は増加し、(推力係数/インナーヨーク質量)も高い。そして、(永久磁石厚さt2/永久磁石外径D)が20%を超えると、推力係数は頭打ちなり、また(推力係数/インナーヨーク質量)は低くなる。従って、磁気推力を確保しつつインナーヨークを小型軽量にするには、永久磁石32〜34の厚さt2は永久磁石32〜34の外径Dの3%から20%の範囲が好適である。   As shown in FIG. 7, when (permanent magnet thickness t2 / permanent magnet outer diameter D) is in the range of 3% to 20%, the thrust coefficient increases and (thrust coefficient / inner yoke mass) is also high. When (permanent magnet thickness t2 / permanent magnet outer diameter D) exceeds 20%, the thrust coefficient reaches a peak and (thrust coefficient / inner yoke mass) decreases. Therefore, in order to make the inner yoke small and light while securing the magnetic thrust, the thickness t2 of the permanent magnets 32 to 34 is preferably in the range of 3% to 20% of the outer diameter D of the permanent magnets 32 to 34.

また、永久磁石33の長さCが永久磁石32、34の長さの3%から130%のときに、高い効率のリニアモータ20が得られる。   Further, when the length C of the permanent magnet 33 is 3% to 130% of the length of the permanent magnets 32 and 34, the highly efficient linear motor 20 is obtained.

磁極片22a、23aと永久磁石32との重なり代A、B、及び、磁極片24a、23bと永久磁石34との重なり代A、Bは、可動子30の最大ストロークの60%から180%の範囲が高い効率のリニアモータ20が得られる。また、重なり代Aと重なり代Bとは、B≧Aがリニアモータ20の効率を高くする。   The overlap margins A and B between the pole pieces 22a and 23a and the permanent magnet 32 and the overlap margins A and B between the pole pieces 24a and 23b and the permanent magnet 34 are 60% to 180% of the maximum stroke of the mover 30. An efficient linear motor 20 with a high range is obtained. Further, the overlap margin A and the overlap margin B are such that B ≧ A increases the efficiency of the linear motor 20.

次に、本発明の実施例1に係わるスターリング冷凍機1の作動と効果について説明する。スターリング冷凍機1は、ディスプレーサ56の固有振動数を可動体35の固有振動数に略合わせ、可動体35の固有振動数近傍で運転する。この固有振動数近傍の周波数で、同一振幅、位相が180度ずれる交流電流をコイル26、27に通電する。すると、可動体35は往復動し、ディスプレーサ56も往復動する。可動体35とディスプレーサ56は、膨張室55の掃気容積が圧縮室43と圧縮室51とを足合わせた掃気容積に対して略90度位相が進む位相関係にある。圧縮室43と圧縮室51とで圧縮されたヘリウムは、放熱器52で冷却され、蓄冷器53で蓄冷材エレメント53aと熱交換し膨張室55の温度に略等しい温度にまで冷却される。蓄冷器53で冷却されたヘリウムは、吸熱器54を通過し膨張室55に流入し、そこでディスプレーサ56の図1に於ける下方向の移動により膨張して、所定の低い温度の冷凍を発生する。吸熱器54では膨張室55で発生した冷凍で被冷却物(図示せず)を冷却する。そして、ディスプレーサ56の図1に於ける上方向の移動により、膨張室55のヘリウムは吸熱器54を通過して蓄冷器53の蓄冷材エレメント53aで加温され放熱器52から圧縮室43と圧縮室51へ流入し1サイクルを終了する。   Next, the operation and effect of the Stirling refrigerator 1 according to the first embodiment of the present invention will be described. The Stirling refrigerator 1 is operated in the vicinity of the natural frequency of the movable body 35 by substantially matching the natural frequency of the displacer 56 with the natural frequency of the movable body 35. An alternating current having the same amplitude and phase shifted by 180 degrees is applied to the coils 26 and 27 at a frequency near this natural frequency. Then, the movable body 35 reciprocates and the displacer 56 also reciprocates. The movable body 35 and the displacer 56 have a phase relationship in which the scavenging volume of the expansion chamber 55 advances in phase by approximately 90 degrees with respect to the scavenging volume obtained by adding the compression chamber 43 and the compression chamber 51 together. The helium compressed in the compression chamber 43 and the compression chamber 51 is cooled by the radiator 52 and is cooled to a temperature substantially equal to the temperature of the expansion chamber 55 by exchanging heat with the regenerator element 53a by the regenerator 53. The helium cooled by the regenerator 53 passes through the heat absorber 54 and flows into the expansion chamber 55, where it expands by the downward movement of the displacer 56 in FIG. 1 to generate a predetermined low temperature refrigeration. . The heat absorber 54 cools an object to be cooled (not shown) by refrigeration generated in the expansion chamber 55. Then, due to the upward movement of the displacer 56 in FIG. 1, the helium in the expansion chamber 55 passes through the heat absorber 54 and is heated by the regenerator element 53 a of the regenerator 53 and is compressed from the radiator 52 to the compression chamber 43. It flows into the chamber 51 and ends one cycle.

