JP2004056988A - Moving coil linear motor, compressor, and refrigerator - Google Patents

Moving coil linear motor, compressor, and refrigerator Download PDF

Info

Publication number
JP2004056988A
JP2004056988A JP2002299022A JP2002299022A JP2004056988A JP 2004056988 A JP2004056988 A JP 2004056988A JP 2002299022 A JP2002299022 A JP 2002299022A JP 2002299022 A JP2002299022 A JP 2002299022A JP 2004056988 A JP2004056988 A JP 2004056988A
Authority
JP
Japan
Prior art keywords
linear motor
permanent magnet
movable
coil
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299022A
Other languages
Japanese (ja)
Inventor
Toshiharu Watabe
渡部  俊春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002299022A priority Critical patent/JP2004056988A/en
Publication of JP2004056988A publication Critical patent/JP2004056988A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of the generation of asymmetric thrust by the conventional structure, and to achieve symmetric thrust/current characteristics, with regard to the moving coil linear motor that is applied to compressors including a stirling refrigerator. <P>SOLUTION: Two pieces of annular permanent magnets 8a, 8b magnetized in the radial direction and two pieces of moving coils 9a, 9b facing each permanent magnet are placed in the axial direction and arranged between inside and outside circumferential yokes 7a, 7b. The polarity of the magnetic pole of the permanent magnets 8a, 8b and the current-flowing direction in the moving coils 9a, 9b are set in the reverse direction to each other. Then, an AC voltage is impressed to the moving coils to make the pistons 2 of the compressor perform reciprocating operations. This structure forms a closed magnetic circuit that goes through the moving coils in series. In the annular spaces, the sum of the magnetic flux generated by the conducting current of each coil becomes zero, which generates symmetric electromagnetic thrust of the same magnitude in both directions of compression and expansion. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スターリング冷凍機,パルスチューブ冷凍機などのガスサイクル機関冷凍機を対象に、その圧縮機の駆動モータに適用する可動コイル形リニアモータ,および該リニアモータを採用した圧縮機,冷凍機に関する。
【0002】
【従来の技術】
頭記のスターリング冷凍機,パルスチューブ冷凍機において、その圧力振動の発生機構である圧縮機として、ピストンを可動コイル形リニアモータで往復駆動するよう構成したものが知られている。(例えば、特許文献1,特許文献2参照)。
【0003】
次に作動ガス(ヘリウムなどの冷媒)の圧縮/膨張空間を挟んでその両側に一対のピストンを備えたスプリットタイプのリニア駆動式圧縮機を例に、従来における圧縮機の詳細構造を図5に示す。
【0004】
図5において、1は圧縮機、2はピストン、3は左右一対のピストン3の間に画成された作動ガスの圧縮空間、4は後記するリニアモータモータの継鉄と組合せて密閉形ケーシングを構成する作動ガスの保圧容器(非磁性材)、5は前記ピストン2を軸方向へ移動可能に支持した円板形のサスペンションばね、6が可動コイル形リニアモータモータである。このリニアモータ6は、継鉄7と、半径方向に着磁されたリング状の永久磁石8と、可動コイル9と、可動コイル9を支持してピストン2に連結したボビン10との組立体になる。なお、11は前記継鉄7を貫通して圧縮室3に通じる作動ガス通路、12は前記ガス通路11と冷凍機のコールドヘッド(図示せず)に内蔵したディスプレーサとの間に配管したキャピラリチューブである。
【0005】
ここで、継鉄7は、図示のように内筒と外筒を中央で連結した構造になり、その外筒部の内周面にはリング状の永久磁石8が装着され、該永久磁石8と継鉄7の内筒との間の環状空隙に側方から介装した可動コイル9が永久磁石8の内周磁極面にギャップを隔てて非接触式に対峙している。なお、図示してないが、可動コイル9は保圧容器4を気密に貫通して外部に引出した接続端子を介して交流電源に接続されている。
【0006】
かかる構成になる圧縮機の動作は周知の通りであり、可動コイル9に交流電圧を印加すると、該コイルに流れる電流とコイルに鎖交する永久磁石8の磁束との間に働く電磁力によりサスペンションばね5に支持されたピストン2が圧縮方向,膨張方向に交互に往復動作する。なお、円板形のサスペンションばね5は可動コイル9の電流ゼロの状態でピストン2を中立位置に復帰させる。また、圧縮機に組み込まれた左右のピストンは互いに同期して逆方向に往復動作するようにリニアモータ6を制御している。これにより、左右のピストンの間に挟まれたガス空間3に封入した作動ガスに圧力振動が発生する。
【0007】
【特許文献1】
特開平5−288419号公報(第3頁、図14)
【特許文献2】
特開平6−257871号公報(第3頁、図1)
【0008】
【発明が解決しようとする課題】
ところで、前記した従来のリニアモータでは、圧縮方向と膨張方向でモータの推力−電流特性が非対称となり、これが基で圧縮機の能力を低下させる問題がある。
【0009】
すなわち、図6(a),(b) に示すリニアモータの動作説明図において、永久磁石8はその内周面がN極,外周面がS極に磁化されているとすると、継鉄7,可動コイル9を経由する閉磁路には破線で示す磁束φM が発生する。この状態で可動コイル9に図6(a) に示す方向に電流Iが流れていると、閉磁路には実線で表す方向にこの電流Iに比例した磁束φI が発生する。これにより、可動コイル9には図示矢印方向に推力FL(図4の圧縮方向に対応する)が発生し、この推力FLの大きさは概略 (φM +φI)に比例する。また、可動コイル9に流れる電流が図6(b) に示す方向になると、磁束φM の向きは変わらないが、磁束φI の方向が図6(a) と逆向きになる。これにより、可動コイル9には図示矢印方向に推力FR(図4(b) の膨張方向に対応する)が発生し、その推力FRの大きさは概略(φM −φI)に比例する。このために、可動コイル9に流れる電流の値が同じであっても、電流の向きによって発生する推力が異なる(FL>FR)。なお、図7(a),(b) は前記したリニアモータの推力特性を表す図で、(a) 図は推力−電流特性、(b) 図は推力−単位電流特性を表している。
【0010】
一方、図5で述べたように、リニアモータの可動コイル9に連結したピストン2は円板形のサスペンションばね5で軸方向へ移動可能に支持されており、前記した推力FL,FRにより往復駆動される。この場合に推力FLとFRが異なる(FL>FR)と、ピストン2はコイル電流ゼロ時の自由状態で初期設定した中立位置から圧縮方向に移動した位置を中立点として往復運動する。
【0011】
また、円板形のサスペンションばね5は、振幅方向の許容ストロークが円板の外径寸法で概略決まり、例えばサスペンションばねの外径90mmφであれば最大許容ストロークは約8mm(振幅は±4mm)程度である。ここで、サスペンションばね5の許容最大振幅をym 、ピストン往復運動時の中立点移動量をyo とすると、圧縮機として許容できる往復動の振幅が (ym −yo)に制限される。なお、図5の構成の圧縮機について、サスペンションばね(円板バネ)の(中立点移動量)/(円板バネ最大振幅)とコイル電流との関係を図8に示す。
