JP2003199312A - Inner yoke magnet type linear motor - Google Patents

Inner yoke magnet type linear motor

Info

Publication number
JP2003199312A
JP2003199312A JP2001393097A JP2001393097A JP2003199312A JP 2003199312 A JP2003199312 A JP 2003199312A JP 2001393097 A JP2001393097 A JP 2001393097A JP 2001393097 A JP2001393097 A JP 2001393097A JP 2003199312 A JP2003199312 A JP 2003199312A
Authority
JP
Japan
Prior art keywords
magnet
yoke
inner yoke
field
linear motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001393097A
Other languages
Japanese (ja)
Other versions
JP3658560B2 (en
Inventor
Kenichi Katsumi
健一 勝見
Takeshi Moriyama
毅 森山
Satoru Muranishi
哲 村西
Osamu Kokubo
修 小久保
Sukehiro Akama
助広 赤間
Ikuma Nariyoshi
郁馬 成吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP2001393097A priority Critical patent/JP3658560B2/en
Publication of JP2003199312A publication Critical patent/JP2003199312A/en
Application granted granted Critical
Publication of JP3658560B2 publication Critical patent/JP3658560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To increase driving force without the need for size change and attain precise operation, because magnetic saturation can be prevented in a slender and rod-like inner yoke 3. <P>SOLUTION: A pair of stator coils 2-1, 2-2 are brought into a close contact with the inside of a cylindrical outer yoke 1. The rod-like inner yoke 3 is coaxially disposed inside the outer yoke 1. A pair of annular field magnets 4-1, 4-2 are fixed on the outer periphery of the inner yoke and arranged side by side with a void formed in the traveling direction of the inner yoke. An auxiliary magnet 6 is disposed so as to be sandwiched inside the void. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光機器における自
動焦点追随装置などに用いられる、内ヨーク磁石型リニ
アモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner yoke magnet type linear motor used for an automatic focus tracking device in optical equipment.

【0002】[0002]

【従来の技術】内ヨーク磁石型リニアモータは、従来、
次のような構成が採用されていた。図7は、従来の内ヨ
ーク磁石型リニアモータの構造図である。(a)は内ヨー
ク磁石型リニアモータの縦断面図であり、(b)は、内ヨ
ーク磁石型リニアモータの横断面図である。図より、従
来の内ヨーク磁石型リニアモータは、外ヨーク101と、
固定子コイル102-1、102-2と、内ヨーク103と、界磁磁
石104-1、104-2と、絶縁筒105とを備える。
2. Description of the Related Art Conventionally, inner yoke magnet type linear motors have been
The following configuration was adopted. FIG. 7 is a structural diagram of a conventional inner yoke magnet type linear motor. (a) is a longitudinal sectional view of the inner yoke magnet type linear motor, and (b) is a transverse sectional view of the inner yoke magnet type linear motor. From the figure, the conventional inner yoke magnet type linear motor is
Stator coils 102-1 and 102-2, an inner yoke 103, field magnets 104-1 and 104-2, and an insulating cylinder 105 are provided.

【0003】図(b)に示すように外ヨーク101、固定子
コイル102、内ヨーク103、界磁磁石104は、同軸的に配
置される。界磁磁石104と内ヨーク103は一体に固定され
移動方向106に移動する移動子を構成している。移動子
は、界磁磁石104-1と界磁磁石104-2によって生成される
界磁磁束と固定子コイル102-1、102-2に流れる電流との
鎖交によってフレミング左手の法則に従った駆動力を得
る。このときの界磁磁界の様子を電気的な等価回路で表
すと次のようになる。
As shown in FIG. 1B, an outer yoke 101, a stator coil 102, an inner yoke 103 and a field magnet 104 are coaxially arranged. The field magnet 104 and the inner yoke 103 are integrally fixed and constitute a mover that moves in the moving direction 106. The mover follows the Fleming's left-hand rule due to the interlinkage of the field magnetic flux generated by the field magnet 104-1 and the field magnet 104-2 and the current flowing through the stator coils 102-1 and 102-2. Get the driving force. The state of the field magnetic field at this time is represented by an electrical equivalent circuit as follows.

【0004】図8は、従来の内ヨーク磁石型リニアモー
タの等価回路図である。界磁磁束の通る磁気回路を電気
的な等価回路で表した図である。図上V1、V2は、夫々
界磁磁石104-1及び104-2の起磁力Uを電圧源に置き換え
たものである。又i1、i2は、磁気回路を流れる磁束Φ
を電流で表したものである。同様に磁気回路中の磁気抵
抗Qを電気抵抗Rで表したものである。ここでRoutは外
ヨーク101の磁気抵抗、Rg1は界磁磁石104-1と外ヨーク1
01との間の空気及びコイルの磁気抵抗、Rg2は界磁磁石1
04-2と外ヨーク101との間の空気及びコイルの磁気抵
抗、Raは界磁磁石104-1と界磁磁石104-2との間の空気
の磁気抵抗、Rinは内ヨーク103の磁気抵抗、r1は界磁
磁石104-1内の磁気抵抗、r2は界磁磁石104-2内の磁気
抵抗に夫々対応している。移動子が得る駆動力は、固定
子コイル102-1、102-2を流れる電流が界磁磁石104-1、1
04-2の生成する界磁磁束を鎖交する鎖交磁束数に比例す
るが、この鎖交磁束数は等価回路上の電流i1比例す
る。
FIG. 8 is an equivalent circuit diagram of a conventional inner yoke magnet type linear motor. It is the figure which represented the magnetic circuit which a field magnetic flux passes by the electrical equivalent circuit. In the figure, V1 and V2 are obtained by replacing the magnetomotive forces U of the field magnets 104-1 and 104-2 with voltage sources. I1 and i2 are the magnetic flux Φ flowing in the magnetic circuit.
Is expressed in electric current. Similarly, the magnetic resistance Q in the magnetic circuit is represented by the electric resistance R. Where Rout is the magnetic resistance of the outer yoke 101, and Rg1 is the field magnet 104-1 and the outer yoke 1.
Air resistance between 01 and coil, Rg2 is field magnet 1
Magnetic resistance of air and coil between 04-2 and outer yoke 101, Ra is magnetic resistance of air between field magnet 104-1 and field magnet 104-2, and Rin is magnetic resistance of inner yoke 103. , R1 corresponds to the magnetic resistance in the field magnet 104-1, and r2 corresponds to the magnetic resistance in the field magnet 104-2. The driving force obtained by the mover is that the current flowing through the stator coils 102-1 and 102-2 is the field magnets 104-1 and 1
The field magnetic flux generated by 04-2 is proportional to the number of interlinking magnetic fluxes that interlink, and the number of interlinking magnetic fluxes is proportional to the current i1 on the equivalent circuit.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のよう
な従来の技術には、次のような解決すべき課題があっ
た。従来の内ヨーク磁石型リニアモータでは、固定子コ
イルを流れる電流と界磁磁石の生成する界磁磁束との鎖
交磁束数を大きくすることが難しく、駆動力を大きく出
来なかった。
By the way, the above conventional techniques have the following problems to be solved. In the conventional inner yoke magnet type linear motor, it is difficult to increase the number of interlinkage magnetic fluxes between the current flowing through the stator coil and the field magnetic flux generated by the field magnet, and the driving force cannot be increased.