以上より、スターリング冷凍機1は、リニアモータ20を備える可動体35の往復動でヘリウムを圧縮して所定の低い温度の冷凍を発生する。本実施例のリニアモータ20は効率が高いので、高効率のスターリング冷凍機1を提供できる。   As described above, the Stirling refrigerator 1 compresses helium by the reciprocating motion of the movable body 35 including the linear motor 20 to generate refrigeration at a predetermined low temperature. Since the linear motor 20 of this embodiment has high efficiency, the highly efficient Stirling refrigerator 1 can be provided.

また、リニアモータ20は小型軽量であり、又、スターリング冷凍機1は高効率であるので、スターリング冷凍機1は小型軽量になる。   Further, since the linear motor 20 is small and light, and the Stirling refrigerator 1 is highly efficient, the Stirling refrigerator 1 is small and light.

また、コイル26、27に交流電流を通電するにも拘らず、インナーヨーク31あるいは永久磁石32〜34には一定方向(永久磁石33の磁化方向)の磁束が流れるので、インナーヨーク31あるいは永久磁石32〜34に発生する鉄損が減少し、可動子30のピストン36、ピストンガイド37の温度上昇は減少する。結果、無潤滑摺動材のピストン36、ピストンガイド37の摩耗量が減少しスターリング冷凍機1の耐久性が向上する。   In addition, a magnetic flux in a certain direction (magnetization direction of the permanent magnet 33) flows through the inner yoke 31 or the permanent magnets 32 to 34 even though an alternating current is applied to the coils 26 and 27. The iron loss generated in 32 to 34 is reduced, and the temperature rise of the piston 36 and the piston guide 37 of the mover 30 is reduced. As a result, the wear amount of the non-lubricated sliding material piston 36 and piston guide 37 is reduced, and the durability of the Stirling refrigerator 1 is improved.

図8は、図1のリニアモータ20の可動子30の変形例の部分断面図である。図8に示すように、リニアモータ120の可動子121は、磁性材からなる保持部材122の形状が図1の磁性材の保持部材31と異なる。即ち、保持部材122の外径は保持部材31の外径と同一寸法で、保持部材122の中央部122bの内径も保持部材31の内径と同一寸法であるが、保持部材122の両側部122a、122cの内径は保持部材31の内径より大きい。いいかえると、保持部材31は、永久磁石33の軸方向中央から図示左側に磁極片23aの軸方向長さに略等しい範囲と、永久磁石33の軸方向中央から図示右側に磁極片23bの略軸方向長さに略等しい範囲との円筒部分の厚さが、その両端側の円筒部分の厚さより厚い。これは、磁束量の多い中央部122bの磁気飽和を回避するように保持部材31の断面積と同じにし、中央部122bより磁束量の少ない両側部122a、122cは、内径を保持部材31より大きくして磁気飽和が回避できる最小断面積にする。従って、可動子121の質量が減少でき、可動子121が高い周波数で往復動できる。   FIG. 8 is a partial cross-sectional view of a modification of the mover 30 of the linear motor 20 of FIG. As shown in FIG. 8, the mover 121 of the linear motor 120 is different from the magnetic material holding member 31 in FIG. 1 in the shape of a holding member 122 made of a magnetic material. That is, the outer diameter of the holding member 122 is the same as the outer diameter of the holding member 31, and the inner diameter of the central portion 122b of the holding member 122 is the same as the inner diameter of the holding member 31. The inner diameter of 122 c is larger than the inner diameter of the holding member 31. In other words, the holding member 31 has a range approximately equal to the axial length of the magnetic pole piece 23a from the axial center of the permanent magnet 33 to the left side of the figure, and an approximate axis of the magnetic pole piece 23b from the axial center of the permanent magnet 33 to the right side of the figure. The thickness of the cylindrical portion with a range substantially equal to the length in the direction is thicker than the thickness of the cylindrical portions on both ends. This is the same as the cross-sectional area of the holding member 31 so as to avoid the magnetic saturation of the central portion 122b with a large amount of magnetic flux, and both the side portions 122a and 122c having a smaller magnetic flux amount than the central portion 122b have a larger inner diameter than the holding member 31. Thus, the minimum cross-sectional area that can avoid magnetic saturation is obtained. Accordingly, the mass of the mover 121 can be reduced, and the mover 121 can reciprocate at a high frequency.

尚、スターリング冷凍機1はディスプレーサ56の前面(図示上面)と背面(図示下面)に作動ガス圧が作用するディスプレーサ型のスターリング冷凍機であるが、ディスプレーサ56に代わって前面に作動ガス圧が作用し背面には略一定の作動ガス圧が作用する膨張ピストン(膨張側ピストン)を設けた膨張ピストン型のスターリング冷凍機でも良い。この場合、圧縮室51が省略でき、圧縮室は圧縮室43のみとなる。また、膨張ピストンはリニアモータなどの駆動手段が接続される。   The Stirling refrigerator 1 is a displacer type Stirling refrigerator in which the working gas pressure acts on the front surface (upper surface in the drawing) and the rear surface (lower surface in the drawing) of the displacer 56, but the working gas pressure acts on the front surface instead of the displacer 56. Further, an expansion piston type Stirling refrigerator having an expansion piston (expansion side piston) on which a substantially constant working gas pressure acts may be provided on the back surface. In this case, the compression chamber 51 can be omitted, and the compression chamber is only the compression chamber 43. The expansion piston is connected to driving means such as a linear motor.