【0012】
つまり、前記のように可動コイル9の電流の向きによって推力FLとFRの大きさが異なると、ピストン2の往復運動時の中立点が初期設定の中立位置から移動するようになり、またこのリニアモータで往復駆動する圧縮機おいて、往復動の中立点が前記のように移動すると、サスペンションばね5のばね特性, 許容ストロークを最大に生かした使い方ができず、そのために圧縮機の運転能力が低下する。
【0013】
本発明は上記の点に鑑みなされたものであり、従来構成のリニアモータで往復動時の発生推力が非対称となる問題を解消して、対称な推力−電流特性の達成,電磁推力の増大化が図れるように改良した往復動式の可動コイル形リニアモータを提供し、併せて当該可動コイル形リニアモータモータを採用して効率よく運転できる圧縮機,冷凍機を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、半径方向に着磁したリング状の永久磁石と、該永久磁石の内周磁極面に対峙して軸方向へ移動可能に配した可動子の可動コイルと、前記永久磁石と可動コイルに対応した閉磁路を形成する継鉄を備え、可動コイルに交番電圧を印加して可動子を往復動作させる可動コイル形リニアモータにおいて、
永久磁石とこれに対峙する可動コイルとを対にして、2対の永久磁石,可動コイルを軸方向に離間して並置配備し、かつ各対の間で永久磁石の磁極極性,および可動コイルの通電方向を逆向きに設定した上で、永久磁石の外周側および可動コイルの内周側に分けて共通にまたがる継鉄を配備し、該継鉄を介して各対の永久磁石および可動コイルを直列に経由する閉磁路を形成する(請求項1)。ここで、前記した2対の永久磁石,可動コイルの相互間には、少なくとも可動子の最大振幅に対応する間隔を設定する(請求項2)。
【0015】
上記構成によれば、2個に分けた各可動コイルに流れる電流により発生する磁束の向きが反対となり、永久磁石と内周側の継鉄との間の環状空隙においての前記磁束の総和が常にゼロとなる。したがって、コイルに流す電流と永久磁石の磁束との相互関係により可動コイルに発生する電磁推力は、従来構成のようにコイル電流(交番電流)の向きによって影響を受けることがなく、これにより往復動方向で対称な推力−電流特性が達成できる。
【0016】
また、本発明では、前記構成をベースとして、リニアモータの電磁推力をさらに高めるために、次記のような構成がある。
【0017】
(1) 軸方向に離間して並置した前記2対の永久磁石(半径方向に着磁されている)の間に跨がり、前記閉磁路を通る磁束の向きに磁極極性を合わせて軸方向に着磁したリング状の永久磁石を追加して介装配備する(請求項3)。この構成により、2対の永久磁石,可動コイルを経由する磁気回路に対して、追加した永久磁石(軸方向に着磁されている)の磁力が加算され、これにより可動コイルと鎖交する磁束が増して、リニアモータの電磁推力が増大する。
【0018】
(2) 前記した2対の永久磁石,可動コイルを組として、軸方向に複数組の永久磁石,可動コイルを並置配備する(請求項4)。この構成によれば、永久磁石,可動コイルの組数に相応してリニアモータの電磁推力が増大する。
【0019】
また、前記構成の可動コイル形リニアモータを駆動モータとして、これに作動ガスの保圧容器を兼ねた密閉形ケーシング,ピストン,ピストン支持用の円板形サスペンションばねを組合せて圧縮機を構成する(請求項5)ことにより、効率の高い圧縮機が得られ、さらに、この圧縮機を採用してスターリング冷凍機,パルスチューブ冷凍機などを対象とするガスサイクル機関冷凍機を構成する(請求項6)ことで、高性能な極低温冷凍機が実現できる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図4に示す実施例に基づいて説明する。なお、実施例の図中で図5,図6に対応する部材には同じ符号を付してその詳細な説明は省略する。
【0021】
〔実施例1〕
図1はスターリング冷凍機に適用する圧縮機として、本発明による可動コイル形リニアモータを採用したスプリットタイプの圧縮機の構成図である。図示の圧縮機1は図4に示した従来のものと基本的に同じ構造であるが、リニアモータ6の構造が次記のようになる。すなわち、作動ガスを封入した保圧容器4は非磁性材で作られた密閉形ケーシングであり、その内部にはガス圧縮室3を挟んで左右にピストン2,円板形のサスペンションばね5,およびピストン2を往復駆動する可動コイル形リニアモータ6が組み込まれている。また、13はディスプレーサを内蔵したコールドヘッド、13aはその寒冷発生端であり、ディスプレーサ13はキャピラリチューブ12を介して圧縮機1に接続されている。
【0022】
なお、スターリング冷凍機の動作原理は周知であり、圧縮機1を運転して系内の作動ガスに圧力振動を発生させることにより、等温圧縮,等容移送,等温膨張,等容移送の4工程からなるサイクルが繰り返し行われてコールドヘッド3に極低温の寒冷が発生する。
【0023】
ここで、図示実施例では、可動コイル形リニアモータ6の磁路を形成する継鉄がリング状になる外周側継鉄7aと、その内側に配した内周側継鉄7bとに分離して保圧容器4の内部に固定されている。また、外周側継鉄7aの内周壁面には内外周の磁極極性(N極,S極)を逆向きに設定して半径方向に着磁したリング状の永久磁石8aと8bが軸方向に離間して並ぶように装着されており、さらに永久磁石8a,8bの内周側磁極面と個々に対峙するように2個に分けた可動コイル9a,9bがボビン10に支持して内周側継鉄7bとの間の環状空隙に介装されており、これら部材で可動コイル形リニアモータ6を構成している。
【0024】
図2(a),(b) は前記したリニアモータの詳細構造図で、図示のように外周側継鉄7aと内周側継鉄7bとの間には、永久磁石8aと可動コイル9a,および永久磁石8bと可動コイル9bをそれぞれ対として、2対の永久磁石と可動コイルが間隔Cを隔てて軸方向に配置されている。この構成により、永久磁石8aから外周側継鉄7a,永久磁石8b,可動コイル9b,内周側継鉄7b,可動コイル9aを経由して永久磁石8aに戻る閉磁路が形成される。
【0025】
ここで、永久磁石8aと8bはその軸方向の長さをLとして、両者の間にはピストン2の往復動の最大振幅に相応する間隔Cが設定されている。また、ボビン10に支持した左右の可動コイル9a,9bは、永久磁石8a,8bと個々に対峙するように配置し、運転時にその通電電流の向きが互いに逆向きとなるように設定されている。
【0026】
かかる構成で、可動コイル9a,9bに交番電流を給電すると、各コイルに流れる電流と永久磁石8a,8bとの相互作用で可動コイルにその電流の向きに対応した電磁推力FL,FRが発生し、この推力を受けてピストン2が圧縮方向,膨張方向(図1参照)に往復動する。
【0027】
この場合に、永久磁石8a,8bにより発生する磁束をφM 、可動コイル9a,9bに流れる電流によって発生する磁束φI として、図2(a),(b) のいずれの通電状態でも可動コイル9aと9bのコイル電流で発生する磁束φI は互いに逆向きであり、環状空隙における磁束φI の総和は常にゼロとなる。これにより、可動コイル9aと9bに作用する推力FLおよびFRは、コイル電流(交番電流)の向きに関係なく2×φM に比例する値となり、リニアモータとして往復動方向で対称な推力−電流特性が得られることになる。
【0028】
したがって、図1に示した圧縮機1の駆動モータとして上記構成の可動コイル形リニアモータ6を採用することにより、往復動の振幅中立点が、サスペンションばね5で初期設定された中立位置と一致することになり、従来の圧縮機で問題となっていたピストン2の中立点移動に起因する運転効率の低下を解消できるし、さらにこの圧縮機を採用してスターリング冷凍機,パルスチューブ冷凍機を構築することで高い冷凍性能が実現できる。
【0029】
また、図示実施例のリニアモータでは、上記した推力−電流特性に加えて次記のような実用的効果も得られる。すなわち、
(1) 2個に分けて軸方向に配置した永久磁石8a,8bの長さ寸法Lは、図4,図5に示した従来構成のリニアモータにおける1個の永久磁石7の長さ寸法と比べて約1/2であり、また永久磁石8aと8bの磁極極性を反転させているので継鉄7a,7bを経由して永久磁石8aと8bを直列に通過する磁束φM も約1/2となる。したがって、磁束φM の磁路となる継鉄7a,7bの断面積は従来のリニアモータの約半分で済み、これにより継鉄全体の体積,重量を50%以下に低減できてリニアモータの小形,軽量化が図れる。
【0030】
(2) 2個に分けて配置した可動コイル9a,9bのターン数は、従来構成による1個の可動コイル9と比べて約1/2であり、したがって各可動コイルの通電電流により発生する磁束φI と鎖交する継鉄7a,7bの磁束密度も概略1/2に低減する。これにより、継鉄7a,7bで発生する鉄損は従来のリニアモータと比べて大幅に減少する。なお、図10は従来のリニアモータと本発明の実施例によるリニアモータによる鉄損の比較図であり、従来モータによる鉄損を100とすると、本発明のリニアモータでは鉄損を10以下に低減できることが確認されている。
【0031】
〔実施例2〕
次に、先記実施例1の構成をベースとして、リニアモータの推力をさらに高めるように改良した本発明の請求項3に対応する実施例の構成を図3に示す。
【0032】