【0006】[0006]

【課題を解決するための手段】本発明は以上の点を解決
するため次の構成を採用する。 〈構成1〉円筒状の外ヨークと、該外ヨークの内側に密
着して、内ヨークの移動方向に並べられ、上記外ヨーク
と同軸的に配置された一対の環状の固定子コイルと、上
記外ヨークの内側に同軸的に配置された棒状の内ヨーク
と、この内ヨークの外周に固着され、内ヨークの移動方
向に空隙を空けて並べられ、当該内ヨークと同軸的に配
置された一対の環状の界磁磁石と、上記一対の界磁磁石
の間の上記空隙に挟みこまれるように配置された環状の
補助磁石とを備え、上記一対の固定子コイルには、相互
に反対極性の固定子磁界が励起され、上記一対の界磁磁
石の磁化の方向は、いずれも、磁石の軸から外周面に向
かう方向に平行であって、一方の界磁磁石の磁化の方向
が、他方の界磁磁石の磁化の方向と反対方向になるよう
にされ、上記補助磁石の磁化の方向は、内ヨークの軸に
平行な方向であって、補助磁石の磁極の極性は、補助磁
石の磁極が接している上記界磁磁石の外周面の極性と一
致していることを特徴とする、内ヨーク磁石型リニアモ
ータ。
The present invention adopts the following constitution in order to solve the above points. <Structure 1> A cylindrical outer yoke, a pair of annular stator coils that are closely attached to the inside of the outer yoke, are arranged in the moving direction of the inner yoke, and are arranged coaxially with the outer yoke, A rod-shaped inner yoke coaxially arranged inside the outer yoke, and a pair fixed to the outer circumference of the inner yoke, arranged side by side with a gap in the moving direction of the inner yoke, and arranged coaxially with the inner yoke. And an annular auxiliary magnet arranged so as to be sandwiched in the gap between the pair of field magnets, the pair of stator coils having opposite polarities. When the stator magnetic field is excited, the direction of magnetization of the pair of field magnets is parallel to the direction from the axis of the magnet to the outer peripheral surface, and the direction of magnetization of one field magnet is The direction of magnetization of the field magnet is opposite to that of the auxiliary The direction of magnetization of the stone is parallel to the axis of the inner yoke, and the polarity of the magnetic pole of the auxiliary magnet matches the polarity of the outer peripheral surface of the field magnet with which the magnetic pole of the auxiliary magnet is in contact. Inner-yoke magnet type linear motor.

【0007】〈構成2〉円筒状の外ヨークと、該外ヨー
クの内側に密着して内ヨークの移動方向に並べられ、上
記外ヨークと同軸的に配置された3個以上の環状の固定
子コイルと、上記外ヨークの内側に同軸的に配置された
棒状の内ヨークと、この内ヨークの外周に固着され、内
ヨークの移動方向に空隙を空けて並べられ、当該内ヨー
クと同軸的に配置された上記固定子コイルの個数以下の
個数の環状の界磁磁石と、全ての界磁磁石の間の上記空
隙に挟みこまれるように配置された環状の補助磁石とを
備え、隣り合う上記固定子コイルには、相互に反対極性
の固定子磁界が励起され、全ての界磁磁石の磁化の方向
は、いずれも、磁石の軸から外周面に向かう方向に平行
であって、隣り合う界磁磁石の磁化の方向は相互に反対
方向になるようにされ、上記補助磁石の磁化の方向は、
内ヨークの軸に平行な方向であって、補助磁石の磁化の
方向は、補助磁石の磁極が接している上記界磁磁石の外
周面の極性と一致していることを特徴とする、内ヨーク
磁石型リニアモータ。
<Structure 2> A cylindrical outer yoke and three or more annular stators which are closely attached to the inner side of the outer yoke and are arranged in the moving direction of the inner yoke and arranged coaxially with the outer yoke. A coil, a rod-shaped inner yoke coaxially arranged inside the outer yoke, and an outer yoke fixed to the inner yoke and arranged side by side with a gap in the moving direction of the inner yoke, coaxial with the inner yoke. An annular field magnet of a number equal to or less than the number of the stator coils arranged, and an annular auxiliary magnet arranged so as to be sandwiched in the gap between all the field magnets, the adjacent In the stator coil, stator magnetic fields having mutually opposite polarities are excited, and the magnetization directions of all the field magnets are parallel to the direction from the magnet axis to the outer peripheral surface, and are adjacent to each other. Make sure that the magnetization directions of the magnets are opposite to each other. The direction of magnetization of the auxiliary magnet is
The inner yoke is parallel to the axis of the inner yoke, and the direction of magnetization of the auxiliary magnet coincides with the polarity of the outer peripheral surface of the field magnet with which the magnetic pole of the auxiliary magnet is in contact. Magnet type linear motor.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を具体
例を用いて説明する。 〈具体例1〉具体例1の内ヨーク磁石型リニアモータで
は、従来の内ヨーク磁石型リニアモータの2個の界磁磁
石の間に挟みこまれるようにして補助磁石が配置され
る。この補助磁石の磁化方向は、移動子の移動方向に向
けられる。極性は、この補助磁石が接している界磁磁石
の外周面の極性と一致させてある。その結果、固定子コ
イルを流れる電流と界磁磁石の生成する界磁磁束との鎖
交磁束数を大きくすることが可能になり、駆動力が大き
くなる。以下に図を用いて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to specific examples. <Specific Example 1> In the inner-yoke magnet linear motor of the first specific example, the auxiliary magnet is arranged so as to be sandwiched between the two field magnets of the conventional inner-yoke magnet linear motor. The magnetization direction of this auxiliary magnet is oriented in the moving direction of the mover. The polarity is matched with the polarity of the outer peripheral surface of the field magnet with which this auxiliary magnet is in contact. As a result, it is possible to increase the number of interlinkage magnetic fluxes between the current flowing through the stator coil and the field magnetic flux generated by the field magnet, and the driving force is increased. The details will be described below with reference to the drawings.