また、リニアモータ20の可動子30として永久磁石33が1個配備されている。しかし、順次第1永久磁石と、第3永久磁石と、第2永久磁石とを配備した第2永久磁石の隣に、例えば、順次第3永久磁石と、第1永久磁石とを配備するように、第3永久磁石を複数個配備する。これにより、永久磁石32と永久磁石34とに隣接する永久磁石33を複数個配備しても良い。この場合、永久磁石33が奇数個であると、永久磁石32と永久磁石34の個数は同数で永久磁石33の数個より1個少ない。永久磁石33が偶数個であると、永久磁石33と永久磁石34のうち一方の永久磁石の個数が永久磁石33の数個に等しく、他方の永久磁石の個数は永久磁石33の数個より1個多い。そして、永久磁石33を複数個配備したリニアモータは、永久磁石33を1個配備したリニアモータ20の磁気推力に永久磁石33の個数を掛けた値に略等しい磁気推力を得られる。従って、大きな磁気推力を得るには、永久磁石33を複数個設けたリニアモータが好適である。   Further, one permanent magnet 33 is provided as the mover 30 of the linear motor 20. However, next to the second permanent magnet in which the first permanent magnet, the third permanent magnet, and the second permanent magnet are sequentially disposed, for example, the third permanent magnet and the first permanent magnet are sequentially disposed. A plurality of third permanent magnets are provided. Accordingly, a plurality of permanent magnets 33 adjacent to the permanent magnet 32 and the permanent magnet 34 may be provided. In this case, if the number of permanent magnets 33 is an odd number, the number of permanent magnets 32 and the number of permanent magnets 34 is the same, one less than the number of permanent magnets 33. If the number of the permanent magnets 33 is an even number, the number of one of the permanent magnets 33 and 34 is equal to the number of the permanent magnets 33, and the number of the other permanent magnets is 1 than the number of the permanent magnets 33. There are many. A linear motor having a plurality of permanent magnets 33 can obtain a magnetic thrust substantially equal to a value obtained by multiplying the magnetic thrust of the linear motor 20 having one permanent magnet 33 by the number of permanent magnets 33. Therefore, in order to obtain a large magnetic thrust, a linear motor provided with a plurality of permanent magnets 33 is suitable.

図9は、スターリング型パルス管冷凍機の冷凍発生部の説明図である。図1の冷凍発生部50のディスプレーサシリンダ57と、ディスプレーサ56と、駆動手段60をそれぞれパルス管156と、パルス管156内に形成されるガスピストン157と、パルス管156の高温端156bに配備される位相調整手段160とに代えたスターリング型パルス管冷凍機5の冷凍発生部150にしても良い。この場合、スターリング型パルス管冷凍機5(蓄冷型冷凍機)は、冷凍発生部150と、図1と同じ圧縮部10とを配管151を介して連通される。   FIG. 9 is an explanatory diagram of a refrigeration generator of a Stirling pulse tube refrigerator. The displacer cylinder 57, the displacer 56, and the driving means 60 of the refrigeration generating unit 50 of FIG. 1 are arranged at the pulse tube 156, the gas piston 157 formed in the pulse tube 156, and the high temperature end 156b of the pulse tube 156, respectively. Instead of the phase adjusting means 160, the refrigeration generator 150 of the Stirling type pulse tube refrigerator 5 may be used. In this case, the Stirling type pulse tube refrigerator 5 (cold storage type refrigerator) communicates the refrigeration generator 150 and the same compressor 10 as in FIG.

冷凍発生部150は、放熱器152が、順次、蓄冷器153、吸熱器154、パルス管156の低温端156aに連通され、そしてパルス管156の高温端156bを位相調整手段160に接続して構成される。パルス管156内には、一点鎖線で示されるガスピストン157が形成され、ガスピストン157は質量が一定で体積がヘリウムの圧力により変化する弾性ピストンとしてパルス管157内を可動体35と同じ周波数で往復動する。パルス管156とガスピストン157に包囲され低温端156a側に膨張室155が形成され、膨張室155は配管158を介して吸熱器154に連通される。位相調整手段160は、バッファタンク161と細長い管のイナータンスチューブ162から構成され、ガスピストン157が可動体35に対し略90度位相が進むようにバッファタンク161の容積とイナータンスチューブ162の流路抵抗が調整される。これにより、膨張室155は、図1の膨張室55と同じように作用し所定温度の冷凍を発生する。従って、スターリング型パルス管冷凍機5は、スターリング冷凍機1と同じ理由により高効率で小型軽量になる。   The refrigeration generating unit 150 includes a heat radiator 152 that is sequentially connected to a regenerator 153, a heat absorber 154, and a low temperature end 156 a of the pulse tube 156, and a high temperature end 156 b of the pulse tube 156 is connected to the phase adjusting means 160. Is done. A gas piston 157 indicated by an alternate long and short dash line is formed in the pulse tube 156. The gas piston 157 is an elastic piston whose mass is constant and volume is changed by the pressure of helium. Reciprocates. An expansion chamber 155 is formed on the low temperature end 156a side surrounded by the pulse tube 156 and the gas piston 157, and the expansion chamber 155 communicates with the heat absorber 154 through a pipe 158. The phase adjusting means 160 is composed of a buffer tank 161 and an inert tube 162 which is a long and narrow tube, and the volume of the buffer tank 161 and the flow of the inertance tube 162 so that the gas piston 157 advances a phase of about 90 degrees with respect to the movable body 35. Road resistance is adjusted. Thereby, the expansion chamber 155 acts in the same manner as the expansion chamber 55 of FIG. 1 and generates refrigeration at a predetermined temperature. Therefore, the Stirling pulse tube refrigerator 5 is highly efficient, small and light for the same reason as the Stirling refrigerator 1.