すなわち、図2に示した実施例1の構成では、軸方向に並置したリング状の永久磁石(半径方向に着磁されている)8aと8bとの間に間隔(空隙)Cを設定しているのに対して、図3に示す実施例の構成では、永久磁石8aと8bの間に跨がってリング状の永久磁石8cが追加装備されている。この永久磁石8cは、前記永久磁石8a,8bとは着磁の向きが異なり、軸方向の両端面がN,S磁極となるように軸方向に着磁されており、リニアモータの磁気回路を通る磁束の向きに磁極極性を合わせて図示のようにN極が左側,S極が右側に向くように配置されている。なお、永久磁石8cの長さDは図2の空隙長Cに対応している。
【0033】
上記構成によれば、永久磁石8a,8b,8cと可動コイル9a,9bを経由する閉磁路で見ると、永久磁石8cの発生磁力が永久磁石8a,8bの磁力に加算される。これにより、可動コイル9a,9bと鎖交する磁束が図2の構成に比べて増加する。
【0034】
図9はこの実施例2と図2の構成(実施例1)と対比して表した可動コイル9aおよび9bの平均半径における鎖交磁束の磁束密度分布を表した図で、点線で表した実施例1の磁束密度分布に比べて、実線で表した実施例2の磁束密度分布は可動コイルの端部(可動コイル9aの左側端部,および可動コイル9bの右側端部)において磁束密度が高くなっている。また、その供試モデルについて調べたところ、可動コイルと鎖交する磁束の増加の割合は、図11で示すように実施例1の構成による鎖交磁束を100とすると、永久磁石8cの追加装備により鎖交磁束は約105でその増加率は5%であった。これにより、可動コイルに発生する電磁力(可動コイルの電流×鎖交磁束の磁束密度に比例)、したがってリニアモータとしての電磁推力が約5%向上する。
【0035】
また、前記した供試モデルについて、外周側の継鉄7aを通る磁束を調べたところ、図12で表すように図2の構成(実施例1)と比べて約15%減少することが認められた。これは、図3の図中に破線で模擬したように、永久磁石9a,9bで発生する磁束の大半はφM−1 で表すように外周側継鉄7aを通るが、一部の磁束はφM−2 で表すように外周側継鉄7aを通らずに永久磁石8cに分流するためと考えられる。
【0036】
したがって、リニアモータの設計面では、上記した磁束φM−1,φM−2 の分布を基にすると、外周側継鉄7aの断面積を図2の構成と比べて約15%削減することか可能であり、その断面積の削減分だけ継鉄の外径寸法を縮減してリニアモータを小形に構成できる。
【0037】
〔実施例3〕
次に、本発明の請求項4に対応する実施例の構成を図4に示す。この実施例においては、先記実施例1(図2参照)のリニアモータで述べた2対の永久磁石,可動コイル(永久磁石8aと可動コイル9a、および永久磁石8bと可動コイル9b)を組単位とし、かつその内外周に配した継鉄7a,7bを共通な継鉄として、2組の永久磁石,可動コイルを軸方向に並置した上で、合計4個の各永久磁石に着磁した磁極の極性、および各可動コイルに通電するコイル電流の向きを図示のように設定する。
【0038】
これの構成により、継鉄7a,7bの左側領域に配した永久磁石8a,8bおよび可動コイル9a,9bからなる組と、継鉄の右側領域に配した永久磁石8a,8bおよび可動コイル9a,9bからなる組単位で個々に閉磁路が構成され、各可動コイルへの給電により、実施例1で述べたと同様に可動コイルに電磁推力が発生する。これにより、リニアモータ全体としての推力は実施例1と比べて2倍に増加する。なお、この実施例では、永久磁石8aと可動コイル9a、および永久磁石8bと可動コイル9bを組として、2組の永久磁石,可動コイルを軸方向に並置したが、これを3組以上に増やして発生推力の高めるも可能である。
【0039】
なお、以上述べた各実施例は、いずれも冷凍機用の圧縮機に採用したリニアモータを例に説明したが、圧縮機への適用に限定されるものではなく、リニアモータを駆動源とする他の往復駆動装置にも実施適用できるのは勿論である。
【0040】
【発明の効果】
以上述べたように、本発明によれば、半径方向に着磁したリング状の永久磁石と、該永久磁石の内周磁極面に対峙して軸方向へ移動可能に配した可動子の可動コイルと、前記永久磁石と可動コイルに対応した閉磁路を形成する継鉄を備え、可動コイルに交番電圧を印加して可動子を往復動作させる可動コイル形リニアモータにおいて、永久磁石とこれに対峙する可動コイルとを対にして、2対の永久磁石,可動コイルを軸方向に離間して並置配備し、かつ各対の間で永久磁石の磁極極性,および可動コイルの通電方向を逆向きに設定した上で、永久磁石の外周側および可動コイルの内周側に分けて共通にまたがる継鉄を配備し、該継鉄を介して各対の永久磁石および可動コイルを直列に経由する閉磁路を形成したことにより、
従来構成のリニアモータで発生推力が非対称となる問題を解消し、往復動に対して対称な推力−電流特性と、これに併せて鉄損の低減,軽量化が図れる可動コイル形リニアモータを提供することができる。
【0041】
また、前記構成をベースとして、請求項2,請求項3の構成を採用することによりリニアモータの電磁推力を向上でき、特に、請求項2の構成によれば、電磁推力の向上と併せてモータを小形化できる。
【0042】
そして、当該リニアモータを駆動モータとしてリニア駆動式圧縮機を構成することにより、運転効率の高い圧縮機が得られ、さらに、この圧縮機を用いてスターリング冷凍機,パルスチューブ冷凍機を構成することで効率よく冷凍が行える極低温冷凍機が実現できる。
【図面の簡単な説明】
【図1】スターリング冷凍機に採用した本発明の実施例1に対応するリニア駆動式圧縮機全体の構成断面図
【図2】図1における可動コイル形リニアモータの詳細構造,およびその動作説明図で、(a),(b) はそれぞれコイル電流の向きが異なる動作状態を表す図
【図3】本発明の実施例2に対応する可動コイル形リニアモータの構造,およびその磁路を表す図
【図4】本発明の実施例3に対応する可動コイル形リニアモータの構成図
【図5】従来構成の可動コイル形リニアモータを搭載したリニア駆動式圧縮機の構成断面図
【図6】図5におけるリニアモータの動作説明図で、(a),(b) はそれぞれコイル電流の向きが異なる動作状態を表す図
【図7】従来構成のリニアモータの推力特性を表す図で、(a),(b) はそれぞれ推力−電流特性図,および推力−単位電流特性図
【図8】図5の圧縮機におけるサスペンションばね(円板ばね)の中立点移動とコイル電流との関係を表す図
【図9】本発明の実施例2と実施例1とを対比して表した各可動コイルの平均半径における磁束密度分布図
【図10】従来例のリニアモータと本発明のリニアモータとの鉄損の比較図
【図11】本発明の実施例2と実施例1とを対比して表した可動コイルに鎖交する磁束の比較図
【図12】本発明の実施例2と実施例1とを対比して表した外周側継鉄を通る磁束の比較図
【符号の説明】
1  圧縮機
2  ピストン
4  保圧容器
5  円板形サスペンションばね
6  可動コイル形リニアモータ
7a 外周側継鉄
7b 内周側継鉄
8a,8b,8c 永久磁石
9a,9b 可動コイル
10  可動コイルのボビン
13  スターリング冷凍機のコールドヘッド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is directed to a gas cycle engine refrigerator such as a Stirling refrigerator or a pulse tube refrigerator, and has a moving coil linear motor applied to a drive motor of the compressor, and a compressor and a refrigerator employing the linear motor. About.
[0002]
[Prior art]
In the Stirling refrigerator and the pulse tube refrigerator described above, a compressor in which a piston is reciprocated by a moving coil type linear motor is known as a compressor which is a pressure vibration generating mechanism. (For example, see Patent Documents 1 and 2).
[0003]
Next, FIG. 5 shows a detailed structure of a conventional compressor of a split-type linear drive compressor having a pair of pistons on both sides of a compression / expansion space for a working gas (a refrigerant such as helium). Show.
[0004]
