JPH09163692A - Magnetizer for rotating-field type permanent magnet synchronous motor - Google Patents

Magnetizer for rotating-field type permanent magnet synchronous motor

Info

Publication number
JPH09163692A
JPH09163692A JP34443295A JP34443295A JPH09163692A JP H09163692 A JPH09163692 A JP H09163692A JP 34443295 A JP34443295 A JP 34443295A JP 34443295 A JP34443295 A JP 34443295A JP H09163692 A JPH09163692 A JP H09163692A
Authority
JP
Japan
Prior art keywords
magnetic pole
permanent magnet
magnetizer
magnetizing
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34443295A
Other languages
Japanese (ja)
Inventor
Tsukasa Miura
司 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP34443295A priority Critical patent/JPH09163692A/en
Publication of JPH09163692A publication Critical patent/JPH09163692A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetizer for magnetizing each pole of an unmagnetized magnet having high remanent magnetic flux density and high coercive force after it is mounted on a rotor without increasing the size of current supply for magnetization. SOLUTION: The magnetizer 8a comprises a magnetization unit 6a where a plurality of cores 5 (51a-54a), each having a width equal to one half that of pole of different polarity split by adjacent through holes 21-24 on the opposite sides of a slot 3 and applied with a coil 30 passing through the slot 3 while reversing the winding direction, are arranged in the circumferential direction on the outer circumference of a permanent magnet 2 in a rotor 1, and a current supply 7. The coil 30 of each pole core 5a is fed with a pulse current from the current supply 7 through a switch 60 thus magnetizing the permanent magnet.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、回転子に永久磁
石を搭載して界磁極を形成する回転界磁形永久磁石同期
電動機の未磁化の永久磁石を着磁する着磁装置の構造に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a magnetizing device for magnetizing unmagnetized permanent magnets of a rotary field type permanent magnet synchronous motor in which permanent magnets are mounted on a rotor to form field poles.

【0002】[0002]

【従来の技術】図6〜図8は、従来の回転界磁形永久磁
石同期電動機の回転子の界磁極を形成するための着磁装
置を示すもので、図6は着磁装置を構成する着磁器と、
この着磁器に挿入する前の未磁化の永久磁石を搭載した
回転子の斜視図、図7は着磁器に挿着した回転子の永久
磁石を着磁する着磁装置の構成図、図8の(a)及び
(b)は、それぞれ永久磁石の着磁の原理の説明図であ
る。回転子の界磁極に永久磁石を使用する永久磁石同期
電動機は、界磁の強さをほぼ一定にすることができるの
で、固定子の電機子巻線に可変周波数電源を供給して回
転磁界を生成するこにより回転子の回転速度を精度良く
制御可変することができる高効率のものが得られる。し
かも、励磁部は前記したように永久磁石にて無励磁とし
て電源を必要としないので、機器の小形化ができるとと
もに、保守管理が低減されるという特徴を有しているの
で可変速駆動用の回転機として、主として中小容量機へ
の適用がなされている。
6 to 8 show a magnetizing device for forming a field pole of a rotor of a conventional rotating field type permanent magnet synchronous motor, and FIG. 6 constitutes the magnetizing device. A magnetizer,
FIG. 7 is a perspective view of a rotor mounted with an unmagnetized permanent magnet before being inserted into the magnetizer, FIG. 7 is a configuration diagram of a magnetizing device for magnetizing the permanent magnet of the rotor inserted into the magnetizer, and FIG. (A) And (b) is explanatory drawing of the principle of magnetization of a permanent magnet, respectively. Since a permanent magnet synchronous motor that uses permanent magnets for the field poles of the rotor can make the field strength almost constant, it supplies a variable frequency power to the armature winding of the stator to generate a rotating magnetic field. By generating it, it is possible to obtain a highly efficient rotor in which the rotational speed of the rotor can be precisely controlled and varied. Moreover, since the excitation unit does not require a power supply as a non-excitation by the permanent magnet as described above, it is possible to reduce the size of the equipment and to reduce the maintenance management. As a rotating machine, it is mainly applied to small and medium capacity machines.

【0003】ところで、永久磁石は通常その成形段階で
は磁力を持たず、外部より強制的に起磁力を加える、い
わゆる着磁または磁化により磁石としての性能を持つよ
うになる。この未磁化の永久磁石を磁化する装置を着磁
装置または磁化装置と称する。回転界磁形永久磁石同期
電動機における、前記した回転子の界磁極を構成する未
磁化の永久磁石を着磁する着磁方法は、図6の4極の場
合に示すように、回転子1の外周に設けられた未磁化の
永久磁石2の外周に対向するように前記回転子1と同心
状に配された軸方向に設けられた溝部3に挿着して巻回
された4個のコイル4と、このコイル4を支持する4極
の磁極鉄心5とからなる着磁器6と、この着磁器6のコ
イル4に電流を供給する電流供給装置7とから構成され
る着磁装置8に前記着磁器3の内部に前記回転子1を挿
入して行われる。
By the way, the permanent magnet does not normally have a magnetic force at the molding stage, but it has a performance as a magnet by so-called magnetization or magnetization, which is a force to externally generate a magnetomotive force. A device that magnetizes this unmagnetized permanent magnet is called a magnetizing device or a magnetizing device. In the rotating field type permanent magnet synchronous motor, the magnetizing method for magnetizing the unmagnetized permanent magnets forming the field poles of the rotor is as shown in the case of the four poles in FIG. Four coils wound by being inserted into a groove 3 axially provided concentrically with the rotor 1 so as to face the outer circumference of an unmagnetized permanent magnet 2 provided on the outer circumference. 4 and a magnetizer 6 composed of a four-pole magnetic pole core 5 supporting the coil 4, and a current supply device 7 for supplying a current to the coil 4 of the magnetizer 6. This is performed by inserting the rotor 1 inside the magnetizer 3.

【0004】永久磁石2の着磁のためにコイル4に通流
する電流は、大電流を比較的短時間流せばよいので、図
7に示すように通常のLC共振型のパルス電源が用いら
れる。永久磁石2の着磁は、まず永久磁石2に4極の磁
極を形成させるための磁束発生用のそれぞれの磁極鉄心
5に巻回され直列接続された4個のコイル4に通流する
電流供給装置7の放電スイッチ9を開として遮断してお
く。次に、スイッチ10を閉として充電回路11によっ
て電源11aよりコンデンサ12を充電する。所定の電
圧まで充電し得た後に、スイッチ10を開とした後に放
電スイッチ9を閉として、充電回路11からの電流を前
記した着磁器6のそれぞれのじのいく鉄心5に巻回され
たコイル4に通流して磁束13を発生させる。ここで、
上記の電流供給装置7のコンデンサ12の容量をC、着
磁器6のコイル4の抵抗をR,インダクタンスをLとす
ると、R<2√(L/C)の条件が成り立つとき、電流
供給装置7からコイル4に通流する電流14は図8の
(a)のように減衰振動波形を示し、第1周期で非常に
高い尖塔値を得ることができる。一方、永久磁石2は、
構成する材料によって図8の(b)のように固有のヒス
テリシス曲線15を示し、前記した電流14によって発
生する強磁束13のために、直ちに磁気飽和領域16に
達し、その後電流が無くなると、ヒステリシス曲線15
に従った残留磁気特性17を示し、着磁を完了して4個
のコイル4に対向する永久磁石2に、前記コイル4に通
流する矢印の電流方向によって定まる磁束方向に対応し
て、図7に示すように4極の界磁極を形成する。
The current flowing through the coil 4 for magnetizing the permanent magnet 2 may be a large current for a relatively short time. Therefore, a normal LC resonance type pulse power source is used as shown in FIG. . Magnetization of the permanent magnet 2 is performed by first supplying a current flowing through four coils 4 wound around respective magnetic pole cores 5 for generating magnetic flux for forming permanent magnets 2 in four poles and connected in series. The discharge switch 9 of the device 7 is opened and cut off. Next, the switch 10 is closed and the charging circuit 11 charges the capacitor 12 from the power supply 11a. After charging to a predetermined voltage, the switch 10 is opened and then the discharge switch 9 is closed, so that the current from the charging circuit 11 is wound around the same iron core 5 of the magnetizer 6 described above. 4 to generate a magnetic flux 13. here,
When the capacitance of the capacitor 12 of the current supply device 7 is C, the resistance of the coil 4 of the magnetizer 6 is R, and the inductance is L, the current supply device 7 is satisfied when the condition of R <2√ (L / C) is satisfied. The current 14 flowing from the coil 4 to the coil 4 exhibits a damped oscillation waveform as shown in FIG. 8A, and a very high steeple value can be obtained in the first period. On the other hand, the permanent magnet 2
8 (b) shows an inherent hysteresis curve 15 depending on the constituent material. Due to the strong magnetic flux 13 generated by the current 14, the magnetic saturation region 16 immediately reaches the magnetic saturation region 16 and the hysteresis disappears when the current disappears. Curve 15
The residual magnetic characteristics 17 according to the above, and corresponding to the magnetic flux direction determined by the current direction of the arrow flowing through the permanent magnets 2 facing the four coils 4 after completing the magnetization. As shown in FIG. 7, a 4-pole field pole is formed.