図10は、図1の往復動駆動機構を用いた実施例2に係るスターリング冷凍機の説明図である。図1のスターリング冷凍機1と同じ部位、同じ部品は同じ符号を付す。図10に示すように、スターリング冷凍機2(蓄冷型冷凍機)は、圧縮部80と、図1に示す冷凍発生部50とを配管11で接続して構成される。圧縮部80は、一対のリニアモータ20、20(往復動駆動機構)の固定子21と、一対の可動体35、35と、シリンダ70とから構成される。可動体35は、可動子30の保持部材31の両端にピストン36と、ピストンガイド37を備える。一対の可動体35、35は、各々のピストン36、36が対面するようにシリンダ70に往復動可能に挿設される。そしてシリンダ70には、シリンダ本体71の両端に鏡板72を気密固定される。そして、シリンダ70と、一対の可動体35、35とで包囲して圧縮室81が形成され、圧縮室81は、シリンダ本体71に連通した配管11を介して冷凍発生部50の圧縮室51と放熱器52に連通する。他の構成は、図1のスターリング冷凍機1と同じである。また、スターリング冷凍機2の作動は、スターリング冷凍機1と同じである。   FIG. 10 is an explanatory diagram of a Stirling refrigerator according to a second embodiment using the reciprocating drive mechanism of FIG. The same parts and the same parts as those of the Stirling refrigerator 1 in FIG. As shown in FIG. 10, the Stirling refrigerator 2 (cold storage type refrigerator) is configured by connecting a compression unit 80 and a refrigeration generating unit 50 shown in FIG. The compression unit 80 includes a pair of linear motors 20 and 20 (reciprocating drive mechanism) stator 21, a pair of movable bodies 35 and 35, and a cylinder 70. The movable body 35 includes a piston 36 and a piston guide 37 at both ends of the holding member 31 of the movable element 30. A pair of movable bodies 35 and 35 are inserted in the cylinder 70 so that reciprocation is possible so that each piston 36 and 36 may face. End plates 72 are hermetically fixed to the cylinder 70 at both ends of the cylinder body 71. A compression chamber 81 is formed by being surrounded by the cylinder 70 and the pair of movable bodies 35, 35, and the compression chamber 81 is connected to the compression chamber 51 of the refrigeration generating unit 50 via the pipe 11 communicating with the cylinder body 71. It communicates with the radiator 52. Other configurations are the same as the Stirling refrigerator 1 of FIG. The operation of the Stirling refrigerator 2 is the same as that of the Stirling refrigerator 1.

実施例2のスターリング冷凍機2は、一対の可動体35、35を対向配置することにより、可動体35の往復動に起因する振動が互いに相殺される。また、圧縮室81は、実施例1のスターリング冷凍機1の圧縮室43(図1)に比べ掃気容積が増大するので、膨張室55で発生する冷凍量が増大する。その他の効果はスターリング冷凍機1と同じである。   In the Stirling refrigerator 2 of the second embodiment, the vibrations caused by the reciprocating motion of the movable body 35 are canceled out by arranging the pair of movable bodies 35 and 35 to face each other. In addition, the scavenging volume of the compression chamber 81 is larger than that of the compression chamber 43 (FIG. 1) of the Stirling refrigerator 1 of the first embodiment, so that the amount of refrigeration generated in the expansion chamber 55 is increased. Other effects are the same as the Stirling refrigerator 1.

図11は、本発明の実施例3に係る往復動駆動機構を用いたスターリング冷凍機の説明図である。図1のスターリング冷凍機1と同じ部位、同じ部品は同じ符号を付す。図11に示すように、スターリング冷凍機3(蓄冷型冷凍機)は、圧縮部110と図1に示す冷凍発生部50を配管11で接続して構成される。圧縮部110は、一対のケース101、101と、各ケース101、101の内周面に固定される一対のリニアモータ20、20(往復動駆動機構)の一対の固定子21、21と、一対の可動体135、135と、一対のシリンダ140、140とから構成される。   FIG. 11 is an explanatory diagram of a Stirling refrigerator using a reciprocating drive mechanism according to Embodiment 3 of the present invention. The same parts and the same parts as those of the Stirling refrigerator 1 in FIG. As shown in FIG. 11, the Stirling refrigerator 3 (cold storage type refrigerator) is configured by connecting a compression unit 110 and a refrigeration generating unit 50 shown in FIG. The compression unit 110 includes a pair of cases 101, 101, a pair of stators 21, 21 of a pair of linear motors 20, 20 (reciprocating drive mechanism) fixed to the inner peripheral surface of each case 101, 101, and a pair Movable bodies 135 and 135 and a pair of cylinders 140 and 140.