In FIG. 5, reference numeral 1 denotes a compressor, 2 denotes a piston, 3 denotes a working gas compression space defined between a pair of left and right pistons 3, and 4 denotes a closed casing in combination with a yoke of a linear motor to be described later. A pressure holding container (non-magnetic material) for the working gas is composed of a disk-shaped suspension spring 5 supporting the piston 2 movably in the axial direction, and a movable coil linear motor motor 6. The linear motor 6 includes an assembly of a yoke 7, a ring-shaped permanent magnet 8 magnetized in a radial direction, a movable coil 9, and a bobbin 10 supporting the movable coil 9 and connected to the piston 2. Become. Reference numeral 11 denotes a working gas passage that penetrates the yoke 7 and communicates with the compression chamber 3. Reference numeral 12 denotes a capillary tube piped between the gas passage 11 and a displacer built in a cold head (not shown) of the refrigerator. It is.
[0005]
Here, the yoke 7 has a structure in which an inner cylinder and an outer cylinder are connected at the center as shown in the figure, and a ring-shaped permanent magnet 8 is mounted on the inner peripheral surface of the outer cylinder portion. A movable coil 9 interposed from the side in an annular space between the permanent magnet 8 and the inner cylinder of the yoke 7 faces the inner peripheral magnetic pole surface of the permanent magnet 8 with a gap therebetween in a non-contact manner. Although not shown, the movable coil 9 is connected to an AC power supply via a connection terminal that extends through the pressure-holding container 4 in an airtight manner and is drawn to the outside.
[0006]
The operation of the compressor having such a configuration is well known. When an AC voltage is applied to the movable coil 9, the suspension is driven by an electromagnetic force acting between a current flowing through the coil and a magnetic flux of the permanent magnet 8 linked to the coil. The piston 2 supported by the spring 5 reciprocates alternately in the compression direction and the expansion direction. The disk-shaped suspension spring 5 returns the piston 2 to the neutral position when the current of the movable coil 9 is zero. The left and right pistons incorporated in the compressor control the linear motor 6 so as to reciprocate in opposite directions in synchronization with each other. Thereby, pressure oscillation is generated in the working gas sealed in the gas space 3 sandwiched between the left and right pistons.
[0007]
[Patent Document 1]
JP-A-5-288419 (page 3, FIG. 14)
[Patent Document 2]
JP-A-6-257871 (page 3, FIG. 1)
[0008]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional linear motor, the thrust-current characteristic of the motor becomes asymmetric in the compression direction and the expansion direction, and there is a problem that the performance of the compressor is reduced based on this.
[0009]
That is, in the operation explanatory diagram of the linear motor shown in FIGS. 6A and 6B, if the inner peripheral surface of the permanent magnet 8 is magnetized to the N pole and the outer peripheral surface is magnetized to the S pole, the yoke 7, A magnetic flux φM indicated by a broken line is generated in a closed magnetic path passing through the movable coil 9. In this state, when the current I flows through the movable coil 9 in the direction shown in FIG. 6A, a magnetic flux φI proportional to the current I is generated in the direction indicated by the solid line in the closed magnetic circuit. As a result, a thrust FL (corresponding to the compression direction in FIG. 4) is generated in the movable coil 9 in the direction indicated by the arrow, and the magnitude of this thrust FL is approximately proportional to (φM + φI). When the current flowing through the movable coil 9 is in the direction shown in FIG. 6B, the direction of the magnetic flux φM does not change, but the direction of the magnetic flux φI is opposite to that in FIG. 6A. As a result, a thrust FR (corresponding to the expansion direction in FIG. 4B) is generated in the movable coil 9 in the direction indicated by the arrow, and the magnitude of the thrust FR is approximately proportional to (φM−φI). Therefore, even if the value of the current flowing through the movable coil 9 is the same, the generated thrust differs depending on the direction of the current (FL> FR). 7A and 7B are diagrams showing the thrust characteristics of the above-described linear motor. FIG. 7A shows the thrust-current characteristics, and FIG. 7B shows the thrust-unit current characteristics.
