JP5098499B2 - Linear compressor for regenerative refrigerator - Google Patents

Linear compressor for regenerative refrigerator Download PDF

Info

Publication number
JP5098499B2
JP5098499B2 JP2007204496A JP2007204496A JP5098499B2 JP 5098499 B2 JP5098499 B2 JP 5098499B2 JP 2007204496 A JP2007204496 A JP 2007204496A JP 2007204496 A JP2007204496 A JP 2007204496A JP 5098499 B2 JP5098499 B2 JP 5098499B2
Authority
JP
Japan
Prior art keywords
yoke
linear compressor
movable body
piston
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007204496A
Other languages
Japanese (ja)
Other versions
JP2009041791A (en
Inventor
秀雄 三澤
秀城 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2007204496A priority Critical patent/JP5098499B2/en
Publication of JP2009041791A publication Critical patent/JP2009041791A/en
Application granted granted Critical
Publication of JP5098499B2 publication Critical patent/JP5098499B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、リニアモータによって駆動されるピストンでガスを圧縮する蓄冷型冷凍機用のリニア圧縮機に関するものである。   The present invention relates to a linear compressor for a regenerative refrigerator that compresses gas with a piston driven by a linear motor.

従来技術のリニア圧縮機は、機内部に往復動可能なピストンを備えた固定体と、固定体を継鉄部として磁気回路を形成する磁石と、ピストンに設けられ磁気回路の磁界内に配置されたコイルとを備えたリニアモータ圧縮機であって、固定体は、コイルの一側面に対向する第1の継鉄部分と、コイルの他側面に対向する第2の継鉄部分とを備えており、磁石は、第1の継鉄部分に設けられ第1の継鉄部分からコイルの一側面に向って突出する第1磁石と、第2の継鉄部分に設けられ第2の継鉄部分からコイルの他側面に向って突出する第2磁石とを備えている(例えば、特許文献1。)。   The linear compressor of the prior art is disposed in a magnetic field of a magnetic circuit provided in a piston, a fixed body having a piston that can reciprocate inside the machine, a magnet that forms a magnetic circuit using the fixed body as a yoke, and a piston. The fixed motor includes a first yoke portion facing one side of the coil and a second yoke portion facing the other side of the coil. And the magnet is provided in the first yoke portion and protrudes from the first yoke portion toward one side of the coil, and the second yoke portion is provided in the second yoke portion. And a second magnet protruding toward the other side of the coil (for example, Patent Document 1).

また、圧縮空間と膨張空間の間で作動ガスを移動させるディスプレーサと、リニアアクチュエータ(リニアモータ)によってシリンダ内を往復運動せしめるピストンとを備え、ピストンが往復運動することによりディスプレーサも往復運動して作動ガスの移動が生じるようにしたスターリング機関おいて、1本のシャフトの両端部にディスプレーサを1個ずつ固定するとともに、これらのディスプレーサの間にピストンを置き、このピストンが両側のディスプレーサに作用を及ぼすようにしたスターリング機関がある(例えば、特許文献2。)。
特許第2626364号公報 公開2005−36682号公報
It also has a displacer that moves the working gas between the compression space and the expansion space, and a piston that reciprocates in the cylinder by a linear actuator (linear motor), and the displacer reciprocates when the piston reciprocates. In a Stirling engine designed to cause gas movement, one displacer is fixed to each end of one shaft, and a piston is placed between these displacers, and this piston acts on both displacers. There is a Stirling engine as described above (for example, Patent Document 2).
Japanese Patent No. 2626364 Publication 2005-36682

しかしながら、特許文献1によれば、第1の磁石と、コイルと、第2の磁石と、第2の継鉄部と、連結部と、第1の継鉄部から形成される磁気回路において、コイルが第1の磁石と第2の磁石との間にコイルを配置するため、第1の磁石と第2の磁石との間はコイルの厚さと、コイルが巻かれるボビンの厚さの両方を加えた厚さより大きな間隙を設けなければならず、この間隙が磁気回路の磁気抵抗となってリニアモータの効率を低下させて圧縮機の効率が低下する問題がある。   However, according to Patent Document 1, in the magnetic circuit formed of the first magnet, the coil, the second magnet, the second yoke portion, the coupling portion, and the first yoke portion, Since the coil arranges the coil between the first magnet and the second magnet, both the thickness of the coil and the thickness of the bobbin around which the coil is wound are set between the first magnet and the second magnet. There is a problem that a gap larger than the added thickness must be provided, and this gap becomes a magnetic resistance of the magnetic circuit, reducing the efficiency of the linear motor and reducing the efficiency of the compressor.