【0005】ところで、図7に示す着磁器6からなる着
磁装置8による回転界磁形永久磁石同期電動機の永久磁
石の着磁では、全極を同時に着磁することが重要であ
る。即ち、前記と同様に4極の磁極構成において、図9
のように隣接する磁極鉄心5,5に巻回方向を変えて巻
回された2つのコイル4,4に電流供給装置7より電流
を流して磁束を発生させて、S極及びN極を着磁した場
合に、磁束18の方向が永久磁石2の法線方向に向か
ず、着磁後の永久磁石2の磁化の方向も傾いてしまい、
また磁束18の分布が不均一となり、充分に飽和しない
未飽和領域19が形成する恐れがある。回転子1の永久
磁石2の着磁においては、完全に飽和させることが重要
であり、飽和が完全でないと、例えば固定子側等の外部
より逆磁界を受けた時、永久減磁を引き起こす恐れがあ
り、上記した図5,図6からなる着磁器6の構造では、
界磁極の全極を同時に着磁することが必要不可欠の条件
となる。
By the way, in magnetizing the permanent magnets of the rotating field permanent magnet synchronous motor by the magnetizing device 8 including the magnetizer 6 shown in FIG. 7, it is important to magnetize all poles at the same time. That is, in the same manner as described above, in the four-pole magnetic pole configuration, as shown in FIG.
As described above, current is supplied from the current supply device 7 to the two coils 4 and 4 wound by changing the winding direction on the adjacent magnetic pole cores 5 and 5 to generate magnetic flux, and the S pole and N pole are attached. When magnetized, the direction of the magnetic flux 18 does not go in the normal direction of the permanent magnet 2, and the magnetization direction of the magnetized permanent magnet 2 also tilts,
Further, the distribution of the magnetic flux 18 becomes non-uniform, and there is a possibility that an unsaturated region 19 that is not sufficiently saturated is formed. In magnetizing the permanent magnet 2 of the rotor 1, it is important to completely saturate, and if the saturation is not perfect, permanent demagnetization may occur when a reverse magnetic field is applied from the outside such as the stator side. In the structure of the magnetizer 6 shown in FIGS. 5 and 6 described above,
It is an indispensable condition to magnetize all poles of the field pole at the same time.

【0006】[0006]

【発明が解決しようとする課題】さて、最近は高保持力
を有する永久磁石が開発され、特に稀土類磁石を用いた
永久磁石同期電動機の適用拡大も図られ、大形の大容量
機への適用開発も行われている。このため、永久磁石の
着磁装置もより残留磁束密度の大きい永久磁石を着磁す
ることが可能な着磁能力の高いものが要求れれるように
なってきた。しかしながら、前記した従来の永久磁石の
全極を同時に着磁する着磁装置においては、磁束を発生
させるために大電流をコイルに通流する必要があり、電
流供給装置7も大形となり、着磁コストが高くなるとい
う問題があった。したがって、大形の永久磁石を搭載す
る回転子構造においては、永久磁石を着磁した後に、回
転子に取り付けて界磁極を構成する方法が一般的に行わ
れている。この回転子の界磁極の構成は、既に磁化した
ものを鉄性の部材である回転子の外周上に取り付けるた
めに、非常に慎重な取扱と、取り付け位置決め治具等に
特殊な治具を必要とする煩雑な作業を必要とする。
Recently, a permanent magnet having a high coercive force has been developed. Especially, the application of a permanent magnet synchronous motor using a rare earth magnet has been expanded, and it has been applied to a large-sized large-capacity machine. Application development is also underway. Therefore, a magnetizing device for a permanent magnet is required to have a high magnetizing ability for magnetizing a permanent magnet having a higher residual magnetic flux density. However, in the above-described conventional magnetizing device that magnetizes all poles of the permanent magnet at the same time, it is necessary to pass a large current through the coil in order to generate magnetic flux, and the current supply device 7 also becomes large in size. There was a problem that the magnetic cost increased. Therefore, in a rotor structure in which a large permanent magnet is mounted, a method of magnetizing the permanent magnet and then attaching the permanent magnet to the rotor to form a field pole is generally performed. The configuration of the field poles of this rotor requires very careful handling and a special jig for the mounting positioning jig, etc., in order to mount the already magnetized one on the outer circumference of the rotor, which is an iron member. It requires complicated work.

【0007】この発明の課題は、前記の問題を解決した
残留磁束密度の大きい高保持力を有する永久磁石からな
る界磁極の形成を、従来のように着磁後に回転子に搭載
して構成することなく、未磁化の永久磁石を回転子に搭
載した後に極毎に着磁を可能として、かつ電流供給装置
の大型化を必要としない着磁装置を提供することにあ
る。
An object of the present invention is to form a field pole composed of a permanent magnet having a large residual magnetic flux density and a high coercive force, which solves the above-mentioned problems, by mounting it on a rotor after magnetizing as in the conventional case. It is an object of the present invention to provide a magnetizing device capable of magnetizing each pole after mounting an unmagnetized permanent magnet on a rotor without needing to increase the size of a current supply device.

【0008】[0008]

【課題を解決するための手段】上記した課題を解決する
ために、この発明の着磁装置は、着磁により回転子の永
久磁石の周上に形成される交互に並ぶN極とS極のそれ
ぞれの磁極を中央で2分割して、隣接する磁極の1/2
極分を組み合わせたものを単位として着磁するように、
左右に分割してコイルを互いに逆に巻回して設けられた
磁極鉄心を回転子の周方向に対向して配置して着磁器を
構成して、この着磁器のコイルに電流供給装置よりパル
ス状の電流パルスを通流して磁束発生させ永久磁石を着
磁する構造とした。
In order to solve the above-mentioned problems, the magnetizing device of the present invention has an N-pole and an S-pole which are alternately arranged and are formed on the circumference of a permanent magnet of a rotor by magnetization. Each magnetic pole is divided into two at the center, and half of the adjacent magnetic poles
To magnetize the combination of poles as a unit,
A magnetizer is constructed by arranging magnetic pole cores, which are divided into left and right coils and wound in opposite directions to face each other in the circumferential direction of the rotor, and a pulse shape is applied to the coil of this magnetizer from a current supply device. The magnetic flux is generated by passing the current pulse of (1) and the permanent magnet is magnetized.

【0009】これにより、前記した着磁器の2分割され
それぞれコイルが巻回された磁極鉄心を回転子の磁極数
に応じて未磁化の永久磁石の外周に対向して複数個配し
て、電流供給装置からのパルス状の電流を前記複数個の
着磁器のコイルに順次切り換えながら通流することによ
り、全極を同時に磁化する着磁装置の場合と同様に着磁
することがかできる。しかも、従来の全極を同時に着磁
する着磁装置と比して、前記したように一極分を着磁す
る電流供給装置で全極を着磁できるので、電流供給装置
のコンデンサの容量を、磁極の数に逆比例して減らすこ
とができることから、電源容量の小さい電流供給装置か
らなる着磁装置とすることができる。
As a result, a plurality of magnetic pole cores, each of which is divided into two parts of the above-mentioned magnetizer and each of which is wound with a coil, are arranged facing the outer circumference of the unmagnetized permanent magnet according to the number of magnetic poles of the rotor, and the By passing a pulsed current from the supply device to the coils of the plurality of magnetizers while sequentially switching it, it is possible to magnetize all the poles at the same time as in the magnetizing device. Moreover, as compared with the conventional magnetizing device that magnetizes all poles at the same time, all the poles can be magnetized by the current supply device that magnetizes one pole as described above, so that the capacity of the capacitor of the current supply device can be reduced. Since the number of magnetic poles can be reduced in inverse proportion to the number of magnetic poles, the magnetizing device can be a current supply device having a small power supply capacity.

【0010】また、着磁器が貫通孔により左右に2分割
されコイルが巻回された磁極鉄心が未磁化の永久磁石の
外周の周上に一組又は二組を互いに対向して配置して構
成され、回転子の円周上の永久磁石の磁化により形成さ
れる磁極位置に前記磁極鉄心、あるいは回転子を回転移
動し着磁器の磁極鉄心の位置と回転子の磁極の位置とを
一致させて、複数回に分けて着磁するための位置決めす
る手段を備えた着磁装置とすることにより、着磁器の磁
極鉄心に巻回されるコイルのインダクタンスを、従来の
全極を同時に着磁するための磁極の数だけ磁極鉄心を必
要とする着磁器からなる着磁装置と比して、一組の磁極
鉄心の場合には磁極の数で除した値、二組の場合にはそ
の2倍の値とすることができるので、小形な着磁器を有
する着磁装置とすることができる。
Further, the magnetizer is divided into left and right by the through hole, and the magnetic pole iron core around which the coil is wound is formed by arranging one set or two sets facing each other on the outer circumference of the unmagnetized permanent magnet. Then, the magnetic pole core or the rotor is rotationally moved to the magnetic pole position formed by the magnetization of the permanent magnets on the circumference of the rotor so that the position of the magnetic pole core of the magnetizer matches the position of the magnetic pole of the rotor. , In order to magnetize all the conventional poles at the same time, the inductance of the coil wound around the magnetic pole core of the magnetizer can be magnetized at the same time by using a magnetizing device equipped with a positioning means for magnetizing the magnet in multiple times. In comparison with a magnetizing device consisting of a magnetizer, which requires as many magnetic pole cores as the number of magnetic poles, the value divided by the number of magnetic poles in the case of one set of magnetic poles, or twice the value in the case of two sets. Since it can be set to a value, it is assumed that the magnetizing device has a small magnetizer. It is possible.

