JPS6149901B2 - - Google Patents

Info

Publication number
JPS6149901B2
JPS6149901B2 JP53056147A JP5614778A JPS6149901B2 JP S6149901 B2 JPS6149901 B2 JP S6149901B2 JP 53056147 A JP53056147 A JP 53056147A JP 5614778 A JP5614778 A JP 5614778A JP S6149901 B2 JPS6149901 B2 JP S6149901B2
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
magnetizing
magnetic pole
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53056147A
Other languages
Japanese (ja)
Other versions
JPS54148214A (en
Inventor
Seiji Yamashita
Kunio Myashita
Tadao Shimozu
Shoji Tanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5614778A priority Critical patent/JPS54148214A/en
Publication of JPS54148214A publication Critical patent/JPS54148214A/en
Publication of JPS6149901B2 publication Critical patent/JPS6149901B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は永久磁石式同期電動機の回転子の着磁
方法に係り、特に自己始動のためのかご形巻線を
備えた永久磁石式同期電動機の回転子の着磁方法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for magnetizing the rotor of a permanent magnet synchronous motor, and particularly to a method for magnetizing a rotor of a permanent magnet synchronous motor equipped with a squirrel cage winding for self-starting. This invention relates to a rotor magnetization method.

〔発明の背景〕[Background of the invention]

紡糸工場の巻き取りシステムに使用するような
同期電動機は、多数台が並列に揃速運転される。
したがつて、電動機自体が自己始動可能であるこ
と、および負荷慣性と負荷を背負つた状態で同期
引入れができることが要求される。
Many synchronous motors, such as those used in the winding systems of spinning factories, are operated in parallel at the same speed.
Therefore, the electric motor itself is required to be capable of self-starting, and to be capable of synchronous pull-in with load inertia and a load on its back.

従来よりこの種電動機は、誘導電動機として始
動させ、同期引入れ後は永久磁石の磁力を利用し
て同期電動機として運転される。したがつて、電
動機は誘導電動機と同期電動機の両者の特性をそ
なえている。このため、この種電動機では、固定
子は特に通常の電動機と変わらないが、回転子は
特殊な構造となつており、極数、磁石材質等によ
り種々の構造が提案されている。
Conventionally, this type of motor is started as an induction motor, and after synchronous pull-in, is operated as a synchronous motor using the magnetic force of a permanent magnet. Therefore, the electric motor has characteristics of both an induction motor and a synchronous motor. For this reason, in this type of electric motor, the stator is not particularly different from that of a normal electric motor, but the rotor has a special structure, and various structures have been proposed depending on the number of poles, magnet material, etc.

第1図および第2図はその一例を示すものであ
る。
FIGS. 1 and 2 show an example thereof.

これらの図において、1は回転軸で、図示しな
い固定子の外枠に設けられた軸受により、その両
端部が回転自在に支承されている。この回転軸1
には積層回転子鉄心2が圧入固定されており、回
転子鉄心2の外周部分には多数のかご形導体3が
設けられ、このかご形導体3はその両端がエンド
リング4A,4Bにより短絡されて、閉回路をな
すかご形巻線が形成されている。
In these figures, reference numeral 1 denotes a rotating shaft, and both ends thereof are rotatably supported by bearings provided on the outer frame of a stator (not shown). This rotating shaft 1
A laminated rotor core 2 is press-fitted into the rotor core 2, and a large number of squirrel cage conductors 3 are provided on the outer periphery of the rotor core 2. Both ends of the squirrel cage conductors 3 are short-circuited by end rings 4A and 4B. A squirrel cage winding forming a closed circuit is formed.