また、特許文献2によれば、蓄冷型冷凍機の効率は、ガスの圧力損失やメカロスの少ない低い周波数で運転することが望ましい。一方、リニアアクチュエータは小さな力で多くの仕事をなさなければならないため、例えば60Hzと高い周波数で運転せざる得なく、冷凍機の効率が犠牲となる問題がある。   According to Patent Document 2, it is desirable that the efficiency of the regenerative refrigerator is operated at a low frequency with little gas pressure loss and mechanical loss. On the other hand, since the linear actuator has to do a lot of work with a small force, it has to be operated at a high frequency of 60 Hz, for example, and there is a problem that the efficiency of the refrigerator is sacrificed.

本発明は上記問題点に鑑みてなされたものであり、蓄冷型冷凍機の高い冷凍効率が得られる運転周波数で、高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a linear compressor for a regenerative refrigerator that is driven with high efficiency at an operating frequency at which high refrigerating efficiency of the regenerative refrigerator is obtained. Objective.

上記課題を解決するため、請求項1に記載の発明は、
磁性材の外部ヨークにコイルを備える外部固定子と、前記外部固定子に対し往復動し、磁性材の内部ヨークにピストンを備える可動体と、前記内部ヨークまたは前記外部ヨークのいずれかに備えられる永久磁石と、を備えるリニアモータと、
前記可動体が摺動可能に外接するとともに、前記外部固定子の内周面側に挿嵌される非磁性材のシリンダを備えるシリンダ部と、
前記シリンダ部と前記ピストンとによって形成される圧縮空間と、
前記ピストンに対して反対側の前記可動体とシリンダ部とによって形成されるバッファ空間と、を有する蓄冷型冷凍機用のリニア圧縮機であって、
前記リニア圧縮機は、前記蓄冷型冷凍機の冷凍発生部に接続され、
前記リニア圧縮機の共振周波数を可変とする調整部材を前記可動体に付加し
前記内部ヨークに孔を形成し、前記蓄冷型冷凍機運転周波数が、前記共振周波数より高い場合、前記シリンダ部に固定した磁性材の内部固定子を前記孔に往復動可能に挿入する、ことを特徴とする蓄冷型冷凍機用のリニア圧縮機を提供する。
In order to solve the above-mentioned problem, the invention described in claim 1
An external stator having a coil on an external yoke of magnetic material, a movable body that reciprocates with respect to the external stator and having a piston on an internal yoke of magnetic material, and either the internal yoke or the external yoke. A linear motor comprising a permanent magnet;
A cylinder part including a cylinder of a non-magnetic material that is slidably circumscribed by the movable body and is fitted to the inner peripheral surface side of the external stator;
A compression space formed by the cylinder part and the piston;
A linear compressor for a regenerative refrigerating machine having a buffer space formed by the movable body and a cylinder portion opposite to the piston,
The linear compressor is connected to a refrigeration generator of the regenerator type refrigerator,
An adjustment member that makes the resonance frequency of the linear compressor variable is added to the movable body ,
A hole is formed in the internal yoke, and when the regenerative refrigerator operating frequency is higher than the resonance frequency, an internal stator made of a magnetic material fixed to the cylinder portion is removably inserted into the hole. A linear compressor for a regenerator type refrigerator is provided.

また、請求項の発明は、調整部材およびピストンの少なくとも一つを非磁性体とした。 According to a second aspect of the present invention, at least one of the adjusting member and the piston is a non-magnetic material.