【0011】また、着磁器の磁極鉄心を一極間隔毎に回
転子の周上に間隔を持って配された第1の着磁器と、こ
の第1の着磁器の磁極鉄心位置と周方向に一極間隔分ず
つずれた位置に間隔を持って回転子の周上に配された第
2の着磁器とが同心状に軸方向に間隔を持って配置さ
れ、未磁化の永久磁石を搭載した回転子に前記した第1
及び第2の着磁器を軸方向に移動して位置決めする手段
を有する着磁装置とする。これにより前記した第1と第
2の着磁器とで、電流供給装置からのパルス状の電流を
切り換え接続し、それぞれの磁極鉄心に対応する位置の
永久磁石の着磁をすることにより、従来の全極を同時に
着磁する着磁装置の電流供給装置と比して電源容量を小
さくできる。
Further, a first magnetizer in which magnetic pole cores of the magnetizer are arranged at intervals of one pole on the circumference of the rotor, and a magnetic pole core position of the first magnetizer in the circumferential direction. A second magnetizer arranged on the circumference of the rotor at a position offset by one pole interval is concentrically arranged at an axial interval, and an unmagnetized permanent magnet is mounted. First mentioned above for rotor
And a magnetizing device having means for axially moving and positioning the second magnetizer. As a result, by switching and connecting the pulsed currents from the current supply device between the first and second magnetizers, and magnetizing the permanent magnets at the positions corresponding to the respective magnetic pole iron cores, The power supply capacity can be reduced as compared with a current supply device of a magnetizing device that magnetizes all poles at the same time.

【0012】[0012]

【発明の実施の形態】以下この発明の実施の形態を図に
基づいて説明する。実施の形態1 図1は、この発明の第1の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。図1の
回転子界磁極は4極の構成例であり、着磁装置8aの着
磁器6aを構成する磁極鉄心5aは、回転子1に搭載さ
れた永久磁石2に形成されるN極又はS極に対応する位
置に、溝部3によってそれぞれ分割された4個の磁極鉄
心51a,52a,53a,54aが回転子1の外周上
に配されている。そして、それぞれの磁極鉄心5aは、
磁極中央部に軸方向に貫通する貫通孔20(21,2
2,23,24)を設けて、磁極鉄心5をそれぞれ2分
割している。そして、磁極鉄心5の貫通孔20にコイル
30を貫通させ、左右に2分割した磁極鉄心5にコイル
30をそれぞれ巻回する。次に、図1に示すように溝部
3を介して隣接する異極の1/2極に巻回されたコイル
30同士を接続して4個の磁束発生回路40(41,4
2,43,44)を構成する。
Embodiments of the present invention will be described below with reference to the drawings. First Embodiment FIG. 1 is a configuration diagram of a magnetizing device for a rotating field permanent magnet synchronous motor according to a first embodiment of the present invention. The rotor field magnetic pole of FIG. 1 is a four-pole configuration example, and the magnetic pole core 5a that constitutes the magnetizer 6a of the magnetizing device 8a is the N pole or S pole formed on the permanent magnet 2 mounted on the rotor 1. Four magnetic pole cores 51a, 52a, 53a, 54a divided by the groove 3 are arranged on the outer periphery of the rotor 1 at positions corresponding to the poles. And each magnetic pole core 5a is
A through hole 20 (21, 21,
2, 23, 24) are provided to divide the magnetic pole core 5 into two parts. Then, the coil 30 is penetrated through the through hole 20 of the magnetic pole core 5, and the coil 30 is wound around each of the two magnetic pole cores 5 divided into the left and right. Next, as shown in FIG. 1, four magnetic flux generating circuits 40 (41, 4) are connected by connecting the coils 30 wound around the adjacent 1/2 poles of different polarities via the groove portion 3.
2, 43, 44).

【0013】前記した磁束発生回路40に通流する電流
パルスは、電流供給装置7の電源11aから充電回路1
1によって充電された電流を、従来例で説明したように
放電スイッチ9を閉にすることにより供給する。この場
合に、永久磁石2に4極の磁極を形成する着磁器6aの
磁極鉄心5aに巻回されているコイル30にて構成され
た磁束発生回路41〜44に接続されている接点線に4
1a,41b〜44a,44bに切り換えスイッチ60
の接点61を切り換えて、電流供給装置7から順次パル
ス状の電流を通流することにより、磁極鉄心5aのそれ
ぞれに対応する永久磁石2の部位に1/2極ずつ異極に
着磁するようにして全極を着磁する。
The current pulse flowing through the magnetic flux generating circuit 40 is supplied from the power source 11a of the current supply device 7 to the charging circuit 1.
The current charged by 1 is supplied by closing the discharge switch 9 as described in the conventional example. In this case, the contact wire connected to the magnetic flux generating circuits 41 to 44 formed of the coil 30 wound around the magnetic pole iron core 5a of the magnetizer 6a forming four magnetic poles in the permanent magnet 2 is connected to the contact wire 4
1a, 41b to 44a, 44b switch 60
By switching the contact point 61 of each of the magnetic poles 5 and sequentially passing a pulsed current from the current supply device 7, the permanent magnets 2 corresponding to the magnetic pole cores 5a are magnetized to have 1/2 poles of different poles. Then magnetize all poles.

【0014】この発明の第1の実施の形態では、電流供
給装置7の電源容量に余裕がある場合には磁束発生回路
40の2回路を直列又は並列に接続することも可能であ
り、既設の電流供給装置7に合わせて磁束発生回路40
の組み合わせを選択できる。また、この実施の形態は磁
極幅の広い極数の少ない回転磁界形永久磁石同期電動機
を着磁するのに好適である。
In the first embodiment of the present invention, two circuits of the magnetic flux generating circuit 40 can be connected in series or in parallel when the power supply capacity of the current supply device 7 has a margin, and the existing circuit can be installed. Magnetic flux generating circuit 40 according to the current supply device 7
Can be selected. Further, this embodiment is suitable for magnetizing a rotating magnetic field type permanent magnet synchronous motor having a wide magnetic pole width and a small number of poles.

【0015】実施の形態2 図2は、この発明の第2の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。図2に
示す着磁装置8bの着磁器6bを構成する磁極鉄心5b
は、着磁される永久磁石2の隣接するN極とS極のそれ
ぞれの磁極中心までの1/2極の磁極幅を有する軸方向
に設けられた溝部3で2分割された磁極鉄心51bと5
2bとから構成され、前記溝部3に貫通して磁極鉄心5
1bと52bとにコイル30bが互いに巻回方向を逆に
して巻回されている。そして、前記着磁器6bの磁極鉄
心5bと着磁する永久磁石2の相対位置を変えて位置決
めを行う回転子1の位置決め手段62が設けてある。
Second Embodiment FIG. 2 is a block diagram of a magnetizing device for a rotating field permanent magnet synchronous motor according to a second embodiment of the present invention. Magnetic pole core 5b constituting the magnetizer 6b of the magnetizer 8b shown in FIG.
Is a magnetic pole core 51b divided into two by a groove portion 3 provided in the axial direction having a magnetic pole width of 1/2 pole to the magnetic pole center of each of the adjacent N and S poles of the magnetized permanent magnet 2. 5
2b and penetrates through the groove 3 to form the magnetic pole core 5
A coil 30b is wound around 1b and 52b with their winding directions reversed. Positioning means 62 for the rotor 1 is provided for changing the relative position between the magnetic pole core 5b of the magnetizer 6b and the magnetized permanent magnet 2 for positioning.

【0016】前記した位置決め手段62は、駆動機62
aの回転軸63aと係合する回転子1の中心部に直結さ
れた回転子軸64aを前記回転機62aの回転によって
回転する構成からなっている。永久磁石2の着磁には、
まず図2に示すように回転子1の永久磁石2のAに示す
部位を着磁器6bの磁極鉄心5bに対向配置し、電流供
給装置7から切り換えスイッチ60aの接点61aを閉
にして、前記磁極鉄心5bに巻回されているコイル30
bに実線の矢印の方向にパルス状の電流を通流する。こ
れにより2分割された磁極鉄心51bと52bのそれぞ
れのコイルに流れる電流方向によって図の如く溝部3を
磁極の境界として左右にS極とN極とに1/2極分ずつ
着磁する。
The above-mentioned positioning means 62 is a driving machine 62.
The rotor shaft 64a, which is directly connected to the center of the rotor 1 that engages with the rotating shaft 63a of a, is rotated by the rotation of the rotating machine 62a. To magnetize the permanent magnet 2,
First, as shown in FIG. 2, a portion A of the permanent magnet 2 of the rotor 1 is arranged so as to face the magnetic pole core 5b of the magnetizer 6b, and the contact 61a of the changeover switch 60a from the current supply device 7 is closed to close the magnetic pole. Coil 30 wound around the iron core 5b
A pulsed current is passed through b in the direction of the solid arrow. As a result, depending on the direction of the current flowing in each coil of the magnetic pole cores 51b and 52b divided into two, the S pole and the N pole are magnetized to the right and left by 1/2 poles with the groove portion 3 as the boundary between the magnetic poles as shown in the figure.