可動体135は、可動子30の保持部材31の内周面にピストン136を固定される。そして、一対の可動体135、135が対向して一対のシリンダ140、140に往復動可能に挿設される。保持部材31の両端には支持具131、132が固定され、支持具131、132は支持機能と弾性機能を有する弾性支持手段、例えばスリッドとを有する円板形状の板バネ133、134の内周側が固定され、板バネ133、134の外周側はケース101の内周側に固定される。これにより、一対の可動体135、135は一対のシリンダ140、140の内周面に対し微小間隙を持って往復動可能に支持される。   The movable body 135 has a piston 136 fixed to the inner peripheral surface of the holding member 31 of the movable element 30. And a pair of movable bodies 135 and 135 oppose and are inserted in a pair of cylinders 140 and 140 so that a reciprocation is possible. Supporting tools 131 and 132 are fixed to both ends of the holding member 31, and the supporting tools 131 and 132 are inner circumferences of disk-shaped leaf springs 133 and 134 having elastic support means having a support function and an elastic function, for example, a slide. The outer sides of the leaf springs 133 and 134 are fixed to the inner periphery of the case 101. Accordingly, the pair of movable bodies 135 and 135 are supported so as to be able to reciprocate with a small gap with respect to the inner peripheral surfaces of the pair of cylinders 140 and 140.

シリンダ140は、両端が開口され軸方向中央にフランジ140aを備え、フランジ140aの外周側に一対のケース101、101が気密固着される。そして、一対の可動体135、135とシリンダ140とで包囲され圧縮室143が形成され、圧縮室143はフランジ140aに設けた孔140bと、配管11を介し冷凍発生部50の圧縮室51、放熱器52に連通される。固定子21のコイル26、27の導線は気密端子(図示せず)に接続される。他の構成は、図1のスターリング冷凍機1と同じである。   The cylinder 140 is open at both ends and includes a flange 140a at the center in the axial direction, and a pair of cases 101 and 101 are hermetically fixed to the outer peripheral side of the flange 140a. The compression chamber 143 is formed by being surrounded by the pair of movable bodies 135 and 135 and the cylinder 140, and the compression chamber 143 has a hole 140 b provided in the flange 140 a, the compression chamber 51 of the refrigeration generator 50 via the pipe 11, and heat dissipation. Communicating with the vessel 52. The conducting wires of the coils 26 and 27 of the stator 21 are connected to an airtight terminal (not shown). Other configurations are the same as the Stirling refrigerator 1 of FIG.

前述のピストン136の外周面とシリンダ140内周面との微小間隙は、圧縮室143のヘリウムをシールするクリアランスシール機能を有する。そして、可動子30を備えた可動体135は、板バネ133、134のバネと、リニアモータ20の磁気バネと、可動体135の前面及び背面に作用するヘリウムのガスバネを合成したバネと、可動子30を含む可動体135の質量とで固有周波数を有する振動系を形成し、この固有周波数近傍でスターリング冷凍機3は運転される。   The minute gap between the outer peripheral surface of the piston 136 and the inner peripheral surface of the cylinder 140 has a clearance sealing function for sealing helium in the compression chamber 143. The movable body 135 including the movable element 30 is composed of a spring composed of leaf springs 133 and 134, a magnetic spring of the linear motor 20, a spring composed of a helium gas spring acting on the front surface and the back surface of the movable body 135, and a movable body 135. A vibration system having a natural frequency is formed by the mass of the movable body 135 including the child 30, and the Stirling refrigerator 3 is operated in the vicinity of the natural frequency.

板バネ133、134により可動体135は、シリンダ140の内周面に対し微小間隙を持って往復動可能に支持されるので、ピストン136の摩耗が阻止され、スターリング冷凍機3の耐久性が向上する。また、一対の可動体135、135を対向配置することにより、運転時に発生する振動が低減される。さらに、板バネ133、134により合成バネのバネ定数が高くなるので、スターリング冷凍機3は高い周波数で運転でき、冷凍能力が増大する。他の効果は、図1のスターリング冷凍機3と同じである。   The movable body 135 is supported by the leaf springs 133 and 134 so that the movable body 135 can reciprocate with a small gap with respect to the inner peripheral surface of the cylinder 140, so that the wear of the piston 136 is prevented and the durability of the Stirling refrigerator 3 is improved. To do. Moreover, the vibration which generate | occur | produces at the time of a driving | operation is reduced by arrange | positioning a pair of movable body 135,135 facing each other. Furthermore, since the spring constant of the synthetic spring is increased by the leaf springs 133 and 134, the Stirling refrigerator 3 can be operated at a high frequency, and the refrigerating capacity is increased. Other effects are the same as the Stirling refrigerator 3 of FIG.

図12は、図1の往復動駆動機構を用いた実施例4に係る圧縮機の説明図である。図1のスターリング冷凍機1と同じ部位、同じ部品は同じ符号を付す。図12に示すように、圧縮機4は、図1に示すリニアモータ20(往復動駆動機構)の固定子21と、可動子30を備える可動体35と、可動体35を往復動可能に挿設すると共に吸入弁94と吐出弁95を備えるシリンダ90と、シリンダヘッド96から構成される。そして、作動ガスとして例えばヘリウムが充填される。   FIG. 12 is an explanatory diagram of a compressor according to Example 4 using the reciprocating drive mechanism of FIG. The same parts and the same parts as those of the Stirling refrigerator 1 in FIG. As shown in FIG. 12, the compressor 4 includes a stator 21 of the linear motor 20 (reciprocating drive mechanism) shown in FIG. 1, a movable body 35 having a movable element 30, and a movable body 35 inserted in a reciprocating manner. And a cylinder 90 including a suction valve 94 and a discharge valve 95, and a cylinder head 96. Then, for example, helium is filled as the working gas.