【0009】図1は、具体例1の内ヨーク磁石型リニア
モータの構造図である。(a)は内ヨーク磁石型リニアモ
ータの縦断面図であり、(b)は、内ヨーク磁石型リニア
モータの横断面図である。図より、具体例1の内ヨーク
磁石型リニアモータは、外ヨーク1と、固定子コイル2-
1、2-2と、内ヨーク3と、界磁磁石4-1、4-2と、絶縁筒5
と、補助磁石6とを備える。
FIG. 1 is a structural diagram of an inner yoke magnet type linear motor of the first embodiment. (a) is a longitudinal sectional view of the inner yoke magnet type linear motor, and (b) is a transverse sectional view of the inner yoke magnet type linear motor. As shown in the figure, the inner yoke magnet type linear motor of the first specific example has an outer yoke 1 and a stator coil 2-.
1, 2-2, inner yoke 3, field magnets 4-1, 4-2, and insulating cylinder 5
And an auxiliary magnet 6.

【0010】外ヨーク1は、後に説明する界磁磁石4-1、
4-2、補助磁石6及び内ヨーク3とから成る移動子の移動
をガイドする部分であり、更に、後に説明する固定子コ
イル2-1、2-2を支持する部分でもある。円筒状の磁性材
料によって構成される。その外径と長さは、当該モータ
の用途に合わせて設定される。例えば光機器における自
動焦点追随装置などに用いられる場合には外径、長さと
も数cm以下の小型の場合が多い。
The outer yoke 1 includes a field magnet 4-1, which will be described later.
4-2 is a part that guides the movement of the mover including the auxiliary magnet 6 and the inner yoke 3, and is also a part that supports the stator coils 2-1 and 2-2 described later. It is composed of a cylindrical magnetic material. The outer diameter and the length are set according to the application of the motor. For example, in the case of being used for an automatic focus tracking device in an optical device, the outer diameter and the length are often small and have a size of several cm or less.

【0011】固定子コイル2-1、2-2は、上記外ヨーク1
の内側に密着して支持され、移動子の移動方向に並べて
配置される2個一対の環状のコイルである。この2個の
固定子コイル2-1、2-2には、相互に極性反対の固定子磁
界が励起される。即ち、相互に正負反転した電圧が印加
される。このとき流れる電流と、後に説明する界磁磁石
4-1、4-2及び補助磁石6とによって生成される界磁磁束
とが、鎖交する。この鎖交によってフレミング左手の法
則に従った駆動力が発生される。このときの界磁磁束の
通る磁気回路については、後に電気的等価回路を用いて
詳細に説明する。
The stator coils 2-1 and 2-2 are the outer yoke 1
And a pair of annular coils which are closely supported inside and are arranged side by side in the moving direction of the moving element. Stator magnetic fields having polarities opposite to each other are excited in the two stator coils 2-1 and 2-2. That is, voltages having positive and negative inversions are applied. The current flowing at this time and the field magnet described later
The field magnetic flux generated by 4-1 and 4-2 and the auxiliary magnet 6 interlinks. This interlinkage generates a driving force according to Fleming's left-hand rule. The magnetic circuit through which the field magnetic flux passes at this time will be described later in detail using an electrical equivalent circuit.

【0012】内ヨーク3は、上記外ヨーク1の中心線上に
同軸的に配置される磁性体の棒(円柱)である。但し、図
1に示すように円柱の中心を空洞にした筒状の棒であっ
ても良い。上記のように後に説明する界磁磁石4-1、4-
2、及び補助磁石6とから成る移動子を構成する部分であ
る。この内ヨーク3を軸心にして後に説明する界磁磁石4
-1、4-2及び補助磁石6が固着される。光機器における自
動焦点追随装置などに用いられた場合には、この内ヨー
ク3の先端にレンズ支持機構が付着される。
The inner yoke 3 is a magnetic rod (column) coaxially arranged on the center line of the outer yoke 1. However, the figure
As shown in 1, it may be a cylindrical rod in which the center of the cylinder is hollow. As described above, the field magnets 4-1 and 4-will be described later.
This is a part that constitutes a moving element composed of 2 and the auxiliary magnet 6. A field magnet 4 described later with the inner yoke 3 as an axis
-1, 4-2 and the auxiliary magnet 6 are fixed. When used in an automatic focus tracking device in optical equipment, a lens support mechanism is attached to the tip of the inner yoke 3.

【0013】界磁磁石4-1、4-2は、上記内ヨーク3に固
着され移動子の移動方向に並べて上記固定子コイル2-
1、2-2の内側に配置される環状の永久磁石である。一対
の界磁磁石の磁化の方向は、いずれも、磁石の軸から外
周面に向かう方向に平行であって、一方の界磁磁石の磁
化の方向が、他方の界磁磁石の磁化の方向と反対方向に
なるようにされている。この詳細については、後に他の
図を用いて詳細に説明する。
The field magnets 4-1 and 4-2 are fixed to the inner yoke 3 and arranged side by side in the moving direction of the mover to form the stator coil 2-.
It is an annular permanent magnet that is placed inside the 1 and 2-2. The direction of magnetization of the pair of field magnets is parallel to the direction from the magnet axis to the outer peripheral surface, and the direction of magnetization of one field magnet is the same as the direction of magnetization of the other field magnet. It is supposed to be in the opposite direction. The details will be described later with reference to other drawings.

【0014】補助磁石6は、上記界磁磁石4-1及び4-2の
2個の界磁磁石の間に挟みこまれるように配置されるリ
ング状の永久磁石である。この磁化の方向は、上記内ヨ
ーク3の軸に平行な方向であって、磁極の極性は、補助
磁石が接している上記界磁磁石の外周面の極性と一致さ
せてある。図中に点線が記載され補助磁石が、あたかも
2個に分割されているように表してあるが、この理由は
後に等価回路の説明で明らかにする。次に上記界磁磁石
4-1、4-2及び補助磁石6の構成について他の図を用いて
詳細に説明する。
The auxiliary magnet 6 is a ring-shaped permanent magnet arranged so as to be sandwiched between the two field magnets 4-1 and 4-2. The direction of this magnetization is parallel to the axis of the inner yoke 3, and the polarities of the magnetic poles are matched with the polarities of the outer peripheral surface of the field magnet with which the auxiliary magnet is in contact. The dotted line is shown in the figure and the auxiliary magnet is shown as if it was divided into two parts. The reason for this will be clarified later in the explanation of the equivalent circuit. Next, the field magnet
The configurations of 4-1 and 4-2 and the auxiliary magnet 6 will be described in detail with reference to other drawings.