【0017】次に、位置決め手段62の駆動機62aを
回転して回転子1を矢印のように反時計方向に磁極鉄心
5bの一極分の周長分だけ移動して永久磁石2のBの部
位を前記極鉄心5bの位置に相当する位置決めして図示
しない固定治具で固定する。この永久磁石2のBの部位
の着磁は、切り換えスイッチ60aの接点61bを閉と
して、コイル30bに前記した永久磁石2のAの部位の
着磁とは逆になるように、電流供給装置7からのパルス
状の電流を点線の矢印の方向に通流して行う。これによ
り、永久磁石2の前記したAの部位の右に隣接する未磁
化の1/2極分はN極に着磁されるので、N極一極を形
成することができる。以下駆動機62aを回転して、永
久磁石2の一極分ずつ移動して電流供給装置7からパル
ス状の電流を切り換えながら通流してC、Dの部位を順
次着磁する。上記したように、永久磁石2のAとCは、
S極とN極の組み合わせ、BとDはN極とS極との組み
合わせなので、各組での着磁は切り換えスイッチ60a
で電流供給装置7からのパルス電流の方向を逆転させて
着磁を行うようにする。なお、この実施の形態2では、
永久磁石2の着磁部位の磁極鉄心5bへの位置合わせ
を、回転子1の回転で行ったが、磁極鉄心5bを設けて
ある着磁器6bを回転して、永久磁石2の着磁位置に位
置決め固定して行うこともできる。
Next, the driving machine 62a of the positioning means 62 is rotated to move the rotor 1 in the counterclockwise direction as indicated by the arrow by the circumference of one pole of the magnetic pole core 5b, so that the B of the permanent magnet 2 is moved. The part is positioned corresponding to the position of the pole core 5b and fixed by a fixing jig (not shown). The magnetization of the B portion of the permanent magnet 2 is performed by closing the contact 61b of the changeover switch 60a and reversing the magnetization of the A portion of the permanent magnet 2 in the coil 30b. Pulse current is passed in the direction of the dotted arrow. As a result, the unmagnetized ½ pole adjacent to the right of the above-mentioned portion A of the permanent magnet 2 is magnetized to the N pole, so that the N pole and one pole can be formed. Thereafter, the driving machine 62a is rotated to move one pole by one pole, and the pulse current is switched from the current supply device 7 to flow through the magnet to sequentially magnetize portions C and D. As described above, A and C of the permanent magnet 2 are
Since the combination of the S pole and the N pole and the combination of the B and D are the N pole and the S pole, the magnetization of each pair is changed over by the changeover switch 60a.
The magnetization direction is reversed by reversing the direction of the pulse current from the current supply device 7. In the second embodiment,
Although the magnetized portion of the permanent magnet 2 was aligned with the magnetic pole iron core 5b by rotating the rotor 1, the magnetizer 6b provided with the magnetic pole iron core 5b was rotated to the magnetized position of the permanent magnet 2. It can also be performed by positioning and fixing.

【0018】実施の形態3 図3は、この発明の第3の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。図3に
示す着磁装置8cは、前記した実施の形態2の着磁器6
bのS極とN極の1/2極を形成するコイル30bを巻
回した磁極鉄心5bと、この磁極鉄心5bの磁極の磁化
方向とは逆のN極とS極の1/2極を形成するようにコ
イル30cを2分割された磁極鉄心51cと52cに巻
回して構成された磁極鉄心5cとの2組の磁極鉄心を周
方向に磁極鉄心5bと対向して設けた着磁器6cから構
成されており、図3の回転子の界磁極は6極を構成する
ものである。即ち、この着磁器6cは、前記した磁極鉄
心5bと5cとを上下対象に配して構成されており、こ
れらの磁極鉄心5bと5cに巻回されているコイル30
bと30cとを直列接続して電流供給装置7に接続され
ている。
Third Embodiment FIG. 3 is a block diagram of a magnetizing device for a rotating field type permanent magnet synchronous motor according to a third embodiment of the present invention. The magnetizing device 8c shown in FIG. 3 corresponds to the magnetizer 6 of the second embodiment.
The magnetic pole core 5b around which the coil 30b forming the S pole and the 1/2 pole of the N pole of b is wound, and the 1/2 pole of the N pole and the S pole opposite to the magnetization direction of the magnetic pole of the magnetic pole core 5b. From a magnetizer 6c provided with two sets of magnetic pole cores, that is, a magnetic pole core 51c and a magnetic pole core 5c formed by winding the coil 30c into two magnetic pole cores 51c and 52c so as to be formed so as to face the magnetic pole core 5b in the circumferential direction. The field pole of the rotor shown in FIG. 3 constitutes 6 poles. That is, the magnetizer 6c is constructed by vertically arranging the magnetic pole cores 5b and 5c, and the coil 30 wound around the magnetic pole cores 5b and 5c.
b and 30c are connected in series and connected to the current supply device 7.

【0019】この実施の形態3からなる着磁装置8cに
よる永久磁石2の着磁は、図3に示すように、永久磁石
2のAとA´とのそれぞれの部位に対向して位置する磁
極鉄心5bと5cとに電流供給装置7よりパルス状の電
流を同時に通流することにより、前記磁極鉄心5bと5
cとのそれぞれ相対する磁極鉄心51bと52cを通っ
て流れる磁束方向が同一で、磁極鉄心52cと51cと
の磁束方向が前記に51bと52cとは逆方向になるよ
うにして行う。これにより、上記した永久磁石2はAの
部位では、図3の場合では、S極とN極との1/2極
分、Aとの対称位置のA´の部位はN極とS極との1/
2極分が着磁される。
As shown in FIG. 3, the permanent magnet 2 is magnetized by the magnetizing device 8c according to the third embodiment. As shown in FIG. 3, the magnetic poles are located so as to face the respective portions A and A'of the permanent magnet 2. By supplying a pulsed current simultaneously from the current supply device 7 to the iron cores 5b and 5c, the magnetic pole iron cores 5b and 5
The magnetic fluxes flowing through the magnetic pole cores 51b and 52c facing each other with c are the same, and the magnetic flux directions of the magnetic pole cores 52c and 51c are opposite to those of 51b and 52c. As a result, in the permanent magnet 2 described above, at the portion A, in the case of FIG. 3, a half pole of the S pole and the N pole, and at the portion A'at the symmetrical position with A is the N pole and the S pole. 1 / of
Two poles are magnetized.

【0020】次に、位置決め手段62aの駆動機62に
より、回転軸63aを介して回転子軸64aを回転させ
回転子1を120°矢印の方向に回転して前記と同様
に、電流供給装置7より電流パルスをコイル30b及び
30cに通流して永久磁石2のBとB´をS極とN極と
の1/2極分と、N極とS極との1/2極分を着磁す
る。更に、120°回転して、永久磁石2のCとC´の
部位を前記と同様に着磁することにより、全極着磁する
ようにする。なお、この実施の形態3では、前記実施の
形態2と同様に、永久磁石2の着磁部位の磁極鉄心5b
及び5cへの位置合わせを、磁極鉄心5b,5cを設け
てある着磁器6cを回転して行うこともできる。また、
この発明の実施の形態3は、前記の実施の形態2のよう
に着磁時に電流供給装置7からの電流の方向を切り換え
ることを必要としない方式であり、6極以上の極数の多
い回転子の着磁に適する。
Next, the drive unit 62 of the positioning means 62a rotates the rotor shaft 64a through the rotary shaft 63a to rotate the rotor 1 in the direction of the arrow of 120 °, and in the same manner as described above, the current supply device 7 is used. A current pulse is passed through the coils 30b and 30c to magnetize B and B'of the permanent magnet 2 into 1/2 poles of S poles and N poles and 1/2 poles of N poles and S poles. To do. Further, the permanent magnet 2 is rotated by 120 ° and the portions C and C ′ of the permanent magnet 2 are magnetized in the same manner as described above, so that all poles are magnetized. In the third embodiment, the magnetic pole core 5b of the magnetized portion of the permanent magnet 2 is the same as in the second embodiment.
And 5c can be aligned by rotating the magnetizer 6c provided with the magnetic pole iron cores 5b and 5c. Also,
The third embodiment of the present invention is a system which does not require switching of the direction of the current from the current supply device 7 at the time of magnetization as in the second embodiment, and has a large number of poles of 6 or more. Suitable for magnetizing children.

【0021】実施の形態4 図4及び図5は、この発明の第4の実施の形態になる回
転界磁形永久磁石同期電動機の着磁装置の構成図であ
り、図4は着磁器の断面図、図5は図4のV1及びV2矢視
図である。図4に示すように、この発明の実施の形態4
の着磁装置8dは、着磁器6dと着磁器6eとを軸方向
に間隔を持って同心上に支持部材70に固定して配して
構成されている。また回転子1は、軸方向の両端部で固
定部材71に結合されている軸80aと80bとで軸方
向に締め付けられ固定されており、前記回転子1は支持
部材70の軸方向の移動により着磁器6d及び6e内に
嵌合するように構成されている。そして、上記支持部材
70の移動は、前記の固定部材71上に固着された駆動
機90の軸に設けられたネジ部91と係合するネジ部7
0aを支持部材70に設けて、前記駆動機90を回転す
ることにより行う。
Fourth Embodiment FIGS. 4 and 5 are configuration diagrams of a magnetizing device for a rotating field permanent magnet synchronous motor according to a fourth embodiment of the present invention. FIG. 4 is a cross section of the magnetizer. 5 and 5 are views taken along arrows V 1 and V 2 of FIG. 4. As shown in FIG. 4, Embodiment 4 of the present invention
The magnetizing device 8d is configured by concentrically fixing the magnetizer 6d and the magnetizer 6e to the support member 70 with a gap in the axial direction. The rotor 1 is axially fastened and fixed by shafts 80a and 80b coupled to the fixing member 71 at both ends in the axial direction, and the rotor 1 is moved by the movement of the supporting member 70 in the axial direction. It is configured to fit inside the magnetizers 6d and 6e. The movement of the support member 70 is such that the screw portion 7 that engages with the screw portion 91 provided on the shaft of the driving machine 90 fixed on the fixing member 71.
0a is provided on the support member 70, and the driving machine 90 is rotated.