[0010]
On the other hand, as described with reference to FIG. 5, the piston 2 connected to the movable coil 9 of the linear motor is supported by the disk-shaped suspension spring 5 so as to be movable in the axial direction, and is driven reciprocally by the aforementioned thrusts FL and FR. Is done. In this case, when the thrusts FL and FR are different (FL> FR), the piston 2 reciprocates with the position moved in the compression direction from the initially set neutral position in the free state when the coil current is zero as the neutral point.
[0011]
In the disk-shaped suspension spring 5, the allowable stroke in the amplitude direction is roughly determined by the outer diameter of the disk. For example, if the outer diameter of the suspension spring is 90 mmφ, the maximum allowable stroke is about 8 mm (amplitude is ± 4 mm). It is. Here, assuming that the allowable maximum amplitude of the suspension spring 5 is ym and the moving amount of the neutral point during the reciprocating motion of the piston is yo, the amplitude of the reciprocating motion allowable as the compressor is limited to (ym-yo). FIG. 8 shows the relationship between the coil spring current and the (neutral-point moving amount) / (disc spring maximum amplitude) of the suspension spring (disc spring) for the compressor having the configuration shown in FIG.
[0012]
That is, if the magnitudes of the thrusts FL and FR differ depending on the direction of the current of the movable coil 9 as described above, the neutral point at the time of the reciprocation of the piston 2 moves from the initially set neutral position. If the neutral point of the reciprocating motion of the compressor reciprocally driven by the motor moves as described above, it is impossible to use the spring characteristic of the suspension spring 5 and the allowable stroke to the fullest extent, thereby reducing the operating capacity of the compressor. descend.
[0013]
The present invention has been made in view of the above points, and solves the problem that the thrust generated during reciprocation in a conventional linear motor is asymmetric, achieves symmetric thrust-current characteristics, and increases electromagnetic thrust. It is an object of the present invention to provide a reciprocating moving coil type linear motor which is improved so as to be able to achieve the above, and to provide a compressor and a refrigerator which can operate efficiently by employing the moving coil type linear motor.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a ring-shaped permanent magnet magnetized in a radial direction and a mover arranged to be movable in the axial direction so as to face an inner circumferential magnetic pole surface of the permanent magnet. A movable coil, comprising a yoke that forms a closed magnetic path corresponding to the permanent magnet and the movable coil, and a movable coil linear motor that reciprocates the movable element by applying an alternating voltage to the movable coil;
A permanent magnet and a movable coil facing the permanent magnet are paired, and two pairs of permanent magnets and a movable coil are juxtaposed and spaced apart in the axial direction, and the magnetic pole polarity of the permanent magnet and the movable coil are arranged between each pair. After setting the energizing direction to the opposite direction, a yoke is provided which is divided into the outer peripheral side of the permanent magnet and the inner peripheral side of the movable coil and straddle the common yoke, and the permanent magnet and the movable coil of each pair are arranged via the yoke. A closed magnetic path passing in series is formed (claim 1). Here, an interval corresponding to at least the maximum amplitude of the mover is set between the two pairs of permanent magnets and the movable coil (claim 2).
[0015]
According to the above configuration, the direction of the magnetic flux generated by the current flowing through each of the two movable coils is opposite, and the total sum of the magnetic flux in the annular gap between the permanent magnet and the inner yoke is always It becomes zero. Therefore, the electromagnetic thrust generated in the movable coil due to the correlation between the current flowing through the coil and the magnetic flux of the permanent magnet is not affected by the direction of the coil current (alternating current) as in the conventional configuration, so that the reciprocating motion Thrust-current characteristics symmetrical in the direction can be achieved.
[0016]
Further, in the present invention, there is the following configuration based on the above configuration to further increase the electromagnetic thrust of the linear motor.
[0017]
(1) It straddles between the two pairs of permanent magnets (radially magnetized) that are juxtaposed and spaced apart in the axial direction, and the magnetic pole polarity is matched to the direction of the magnetic flux passing through the closed magnetic path in the axial direction. A magnetized ring-shaped permanent magnet is additionally provided and provided (claim 3). With this configuration, the magnetic force of the added permanent magnet (which is magnetized in the axial direction) is added to the magnetic circuit that passes through the two pairs of permanent magnets and the movable coil, and thereby the magnetic flux linked to the movable coil And the electromagnetic thrust of the linear motor increases.
[0018]
(2) A plurality of sets of permanent magnets and movable coils are juxtaposed and arranged in the axial direction with the two pairs of permanent magnets and movable coils as a set (claim 4). According to this configuration, the electromagnetic thrust of the linear motor increases in accordance with the number of sets of the permanent magnet and the movable coil.
[0019]
Further, a compressor is constructed by combining the movable coil linear motor having the above-described configuration as a drive motor, a closed casing which also serves as a pressure holding container for working gas, a piston, and a disk-shaped suspension spring for supporting the piston ( According to claim 5), a highly efficient compressor can be obtained, and a gas cycle engine refrigerator intended for a Stirling refrigerator, a pulse tube refrigerator, and the like is configured by employing the compressor (claim 6). Thus, a high-performance cryogenic refrigerator can be realized.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the examples shown in FIGS. In the drawings of the embodiment, members corresponding to FIGS. 5 and 6 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0021]
[Example 1]
FIG. 1 is a configuration diagram of a split type compressor employing a moving coil linear motor according to the present invention as a compressor applied to a Stirling refrigerator. Although the illustrated compressor 1 has basically the same structure as the conventional one shown in FIG. 4, the structure of the linear motor 6 is as follows. That is, the pressure-holding vessel 4 in which the working gas is sealed is a closed casing made of a non-magnetic material. Inside the gas-pressure chamber 3, the piston 2, the disk-shaped suspension springs 5, A moving coil linear motor 6 for reciprocatingly driving the piston 2 is incorporated. Reference numeral 13 denotes a cold head having a built-in displacer, 13a denotes a cold generating end thereof, and the displacer 13 is connected to the compressor 1 via the capillary tube 12.
[0022]
The operating principle of the Stirling refrigerator is well known. By operating the compressor 1 to generate pressure oscillations in the working gas in the system, four steps of isothermal compression, equal volume transfer, isothermal expansion, and equal volume transfer are performed. Is repeated, and extremely low temperature cold occurs in the cold head 3.