【0015】図2は、界磁磁石及び補助磁石の説明図で
ある。(a)は、界磁磁石を表す図であり、(b)は、補助
磁石を表す図である。環状の界磁磁石4-1及び4-2は(a)
に示すような扇型に磁性材料を成型した後、磁石の軸か
ら外周面に向かう方向に着磁処理を行なって製作され
る。ここでは、扇型の開いた角度を90度に表してある
が、本発明はこの例に限定されるものではない。即ち、
複数個あわせて360度になるように分割して製作され
る。この理由は、磁石の軸から外周面に向かう方向への
着磁処理を容易にするためである。又(b)より、補助磁
石は、磁性材料をリング状に成型したあと図に示すよう
に内ヨークの方向に着磁処理して製作される。
FIG. 2 is an explanatory diagram of a field magnet and an auxiliary magnet. (a) is a figure showing a field magnet, (b) is a figure showing an auxiliary magnet. The annular field magnets 4-1 and 4-2 are (a)
It is manufactured by molding a magnetic material into a fan shape as shown in, and then magnetizing it in the direction from the axis of the magnet to the outer peripheral surface. Here, the opening angle of the fan shape is represented as 90 degrees, but the present invention is not limited to this example. That is,
It is manufactured by dividing it into multiple pieces to make 360 degrees. The reason for this is to facilitate the magnetizing process in the direction from the axis of the magnet to the outer peripheral surface. Further, from (b), the auxiliary magnet is manufactured by molding a magnetic material into a ring shape and then magnetizing it in the direction of the inner yoke as shown in the figure.

【0016】再度図1に戻って、絶縁筒5は、固定子コイ
ル2-1、2-2を保持するための筒である。上記の通り固定
子コイル2-1、2-2は、外ヨーク1に密着して保持される
が、界磁磁石4-1、4-2との間に強い力が働くので、その
保持を完全なものにするために用いられる。従って、と
きには用いなくても良い場合もある。通常磁気回路への
影響を考慮して非磁性体であって、かつ絶縁度の高い材
料が用いられる。次に、本発明の内ヨーク磁石型リニア
モータの磁気回路について説明する。
Returning to FIG. 1 again, the insulating cylinder 5 is a cylinder for holding the stator coils 2-1 and 2-2. As described above, the stator coils 2-1 and 2-2 are held in close contact with the outer yoke 1, but a strong force acts between them and the field magnets 4-1 and 4-2. Used to complete. Therefore, sometimes it is not necessary to use it. Usually, a material that is a non-magnetic material and has a high degree of insulation is used in consideration of the influence on the magnetic circuit. Next, the magnetic circuit of the inner yoke magnet type linear motor of the present invention will be described.

【0017】図3は、本発明の内ヨーク磁石型リニアモ
ータの等価回路図である。(a)は、説明に必要な部分の
拡大図であり(b)は、その等価回路である。(a)に示す
ように補助磁石6は内ヨーク3の長さ方向の左側にN極、
右側にS極が向くように配置されている。従って、補助
磁石6の径方向外側のN極は、界磁磁石4-1のN極と接し
ており、補助磁石6の径方向外側のS極は、界磁磁石4-2
のS極と接している。
FIG. 3 is an equivalent circuit diagram of the inner yoke magnet type linear motor of the present invention. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof. As shown in (a), the auxiliary magnet 6 has an N pole on the left side in the length direction of the inner yoke 3,
It is arranged so that the south pole faces the right side. Therefore, the N pole on the radially outer side of the auxiliary magnet 6 is in contact with the N pole of the field magnet 4-1, and the S pole on the radially outer side of the auxiliary magnet 6 is the field magnet 4-2.
It is in contact with the south pole.

【0018】同様に補助磁石6の径方向内側のN極は、
界磁磁石4-1のS極と接しており、補助磁石6の径方向内
側のS極は、界磁磁石4-1のN極と接している。そこで
図(a)内に点線で示すように補助磁石6を径方向外側の
磁石と径方向内側の磁石の2個に分割して表すこととす
る。
Similarly, the N pole on the radially inner side of the auxiliary magnet 6 is
It is in contact with the S pole of the field magnet 4-1 and the S pole on the radially inner side of the auxiliary magnet 6 is in contact with the N pole of the field magnet 4-1. Therefore, as shown by the dotted line in FIG. 6A, the auxiliary magnet 6 is divided into two, namely, a radially outer magnet and a radially inner magnet.

【0019】(a)図上Routは外ヨーク1の磁気抵抗に、R
g1は、界磁磁石4-1と外ヨーク1との間の空気及びコイル
の磁気抵抗に、Rg2は、界磁磁石4-2と外ヨーク1との間
の空気及びコイルの磁気抵抗に、Rg3は、界磁磁石4-1と
界磁磁石4-2との間の空気の磁気抵抗に、Rinは内ヨーク
3の磁気抵抗に、r1は界磁磁石4-1内部の磁気抵抗に、
r2は界磁磁石4-2内部の磁気抵抗に、r3は径方向内側
の補助磁石6内部の磁気抵抗に、r4は径方向外側の補助
磁石6内部の磁気抵抗に夫々対応している。
(A) In the figure, Rout is the magnetic resistance of the outer yoke 1 and R
g1 is the magnetic resistance of the air and the coil between the field magnet 4-1 and the outer yoke 1, Rg2 is the magnetic resistance of the air and the coil between the field magnet 4-2 and the outer yoke 1, Rg3 is the magnetic reluctance of the air between the field magnets 4-1 and 4-2, and Rin is the inner yoke.
3 to the magnetic resistance, r1 to the magnetic resistance inside the field magnet 4-1
r2 corresponds to the magnetic resistance inside the field magnet 4-2, r3 corresponds to the magnetic resistance inside the auxiliary magnet 6 inside in the radial direction, and r4 corresponds to the magnetic resistance inside the auxiliary magnet 6 outside in the radial direction.