シリンダ90は、シリンダ本体91の両端にそれぞれ隔壁92と、鏡板93が気密固定され、隔壁92の孔92a、92bに設けた吸入弁94、吐出弁95とから構成される。そして、隔壁92にはシリンダヘッド96が気密に取付けられ、シリンダヘッド96の隔壁96aにより吸入室96bと吐出室96cが形成される。シリンダ90と可動体35の前面(図示左端面)とで包囲して圧縮室97が形成され、圧縮室97は吸入弁94、吐出弁95を介しそれぞれ吸入室96bと吐出室96cに連通される。   The cylinder 90 includes a partition wall 92 and end plates 93 that are airtightly fixed to both ends of the cylinder body 91, and a suction valve 94 and a discharge valve 95 provided in holes 92 a and 92 b of the partition wall 92. A cylinder head 96 is airtightly attached to the partition wall 92, and a suction chamber 96 b and a discharge chamber 96 c are formed by the partition wall 96 a of the cylinder head 96. A compression chamber 97 is formed by being surrounded by the cylinder 90 and the front surface (the left end surface in the drawing) of the movable body 35. The compression chamber 97 is communicated with the suction chamber 96b and the discharge chamber 96c via the suction valve 94 and the discharge valve 95, respectively. .

リニアモータ20のコイル26、27に振幅が同じで位相が180度ずれる交流電流を通電すると、可動体35が往復動する。可動体35が下死点方向に移動すると、吸入弁94が吸入室96bと圧縮室97との差圧により自動的に開かれ、吸入室96bからヘリウムが圧縮室97に吸引される。吸引されたヘリウムは、可動体35の上死点方向への移動により圧縮され、圧縮室97と吐出室96cとの差圧により自動的に開かれた吐出弁95を通過して吐出室96cに流入し、そこから外部へ供給される。   When an alternating current having the same amplitude and a phase of 180 degrees is applied to the coils 26 and 27 of the linear motor 20, the movable body 35 reciprocates. When the movable body 35 moves in the direction of the bottom dead center, the suction valve 94 is automatically opened by the differential pressure between the suction chamber 96b and the compression chamber 97, and helium is sucked into the compression chamber 97 from the suction chamber 96b. The sucked helium is compressed by the movement of the movable body 35 toward the top dead center, passes through the discharge valve 95 that is automatically opened by the pressure difference between the compression chamber 97 and the discharge chamber 96c, and enters the discharge chamber 96c. It flows in and is supplied from there.

圧縮機4は、効率が高く小型軽量なリニアモータ20で可動体35を往復駆動してヘリウムを圧縮するので、高効率で小型軽量な圧縮機4が得られる。   Since the compressor 4 compresses helium by reciprocating the movable body 35 with the linear motor 20 that is highly efficient and small and light, the highly efficient and small and lightweight compressor 4 can be obtained.

1、2、3 スターリング冷凍機(蓄冷器型冷凍機)
4 圧縮機
5 スターリング型パルス管冷凍機(蓄冷器型冷凍機)
20、120 往復動駆動機構
21 固定子
21a、21b 空隙(距離)
22a、23a 磁極片(第1磁極片)
23b、24a 磁極片(第2磁極片)
25 アウターヨーク
26、27 コイル
28、29 スロット
30、120 可動子
31、122 保持部材(インナーヨーク)
32 永久磁石(第1永久磁石)
33 永久磁石(第3永久磁石)
33a 間隔
34 永久磁石(第2永久磁石)
36、136 ピストン
40、70、90、140 シリンダ
43、51、81、97、143 圧縮室
52、152 放熱器
53、153 蓄冷器
54、154 吸熱器
55、155 膨張室
56 ディスプレーサ(膨張側ピストン)
57 ディスプレーサシリンダ(膨張側シリンダ)
94 吸入弁
95 吐出弁
156 パルス管
160 位相調整手段
G1、G2a、G2b、G3 間隙(距離)
X 軸
1, 2, 3 Stirling refrigerator (regenerator type refrigerator)
4 Compressor 5 Stirling type pulse tube refrigerator (regenerator type refrigerator)
20, 120 Reciprocating drive mechanism 21 Stator 21a, 21b Air gap (distance)
22a, 23a Pole piece (first pole piece)
23b, 24a Pole piece (second pole piece)
25 Outer yoke 26, 27 Coil 28, 29 Slot 30, 120 Movable member 31, 122 Holding member (inner yoke)
32 Permanent magnet (first permanent magnet)
33 Permanent magnet (third permanent magnet)
33a interval 34 permanent magnet (second permanent magnet)
36, 136 Piston 40, 70, 90, 140 Cylinder 43, 51, 81, 97, 143 Compression chamber 52, 152 Radiator 53, 153 Regenerator 54, 154 Heat absorber 55, 155 Expansion chamber 56 Displacer (expansion side piston)
57 Displacer cylinder (expansion side cylinder)
94 Suction valve 95 Discharge valve 156 Pulse tube 160 Phase adjusting means G1, G2a, G2b, G3 Gap (distance)
X axis