また、回転子鉄心2の内周側部分には、周方向
に間隔をあけて4個の永久磁石5が設けられてい
る。これら永久磁石5は、周方向に、かつ隣接す
る永久磁石の周方向に対応する側が同一極となる
ように着磁される。永久磁石5の径方向の両側の
空間部には、かご形導体3と同一材質であるアル
ミニウム6が充填され、この部分で永久磁石5に
交流磁界が作用するのを阻止している。
Furthermore, four permanent magnets 5 are provided on the inner peripheral side of the rotor core 2 at intervals in the circumferential direction. These permanent magnets 5 are magnetized in the circumferential direction so that sides corresponding to the circumferential direction of adjacent permanent magnets have the same polarity. The spaces on both sides of the permanent magnet 5 in the radial direction are filled with aluminum 6, which is the same material as the cage-shaped conductor 3, and prevents the alternating current magnetic field from acting on the permanent magnet 5.

回転子鉄心2を構成する薄鉄板は、回転軸1、
かご形導体3、永久磁石5、磁石側方のアルミニ
ウム部分6などに相当する部分を取り除いた形状
で打抜かれるため、回転子全体の遠心力に対する
強度が充分でない。そのため、この遠心力に対す
る補強材として、磁極の中心部に補強ピン7が挿
通され、この補強ピンの両端が端板8A,8Bに
より支持されている。
The thin iron plates constituting the rotor core 2 are the rotating shaft 1,
Since the rotor is punched in a shape with parts corresponding to the squirrel cage conductor 3, the permanent magnet 5, and the aluminum portion 6 on the side of the magnet removed, the rotor as a whole does not have sufficient strength against centrifugal force. Therefore, as a reinforcing member against this centrifugal force, a reinforcing pin 7 is inserted through the center of the magnetic pole, and both ends of this reinforcing pin are supported by end plates 8A and 8B.

この構造の回転子では、永久磁石5の材質とし
てアルニコ系、フエライト系のいずれでも採用可
能である。また、永久磁石5の磁束は、回転子鉄
心2の最内周部9および外周部10により極間で
漏洩するが、この連結短絡部9,10を設けるこ
とにより、回転子鉄心2を構成する薄鉄板は回転
軸1、かご形導体3、永久磁石5などに相当する
部分を取り除いても、なお連結した1枚の板とし
て打抜くことができ、薄鉄板の積層が容易にな
る。
In the rotor having this structure, either alnico or ferrite can be used as the material for the permanent magnets 5. Further, the magnetic flux of the permanent magnet 5 leaks between the poles due to the innermost circumferential part 9 and the outer circumferential part 10 of the rotor core 2, but by providing these connecting short circuit parts 9 and 10, the rotor core 2 is configured. Even if the parts corresponding to the rotating shaft 1, squirrel cage conductor 3, permanent magnet 5, etc. are removed from the thin iron plate, it can still be punched out as a single connected plate, making it easy to stack the thin iron plates.

ところで、この種永久磁石式同期電動機では、
その同期引入れトルクは、誘導電動機の同期速度
近くの速度におけるトルクの勾配と、同期電動機
の脱出トルクの大きさで決定され、誘導電動機の
速度―トルク曲線の勾配が急な程、また脱出トル
クが大きい程引入るトルクは増大する。そして、
このトルク勾配はかご形導体の大きさで決定され
る。したがつて、回転子のかご形導体の大きさは
できるだけ大きい方が好ましい。
By the way, in this kind of permanent magnet type synchronous motor,
The synchronous pull-in torque is determined by the gradient of torque at a speed near the synchronous speed of the induction motor and the magnitude of the escape torque of the synchronous motor. The larger the torque, the greater the retracting torque. and,
This torque gradient is determined by the size of the squirrel cage conductor. Therefore, it is preferable that the size of the squirrel cage conductor of the rotor is as large as possible.

しかし、従来の構造、例えば第1図の構造にお
いては、もしかご形導体3を大きく、したがつ
て、かご形導体3を挿入するスロツト深さを深く
すると、永久磁石5の径方向幅が狭くなるため、
磁化方向に直角な断面積が小さくなつて、充分な
磁束量が得られない。
However, in the conventional structure, for example, in the structure shown in FIG. To become
The cross-sectional area perpendicular to the magnetization direction becomes small, and a sufficient amount of magnetic flux cannot be obtained.