【0020】(b)図は、上記(a)図での定めに従って記
述された電気的等価回路である。図上、V1は、界磁磁石
4-1の起磁力を電圧源で表したものである。V2は、界磁
磁石4-2の起磁力を電圧源で表したものである。V3は、
径方向内側の補助磁石6の起磁力を電圧源で表したもの
である。V4は、径方向外側の補助磁石6の起磁力を電圧
源で表したものである。以下に、この電気的等価回路上
の電圧源V1、V2を有効として電圧源V3、V4を0と置いた
ときの各部の電流と、電圧源V3、V4を有効として電圧源
V1、V2を0と置いたときの各部の電流とを求め、重畳の
理を用いて解析する。
FIG. 2B is an electrical equivalent circuit described according to the definition in FIG. In the figure, V1 is a field magnet
The magnetomotive force of 4-1 is represented by a voltage source. V2 represents the magnetomotive force of the field magnet 4-2 by a voltage source. V3 is
The magnetomotive force of the auxiliary magnet 6 on the radially inner side is represented by a voltage source. V4 represents the magnetomotive force of the auxiliary magnet 6 on the radially outer side by a voltage source. The current of each part when the voltage sources V1 and V2 on this electrical equivalent circuit are valid and the voltage sources V3 and V4 are set to 0 and the voltage sources V3 and V4 are valid
The current of each part when V1 and V2 are set to 0 is calculated and analyzed using the theory of superposition.

【0021】図4は、電圧源V1、V2を有効、電圧源V3、
V4を0と置いた回路図である。(a)は、説明に必要な部
分の拡大図であり(b)は、その等価回路である。(a)に
示すように界磁磁石4-1、4-2と補助磁石6との間に磁気
抵抗R1、R2、R3、R4が発生している。この意味内容につ
いて説明する。
FIG. 4 shows that the voltage sources V1 and V2 are valid, the voltage sources V3 and
It is a circuit diagram where V4 is set to 0. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof. As shown in (a), magnetic resistances R1, R2, R3, and R4 are generated between the field magnets 4-1 and 4-2 and the auxiliary magnet 6. The meaning of this will be described.

【0022】通常、界磁磁石4-1、4-2は異方性(ラジア
ル異方性)磁気材料を径方向に着磁して製作される。従
って、磁石の軸から外周面に向かう方向への磁気抵抗
(ここではr1に相当)は極めて小さい。一方、内ヨーク方
向への磁気抵抗(ここではR1に相当)は極めて大きくな
る。一方、補助磁石6は、異方性(アキシャル異方性)磁
気材料を内ヨーク3の方向に着磁して製作される。従っ
て、内ヨーク3の方向への磁気抵抗(ここではr3又はr4
に相当)は極めて小さい。一方、磁石の軸から外周面に
向かう方向への磁気抵抗(図示していない)は極めて大き
くなる。
The field magnets 4-1 and 4-2 are usually manufactured by radially magnetizing an anisotropic (radial anisotropy) magnetic material. Therefore, the magnetic resistance in the direction from the magnet axis to the outer peripheral surface is
(Equivalent to r1 here) is extremely small. On the other hand, the magnetic resistance (corresponding to R1 here) in the direction of the inner yoke becomes extremely large. On the other hand, the auxiliary magnet 6 is manufactured by magnetizing an anisotropic (axial anisotropy) magnetic material in the direction of the inner yoke 3. Therefore, the magnetic resistance in the direction of the inner yoke 3 (here, r3 or r4
Is very small. On the other hand, the magnetic resistance (not shown) in the direction from the axis of the magnet to the outer peripheral surface becomes extremely large.

【0023】(b)より、このときループV1、Rg1、Rou
t、Rg2、r2、V2、Rin、r1、V1を流れる電流(磁束)をi
1、ループV1、Rg3、r2、V2、Rin、r1、V1を流れる電流
(磁束)をi2と定める。尚、上記のように磁気抵抗R1、R
2、R3、R4は、極めて大きいのでループV1、R1、r4、R
3、r2、V2、R4、r3、R2、r1、V1を流れる電流(磁束)
は、無視される。次に電圧源V3、V4を有効として電圧源
V1、V2を0と置いたときの各部の電流とを求める。
From (b), at this time, loops V1, Rg1, Rou
The current (magnetic flux) flowing through t, Rg2, r2, V2, Rin, r1 and V1 is i
1, the current through the loop V1, Rg3, r2, V2, Rin, r1, V1
(Magnetic flux) is defined as i2. As mentioned above, the magnetic resistances R1 and R
2, R3, R4 are very large, so loops V1, R1, r4, R
Current flowing through 3, r2, V2, R4, r3, R2, r1, V1 (magnetic flux)
Is ignored. Next, enable the voltage sources V3 and V4 and
Calculate the current of each part when V1 and V2 are set to 0.

【0024】図5は、電圧源V3、V4を有効、電圧源V1、
V2を0と置いた回路図である。(a)は、説明に必要な部
分の拡大図であり(b)は、その等価回路である。(a)に
示すように界磁磁石4-1、4-2と補助磁石6との間に磁気
抵抗R1、R2、R3、R4が発生しているが、この位置が等価
回路上で上記図5とは少し異なる。補助磁石6が発生する
磁束は、界磁磁石4-1、4-2の内部へは侵入しにくく、外
ヨーク1や内ヨーク3へ進むことを意味している。
FIG. 5 shows that the voltage sources V3 and V4 are enabled and the voltage sources V1 and V4 are
It is a circuit diagram in which V2 is set to 0. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof. As shown in (a), magnetic resistances R1, R2, R3, and R4 are generated between the field magnets 4-1 and 4-2 and the auxiliary magnet 6, and this position is shown in the above figure on the equivalent circuit. A little different from 5. It means that the magnetic flux generated by the auxiliary magnet 6 does not easily enter the inside of the field magnets 4-1 and 4-2, and travels to the outer yoke 1 and the inner yoke 3.