Claims (6)

外周面Nで径方向に磁化した第1永久磁石と、前記第1永久磁石の軸方向に所定の間隔を持って同軸に配置すると共に前記第1永久磁石の磁化方向に対し反対方向に磁化した第2永久磁石と、前記軸方向で前記第2永久磁石から前記間隔に配備され前記第1永久磁石の向きに磁化した第3永久磁石を備えた可動子と、
前記第1永久磁石の外周側に所定の距離を持って配備されると共に前記軸方向に所定の距離を持って対面する一対の第1磁極片と、前記第2永久磁石の外周側に所定の距離を持って配備されると共に前記軸方向に所定の距離を持って対面する一対の第2磁極片とを有するアウターヨークと、前記アウターヨークに形成されるスロットに配備するコイルとから構成した固定子と、
前記可動子に連結されるピストンと、
前記ピストンを前記軸方向に往復動可能に挿設したシリンダとを備える、ことを特徴とする往復動駆動機構。
The first permanent magnet magnetized in the radial direction on the outer peripheral surface N and the first permanent magnet are arranged coaxially with a predetermined interval in the axial direction of the first permanent magnet and magnetized in the opposite direction to the magnetization direction of the first permanent magnet. A mover comprising a second permanent magnet, and a third permanent magnet arranged in the interval from the second permanent magnet in the axial direction and magnetized in the direction of the first permanent magnet;
A pair of first magnetic pole pieces disposed at a predetermined distance on the outer peripheral side of the first permanent magnet and facing each other with a predetermined distance in the axial direction, and a predetermined distance on the outer peripheral side of the second permanent magnet A fixed structure composed of an outer yoke having a pair of second magnetic pole pieces arranged with a distance and facing each other with a predetermined distance in the axial direction, and a coil arranged in a slot formed in the outer yoke. With the child,
A piston coupled to the mover;
A reciprocating drive mechanism comprising: a cylinder in which the piston is inserted so as to be capable of reciprocating in the axial direction.
前記第1永久磁石と、前記第2永久磁石とに隣接する前記第3永久磁石を複数個配備する、ことを特徴とする請求項1に記載の往復動駆動機構。 The reciprocating drive mechanism according to claim 1, wherein a plurality of the third permanent magnets adjacent to the first permanent magnet and the second permanent magnet are provided. 前記第1永久磁石と、前記第2永久磁石と、前記第3永久磁石は、内周面に磁性材からなる保持部材を配備する、ことを特徴とする請求項1又は2に記載の往復動駆動機構。 The reciprocating motion according to claim 1, wherein the first permanent magnet, the second permanent magnet, and the third permanent magnet are provided with a holding member made of a magnetic material on an inner peripheral surface. Drive mechanism. 前記ピストンと前記シリンダとで形成され作動ガスを圧縮する圧縮室と、作動ガスの圧縮熱を放熱する放熱器と、作動ガスと熱交換する蓄冷器と、作動ガスが吸熱する吸熱器と、作動ガスが膨張する膨張室とを備える、ことを特徴とする請求項1乃至3の少なくともいずれか一項に記載の蓄冷型冷凍機。 A compression chamber formed by the piston and the cylinder for compressing the working gas; a radiator for dissipating the compression heat of the working gas; a regenerator for exchanging heat with the working gas; a heat absorber for absorbing the working gas; The regenerative refrigerator according to at least one of claims 1 to 3, further comprising an expansion chamber in which gas expands. 前記蓄冷型冷凍機は、膨張側シリンダと前記膨張側シリンダに往復動可能に挿設される膨張側ピストンとで前記膨張室を形成したスターリング冷凍機、又は、パルス管と前記パルス管の高温側に連通する位相調整手段とを備え前記パルス管の低温側に前記膨張室を形成したスターリング型パルス管冷凍機のいずれか一方の冷凍機である、ことを特徴とする請求項4に記載の蓄冷型冷凍機。 The regenerative refrigerator is a Stirling refrigerator in which the expansion chamber is formed by an expansion side cylinder and an expansion side piston inserted into the expansion side cylinder so as to be reciprocally movable, or a pulse tube and a high temperature side of the pulse tube 5. The regenerator according to claim 4, wherein the regenerator is a Stirling type pulse tube refrigerator having a phase adjusting means communicating with the Stirling type pulse tube refrigerator having the expansion chamber formed on a low temperature side of the pulse tube. Type refrigerator. 前記ピストンと前記シリンダとで形成され作動ガスを圧縮する圧縮室と、
前記圧縮室に接続され作動流体を前記圧縮室に吸入する吸入弁と、
前記圧縮室に接続され吸入した作動ガスを圧縮して前記圧縮室から吐出する吐出弁とを備える、ことを特徴とする請求項1乃至3の少なくともいずれか一項に記載の圧縮機。
A compression chamber formed by the piston and the cylinder and compressing the working gas;
A suction valve connected to the compression chamber and sucking a working fluid into the compression chamber;
4. The compressor according to claim 1, further comprising a discharge valve connected to the compression chamber and configured to compress the suctioned working gas and discharge the compressed working gas from the compression chamber. 5.
JP2009043641A 2009-02-26 2009-02-26 Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor Pending JP2010200522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009043641A JP2010200522A (en) 2009-02-26 2009-02-26 Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009043641A JP2010200522A (en) 2009-02-26 2009-02-26 Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor

Publications (1)

Publication Number Publication Date
JP2010200522A true JP2010200522A (en) 2010-09-09

Family

ID=42824635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009043641A Pending JP2010200522A (en) 2009-02-26 2009-02-26 Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor

Country Status (1)

Country Link
JP (1) JP2010200522A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428512A2 (en) 2010-09-08 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
KR101454549B1 (en) 2013-06-28 2014-10-27 엘지전자 주식회사 A linear compressor
US9677553B2 (en) 2013-06-28 2017-06-13 Lg Electronics Inc. Linear compressor
US9695810B2 (en) 2013-06-28 2017-07-04 Lg Electronics Inc. Linear compressor
US9695811B2 (en) 2013-06-28 2017-07-04 Lg Electronics Inc. Linear compressor
US9714648B2 (en) 2013-06-28 2017-07-25 Lg Electronics Inc. Linear compressor
US9726164B2 (en) 2013-06-28 2017-08-08 Lg Electronics Inc. Linear compressor
US10634127B2 (en) 2013-06-28 2020-04-28 Lg Electronics Inc. Linear compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187639A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Magnet moving type linear actuator
JP2001090660A (en) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd Linear compressor
JP2003199312A (en) * 2001-12-26 2003-07-11 Showa Electric Wire & Cable Co Ltd Inner yoke magnet type linear motor
JP2004180377A (en) * 2002-11-25 2004-06-24 Twinbird Corp Electromagnetic reciprocating drive mechanism
JP2004353967A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Pulse tube refrigerator
JP2008002452A (en) * 2006-05-25 2008-01-10 Aisin Seiki Co Ltd Linear compressor
JP2008228545A (en) * 2007-03-16 2008-09-25 Jtekt Corp Moving magnet type linear motor
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11187639A (en) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd Magnet moving type linear actuator
JP2001090660A (en) * 1999-09-28 2001-04-03 Matsushita Electric Ind Co Ltd Linear compressor
JP2003199312A (en) * 2001-12-26 2003-07-11 Showa Electric Wire & Cable Co Ltd Inner yoke magnet type linear motor
JP2004180377A (en) * 2002-11-25 2004-06-24 Twinbird Corp Electromagnetic reciprocating drive mechanism
JP2004353967A (en) * 2003-05-29 2004-12-16 Matsushita Electric Ind Co Ltd Pulse tube refrigerator
JP2008002452A (en) * 2006-05-25 2008-01-10 Aisin Seiki Co Ltd Linear compressor
JP2008228545A (en) * 2007-03-16 2008-09-25 Jtekt Corp Moving magnet type linear motor
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428512A2 (en) 2010-09-08 2012-03-14 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
KR101454549B1 (en) 2013-06-28 2014-10-27 엘지전자 주식회사 A linear compressor
US9677553B2 (en) 2013-06-28 2017-06-13 Lg Electronics Inc. Linear compressor
US9695810B2 (en) 2013-06-28 2017-07-04 Lg Electronics Inc. Linear compressor
US9695811B2 (en) 2013-06-28 2017-07-04 Lg Electronics Inc. Linear compressor
US9714648B2 (en) 2013-06-28 2017-07-25 Lg Electronics Inc. Linear compressor
US9726164B2 (en) 2013-06-28 2017-08-08 Lg Electronics Inc. Linear compressor
US10634127B2 (en) 2013-06-28 2020-04-28 Lg Electronics Inc. Linear compressor

Similar Documents

Publication Publication Date Title
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
JP6795945B2 (en) A compressor with a linear motor and a linear motor
US6879064B2 (en) Linear motor and linear-motor based compressor
US7247957B2 (en) Electromechanical transducer linear compressor and radio transmission antenna
US5907201A (en) Displacer assembly for Stirling cycle system
EP2402607B1 (en) Long life seal and alignment system for small cryocoolers
JPH076702B2 (en) Gas cycle engine
US9689344B1 (en) Double-acting modular free-piston stirling machines without buffer spaces
JP2007291991A (en) Vibration type compressor
JP3173492B2 (en) Linear compressor
JP2004140902A (en) Linear motor and linear compressor
JP2001330329A (en) Linear compressor
JP5399379B2 (en) Stirling cycle cryocooler with two coil single magnetic circuit motor
JP2001251835A (en) Linear vibration actuator
JP2008002452A (en) Linear compressor
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JP2010213431A (en) Linear electromagnetic device
JP6838242B2 (en) Reciprocating linear motor
JP2003278652A (en) Linear motor drive type compressor and refrigerating machine therewith
JP5391706B2 (en) Linear electromagnetic drive
Khalid et al. Review of moving magnet linear oscillating actuators for linear compressor application
JP2006034057A (en) Toroidal coil linear motor, cylinder compressor and pump using the same
JP2009022087A (en) Linear motor, and stirling freezer equipped with the same
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
Rajesh et al. Effect of geometrical parameters on the performance of linear motor for a Stirling cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203