また、永久磁石を径方向に着磁した回転子も提
案されているが、この場合には永久磁石の周方向
幅の占める角度は2π/P範囲内となるため、永
久磁石の周方向幅を大きくして磁化方向に直角な
断面積を増大するためには、永久磁石をできるだ
け回転子鉄心の外周側に配置しなければならず、
これは結局、誘導電動機として使用できるコアバ
ツク、つまり永久磁石とかご形導体との間の鉄心
部の厚みが少なくなることであり、始動電流の増
大などを電動機として好ましくない結果を招く。
Also, a rotor in which permanent magnets are magnetized in the radial direction has been proposed, but in this case, the angle occupied by the circumferential width of the permanent magnet is within the range of 2π/P, so the circumferential width of the permanent magnet is In order to increase the size and increase the cross-sectional area perpendicular to the magnetization direction, the permanent magnet must be placed as close to the outer circumference of the rotor core as possible.
This ultimately results in a reduction in the thickness of the core back that can be used as an induction motor, that is, the iron core portion between the permanent magnet and the squirrel cage conductor, which leads to undesirable consequences for the motor, such as an increase in starting current.

そこで、これらの欠点をなくし、始動特性およ
び同期運転特性が良好な永久磁石式同期電動機と
して第3図に示す如きものが提案されている(例
えば実開昭49―26009号公報参照)。第3図では、
6極の回転子構造を示しており、図中第1図およ
び第2図と同一符号は同一又は均等物を表わす。
Therefore, a permanent magnet type synchronous motor as shown in FIG. 3 has been proposed which eliminates these drawbacks and has good starting characteristics and synchronous operation characteristics (see, for example, Japanese Utility Model Application Publication No. 49-26009). In Figure 3,
The figure shows a six-pole rotor structure, and the same reference numerals as in FIGS. 1 and 2 represent the same or equivalent parts.

回転軸1には積層回転子鉄心2が圧入固定さ
れ、回転子鉄心2の外周部分に多数のかご形導体
3が設けられていることは、前記従来例と同様で
ある。
A laminated rotor core 2 is press-fitted onto the rotating shaft 1, and a large number of squirrel cage conductors 3 are provided on the outer periphery of the rotor core 2, as in the prior art example.

この回転子鉄心2の内周に近い部分には、円周
を極数P(この場合はP=6)で等分した角度、
2π/P=60度より大きな角度を有する円弧状の
永久磁石11が極対数(P/2=3)と同じ数だ
け設けられている。これら永久磁石11の着磁方
向は径方向で、すべて同一方向である。すなわ
ち、外周側がN極、内周側がS極に統一されてい
る。
In the part near the inner circumference of the rotor core 2, there is an angle that equally divides the circumference by the number of poles P (P = 6 in this case).
Arc-shaped permanent magnets 11 having an angle larger than 2π/P=60 degrees are provided in the same number as the number of pole pairs (P/2=3). The magnetization direction of these permanent magnets 11 is the radial direction, which is the same direction. That is, the outer circumferential side is the N pole, and the inner circumferential side is the S pole.

回転子鉄心2の極間には、極間スリツト12が
形成されている。これら極間スリツト12は、各
永久磁石11の両端部からかご形導体3の内側近
くまで延び、かご形導体3近くの外方端では円周
をほぼP等分する位置にあり、永久磁石11の配
置された極では内方に行くに従つて次第に広がる
ように形成されている。
Between the poles of the rotor core 2, inter-pole slits 12 are formed. These inter-pole slits 12 extend from both ends of each permanent magnet 11 to near the inside of the squirrel-cage conductor 3, and at the outer end near the squirrel-cage conductor 3 are located at positions that divide the circumference into approximately P equal parts. The poles are arranged so that they gradually widen as they go inward.