[0023]
Here, in the illustrated embodiment, the yoke forming the magnetic path of the moving coil linear motor 6 is separated into an outer yoke 7a in a ring shape and an inner yoke 7b disposed inside the yoke 7a. It is fixed inside the pressure holding container 4. Further, ring-shaped permanent magnets 8a and 8b which are magnetized in the radial direction by setting the magnetic pole polarity (N-pole and S-pole) of the inner and outer circumferences in opposite directions are formed on the inner circumferential wall surface of the outer circumferential side yoke 7a in the axial direction. The movable coils 9a and 9b are mounted so as to be spaced apart from each other and further divided into two movable coils 9a and 9b so as to individually face the inner peripheral magnetic pole surfaces of the permanent magnets 8a and 8b. The movable coil-type linear motor 6 is provided in an annular space between the yoke 7b and these members.
[0024]
FIGS. 2A and 2B are detailed structural views of the above-described linear motor. As shown, a permanent magnet 8a, a movable coil 9a, and a movable coil 9a are provided between an outer peripheral yoke 7a and an inner peripheral yoke 7b. The permanent magnet 8b and the movable coil 9b are paired, and two pairs of permanent magnets and the movable coil are arranged in the axial direction with a space C therebetween. With this configuration, a closed magnetic path returning from the permanent magnet 8a to the permanent magnet 8a via the outer peripheral side yoke 7a, the permanent magnet 8b, the movable coil 9b, the inner peripheral side yoke 7b, and the movable coil 9a is formed.
[0025]
Here, the length of the permanent magnets 8a and 8b in the axial direction is L, and an interval C corresponding to the maximum amplitude of the reciprocation of the piston 2 is set between the two. The left and right movable coils 9a and 9b supported by the bobbin 10 are arranged so as to face the permanent magnets 8a and 8b, respectively, and are set so that the directions of the currents are opposite to each other during operation. .
[0026]
When an alternating current is supplied to the movable coils 9a and 9b with such a configuration, the interaction between the current flowing through each coil and the permanent magnets 8a and 8b generates electromagnetic thrusts FL and FR corresponding to the directions of the current in the movable coil. Under the thrust, the piston 2 reciprocates in the compression direction and the expansion direction (see FIG. 1).
[0027]
In this case, the magnetic flux generated by the permanent magnets 8a and 8b is defined as φM, and the magnetic flux φI generated by the current flowing through the movable coils 9a and 9b, assuming that the movable coil 9a and the magnetic coils 9a and 9b are in the energized state shown in FIGS. The magnetic fluxes φI generated by the coil current of 9b are opposite to each other, and the total of the magnetic fluxes φI in the annular gap is always zero. Thus, the thrusts FL and FR acting on the movable coils 9a and 9b become values proportional to 2 × φM irrespective of the direction of the coil current (alternating current), and the thrust-current characteristics symmetrical in the reciprocating direction as a linear motor. Is obtained.
[0028]
Therefore, by adopting the movable coil linear motor 6 having the above configuration as the drive motor of the compressor 1 shown in FIG. 1, the amplitude neutral point of the reciprocating motion coincides with the neutral position initially set by the suspension spring 5. As a result, it is possible to eliminate a decrease in operating efficiency caused by the movement of the neutral point of the piston 2 which has been a problem in the conventional compressor, and to construct a Stirling refrigerator and a pulse tube refrigerator by using this compressor. By doing so, high refrigeration performance can be realized.
[0029]
In addition, in the linear motor of the illustrated embodiment, the following practical effects can be obtained in addition to the above-described thrust-current characteristics. That is,
(1) The length L of the permanent magnets 8a and 8b divided into two and arranged in the axial direction is equal to the length of one permanent magnet 7 in the conventional linear motor shown in FIGS. The magnetic poles of the permanent magnets 8a and 8b are reversed so that the magnetic flux φM passing in series through the permanent magnets 8a and 8b via the yoke 7a and 7b is also about 1/2. It becomes. Therefore, the cross-sectional area of the yoke 7a, 7b serving as the magnetic path of the magnetic flux φM is only about half that of the conventional linear motor, and the volume and weight of the entire yoke can be reduced to 50% or less. The weight can be reduced.
[0030]
(2) The number of turns of the movable coils 9a and 9b divided into two is approximately 1 / of that of one movable coil 9 of the conventional configuration, and therefore, the magnetic flux generated by the current flowing through each movable coil The magnetic flux density of the yoke 7a, 7b interlinking with φI is also reduced to approximately 2. As a result, iron loss generated in the yoke 7a, 7b is significantly reduced as compared with the conventional linear motor. FIG. 10 is a comparison diagram of iron loss between the conventional linear motor and the linear motor according to the embodiment of the present invention. If the iron loss due to the conventional motor is set to 100, the linear motor according to the present invention reduces the iron loss to 10 or less. It is confirmed that it can be done.
[0031]
[Example 2]
Next, FIG. 3 shows a configuration of an embodiment corresponding to claim 3 of the present invention, which is improved based on the configuration of the first embodiment described above so as to further increase the thrust of the linear motor.
[0032]
That is, in the configuration of the first embodiment shown in FIG. 2, a gap (gap) C is set between the ring-shaped permanent magnets (radially magnetized) 8a and 8b arranged in the axial direction. On the other hand, in the configuration of the embodiment shown in FIG. 3, a ring-shaped permanent magnet 8c is additionally provided between the permanent magnets 8a and 8b. The permanent magnet 8c has a different magnetization direction from the permanent magnets 8a and 8b, and is magnetized in the axial direction so that both end faces in the axial direction are N and S magnetic poles. The magnetic poles are arranged in such a manner that the north pole faces the left side and the south pole faces the right side as shown in FIG. The length D of the permanent magnet 8c corresponds to the gap length C in FIG.
[0033]
According to the above configuration, the magnetic force generated by the permanent magnet 8c is added to the magnetic force of the permanent magnets 8a, 8b when viewed from a closed magnetic path passing through the permanent magnets 8a, 8b, 8c and the movable coils 9a, 9b. Thereby, the magnetic flux linked with the movable coils 9a and 9b increases as compared with the configuration in FIG.
[0034]
FIG. 9 is a diagram showing the magnetic flux density distribution of the interlinkage magnetic flux at the average radius of the movable coils 9a and 9b in comparison with the configuration of the embodiment 2 and the configuration of FIG. 2 (embodiment 1). Compared to the magnetic flux density distribution of Example 1, the magnetic flux density distribution of Example 2 represented by a solid line has a higher magnetic flux density at the ends of the movable coil (the left end of the movable coil 9a and the right end of the movable coil 9b). Has become. In addition, when the test model was examined, the ratio of increase in magnetic flux interlinking with the movable coil was determined assuming that the interlinkage magnetic flux according to the configuration of the first embodiment was 100 as shown in FIG. As a result, the flux linkage was about 105, and the increase rate was 5%. Thereby, the electromagnetic force generated in the movable coil (proportional to the current of the movable coil × the magnetic flux density of the interlinkage magnetic flux), and therefore, the electromagnetic thrust as a linear motor is improved by about 5%.