【0022】この実施の形態4に示す着磁装置8dは、
回転子の界磁極を4極形成するものであり、図5に示す
ように、着磁器6dは、前記実施の形態3に記載したよ
うに、それぞれN極とS極の1/2極分を形成する2分
割された磁極鉄心にコイル30eと30fを溝部3を通
してそれぞれ巻回方向を逆にして巻回した磁極鉄心5e
と5fとを、コイル30eと30fとを直列接続して周
方向に一極間隔毎に回転子の周上に間隔を持って配置さ
れて構成されている。そして、着磁器6eには、前記の
着磁器6dの磁極鉄心5eと5fの位置と周方向に一極
間隔分ずつずれた位置に、隣接する位置の着磁器6dの
磁極鉄心5eと5f側の分割された磁極鉄心と互いに同
極となるように、前記着磁器6dの磁極鉄心5eと5f
に巻回さているコイル30eとコイル30fとは、逆方
向に巻回されたコイル30gと30hとを有する磁極鉄
心5gと、5hとが設けられている。
The magnetizing device 8d shown in the fourth embodiment is
Four field poles are formed in the rotor, and as shown in FIG. 5, the magnetizer 6d has 1/2 poles of N pole and S pole, respectively, as described in the third embodiment. A magnetic pole core 5e in which coils 30e and 30f are wound around the two-divided magnetic pole core through the groove portion 3 with the winding directions reversed.
And 5f are connected in series with the coils 30e and 30f, and are arranged in the circumferential direction at intervals of one pole on the circumference of the rotor. Then, the magnetizer 6e has magnetic pole cores 5e and 5f of the magnetizer 6d, which are adjacent to the magnetic pole cores 5e and 5f of the magnetizer 6d at positions adjacent to each other by one pole interval in the circumferential direction. The magnetic pole cores 5e and 5f of the magnetizer 6d are arranged to have the same poles as the divided magnetic pole cores.
The coil 30e and the coil 30f that are wound around are provided with magnetic pole cores 5g and 5h having coils 30g and 30h that are wound in opposite directions.

【0023】上記した構成からなる着磁装置8dの着磁
器6d及び6eによる回転子1の永久磁石2の着磁は、
まず回転子1が着磁器6d内に嵌合されている位置で、
電流供給装置7から切り換えスイッチ60bにより接点
31eと接点31fとを閉として、コイル30e及びコ
イル30f側にパルス電流を通流して図5のように磁極
鉄心5e及び5f側に位置する永久磁石2をN極とS極
に1/2極分着磁する。 次に、駆動器90を回転して
回転子1を着磁器6e側内に移動して固定する。そし
て、切り換えスイッチ60bの接点を31g及び31h
側に切り換えてコイル30g及び30hに電流供給装置
7からパルス状の電流を通流して、着磁器6dでの未磁
化の永久磁石2の部位のS極とN極のそれぞれ1/2極
分の着磁を行い4極の永久磁石からなる界磁極を構成す
る。この実施の形態4からなる着磁装置8dは、前記し
た実施の形態のように、全極を磁極する際に着磁に回転
子1を回転することを必要とせず大形機の回転子の着磁
に好都合である。
The permanent magnet 2 of the rotor 1 is magnetized by the magnetizers 6d and 6e of the magnetizing device 8d having the above-described structure.
First, at the position where the rotor 1 is fitted in the magnetizer 6d,
The contact 31e and the contact 31f are closed from the current supply device 7 by the changeover switch 60b, a pulse current is passed through the coils 30e and 30f, and the permanent magnets 2 located on the magnetic pole iron cores 5e and 5f are arranged as shown in FIG. The N pole and the S pole are magnetized by 1/2 pole. Next, the driver 90 is rotated to move and fix the rotor 1 in the magnetizer 6e. Then, the contacts of the changeover switch 60b are set to 31g and 31h.
By switching to the side and passing a pulsed current from the current supply device 7 to the coils 30g and 30h, and ½ poles of the S pole and the N pole of the unmagnetized permanent magnet 2 in the magnetizer 6d, respectively. It is magnetized to form a field pole composed of a four-pole permanent magnet. The magnetizing device 8d according to the fourth embodiment does not need to rotate the rotor 1 for magnetizing when all the magnetic poles are magnetically poled, as in the above-described embodiment, and thus can be used as a rotor of a large machine. It is convenient for magnetization.

【0024】[0024]

【発明の効果】以上のように、この発明においては、回
転界磁形永久磁石同期電動機の着磁装置を、着磁により
回転子の永久磁石の周上に形成される交互に並ぶN極と
S極のそれぞれの磁極を中央で2分割して、隣接する磁
極の1/2極分を組み合わせたものを単位として着磁す
るように、左右に分割してコイルを互いに逆に巻回して
設けられた磁極鉄心を回転子の周方向に対向して配置し
て着磁器を構成し、この着磁器に配されたコイルに電流
供給装置より電流パルスを通流し、前記したN極とS極
及びS極とN極との1/2極分ずつ順次に着磁するよう
にした。これにより、従来の回転子の全極を同時に着磁
する着磁装置と比して電流供給装置の電源容量を小さく
できるとともに、着磁器の磁極鉄心に巻回されているコ
イルの巻回数を少なくすることができる。
As described above, in the present invention, the magnetizing device of the rotating field permanent magnet synchronous motor is composed of the N poles arranged alternately on the circumference of the permanent magnet of the rotor. Each of the S poles is divided into two in the center, and the coils are divided into left and right so as to be magnetized with a combination of 1/2 poles of adjacent magnetic poles as a unit, and the coils are wound in reverse. The magnetic pole iron cores are arranged so as to face each other in the circumferential direction of the rotor to form a magnetizer, and a current pulse is passed from a current supply device to a coil arranged in the magnetizer, and the above-mentioned N pole, S pole, and The S pole and the N pole are arranged to be sequentially magnetized for each 1/2 pole. This makes it possible to reduce the power supply capacity of the current supply device as compared with a conventional magnetizing device that magnetizes all poles of the rotor at the same time, and to reduce the number of turns of the coil wound around the magnetic pole core of the magnetizer. can do.

【0025】即ち、着磁の際に電流供給装置から磁極鉄
心に巻回されているコイルに通流する電流の大きさは、
電源から充電されるコンデンサの容量で決まり、またこ
の着磁装置の内容積の大部分をこのコンデンサで占めて
いる。前記した着磁器の2分割されそれぞれコイルが巻
回された磁極鉄心を回転子の磁極数に応じて未磁化の永
久磁石の外周に対向して複数個配して、電流供給装置か
らのパルス状の電流を前記複数個の着磁器のコイルに順
次切り換えながら通流する前記実施の形態1の着磁装置
と、図6及び図7に示す従来の全極同時に着磁する着磁
装置との比較をすると次のようになる。ここで、永久磁
石を磁気飽和するために必要な起磁力をHm とし、永久
磁石の厚さをtm 、1コイルの巻数をNとすと、1極分
の磁化のために必要な電流Imは、 Im =Hm ・tm /N となり、このとき上記した従来の全極直列にコイルを接
続して着磁する場合のコイルのインダクタンスL1 は、 L1 =μm ・N2 ・S/tm ×4 ここで、μm は永久磁石の透磁率、Sは磁石1極の面積
を表す。実施の形態1に示した着磁装置での、一組の磁
極鉄心に巻回されたコイルの場合のインダクタンスL2
は、 L2 =μm ・N2 ・S/tm となり、前記した従来方式と比して、コイルのインダク
タンスは1/4となる。
That is, the magnitude of the current flowing from the current supply device to the coil wound around the magnetic pole iron core during magnetization is
It is determined by the capacity of the capacitor charged from the power supply, and this capacitor occupies most of the inner volume of the magnetizing device. According to the number of magnetic poles of the rotor, a plurality of magnetic pole cores, each of which is divided into two parts of the above-mentioned magnetizer and wound with a coil, are arranged so as to face the outer circumference of an unmagnetized permanent magnet, and a pulse shape from a current supply device is provided. Comparison of the magnetizing device according to the first embodiment, in which the current flows through the coils of the plurality of magnetizers while being sequentially switched, and the conventional magnetizing device for simultaneously magnetizing all poles shown in FIGS. 6 and 7. The result is as follows. Here, assuming that the magnetomotive force required to magnetically saturate the permanent magnet is H m , the thickness of the permanent magnet is t m , and the number of turns of one coil is N, the current required for magnetization of one pole is obtained. I m becomes I m = H m · t m / N, and at this time, the inductance L 1 of the coil when the coils are magnetized by connecting the coils in series with the above all poles is L 1 = μ m · N 2 · S / t m × 4 Here, μ m represents the magnetic permeability of the permanent magnet, and S represents the area of one pole of the magnet. Inductance L 2 in the case of a coil wound around a pair of magnetic pole cores in the magnetizing device shown in the first embodiment
Is, L 2 = μ m · N 2 · S / t m , and the relative said the conventional system, the inductance of the coil is 1/4.

【0026】一方、着磁時のコイルに通流する電流の、
前記した磁極鉄心のコイルのインダクタンスと、電流供
給装置のコンデンサとの共振回路からなる第1周期の電
流尖塔値は、おおよそコイル間に印加される電圧をV0
とすると、 Im =V0 √(C/L) であるので、電源に必要なコンデンサ容量は、従来の場
合には、 C1 =(Im /V0 )2×L1 となり、実施の形態1の場合には、 C2 =(Im /V0 )2×L2 となる。したがって、従来の全極着磁する着磁装置より
電源の容量は1/4でよいので、電流供給装置の電源容
量を小さくでき、このためコンデンサの体格が小となる
ので小形な電流供給装置とすることができる。
On the other hand, of the current flowing through the coil during magnetization,
The current peak value of the first cycle, which is composed of the resonance circuit of the coil of the magnetic pole iron core and the capacitor of the current supply device, is approximately the voltage applied between the coils by V 0
Then, since I m = V 0 √ (C / L), the capacity of the capacitor required for the power source is C 1 = (I m / V 0 ) 2 × L 1 in the conventional case, and In the case of form 1, C 2 = (I m / V 0 ) 2 × L 2 . Therefore, the capacity of the power supply is only 1/4 that of the conventional magnetizing device that magnetizes all poles, so that the power supply capacity of the current supply device can be made smaller, and the size of the capacitor becomes smaller. can do.