ここで、永久磁石11の内周側鉄心部13の幅
は永久磁石11の半分の磁束が通つても磁気飽和
が生じない寸法に、隣接する永久磁石11間の鉄
心部14の幅は永久磁石12の全磁束が通つても
磁気飽和が生じない寸法にそれぞれ設定する必要
がある。
Here, the width of the inner circumference side iron core part 13 of the permanent magnet 11 is set to such a size that magnetic saturation does not occur even if half the magnetic flux of the permanent magnet 11 passes through, and the width of the iron core part 14 between adjacent permanent magnets 11 is set to a size that does not cause magnetic saturation even if half the magnetic flux of the permanent magnet 11 passes through. It is necessary to set each dimension to such a size that magnetic saturation does not occur even if all 12 magnetic fluxes pass through.

なお、図示しない固定子側より回転子のS極、
つまりイメージ極に入つた磁束は、鉄心部15,
14を通つて永久磁石11に達し、ここからN極
に至り、再び固定子側に戻る。
In addition, from the stator side (not shown), the S pole of the rotor,
In other words, the magnetic flux entering the image pole is transferred to the iron core 15,
14, it reaches the permanent magnet 11, from there it reaches the N pole, and returns to the stator side again.

以上のように構成された回転子では、永久磁石
11の周方向の幅を2π/Pよりも大きくするこ
とができるので、永久磁石11を内周側に配置し
ても、外周側に配置したと実質的に同様な、磁化
方向に直角な断面積を得ることができる。しか
も、永久磁石11をできるだけ内周側に配置する
ことにより、誘導電動機として使用できるコアバ
ツクの厚さを充分大きくとることができるので、
始動時の電流の低減を図り、また逆にかご形導体
の太さを充分大きくとることができるので、誘導
電動機のトルク勾配を大きくし、同期引入れトル
クを増大することもできる。
In the rotor configured as described above, the circumferential width of the permanent magnets 11 can be made larger than 2π/P, so even if the permanent magnets 11 are arranged on the inner circumferential side, they can be arranged on the outer circumferential side. It is possible to obtain a cross-sectional area perpendicular to the magnetization direction that is substantially similar to . Furthermore, by arranging the permanent magnets 11 as close to the inner circumferential side as possible, the core back can be thick enough to be used as an induction motor.
Since the current at the time of starting can be reduced and the thickness of the squirrel cage conductor can be made sufficiently large, the torque gradient of the induction motor can be increased and the synchronous pull-in torque can also be increased.

ところで、このような回転子を製作する場合に
は、予め着磁した永久磁石を用いると、かご形巻
線をダイカスト成形するときの熱によつて永久磁
石の磁気特性が劣化したり、あるいはかご形巻線
の成形後においては鉄心を構成する各鉄板が一体
化して相互に移動しないので永久磁石を鉄心内へ
挿入するのが極めて困難である等の理由により、
回転子を組立てた後に永久磁石の着磁を行なうこ
とが望ましい。しかし、前記のようにイメージ極
があるため、各永久磁石をすべて同一方向(径方
向において)に着磁しなければならないが、一方
の永久磁石を着磁しようとすると、他方の永久磁
石の極性が反転してしまうため、回転子の組立後
にすべての永久磁石を同一方向に着磁することは
困難であつた。
By the way, when manufacturing such a rotor, if pre-magnetized permanent magnets are used, the magnetic properties of the permanent magnets may deteriorate due to the heat generated when die-casting the cage windings, or the cage windings may deteriorate. After the shape winding is formed, the iron plates that make up the core are integrated and do not move relative to each other, making it extremely difficult to insert a permanent magnet into the core.
It is desirable to magnetize the permanent magnets after assembling the rotor. However, since there is an image pole as mentioned above, each permanent magnet must be magnetized in the same direction (in the radial direction), but if you try to magnetize one permanent magnet, the polarity of the other permanent magnet will change. Since the permanent magnets are reversed, it is difficult to magnetize all the permanent magnets in the same direction after the rotor is assembled.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、この種のイメージ極を有する
6極形の永久磁石式同期電動機の回転子を組立後
に容易に着磁し得る着磁方法を提供することにあ
る。
An object of the present invention is to provide a magnetization method that can easily magnetize the rotor of a hexapole permanent magnet type synchronous motor having image poles of this type after assembly.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明は、永久磁石
部材の磁石材として減磁耐力の大きい希土類磁石
を用いるとともに、着磁装置の着磁用鉄心におけ
る極弧の小さい一方の磁極部に3つの永久磁石部
材のうち1つを、極弧の大きい他方の磁極部に他
の2つをそれぞれ対応させ、着磁鉄心に巻装され
た着磁コイルを付勢して1つの永久磁石部材に大
きな磁界を、他の2つの永久磁石部材に小さな磁
界をそれぞれ加える着磁工程を、3つの永久磁石
部材のそれぞれについて順次行なうことを特徴と
する。
In order to achieve this object, the present invention uses a rare earth magnet with high demagnetization resistance as the magnet material of the permanent magnet member, and also uses three permanent One of the magnet members is made to correspond to the other magnetic pole part with a large polar arc, and the magnetizing coil wound around the magnetizing iron core is energized to create a large magnetic field in one permanent magnet member. The present invention is characterized in that the magnetization step of applying a small magnetic field to each of the other two permanent magnet members is sequentially performed for each of the three permanent magnet members.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例に係る回転子の着磁方
法を第4図について説明する。
Hereinafter, a method of magnetizing a rotor according to an embodiment of the present invention will be explained with reference to FIG.