[0035]
Further, when the magnetic flux passing through the yoke 7a on the outer peripheral side of the test model described above was examined, it was found that the magnetic flux was reduced by about 15% as shown in FIG. 12 as compared with the configuration of FIG. 2 (Example 1). Was. This is because most of the magnetic fluxes generated by the permanent magnets 9a and 9b pass through the outer peripheral yoke 7a as represented by φM−1 as simulated by the broken line in FIG. It is considered that the flow is diverted to the permanent magnet 8c without passing through the outer yoke 7a as indicated by -2.
[0036]
Therefore, in the design of the linear motor, based on the distribution of the magnetic fluxes φM-1 and φM-2, it is possible to reduce the cross-sectional area of the outer yoke 7a by about 15% as compared with the configuration of FIG. Therefore, the outer diameter of the yoke can be reduced by an amount corresponding to the reduction in the cross-sectional area, so that the linear motor can be made compact.
[0037]
[Example 3]
Next, FIG. 4 shows the configuration of an embodiment corresponding to claim 4 of the present invention. In this embodiment, two pairs of permanent magnets and movable coils (permanent magnets 8a and 9a, and permanent magnets 8b and movable coils 9b) described in the linear motor of the first embodiment (see FIG. 2) are combined. Two sets of permanent magnets and a movable coil were juxtaposed in the axial direction using the yoke 7a, 7b arranged on the inner and outer circumferences as a common yoke, and magnetized to a total of four permanent magnets. The polarity of the magnetic poles and the direction of the coil current flowing through each movable coil are set as shown in the figure.
[0038]
With this configuration, a set of permanent magnets 8a, 8b and movable coils 9a, 9b arranged in the left region of the yoke 7a, 7b, and a permanent magnet 8a, 8b and movable coil 9a, 9b, A closed magnetic path is individually formed in units of 9b, and an electromagnetic thrust is generated in the movable coil by supplying power to each movable coil in the same manner as described in the first embodiment. As a result, the thrust of the linear motor as a whole increases twice as compared with the first embodiment. In this embodiment, the permanent magnet 8a and the movable coil 9a, and the permanent magnet 8b and the movable coil 9b are set as a set, and two sets of the permanent magnet and the movable coil are juxtaposed in the axial direction. It is also possible to increase the generated thrust.
[0039]
In each of the embodiments described above, the linear motor employed in the compressor for the refrigerator has been described as an example, but the present invention is not limited to the application to the compressor, and the linear motor is used as a drive source. Needless to say, the present invention can be applied to other reciprocating drive devices.
[0040]
【The invention's effect】
As described above, according to the present invention, a ring-shaped permanent magnet magnetized in the radial direction and a movable coil of a mover arranged to be movable in the axial direction so as to face the inner peripheral magnetic pole surface of the permanent magnet And a moving coil linear motor that reciprocates a movable element by applying an alternating voltage to the movable coil, comprising a yoke that forms a closed magnetic path corresponding to the permanent magnet and the movable coil. Two pairs of permanent magnets and movable coils are juxtaposed and arranged in parallel with the movable coil, and the magnetic pole polarity of the permanent magnet and the direction of energization of the movable coil are set to be opposite between each pair. After that, a yoke is provided which is divided into the outer peripheral side of the permanent magnet and the inner peripheral side of the movable coil and extends in common, and a closed magnetic path passing in series through each pair of the permanent magnet and the movable coil through the yoke is provided. By forming
Providing a moving coil type linear motor that eliminates the problem of asymmetric thrust generated by conventional linear motors, and provides thrust-current characteristics that are symmetrical with respect to reciprocating motion, as well as reducing iron loss and reducing weight. can do.
[0041]
In addition, the electromagnetic thrust of the linear motor can be improved by adopting the configuration of claim 2 and claim 3 based on the above-described configuration. Can be miniaturized.
[0042]
By configuring a linear drive type compressor using the linear motor as a drive motor, a compressor with high operating efficiency can be obtained. Further, a Stirling refrigerator and a pulse tube refrigerator can be configured using this compressor. Thus, a cryogenic refrigerator capable of efficient freezing can be realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the entire configuration of a linear drive compressor corresponding to a first embodiment of the present invention employed in a Stirling refrigerator; FIG. 2 is a detailed structure of a movable coil linear motor in FIG. FIGS. 3A and 3B are diagrams showing operating states in which the directions of coil currents are different. FIG. 3 is a diagram showing a structure of a moving coil linear motor corresponding to a second embodiment of the present invention and a magnetic path thereof. FIG. 4 is a configuration diagram of a moving-coil linear motor corresponding to a third embodiment of the present invention; FIG. 5 is a cross-sectional configuration diagram of a linear drive compressor equipped with a conventional moving coil linear motor; 5 is a diagram illustrating the operation of the linear motor in FIG. 5, (a) and (b) are diagrams illustrating operating states in which the directions of coil currents are different. FIG. 7 is a diagram illustrating thrust characteristics of a linear motor having a conventional configuration. , (B) are FIG. 8 is a diagram showing the relationship between the neutral point movement of the suspension spring (disc spring) in the compressor of FIG. 5 and the coil current. FIG. Magnetic flux density distribution diagram at the average radius of each movable coil in comparison with Embodiment 2 and Embodiment 1 [FIG. 10] Comparison diagram of iron loss between the conventional linear motor and the linear motor of the present invention [FIG. FIG. 12 is a comparison diagram of the magnetic flux linked to the movable coil, showing the second embodiment of the present invention in comparison with the first embodiment. FIG. 12 is a diagram showing the outer periphery of the second embodiment of the present invention in comparison with the first embodiment. Comparison diagram of magnetic flux passing through the side yoke [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Piston 4 Holding vessel 5 Disc suspension spring 6 Moving coil type linear motor 7a Outer side yoke 7b Inner side yoke 8a, 8b, 8c Permanent magnets 9a, 9b Moving coil 10 Moving coil bobbin 13 Cold head of sterling refrigerator

Claims (6)

半径方向に着磁したリング状の永久磁石と、該永久磁石の内周磁極面に対峙して軸方向へ移動可能に配した可動子の可動コイルと、前記永久磁石と可動コイルに対応した閉磁路を形成する継鉄を備え、可動コイルに交番電圧を印加して可動子を往復動作させる可動コイル形リニアモータにおいて、
永久磁石とこれに対峙する可動コイルとを対にして、2対の永久磁石,可動コイルを軸方向に離間して並置配備し、かつ各対の間で永久磁石の磁極極性,および可動コイルの通電方向を逆向きに設定した上で、永久磁石の外周側および可動コイルの内周側に分けて共通にまたがる継鉄を配備し、該継鉄を介して各対の永久磁石および可動コイルを直列に経由する閉磁路を形成したことを特徴とする可動コイル形リニアモータ。
A ring-shaped permanent magnet magnetized in a radial direction, a movable coil of a mover arranged to be movable in the axial direction facing an inner peripheral magnetic pole surface of the permanent magnet, and a closed magnet corresponding to the permanent magnet and the movable coil A moving coil type linear motor that includes a yoke that forms a path and applies an alternating voltage to the moving coil to reciprocate the mover,
A permanent magnet and a movable coil facing the permanent magnet are paired, two pairs of permanent magnets and a movable coil are juxtaposed and arranged in the axial direction, and the magnetic pole polarity of the permanent magnet and the movable coil are arranged between each pair. After setting the energizing direction to the opposite direction, a yoke is provided which is divided into the outer peripheral side of the permanent magnet and the inner peripheral side of the movable coil and straddle the common yoke, and the permanent magnet and the movable coil of each pair are arranged via the yoke. A moving coil type linear motor, wherein a closed magnetic path passing in series is formed.