【0027】電流また、着磁器が貫通孔により左右に2
分割されコイルが巻回された磁極鉄心が未磁化の永久磁
石の外周に対向して一組配されて構成され、回転子の円
周上の永久磁石の磁化により形成される磁極位置に前記
磁極鉄心、あるいは回転子を回転移動し着磁器の磁極鉄
心の位置と回転子の磁極の位置とを一致させて、複数回
に分けて着磁するための位置決めする手段を備えた着磁
装置とすることにより、着磁器の磁極鉄心に巻回される
コイルのインダクタンスは、全極同時に着磁するための
磁極の数だけ磁極鉄心を必要とする着磁器からなる従来
の着磁装置と比して、磁極一個分だけでよいので、小形
な着磁器を有する着磁装置とすることができる。また、
前記した一組の磁極鉄心とは、異なる方向に磁化するよ
うにコイルを巻回した磁極鉄心を、互いに周上に対向し
て配置する構成は、前記の場合の2倍とで済むことにな
る。
The current and the magnetizer are divided into two parts to the left and right by the through holes.
The magnetic pole cores, which are divided and wound with coils, are arranged in a set so as to face the outer circumference of an unmagnetized permanent magnet, and the magnetic pole is located at the magnetic pole position formed by the magnetization of the permanent magnet on the circumference of the rotor. A magnetizing device is provided with a positioning means for rotating the iron core or the rotor so as to match the position of the magnetic pole of the magnetizer with the position of the magnetic pole of the rotor and to magnetize the magnet in multiple times. As a result, the inductance of the coil wound around the magnetic pole iron core of the magnetizer is greater than that of a conventional magnetizer that is composed of a magnetizer that requires magnetic pole cores for the number of magnetic poles for simultaneously magnetizing all poles. Since only one magnetic pole is required, the magnetizing device can have a small magnetizer. Also,
The configuration in which the magnetic pole cores, in which the coils are wound so as to be magnetized in different directions from the above-mentioned one set of magnetic pole cores, are arranged so as to face each other on the circumference is twice as large as that in the above case. .

【0028】また、着磁器の磁極鉄心を一極間隔毎に回
転子の周上に間隔を持って配された第1の着磁器と、こ
の第1の着磁器の磁極鉄心位置と周方向に一極間隔分ず
つずれた位置に間隔を持って回転子の周上に配された第
2の着磁器とが同心状に軸方向に間隔を持って配置さ
れ、未磁化の永久磁石を搭載した回転子を前記した第1
及び第2の着磁器に移動して位置決めする手段を有する
着磁装置とする。これにより前記した第1と第2の着磁
器でそれぞれの磁極鉄心に対応する位置の永久磁石の着
磁をすることにより、従来の全極同時に着磁する着磁装
置の電流供給装置の電源容量を小さくできる。
Further, the first magnetizer in which the magnetic pole cores of the magnetizer are arranged at intervals of one pole on the circumference of the rotor, and the magnetic pole core position of the first magnetizer in the circumferential direction. A second magnetizer arranged on the circumference of the rotor at a position offset by one pole interval is concentrically arranged at an axial interval, and an unmagnetized permanent magnet is mounted. First rotor described above
And a magnetizing device having means for moving and positioning to the second magnetizer. Thus, by magnetizing the permanent magnets at the positions corresponding to the respective magnetic pole cores by the first and second magnetizers, the power supply capacity of the current supply device of the conventional magnetizer that magnetizes all poles simultaneously Can be made smaller.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。
FIG. 1 is a configuration diagram of a magnetizing device for a rotating field permanent magnet synchronous motor according to a first embodiment of the present invention.

【図2】この発明の第2の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。
FIG. 2 is a configuration diagram of a magnetizing device for a rotating field type permanent magnet synchronous motor according to a second embodiment of the present invention.

【図3】この発明の第3の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の構成図である。
FIG. 3 is a configuration diagram of a magnetizing device for a rotating field type permanent magnet synchronous motor according to a third embodiment of the present invention.

【図4】この発明の第4の実施の形態になる回転界磁形
永久磁石同期電動機の着磁装置の断面図である。
FIG. 4 is a sectional view of a magnetizing device of a rotating field type permanent magnet synchronous motor according to a fourth embodiment of the present invention.

【図5】図4のV1 及びV2 矢視図である。5 is a view as seen from arrows V 1 and V 2 in FIG.

【図6】従来の回転界磁形永久磁石同期電動機の着磁装
置を構成する着磁器と、この着磁器に挿入する前の未磁
化の永久磁石を搭載した回転子の斜視図である。
FIG. 6 is a perspective view of a magnetizer that constitutes a magnetizing device of a conventional rotary field permanent magnet synchronous motor, and a rotor that mounts an unmagnetized permanent magnet before being inserted into the magnetizer.

【図7】従来の着磁器に挿着した回転子の永久磁石を着
磁する着磁装置の構成図である。
FIG. 7 is a configuration diagram of a magnetizing device that magnetizes a permanent magnet of a rotor inserted and attached to a conventional magnetizer.

【図8】永久磁石の着磁の原理の説明図であり、(a)
は磁極鉄心のコイルに通流する電流、(b)は永久磁石
のヒステリシス曲線である。
FIG. 8 is an explanatory diagram of a principle of magnetizing a permanent magnet, (a)
Is the current flowing through the coil of the magnetic pole core, and (b) is the hysteresis curve of the permanent magnet.

【図9】従来の着磁装置にて永久磁石を部分的に2極分
着磁時の磁束分布と磁化状況を示すものである。
FIG. 9 shows a magnetic flux distribution and a magnetization state when a permanent magnet is partially magnetized into two poles in a conventional magnetizing device.

【符号の説明】[Explanation of symbols]

1 回転子 2 永久磁石 3 溝部 4 コイル 5 磁極鉄心 5a 磁極鉄心 5b 磁極鉄心 5c 磁極鉄心 5e 磁極鉄心 5f 磁極鉄心 5g 磁極鉄心 5h 磁極鉄心 6 着磁器 6a 着磁器 6b 着磁器 6c 着磁器 6d 着磁器 6e 着磁器 7 電流供給装置 8 着磁装置 8a 着磁装置 8b 着磁装置 8c 着磁装置 8d 着磁装置 20 貫通孔 30 コイル 40 磁束発生回路 60 切り換えスイッチ 62 位置決め手段 70 支持部材 71 固定部材 1 rotor 2 permanent magnet 3 groove part 4 coil 5 magnetic pole core 5a magnetic pole core 5b magnetic pole core 5c magnetic pole core 5e magnetic pole core 5f magnetic pole core 5g magnetic pole core 5h magnetic pole core 6 magnetizer 6a magnetizer 6b magnetizer 6c magnetizer 6c Magnetizer 7 Current supply device 8 Magnetizer 8a Magnetizer 8b Magnetizer 8c Magnetizer 8d Magnetizer 20 Through hole 30 Coil 40 Magnetic flux generating circuit 60 Changeover switch 62 Positioning means 70 Supporting member 71 Fixing member