第4図について、15は着磁用鉄心、15a,
15bはその磁極部で、極弧の小さい一方の磁極
部15aはほぼ2π/P(この場合π/3)の角
度を有し、極弧の大きい他方の磁極部15bはほ
ぼ(2π/P)×3(この場合はπ)の角度を有
している。16はこの着磁用鉄心15に巻回され
た着磁用コイルで、スイツチ17を介して直流電
源18に接続されており、これらにより着磁装置
が構成されている。
Regarding FIG. 4, 15 is a magnetizing core, 15a,
Reference numeral 15b indicates the magnetic pole portions, one magnetic pole portion 15a with a smaller polar arc has an angle of approximately 2π/P (in this case π/3), and the other magnetic pole portion 15b with a larger polar arc has an angle of approximately (2π/P). It has an angle of ×3 (π in this case). A magnetizing coil 16 is wound around the magnetizing iron core 15, and is connected to a DC power source 18 via a switch 17, thereby forming a magnetizing device.

この着磁装置を用いて回転子を着磁するには、
図示のように、着磁用鉄心15の極弧の小さい一
方の磁極部15aに、回転子の永久磁石11を有
する磁極の1つを、また極弧の大きい他方の磁極
部15bに、永久磁石11を有する他の磁極から
永久磁石11を有するさらに他の磁極にわたる部
分をそれぞれ対向させ、スイツチ17を閉じて、
着磁用コイル16を付勢する。このようにする
と、極弧の小さい一方の極磁部15aに対向する
回転子の磁極側には充分大きな磁界がかかり、極
弧の大きい他方の磁極部15bに対向する回転子
の磁極側にはこれに比べて小さな磁界がかかるこ
とになるので、回転子を回転させて、永久磁石1
1を有する各磁極について、すなわち計3回、こ
れを行なうことにより、すべての永久磁石11を
着磁することができる。
To magnetize the rotor using this magnetizing device,
As shown in the figure, one of the magnetic poles having the permanent magnet 11 of the rotor is attached to one magnetic pole part 15a of the magnetizing core 15 having a small polar arc, and a permanent magnet is attached to the other magnetic pole part 15b having a large polar arc. The parts extending from the other magnetic pole having the permanent magnet 11 to the further other magnetic pole having the permanent magnet 11 are made to face each other, and the switch 17 is closed.
The magnetizing coil 16 is energized. In this way, a sufficiently large magnetic field is applied to the magnetic pole side of the rotor facing the one magnetic pole part 15a with a small polar arc, and a sufficiently large magnetic field is applied to the magnetic pole side of the rotor facing the other magnetic pole part 15b with a large polar arc. Since a smaller magnetic field will be applied compared to this, the rotor is rotated and the permanent magnet 1
By doing this for each magnetic pole having 1, that is, three times in total, all the permanent magnets 11 can be magnetized.