【0025】(b)より、V4、Rg1、Rout、Rg2、r4、V4
を流れる電流(磁束)をi3、ループV4、Rg3、r4、V4を
流れる電流(磁束)をi4、ループV3、Rin、r3、V3を流れ
る電流(磁束)をi5と定める。尚、上記のように磁気抵
抗R1、R2、R3、R4は、極めて大きいのでループV4、R1、
r1、R2、V3、r3、R4、r2、R3、r4、V4を流れる電流(磁
束)は、無視される。
From (b), V4, Rg1, Rout, Rg2, r4, V4
Is defined as i3, the current (magnetic flux) flowing through the loops V4, Rg3, r4, and V4 is i4, and the current (magnetic flux) flowing through the loops V3, Rin, r3, and V3 is defined as i5. As described above, the magnetic resistances R1, R2, R3, and R4 are extremely large, so loops V4, R1, and
The current (magnetic flux) flowing through r1, R2, V3, r3, R4, r2, R3, r4, V4 is ignored.

【0026】以上求めたi1、i2、i3、i4、i5を重
畳することによって本発明による内ヨーク磁石型リニア
モータの各部分を流れる磁束が求められる。固定子コイ
ル2-1、2-2中を流れる電流と鎖交する磁束は、図4のi1
と図5のi3とを加算した値に相当することが分る。ここ
で留意すべき点は以下の通りである。
By superimposing i1, i2, i3, i4 and i5 thus obtained, the magnetic flux flowing through each portion of the inner yoke magnet type linear motor according to the present invention is obtained. The magnetic flux interlinking with the current flowing through the stator coils 2-1 and 2-2 is i1 in FIG.
It can be seen that this is equivalent to the value obtained by adding the i3 in FIG. The points to be noted here are as follows.

【0027】i1は既に説明した従来例の内ヨーク磁石
型リニアモータにおいて求められたi1(図8)と同じ値で
ある。従って、本発明による内ヨーク磁石型リニアモー
タでは、従来例の内ヨーク磁石型リニアモータに比較し
てi3に相当する磁束分鎖交磁束数が増加することにな
る。
I1 is the same value as i1 (FIG. 8) found in the conventional inner yoke magnet type linear motor described above. Therefore, in the inner-yoke magnet linear motor according to the present invention, the number of flux-linkage magnetic fluxes corresponding to i3 increases as compared with the conventional inner-yoke magnet linear motor.

【0028】また、本発明による内ヨーク磁石型リニア
モータでは、内ヨーク3(図1)内を流れる磁束は、図4の
i1とi2とを加算した値から図5のi5を減算した値に相
当することが分る。従って、本発明による内ヨーク磁石
型リニアモータでは、従来例の内ヨーク磁石型リニアモ
ータに比較してi5に相当する分だけ内ヨーク3(図1)内
を流れる磁束が、少なくなることが分る。このことは重
要な意味を持っている。即ち、細い棒状の内ヨーク3中
は、通常磁気飽和しやすいが、本発明によって磁束量を
減少させることが出来るため、磁気飽和しにくくなる。
Further, in the inner yoke magnet type linear motor according to the present invention, the magnetic flux flowing in the inner yoke 3 (FIG. 1) is a value obtained by subtracting i5 in FIG. 5 from a value obtained by adding i1 and i2 in FIG. I know that it corresponds. Therefore, in the inner yoke magnet type linear motor according to the present invention, the magnetic flux flowing in the inner yoke 3 (FIG. 1) is reduced by the amount corresponding to i5 as compared with the conventional inner yoke magnet type linear motor. It This has important implications. That is, in the thin rod-shaped inner yoke 3, magnetic saturation usually occurs easily, but since the amount of magnetic flux can be reduced by the present invention, magnetic saturation becomes difficult.

【0029】〈具体例1の効果〉以上説明したように2
個の界磁磁石の間に挟みこまれるように補助磁石が配置
されることによって、大きさを変えることなく駆動力を
増加することができる。また、細い棒状の内ヨーク3中
での磁気飽和を防止することが出来るので精密な動作が
可能になる。
<Effect of Concrete Example 1> As described above, 2
By disposing the auxiliary magnet so as to be sandwiched between the field magnets, the driving force can be increased without changing the size. Further, since magnetic saturation in the thin rod-shaped inner yoke 3 can be prevented, precise operation becomes possible.

【0030】〈具体例2〉具体例2の内ヨーク磁石型リニ
アモータは、具体例1の内ヨーク磁石型リニアモータの
拡張例であって、界磁磁石、補助磁石及び固定子コイル
の個数を任意に増加させる構成をとる。その結果、駆動
力が大きくなる。以下に図を用いて詳細に説明する。
<Specific Example 2> The inner-yoke magnet linear motor of the specific example 2 is an expansion example of the inner-yoke magnet linear motor of the specific example 1, in which the number of field magnets, auxiliary magnets, and stator coils is changed. Take the configuration to increase arbitrarily. As a result, the driving force is increased. The details will be described below with reference to the drawings.

【0031】図6は、具体例2の内ヨーク磁石型リニア
モータの構造図である。(a)は内ヨーク磁石型リニアモ
ータの縦断面図であり、(b)は、内ヨーク磁石型リニア
モータの横断面図である。図より、具体例2の内ヨーク
磁石型リニアモータは、外ヨーク21と、固定子コイル2-
1、2-2、2-3、2-4と、内ヨーク23と、界磁磁石4-1、4-
2、4-3、4-4と、絶縁筒25と、補助磁石6-1、6-2、6-3と
を備える。
FIG. 6 is a structural diagram of the inner yoke magnet type linear motor of the second specific example. (a) is a longitudinal sectional view of the inner yoke magnet type linear motor, and (b) is a transverse sectional view of the inner yoke magnet type linear motor. From the figure, the inner yoke magnet type linear motor of the specific example 2 has the outer yoke 21 and the stator coil 2-
1, 2-2, 2-3, 2-4, inner yoke 23, and field magnets 4-1, 4-
2, 4-3, 4-4, an insulating cylinder 25, and auxiliary magnets 6-1, 6-2, 6-3 are provided.

【0032】ここでは、固定子コイル4個、界磁磁石4
個、補助磁石3個が配置されているが、これは一例であ
って本発明は、この例に限定されるものではない。夫々
の構成、機能は具体例1と全く同様なので説明を割愛す
る。
Here, four stator coils and four field magnets are used.
Although three and three auxiliary magnets are arranged, this is an example and the present invention is not limited to this example. The respective configurations and functions are exactly the same as those of the first specific example, and therefore the description thereof will be omitted.