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】回転子の外周に搭載された未磁化の永久磁
石の外周に対向して前記回転子と同心状に配され、軸方
向に設けられた溝部によって周方向に分割された磁極鉄
心と、この磁極鉄心の溝部に挿着されたコイルとからな
る着磁器と、前記コイルに電源により充電されたコンデ
ンサからパルス状の電流を供給する電流供給装置とから
なり、前記電流供給装置からのパルス状の電流を前記コ
イルに供給して前記磁極鉄心を通って流れる磁束によっ
て磁極鉄心に対向する位置の前記未磁化の永久磁石を磁
化して回転子に磁極を形成する回転磁界形永久磁石同期
電動機の着磁装置において、着磁器が、溝部間の磁極鉄
心を周方向に2分割する貫通孔を前記磁極鉄心の磁極中
心の位置の軸方向に設け、磁極鉄心の溝部を介して互い
に隣接する異極同士の2分割されたそれぞれの1/2極
分幅の磁極鉄心に、前記貫通孔と溝部を通ってコイルを
互いに巻回方向を逆にして巻回してなる磁極鉄心を周方
向に複数組配されて構成され、前記着磁器の周方向に配
された前記各組の磁極鉄心に設けられたコイルに電流供
給装置からのパルス状の電流を順次切り換え接続する手
段を設け、各組の磁極鉄心のコイルに対向する永久磁石
の部位を互いに異極に1/2極分ずつ磁化しながら周方
向に着磁することを特徴とする回転界磁形永久磁石同期
電動機の着磁装置。
1. A magnetic pole core that is arranged concentrically with the rotor facing the outer circumference of an unmagnetized permanent magnet mounted on the outer circumference of the rotor and is divided in the circumferential direction by a groove portion provided in the axial direction. And a magnetizer consisting of a coil inserted into the groove of the magnetic pole core, and a current supply device for supplying a pulsed current from a capacitor charged by a power source to the coil. A rotating magnetic field type permanent magnet synchronization that supplies a pulsed current to the coil and magnetizes the unmagnetized permanent magnet at a position facing the magnetic pole core by the magnetic flux flowing through the magnetic pole core to form a magnetic pole on the rotor. In a magnetizing device of an electric motor, a magnetizer is provided with a through hole that divides a magnetic pole core between groove portions into two in a circumferential direction in an axial direction at a position of a magnetic pole center of the magnetic pole core and is adjacent to each other via a groove portion of the magnetic pole core. Heterogeneity A plurality of magnetic pole cores formed by winding the coils through the through hole and the groove portion with the winding directions reversed to each other are arranged in each of the two divided magnetic pole cores each having a 1/2 pole width. The magnetic pole iron cores of each group are provided with means for sequentially switching and connecting the pulsed current from the current supply device to the coils provided in the magnetic pole cores of each group arranged in the circumferential direction of the magnetizer. A magnetizing device for a rotating field type permanent magnet synchronous motor, characterized in that a portion of a permanent magnet facing a coil is magnetized in a circumferential direction while magnetizing different poles by 1/2 pole each.
【請求項2】請求項1に記載の回転界磁形永久磁石同期
電動機の着磁装置において、周方向に配された複数組の
磁極鉄心のコイルが、直列接続されていることを特徴と
する回転界磁形永久磁石同期電動機の着磁装置。
2. The magnetizing device for a rotary field type permanent magnet synchronous motor according to claim 1, wherein a plurality of sets of magnetic pole iron core coils arranged in the circumferential direction are connected in series. A magnetizing device for a rotating field type permanent magnet synchronous motor.
【請求項3】請求項1に記載の回転界磁形永久磁石同期
電動機の着磁装置において、周方向に配された複数個の
磁極鉄心のコイルが、並列接続されていることを特徴と
する回転界磁形永久磁石同期電動機の着磁装置。
3. A magnetizing device for a rotary field type permanent magnet synchronous motor according to claim 1, wherein a plurality of magnetic pole iron core coils arranged in the circumferential direction are connected in parallel. A magnetizing device for a rotating field type permanent magnet synchronous motor.
【請求項4】回転子の外周に搭載された未磁化の永久磁
石の外周に対向して前記回転子と同心状に配され、軸方
向に設けられた溝部によって周方向に分割された磁極鉄
心と、この磁極鉄心の溝部に挿着されたコイルとからな
る着磁器と、前記コイルに電源により充電されたコンデ
ンサからパルス状の電流を供給する電流供給装置とから
なり、前記電流供給装置からのパルス状の電流を前記コ
イルに供給して前記磁極鉄心を通って流れる磁束によっ
て磁極鉄心に対向する位置の永久磁石を磁化して回転子
に磁極を形成する回転磁界形永久磁石同期電動機の着磁
装置において、着磁器が、磁極鉄心の溝部を介して隣接
し2分割されたそれぞれ1/2極分幅の磁極を有する磁
極鉄心にコイルを互いに巻回方向を逆にして巻回した磁
極鉄心を一組配されて構成され、前記磁極鉄心の位置と
回転子の未磁化の永久磁石の着磁位置との位置決めをす
る手段を設け、前記着磁器に配された磁極鉄心に設けら
れたコイルに電流供給装置からのパルス状の電流を通流
し、この磁極鉄心のコイルに対向する永久磁石の部位を
互いに異極に1/2極分ずつ磁化して、順次前記位置決
め手段により前記着磁位置を移動しながら周方向に着磁
することを特徴とする回転界磁形永久磁石同期電動機の
着磁装置。
4. A magnetic pole core that is arranged concentrically with the rotor facing the outer circumference of an unmagnetized permanent magnet mounted on the outer circumference of the rotor and is divided in the circumferential direction by a groove portion provided in the axial direction. And a magnetizer consisting of a coil inserted into the groove of the magnetic pole core, and a current supply device for supplying a pulsed current from a capacitor charged by a power source to the coil. Magnetization of a rotating magnetic field type permanent magnet synchronous motor for supplying a pulsed current to the coil and magnetizing a permanent magnet at a position facing the magnetic pole core by a magnetic flux flowing through the magnetic pole core to form a magnetic pole on a rotor. In the device, a magnetizer is a magnetic pole iron core having winding poles each having a magnetic pole width of ½ pole and adjacent to each other through a groove portion of the magnetic pole core. One group And a means for locating the position of the magnetic pole core and the magnetized position of the unmagnetized permanent magnet of the rotor are provided, and the coil provided on the magnetic core arranged in the magnetizer is connected to the coil from the current supply device. Pulsed current is passed through, the portions of the permanent magnet facing the coil of the magnetic pole iron are magnetized by ½ poles in different poles from each other, and the magnetizing position is sequentially moved by the positioning means. A magnetizing device for a rotating field type permanent magnet synchronous motor, which is magnetized in a direction.
【請求項5】請求項4に記載の回転界磁形永久磁石同期
電動機の着磁装置において、位置決め手段が、着磁器に
設けられた磁極鉄心の位置に永久磁石の着磁位置を回転
子を回転移動して位置合わせするものであることを特徴
とする回転界磁形永久磁石同期電動機の着磁装置。
5. The magnetizing device for a rotating field type permanent magnet synchronous motor according to claim 4, wherein the positioning means sets the magnetizing position of the permanent magnet at the position of the magnetic pole core provided on the magnetizer. A magnetizing device for a rotating field type permanent magnet synchronous motor, characterized in that it is rotationally moved and aligned.
【請求項6】請求項4に記載の回転界磁形永久磁石同期
電動機の着磁装置において、位置決め手段が、回転子の
永久磁石の着磁位置に、着磁器を回転移動し磁極鉄心を
位置合わせするものであることを特徴とする回転界磁形
永久磁石同期電動機の着磁装置。
6. The magnetizing device for a rotary field type permanent magnet synchronous motor according to claim 4, wherein the positioning means rotationally moves the magnetizer to the magnetized position of the permanent magnet of the rotor to position the magnetic pole core. A magnetizing device for a rotating field type permanent magnet synchronous motor, characterized in that they are combined.
【請求項7】請求項4〜請求項6に記載のいずれかの回
転界磁形永久磁石同期電動機の着磁装置において、着磁
器に配された磁極鉄心に設けられたコイルに電流供給装
置からのパルス状の電流の通流方向を切り換える切り換
え手段を備えたことを特徴とする回転界磁形永久磁石同
期電動機の着磁装置。
7. A magnetizing device for a rotating field type permanent magnet synchronous motor according to claim 4, wherein a coil is provided on a magnetic pole iron core arranged in the magnetizer from a current supplying device. 2. A magnetizing device for a rotating field type permanent magnet synchronous motor, comprising: switching means for switching the flow direction of the pulsed current.
【請求項8】回転子の外周に搭載された未磁化の永久磁
石の外周に対向して前記回転子と同心状に配され、軸方
向に設けられた溝部によって周方向に分割された磁極鉄
心と、この磁極鉄心の溝部に挿着されたコイルとからな
る着磁器と、前記コイルに電源により充電されたコンデ
ンサからパルス状の電流を供給する電流供給装置とから
なり、前記電流供給装置からのパルス状の電流を前記コ
イルに供給して前記磁極鉄心を通って流れる磁束によっ
て磁極鉄心に対向する位置の永久磁石を磁化して回転子
に磁極を形成する回転磁界形永久磁石同期電動機の着磁
装置において、着磁器が、磁極鉄心の溝部を介して隣接
し2分割されたそれぞれの1/2極分幅の磁極を有する
磁極鉄心にコイルを互いに巻回方向を逆にして巻回した
第1の磁極鉄心と、この第1の磁極鉄心のコイルに接続
され電流供給装置から供給されるパルス電流により着磁
される永久磁石の磁化方向と逆になるようにコイルの巻
回方向を前記第1の磁極鉄心のコイルと逆に巻回して構
成した第2の磁極鉄心を前記第1の磁極鉄心と対向配置
して構成され、前記第1と第2の磁極鉄心の位置と回転
子の未磁化の永久磁石の着磁位置との位置決め手段を設
け、前記着磁器に配された第1と第2の磁極鉄心に設け
られたそれぞれのコイルに電流供給装置からのパルス状
の電流を通流し、それぞれの磁極鉄心のコイルに対向す
る永久磁石の部位を互いに異極に1/2極分ずつ磁化し
て、前記位置決め手段により前記着磁位置を移動しなが
ら周方向に着磁することを特徴とする回転界磁形永久磁
石同期電動機の着磁装置。
8. A magnetic pole core which is arranged concentrically with the rotor facing the outer circumference of an unmagnetized permanent magnet mounted on the outer circumference of the rotor and which is divided in the circumferential direction by a groove portion provided in the axial direction. And a magnetizer consisting of a coil inserted into the groove of the magnetic pole core, and a current supply device for supplying a pulsed current from a capacitor charged by a power source to the coil. Magnetization of a rotating magnetic field type permanent magnet synchronous motor for supplying a pulsed current to the coil and magnetizing a permanent magnet at a position facing the magnetic pole core by a magnetic flux flowing through the magnetic pole core to form a magnetic pole on a rotor. In the device, the magnetizer includes a magnetic pole core having two magnetic poles each having a width of ½ pole, which are adjacent to each other via a groove portion of the magnetic pole core, and the coils are wound in opposite winding directions. With the magnetic pole of The coil of the first magnetic pole core is set such that the winding direction of the coil is opposite to the magnetization direction of the permanent magnet that is connected to the coil of the first magnetic pole core and is magnetized by the pulse current supplied from the current supply device. A second magnetic pole core wound in the opposite direction to that of the first magnetic pole core, and the positions of the first and second magnetic pole cores and attachment of unmagnetized permanent magnets of the rotor. Positioning means for positioning the magnetic position is provided, and a pulsed current from the current supply device is passed through the coils provided on the first and second magnetic pole iron cores arranged on the magnetizer, and Rotation field type, characterized in that the portions of the permanent magnet facing the coil are magnetized by ½ poles to different poles, and are magnetized in the circumferential direction while moving the magnetizing position by the positioning means. Magnetizing device for permanent magnet synchronous motor.
【請求項9】請求項8に記載の回転界磁形永久磁石同期
電動機の着磁装置において、位置決め手段が、着磁器に
設けられた第1と第2の磁極鉄心のそれぞれの位置に、
回転子の永久磁石の着磁位置を回転子を回転移動して位
置合わせするものであることを特徴とする回転界磁形永
久磁石同期電動機の着磁装置。
9. A magnetizing device for a rotary field type permanent magnet synchronous motor according to claim 8, wherein the positioning means are provided at respective positions of the first and second magnetic pole cores provided on the magnetizer.
A magnetizing device for a rotating field type permanent magnet synchronous motor, wherein the magnetizing position of a permanent magnet of a rotor is aligned by rotating the rotor.
【請求項10】請求項8に記載の回転界磁形永久磁石同
期電動機の着磁装置において、位置決め手段が、回転子
の永久磁石の着磁位置に、着磁器を回転移動し第1と第
2の磁極鉄心を位置合わせするものであることを特徴と
する回転界磁形永久磁石同期電動機の着磁装置。
10. A magnetizing device for a rotating field type permanent magnet synchronous motor according to claim 8, wherein the positioning means rotationally moves the magnetizer to the magnetizing position of the permanent magnet of the rotor. A magnetizing device for a rotating field permanent magnet synchronous motor, characterized in that the magnetic pole cores of 2 are aligned.
【請求項11】回転子の外周に搭載された未磁化の永久
磁石の外周に対向して前記回転子と同心状に配され、軸
方向に設けられた溝部によって周方向に分割された磁極
鉄心と、この磁極鉄心の溝部に挿着されたコイルとから
なる着磁器と、前記コイルに電源により充電されたコン
デンサからパルス状の電流を供給する電流供給装置とか
らなり、前記電流供給装置からのパルス状の電流を前記
コイルに供給して前記磁極鉄心を通って流れる磁束によ
って磁極鉄心に対向する位置の永久磁石を磁化して回転
子に磁極を形成する回転磁界形永久磁石同期電動機の着
磁装置において、着磁器が、磁極鉄心の溝部を介して隣
接し2分割されたそれぞれの1/2極分幅の磁極を有す
る磁極鉄心にコイルを互いに巻回方向を逆にして巻回し
た磁極鉄心を一極間隔毎に間隔を持って複数組配された
第1の着磁器と、この第1の着磁器の磁極鉄心のコイル
に接続され電流供給装置から供給されるパルス状の電流
により着磁される永久磁石の磁化方向と逆になるよう
に、コイルの巻回方向を前記第1の磁極鉄心のコイルと
逆に巻回して構成した第2の磁極鉄心を、前記第1の着
磁器の磁極鉄心位置と周方向に一極間隔分ずつずれた位
置に間隔を持って複数組配された第2の着磁器とが同心
状に軸方向に間隔を持って配置されて構成され、回転子
の永久磁石の着磁位置に前記した第1及び第2の着磁器
を移動して位置決めする手段を設け、前記第1と第2の
着磁器の磁極鉄心に設けられたそれぞれのコイルに電流
供給装置からのパルス状の電流を切り換え接続して通流
し、前記第1と第2の着磁器の磁極鉄心に対応する位置
の永久磁石の部位を互いに異極に1/2極分ずつ磁化し
て着磁することを特徴とする回転界磁形永久磁石同期電
動機の着磁装置。
11. A magnetic pole core which is arranged concentrically with the rotor facing the outer circumference of an unmagnetized permanent magnet mounted on the outer circumference of the rotor and which is divided in the circumferential direction by a groove portion provided in the axial direction. And a magnetizer consisting of a coil inserted into the groove of the magnetic pole core, and a current supply device for supplying a pulsed current from a capacitor charged by a power source to the coil. Magnetization of a rotating magnetic field type permanent magnet synchronous motor for supplying a pulsed current to the coil and magnetizing a permanent magnet at a position facing the magnetic pole core by a magnetic flux flowing through the magnetic pole core to form a magnetic pole on a rotor. In the device, a magnetizer is a magnetic pole core in which coils are wound in opposite winding directions on a magnetic pole core having two magnetic poles each having a width of ½ pole and which are adjacent to each other through a groove portion of the magnetic pole core. The pole A plurality of first magnetizers arranged at intervals with intervals, and permanent magnetized by a pulsed current supplied from a current supply device, which is connected to a coil of a magnetic pole core of the first magnetizer. A second magnetic pole core, which is formed by winding the coil in the opposite direction to the coil of the first magnetic pole core so as to be opposite to the magnetizing direction of the magnet, is used as a magnetic pole core position of the first magnetizer. And a plurality of second magnetizers arranged in a plurality of positions at intervals displaced by one pole interval in the circumferential direction, are concentrically arranged at intervals in the axial direction, and are configured as permanent magnets of the rotor. Means for moving and positioning the above-mentioned first and second magnetizers to the magnetizing positions of the first and second magnetizers, and each coil provided on the magnetic pole cores of the first and second magnetizers is provided with a current supply device. Pulsed electric current is switched and connected to flow, and magnetic pole irons of the first and second magnetizers are provided. Rotation field type permanent magnet synchronous motor magnetizing apparatus characterized by magnetizing magnetized by ½ pole of the different poles each other site of the position of the permanent magnet corresponding to.
JP34443295A 1995-12-05 1995-12-05 Magnetizer for rotating-field type permanent magnet synchronous motor Pending JPH09163692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34443295A JPH09163692A (en) 1995-12-05 1995-12-05 Magnetizer for rotating-field type permanent magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34443295A JPH09163692A (en) 1995-12-05 1995-12-05 Magnetizer for rotating-field type permanent magnet synchronous motor