この際、着磁磁界が大きい、つまり磁極部15
aに対向する側の永久磁石11は、たとえどのよ
うな極性に着磁されていても、着磁磁界の方向に
着磁されるので、問題はないが、小さな着磁磁界
つまり磁極部15bに対向する側の永久磁石11
が、着磁磁界の方向に着磁されると不都合が生じ
るので、永久磁石11の材質としては、磁極部1
5bの小さな着磁磁界よりも大きい減磁耐力を持
つものを用いる必要がある。
At this time, the magnetizing magnetic field is large, that is, the magnetic pole part 15
No matter what polarity the permanent magnet 11 on the side facing a is magnetized, it is magnetized in the direction of the magnetizing magnetic field, so there is no problem. Permanent magnet 11 on the opposite side
However, if the permanent magnet 11 is magnetized in the direction of the magnetizing magnetic field, problems will occur.
It is necessary to use a material having a larger demagnetizing strength than the small magnetizing magnetic field of 5b.

磁極部15aの着磁磁界がほぼ25kOe、磁極部
15bの着磁磁界がほぼ12.5kOeの着磁装置を用
いて着磁した場合、磁極部15aのほぼ25kOeの
大きな磁界で強く着磁されせた永久磁石は、ほぼ
25kOeの反磁界まで磁力を保持するので、磁極部
15bでほぼ12.5kOeの小さな反磁界を受けても
極性が反転することはない。また、磁極部15b
のほぼ12.5kOeの小さな磁界で弱く着磁された永
久磁石は、磁極部15aでのほぼ25kOeの大きな
反磁界を受けると、極性が反転して所望の極性に
着磁される。
When magnetized using a magnetization device in which the magnetic field of the magnetic pole part 15a is approximately 25 kOe and the magnetic field of the magnetic pole part 15b is approximately 12.5 kOe, the magnetic pole part 15a is strongly magnetized by the large magnetic field of approximately 25 kOe. Permanent magnets are approximately
Since the magnetic force is maintained up to a demagnetizing field of 25 kOe, the polarity will not be reversed even if the magnetic pole portion 15b receives a small demagnetizing field of approximately 12.5 kOe. Moreover, the magnetic pole part 15b
The permanent magnet, which is weakly magnetized by a small magnetic field of approximately 12.5 kOe, is reversed in polarity and magnetized to a desired polarity when subjected to a large demagnetizing field of approximately 25 kOe at the magnetic pole portion 15a.

したがつて、このような性質を有する磁石材と
して、本実施例では、例えばサマリユームコバル
トSmCo系のような希土類磁石で、その残留磁束
密度Brが8kG、抵抗力Hcが7.95kOe、iHcが
25kOeの材質を使用している。
Therefore, in this example, as a magnet material having such properties, a rare earth magnet such as Samarium Cobalt SmCo is used, and its residual magnetic flux density Br is 8 kG, resistance force Hc is 7.95 kOe, and iHc is
25kOe material is used.

なお、この実施例では、第3図に示すような、
永久磁石部材として1個の円弧状の永久磁石を用
いた回転子の着磁に適用した場合について述べた
が、第5図に示すような、製作し易い平板状の永
久磁石19を複数個用いた回転子の着磁に適用す
ることもできる。
In addition, in this example, as shown in FIG.
Although we have described the case in which a single arc-shaped permanent magnet is used as a permanent magnet member to magnetize a rotor, it is also possible to use a plurality of plate-shaped permanent magnets 19, which are easy to manufacture, as shown in Fig. 5. It can also be applied to the magnetization of a rotor that is