【0033】〈具体例2の効果〉以上説明したように、
固定子コイル等の個数を増加することによって具体例1
の効果に加えて、モータの外形を大きくすることなく、
駆動力を大きく、かつ、動作速度を早くすることが出来
る。
<Effect of Concrete Example 2> As described above,
Specific example 1 by increasing the number of stator coils etc.
In addition to the effect of, without enlarging the outer shape of the motor,
The driving force can be increased and the operation speed can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】具体例1の内ヨーク磁石型リニアモータの構造
図である。(a)は、内ヨーク磁石型リニアモータの縦断
面図であり、(b)は、内ヨーク磁石型リニアモータの横
断面図である。
FIG. 1 is a structural diagram of an inner yoke magnet type linear motor of a first specific example. (a) is a longitudinal sectional view of the inner-yoke magnet type linear motor, and (b) is a transverse sectional view of the inner-yoke magnet type linear motor.

【図2】界磁磁石及び補助磁石の説明図である。(a)
は、界磁磁石を表す図であり、(b)は、補助磁石を表す
図である。
FIG. 2 is an explanatory diagram of a field magnet and an auxiliary magnet. (a)
[Fig. 3] is a diagram showing a field magnet, and (b) is a diagram showing an auxiliary magnet.

【図3】本発明の内ヨーク磁石型リニアモータの等価回
路図である。(a)は、説明に必要な部分の拡大図であ
り、(b)は、その等価回路である。
FIG. 3 is an equivalent circuit diagram of an inner yoke magnet type linear motor of the present invention. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof.

【図4】電圧源V1、V2を有効、電圧源V3、V4を0と置い
た回路図である。(a)は、説明に必要な部分の拡大図で
あり、(b)は、その等価回路である。
FIG. 4 is a circuit diagram in which the voltage sources V1 and V2 are valid and the voltage sources V3 and V4 are 0. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof.

【図5】電圧源V3、V4を有効、電圧源V1、V2を0と置い
た回路図である。(a)は、説明に必要な部分の拡大図で
あり、(b)は、その等価回路である。
FIG. 5 is a circuit diagram in which the voltage sources V3 and V4 are valid and the voltage sources V1 and V2 are 0. (a) is an enlarged view of a portion necessary for explanation, and (b) is an equivalent circuit thereof.

【図6】具体例2の内ヨーク磁石型リニアモータの構造
図である。(a)は、内ヨーク磁石型リニアモータの縦断
面図であり、(b)は、内ヨーク磁石型リニアモータの横
断面図である。
FIG. 6 is a structural diagram of an inner yoke magnet type linear motor of a specific example 2. (a) is a longitudinal sectional view of the inner-yoke magnet type linear motor, and (b) is a transverse sectional view of the inner-yoke magnet type linear motor.

【図7】従来の内ヨーク磁石型リニアモータの構造図で
ある。(a)は、内ヨーク磁石型リニアモータの縦断面図
であり、(b)は、内ヨーク磁石型リニアモータの横断面
図である。
FIG. 7 is a structural diagram of a conventional inner yoke magnet type linear motor. (a) is a longitudinal sectional view of the inner-yoke magnet type linear motor, and (b) is a transverse sectional view of the inner-yoke magnet type linear motor.

【図8】従来の内ヨーク磁石型リニアモータの等価回路
図である。
FIG. 8 is an equivalent circuit diagram of a conventional inner yoke magnet type linear motor.

【符号の説明】[Explanation of symbols]

1 外ヨーク 2-1 固定子コイル 2-2 固定子コイル 3 内ヨーク 4-1 界磁磁石 4-2 界磁磁石 5 絶縁筒 6 補助磁石 1 outer yoke 2-1 Stator coil 2-2 Stator coil 3 Inner yoke 4-1 Field magnet 4-2 Field magnet 5 Insulation tube 6 auxiliary magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村西 哲 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 小久保 修 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 赤間 助広 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 (72)発明者 成吉 郁馬 神奈川県川崎市川崎区小田栄2丁目1番1 号 昭和電線電纜株式会社内 Fターム(参考) 2H051 FA01 FA10 5H633 BB08 BB10 GG02 GG09 GG13 GG17 HH03 HH07 HH13 5H641 BB06 BB14 BB19 GG02 GG04 GG08 HH03 HH11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Satoshi Muranishi             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. (72) Inventor Osamu Kokubo             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. (72) Inventor Akama Akahiro             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. (72) Inventor Ikuma Naruyoshi             2-1-1 Oda Sakae, Kawasaki-ku, Kawasaki-shi, Kanagawa             No. Showa Densen Denki Co., Ltd. F-term (reference) 2H051 FA01 FA10                 5H633 BB08 BB10 GG02 GG09 GG13                       GG17 HH03 HH07 HH13                 5H641 BB06 BB14 BB19 GG02 GG04                       GG08 HH03 HH11