Publications (1)

Publication Number Publication Date
JPH09163692A true JPH09163692A (en) 1997-06-20

Family

ID=18369223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34443295A Pending JPH09163692A (en) 1995-12-05 1995-12-05 Magnetizer for rotating-field type permanent magnet synchronous motor

Country Status (1)

Country Link
JP (1) JPH09163692A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014699A (en) * 2000-08-10 2002-02-25 다니구찌 이찌로오, 기타오카 다카시 Polarizing device for a permanent magnet rotor
KR100465020B1 (en) * 2002-02-20 2005-01-13 한국전기연구원 Transverse flux monopole magnetizer and the magnetizing method
JP2006304556A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Magnetizing method for rotor magnet
JP2016063555A (en) * 2014-09-15 2016-04-25 トヨタ自動車株式会社 Manufacturing method of rotor
CN110033919A (en) * 2019-04-18 2019-07-19 射阳县华通探伤设备有限公司 A kind of pulse magnetiser that work efficiency is high
CN112986377A (en) * 2021-04-08 2021-06-18 西安交通大学 Rotating magnetic shoe based field intensity frequency variable magnetization experimental device and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020014699A (en) * 2000-08-10 2002-02-25 다니구찌 이찌로오, 기타오카 다카시 Polarizing device for a permanent magnet rotor
US6744341B2 (en) 2000-08-10 2004-06-01 Mitsubishi Denki Kabushiki Kaisha Polarizing device for a permanent magnet rotor
KR100465020B1 (en) * 2002-02-20 2005-01-13 한국전기연구원 Transverse flux monopole magnetizer and the magnetizing method
JP2006304556A (en) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd Magnetizing method for rotor magnet
JP2016063555A (en) * 2014-09-15 2016-04-25 トヨタ自動車株式会社 Manufacturing method of rotor
CN110033919A (en) * 2019-04-18 2019-07-19 射阳县华通探伤设备有限公司 A kind of pulse magnetiser that work efficiency is high
CN112986377A (en) * 2021-04-08 2021-06-18 西安交通大学 Rotating magnetic shoe based field intensity frequency variable magnetization experimental device and method
CN112986377B (en) * 2021-04-08 2024-05-24 西安交通大学 Field intensity frequency variable magnetization experimental device and method based on rotary magnetic shoe

Similar Documents

Publication Publication Date Title
US4563602A (en) Permanent magnet type stepping motor
KR0140314B1 (en) Hybrid excitation type permanent magnet synchronous motor
Shakal et al. A permanent magnet AC machine structure with true field weakening capability
JP2000512837A (en) Self-starting brushless electric motor
JP4383058B2 (en) Reluctance motor
US6563248B2 (en) Hybrid-magnet DC motor
US5202599A (en) Electric motor
JP3474152B2 (en) Permanent magnet rotor magnetizing device
US20070278887A1 (en) Single field rotor motor
JPH09163692A (en) Magnetizer for rotating-field type permanent magnet synchronous motor
US4933585A (en) High performance electric machine resistant to losses caused by the joule effect
JP4160358B2 (en) Rotating electric machine
JPH1014181A (en) Magnetizing unit for permanent magnet synchronous machine and positioning/fixing method therefor
JPH08126279A (en) Brushless dc motor
JPS6149901B2 (en)
JPH05176487A (en) Permanent magnet type motor
GB2303255A (en) Magnetic reluctance motor
JP2519435B2 (en) Magnetization method of electric motor
JP2002124414A (en) Method of magnetizing rare-earth magnet and method of manufacturing rotating machine
JPH07312885A (en) Superconducting actuator
JPH11308792A (en) Permanent magnet type reluctance rotating machine
GB2289994A (en) Magnetic reluctance motor
JPH03195343A (en) Magnetizer for step motor
JP2825912B2 (en) Commutator motor
JPH02237451A (en) Rotary machine