〔発明の効果〕 以上説明したように、本発明によれば、始動特
性および同期運転特性に優れたイメージ極を有す
6極形の永久磁石式同期電動機の回転子を組立後
において容易に着磁することができる。その結
果、従来のようにかご形巻線のダイカスト成形時
の熱によつて予め着磁された永久磁石部材の磁気
特性が劣化するのを防ぎ、かつ永久磁石部材の鉄
心内への挿入作業も容易となる。
[Effects of the Invention] As explained above, according to the present invention, the rotor of a six-pole permanent magnet synchronous motor having image poles with excellent starting characteristics and synchronous operation characteristics can be easily attached after assembly. Can be magnetized. As a result, the magnetic properties of the permanent magnet member, which is previously magnetized by the heat during die-casting of the squirrel cage winding, are prevented from deteriorating, and the work of inserting the permanent magnet member into the iron core is also simplified. It becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来における永久磁石式同期電動機の
回転子の一例を示す縦断側面図、第2図は第1図
のA―A断面図、第3図は本発明の着磁方法が適
用される永久磁石式同期電動機の回転子の一例を
示す縦断側面図、第4図は本発明の着磁方法を実
施するための着磁装置を示す概略構成図、第5図
は本発明が適用される永久磁石式同期電動機の回
転子の他例を示す縦断側面図である。 1……回転軸、2……回転子鉄心、3……かご
形導体、11,19……永久磁石、15……着磁
用鉄心、15a,15b……磁極部、16……着
磁用コイル。
Fig. 1 is a vertical side view showing an example of a rotor of a conventional permanent magnet type synchronous motor, Fig. 2 is a sectional view taken along line A-A in Fig. 1, and Fig. 3 is an example in which the magnetization method of the present invention is applied. A vertical side view showing an example of a rotor of a permanent magnet type synchronous motor, FIG. 4 is a schematic configuration diagram showing a magnetizing device for carrying out the magnetizing method of the present invention, and FIG. 5 is a schematic diagram showing a magnetizing device to which the present invention is applied. FIG. 7 is a longitudinal sectional side view showing another example of the rotor of the permanent magnet type synchronous motor. 1... Rotating shaft, 2... Rotor core, 3... Squirrel cage conductor, 11, 19... Permanent magnet, 15... Iron core for magnetization, 15a, 15b... Magnetic pole part, 16... For magnetization coil.

Claims (1)

【特許請求の範囲】[Claims] 1 回転軸と、この回転軸に固着された回転子鉄
心と、この回転子鉄心の外周部分に設けられたか
ご形巻線と、前記回転子鉄心のかご形巻線より内
側の部分に設けられかつ周方向にほぼ等しい間隔
をあけて配置された周方向に延びる3つの永久磁
石部材とからなり、かつこれら3つの永久磁石部
材を径方向にかつ同一方向に着磁し、これら永久
磁石部材の周方向の間に3つのイメージ極を形成
する永久磁石式同期電動機の回転子の着磁方法に
おいて、前記永久磁石部材の磁石材として希土類
磁石を用いるとともに、着磁装置の着磁用鉄心に
おける極弧の小さい一方の磁極部に、組立てられ
た回転子における前記3つの永久磁石部材のうち
の1つを、極弧の大きい他方の磁極部に、他の2
つをそれぞれ対応させ、前記着磁用鉄心に巻装さ
れた着磁用コイルを付勢して1つの永久磁石部材
に大きな磁界を、他の2つの永久磁石部材に小さ
な磁界をそれぞれ加える着磁工程を、3つの永久
磁石部材のそれぞれについて順次行うことを特徴
とする永久磁石式同期電動機の回転子の着磁方
法。
1. A rotating shaft, a rotor core fixed to the rotating shaft, a squirrel-cage winding provided on the outer periphery of the rotor core, and a squirrel-cage winding provided inside the cage-shaped winding of the rotor core. and three permanent magnet members extending in the circumferential direction arranged at approximately equal intervals in the circumferential direction, and these three permanent magnet members are magnetized in the radial direction and in the same direction, and the permanent magnet members are In a method for magnetizing a rotor of a permanent magnet type synchronous motor in which three image poles are formed in the circumferential direction, a rare earth magnet is used as the magnet material of the permanent magnet member, and a pole in a magnetizing iron core of a magnetizing device is used. One of the three permanent magnet members in the assembled rotor is attached to one of the magnetic pole parts with a smaller arc, and the other two are attached to the other magnetic pole part with a larger polar arc.
The magnetizing coils wound around the magnetizing iron core are energized to apply a large magnetic field to one permanent magnet member and a small magnetic field to the other two permanent magnet members. A method of magnetizing a rotor of a permanent magnet type synchronous motor, characterized in that the steps are performed sequentially for each of three permanent magnet members.
JP5614778A 1978-05-13 1978-05-13 Permanent-magnet-type synchronous motor Granted JPS54148214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5614778A JPS54148214A (en) 1978-05-13 1978-05-13 Permanent-magnet-type synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5614778A JPS54148214A (en) 1978-05-13 1978-05-13 Permanent-magnet-type synchronous motor