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 円筒状の外ヨークと、 該外ヨークの内側に密着して、内ヨークの移動方向に並
べられ、前記外ヨークと同軸的に配置された一対の環状
の固定子コイルと、 前記外ヨークの内側に同軸的に配置された棒状の内ヨー
クと、 この内ヨークの外周に固着され、内ヨークの移動方向に
空隙を空けて並べられ、当該内ヨークと同軸的に配置さ
れた一対の環状の界磁磁石と、 前記一対の界磁磁石の間の前記空隙に挟みこまれるよう
に配置された環状の補助磁石とを備え、 前記一対の固定子コイルには、相互に反対極性の固定子
磁界が励起され、 前記一対の界磁磁石の磁化の方向は、いずれも、磁石の
軸から外周面に向かう方向に平行であって、一方の界磁
磁石の磁化の方向が、他方の界磁磁石の磁化の方向と反
対方向になるようにされ、 前記補助磁石の磁化の方向は、内ヨークの軸に平行な方
向であって、補助磁石の磁極の極性は、補助磁石の磁極
が接している前記界磁磁石の外周面の極性と一致してい
ることを特徴とする、内ヨーク磁石型リニアモータ。
1. A cylindrical outer yoke, and a pair of annular stator coils that are closely attached to the inner side of the outer yoke, are arranged in the moving direction of the inner yoke, and are arranged coaxially with the outer yoke. A rod-shaped inner yoke coaxially arranged inside the outer yoke, and an outer yoke fixed to the inner yoke, arranged side by side with a gap in the moving direction of the inner yoke, and arranged coaxially with the inner yoke. A pair of annular field magnets and an annular auxiliary magnet arranged so as to be sandwiched in the gap between the pair of field magnets are provided, and the pair of stator coils have mutually opposite polarities. The stator magnetic field is excited, the directions of magnetization of the pair of field magnets are both parallel to the direction from the axis of the magnet to the outer peripheral surface, and the direction of magnetization of one field magnet is the other. Is set to be in the direction opposite to the magnetization direction of the field magnet of Note that the direction of magnetization of the auxiliary magnet is parallel to the axis of the inner yoke, and the polarity of the magnetic pole of the auxiliary magnet matches the polarity of the outer peripheral surface of the field magnet with which the magnetic pole of the auxiliary magnet is in contact. The inner yoke magnet type linear motor is characterized by having
【請求項2】 円筒状の外ヨークと、 該外ヨークの内側に密着して内ヨークの移動方向に並べ
られ、前記外ヨークと同軸的に配置された3個以上の環
状の固定子コイルと、 前記外ヨークの内側に同軸的に配置された棒状の内ヨー
クと、 この内ヨークの外周に固着され、内ヨークの移動方向に
空隙を空けて並べられ、当該内ヨークと同軸的に配置さ
れた前記固定子コイルの個数以下の個数の環状の界磁磁
石と、 全ての界磁磁石の間の前記空隙に挟みこまれるように配
置された環状の補助磁石とを備え、 隣り合う前記固定子コイルには、相互に反対極性の固定
子磁界が励起され、全ての界磁磁石の磁化の方向は、い
ずれも、磁石の軸から外周面に向かう方向に平行であっ
て、隣り合う界磁磁石の磁化の方向は相互に反対方向に
なるようにされ、 前記補助磁石の磁化の方向は、内ヨークの軸に平行な方
向であって、補助磁石の磁化の方向は、補助磁石の磁極
が接している前記界磁磁石の外周面の極性と一致してい
ることを特徴とする、内ヨーク磁石型リニアモータ。
2. A cylindrical outer yoke, and three or more annular stator coils that are closely attached to the inner side of the outer yoke and are arranged in the moving direction of the inner yoke and are arranged coaxially with the outer yoke. A rod-shaped inner yoke coaxially arranged inside the outer yoke, fixed to the outer periphery of the inner yoke, arranged with a gap in the moving direction of the inner yoke, and arranged coaxially with the inner yoke. And a plurality of annular field magnets, the number of which is equal to or less than the number of the stator coils, and an annular auxiliary magnet arranged so as to be sandwiched in the gap between all the field magnets. Stator magnetic fields with mutually opposite polarities are excited in the coils, and the magnetization directions of all field magnets are parallel to the direction from the magnet axis to the outer peripheral surface. The magnetization directions of are set to be opposite to each other, The direction of magnetization of the auxiliary magnet is parallel to the axis of the inner yoke, and the direction of magnetization of the auxiliary magnet coincides with the polarity of the outer peripheral surface of the field magnet with which the magnetic pole of the auxiliary magnet is in contact. The inner yoke magnet type linear motor is characterized by having
JP2001393097A 2001-12-26 2001-12-26 Inner yoke magnet type linear motor Expired - Lifetime JP3658560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001393097A JP3658560B2 (en) 2001-12-26 2001-12-26 Inner yoke magnet type linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001393097A JP3658560B2 (en) 2001-12-26 2001-12-26 Inner yoke magnet type linear motor

Publications (2)

Publication Number Publication Date
JP2003199312A true JP2003199312A (en) 2003-07-11
JP3658560B2 JP3658560B2 (en) 2005-06-08

Family

ID=27600170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001393097A Expired - Lifetime JP3658560B2 (en) 2001-12-26 2001-12-26 Inner yoke magnet type linear motor

Country Status (1)

Country Link
JP (1) JP3658560B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684039B1 (en) 2004-09-08 2007-02-16 주식회사 파워로직스 Lens Actuator
US7439640B2 (en) * 2005-07-25 2008-10-21 Seiko Epson Corporation Electromagnetic actuator using permanent magnets
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator
JP2010057338A (en) * 2008-08-29 2010-03-11 Hitachi Metals Ltd Mover, armature, and actuator
JP2010193584A (en) * 2009-02-17 2010-09-02 Tamagawa Seiki Co Ltd Trapezoidal magnet skew structure for cylindrical linear motor with core
JP2010200522A (en) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684039B1 (en) 2004-09-08 2007-02-16 주식회사 파워로직스 Lens Actuator
US7439640B2 (en) * 2005-07-25 2008-10-21 Seiko Epson Corporation Electromagnetic actuator using permanent magnets
JP2008259413A (en) * 2007-04-05 2008-10-23 Aisin Seiki Co Ltd Linear actuator
JP2010057338A (en) * 2008-08-29 2010-03-11 Hitachi Metals Ltd Mover, armature, and actuator
JP2010193584A (en) * 2009-02-17 2010-09-02 Tamagawa Seiki Co Ltd Trapezoidal magnet skew structure for cylindrical linear motor with core
JP2010200522A (en) * 2009-02-26 2010-09-09 Aisin Seiki Co Ltd Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor

Also Published As

Publication number Publication date
JP3658560B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
Meessen et al. Halbach permanent magnet shape selection for slotless tubular actuators
JP2003199312A (en) Inner yoke magnet type linear motor
EP1091477A3 (en) Vibration generator
JP2002058215A (en) Magnetizing apparatus for permanent magnet rotor
JPS62118755A (en) Ac rectilinear moving type motor
GB2214724A (en) Permanent magnet electric motor
JPH08168232A (en) Linear encoder device
JPH1169754A (en) Movable permanent magnet dc linear motor
JPH11103568A (en) Movable magnet type linear actuator
Ren et al. Asymmetric electromagnetic analysis and design of a permagnet biased axial magnetic bearings
JP2607299Y2 (en) Vibration actuator
JPH11220866A (en) Shaft-type linear motor and its driving method
KR102243861B1 (en) Energy harvesting apparatus and switch using magnetic flux change
JPH09163692A (en) Magnetizer for rotating-field type permanent magnet synchronous motor
CN216951299U (en) Two-half-degree-of-freedom hybrid magnetic bearing
JPH03112354A (en) Linear actuator
JP3731011B2 (en) Single pole linear DC motor
JP2601240Y2 (en) Vibration actuator
JPH0232749A (en) Linear actuator
JPH0644385U (en) Movable magnet type actuator
JP2008271753A (en) Armature for cylindrical linear motor, and the cylindrical linear motor
KR20220053667A (en) Magnetic bearing device with toroidal design
JP3064309B2 (en) Linear motor
JPH0677483U (en) Linear motor
JP2003164132A (en) Linear vibrating motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Ref document number: 3658560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term