請求項1に記載のリニアモータにおいて、軸方向に離間して並置した2対の永久磁石,可動コイルの相互間に、少なくとも可動子の最大振幅に対応する間隔を設定したことを特徴とする可動コイル形リニアモータ。2. The linear motor according to claim 1, wherein an interval corresponding to at least the maximum amplitude of the mover is set between two pairs of permanent magnets and movable coils that are juxtaposed and spaced apart in the axial direction. Coil type linear motor. 請求項1に記載のリニアモータにおいて、軸方向に離間して並置した2対の永久磁石の間に跨がって、軸方向に着磁したリング状の永久磁石を介装配備したことを特徴とする可動コイル形リニアモータ。2. The linear motor according to claim 1, wherein a ring-shaped permanent magnet magnetized in the axial direction is interposed between two pairs of permanent magnets juxtaposed and spaced apart in the axial direction. Moving coil type linear motor. 請求項1または2に記載のリニアモータにおいて、2対の永久磁石,可動コイルを組として、軸方向に複数組の永久磁石,可動コイルを並置して構成したことを特徴とする可動コイル形リニアモータ。3. The linear motor according to claim 1, wherein a plurality of pairs of permanent magnets and movable coils are arranged in a pair in the axial direction, and two pairs of permanent magnets and movable coils are set. motor. 作動ガスの保圧容器を兼ねた密閉形ケーシングに、ピストン,ピストン支持用の円板形サスペンションばね,およびピストン駆動用のリニアモータを内装したリニア駆動式圧縮機において、前記リニアモータとして請求項1ないし4のいずれかに記載の可動コイル形リニアモータを装備したことを特徴とする圧縮機。2. A linear drive compressor in which a piston, a disk-shaped suspension spring for supporting a piston, and a linear motor for driving a piston are housed in a closed casing which also serves as a pressure holding container for working gas, wherein the linear motor is used as the linear motor. A compressor equipped with the moving coil linear motor according to any one of claims 4 to 4. スターリング冷凍機,パルスチューブ冷凍機などを対象とするガスサイクル機関冷凍機において、その圧縮機として請求項5記載のリニア駆動式圧縮機を装備したことを特徴とする冷凍機。A gas cycle engine refrigerator intended for a Stirling refrigerator, a pulse tube refrigerator, or the like, wherein the compressor is provided with the linear drive compressor according to claim 5 as a compressor thereof.
JP2002299022A 2002-05-30 2002-10-11 Moving coil linear motor, compressor, and refrigerator Pending JP2004056988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299022A JP2004056988A (en) 2002-05-30 2002-10-11 Moving coil linear motor, compressor, and refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002156682 2002-05-30
JP2002299022A JP2004056988A (en) 2002-05-30 2002-10-11 Moving coil linear motor, compressor, and refrigerator

Publications (1)

Publication Number Publication Date
JP2004056988A true JP2004056988A (en) 2004-02-19

Family

ID=31949055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299022A Pending JP2004056988A (en) 2002-05-30 2002-10-11 Moving coil linear motor, compressor, and refrigerator

Country Status (1)

Country Link
JP (1) JP2004056988A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278663A (en) * 2006-04-11 2007-10-25 Fuji Electric Holdings Co Ltd Vibration type compressor
WO2010080192A1 (en) * 2008-12-18 2010-07-15 Hoogerhyde Motor, Llc Reciprocating dual-action piston magnetic force motor and method
JP2010530517A (en) * 2007-05-16 2010-09-09 レイセオン カンパニー Cryocooler split flex suspension system and method
CN103671014A (en) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 Oppositely-arranged moving coil linear compressor adopting short-coil radial magnetization and manufacturing method
CN103972997A (en) * 2014-04-30 2014-08-06 宁波华斯特林电机制造有限公司 Magnet assembly of Stirling motor
CN108757381A (en) * 2018-05-31 2018-11-06 上海朗旦制冷技术有限公司 A kind of double cylinder opposed type oil-free linear compressor
CN113218097A (en) * 2021-06-02 2021-08-06 苏州大学张家港工业技术研究院 Integrated Stirling refrigerator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278663A (en) * 2006-04-11 2007-10-25 Fuji Electric Holdings Co Ltd Vibration type compressor
JP2010530517A (en) * 2007-05-16 2010-09-09 レイセオン カンパニー Cryocooler split flex suspension system and method
WO2010080192A1 (en) * 2008-12-18 2010-07-15 Hoogerhyde Motor, Llc Reciprocating dual-action piston magnetic force motor and method
US8058755B2 (en) 2008-12-18 2011-11-15 Hoogerhyde Motor, Llc Reciprocating dual-action piston magnetic force motor and method
CN103671014A (en) * 2013-11-21 2014-03-26 中国科学院上海技术物理研究所 Oppositely-arranged moving coil linear compressor adopting short-coil radial magnetization and manufacturing method
CN103972997A (en) * 2014-04-30 2014-08-06 宁波华斯特林电机制造有限公司 Magnet assembly of Stirling motor
CN108757381A (en) * 2018-05-31 2018-11-06 上海朗旦制冷技术有限公司 A kind of double cylinder opposed type oil-free linear compressor
CN113218097A (en) * 2021-06-02 2021-08-06 苏州大学张家港工业技术研究院 Integrated Stirling refrigerator

Similar Documents

Publication Publication Date Title
US5231337A (en) Vibratory acoustic compressor
JP4184273B2 (en) Electric converter, linear compressor and wireless transmission antenna
JPH076702B2 (en) Gas cycle engine
JP2007291991A (en) Vibration type compressor
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
US6138459A (en) Linear compressor for regenerative refrigerator
JP2001330329A (en) Linear compressor
WO2006062276A1 (en) Linera motor compressor
JP2550492B2 (en) Gas compressor
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
JP4612350B2 (en) Ring coil type linear motor and cylinder type compressor and pump using the same
KR100733043B1 (en) Linear motor and compressor having the linear motor
JP2002168174A (en) Linear motor compressor
JP5098499B2 (en) Linear compressor for regenerative refrigerator
JP2010213431A (en) Linear electromagnetic device
JP2003278652A (en) Linear motor drive type compressor and refrigerating machine therewith
JP2002339863A (en) Linear compressor
JP2010178484A (en) Linear electromagnetic driving device
JPS61210276A (en) Reciprocation type compressor
JP2867414B2 (en) Linear generator
JP2002295366A (en) Linear vibration actuator
JPH116658A (en) Vibration-type compressor
JP2009213210A (en) Vibrating motor
JP3566213B2 (en) Stirling refrigerator and operation control method thereof
JP2001224157A (en) Electromagnetic reciprocal drive mechanism