Publications (2)

Publication Number Publication Date
JPS54148214A JPS54148214A (en) 1979-11-20
JPS6149901B2 true JPS6149901B2 (en) 1986-10-31

Family

ID=13018963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5614778A Granted JPS54148214A (en) 1978-05-13 1978-05-13 Permanent-magnet-type synchronous motor

Country Status (1)

Country Link
JP (1) JPS54148214A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58105779U (en) * 1982-01-14 1983-07-19 株式会社日立製作所 permanent magnet rotor
JPS6028758A (en) * 1983-07-27 1985-02-13 Hitachi Ltd Rotary electric machine with permanent magnet
JPH01144337A (en) * 1987-11-30 1989-06-06 Okuma Mach Works Ltd Structure of rotor of permanent magnet type motor
JP3734566B2 (en) * 1996-05-13 2006-01-11 株式会社明電舎 Rotating electrical machine rotor
JP3507653B2 (en) * 1997-03-27 2004-03-15 株式会社東芝 Permanent magnet rotating electric machine
EP2276146A1 (en) 1999-07-16 2011-01-19 Panasonic Corporation Permanent magnet synchronous motor
DE10316831A1 (en) 2002-04-15 2003-11-27 Denso Corp Permanent magnet rotor for rotary electric machine with inner rotor has all permanent magnets magnetized in such a way that direction of magnetization is same looking in radial direction
EP1471621A3 (en) 2003-04-24 2005-12-14 Minebea Co., Ltd. Rotor element for an electrical motor
WO2017090159A1 (en) * 2015-11-26 2017-06-01 株式会社安川電機 Rotary electric machine

Also Published As

Publication number Publication date
JPS54148214A (en) 1979-11-20

Similar Documents

Publication Publication Date Title
US4405873A (en) Rotor for a line-start permanent-magnet motor
JP2695332B2 (en) Permanent magnet field type rotor
US4454438A (en) Synchronized induction motor
AU611835B2 (en) Direct current dynamoelectric machines utilizing high strength permanent magnets
JP3152405B2 (en) Electric motor
US20020180295A1 (en) Dynamo electric machine with permanent magnet type rotor
US20060061226A1 (en) Permanent magnet-type motor
JP2008193778A (en) Stator and enclosed compressor and rotating machine
JP3734566B2 (en) Rotating electrical machine rotor
JP2002112513A (en) Dynamo-electric machine
EP1744437B1 (en) Self magnetizing motor and stator thereof
JPS6149901B2 (en)
KR100548278B1 (en) Magnet for hybrid induction motor and magnetization method thereof
JP3220537B2 (en) Linear pulse motor
JPH0479741A (en) Permanent magnet rotor
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP3776171B2 (en) Magnet rotor
JP2001119877A (en) Permanent magnet embedded rotor
JPS60219947A (en) Permanent magnet type synchronous motor
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
JP4206611B2 (en) Self-starting permanent magnet synchronous motor
CN111030402A (en) Directional silicon steel sheet axial magnetic field motor
JP5128800B2 (en) Hybrid permanent magnet rotating electric machine
JPH06319238A (en) Rotor for permanent magnet generator
JP4281217B2 (en) Self-starting permanent magnet synchronous motor