請求項1に記載の発明では、永久磁石を備えるリニアモータのコイルに交流電流を通電し、ピストンを備えた可動体を往復動させ、圧縮空間でガスを圧縮することにより、ピストンの往復動により生じる圧縮空間のガスバネと、バッファ空間のガスバネと、リニアモータによって生じる磁気バネとで合成される合成バネと、可動体の質量とが作用し合い振動系が形成される。このリニア圧縮機のバネ・質量の振動系は固有の共振周波数をもち、この共振周波数の近傍で運転すると可動体のストロークが大きくなり高い効率でガスを圧縮する。可動体の質量を増減するとリニア圧縮機の共振周波数は変わる。従って、リニア圧縮機の共振周波数を蓄冷型冷凍機の周波数に合わせるように可動体の質量を増減でき、高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機を提供できる。   According to the first aspect of the present invention, an alternating current is applied to a coil of a linear motor including a permanent magnet, a movable body including a piston is reciprocated, and a gas is compressed in a compression space. A vibration system is formed by the action of the combined spring formed by the gas spring in the compression space, the gas spring in the buffer space, and the magnetic spring generated by the linear motor, and the mass of the movable body. The spring / mass vibration system of this linear compressor has a unique resonance frequency. When operated near this resonance frequency, the stroke of the movable body becomes large and the gas is compressed with high efficiency. When the mass of the movable body is increased or decreased, the resonance frequency of the linear compressor changes. Therefore, the mass of the movable body can be increased or decreased so that the resonance frequency of the linear compressor matches the frequency of the regenerative refrigerator, and a linear compressor for a regenerative refrigerator that is driven with high efficiency can be provided.

また、外部ヨークと内部ヨークおよび外部ヨークと永久磁石とは、シリンダと、該シリンダと可動体との間隙とを介在し磁気回路が形成されており、シリンダのシリンダ肉厚を薄くすること、前記間隙の幅を微小にすることとで、外部ヨークと内部ヨークの間の磁気ギャップおよび外部ヨークと永久磁石の間の磁気ギャップは小さくでき、これらの磁気ギャップは従来技術のコイル可動型のリニアモータのコイル配置によって生じる磁気ギャップより小さくなり、従来技術のコイル可動型のリニアモータよりも効率が向上し、蓄冷型冷凍機用のリニア圧縮機の効率が高くなる。   Further, the outer yoke and the inner yoke, and the outer yoke and the permanent magnet are formed with a magnetic circuit through a cylinder and a gap between the cylinder and the movable body, and the cylinder thickness of the cylinder is reduced, By minimizing the width of the gap, the magnetic gap between the outer yoke and the inner yoke and the magnetic gap between the outer yoke and the permanent magnet can be reduced. These magnetic gaps are the conventional coil-movable linear motors. This is smaller than the magnetic gap generated by the coil arrangement, improves the efficiency compared to the conventional coil movable linear motor, and increases the efficiency of the linear compressor for the regenerative refrigerator.

更に、蓄冷型冷凍機の運転周波数が、リニア圧縮機の共振周波数より高い場合、内部ヨークに設けた孔に対して、シリンダ部に固定した磁性材の内部固定子を微小な間隙を持って往復動可能に挿入することで、内部ヨークに設けた孔の質量分、可動体の質量は減少し、リニア圧縮機の共振周波数は内部ヨークに孔を設けない場合より高くなり、該共振周波数を蓄冷型冷凍機の運転周波数に合わせることが出来る。従って、高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機を提供できる。 Furthermore , when the operating frequency of the regenerative refrigerator is higher than the resonance frequency of the linear compressor, the magnetic material internal stator fixed to the cylinder part reciprocates with a small gap from the hole provided in the internal yoke. By movably inserting, the mass of the hole provided in the inner yoke and the mass of the movable body are reduced, and the resonance frequency of the linear compressor becomes higher than when no hole is provided in the inner yoke. It can be adjusted to the operating frequency of the type refrigerator. Therefore, it is possible to provide a linear compressor for a regenerative refrigerator that is driven with high efficiency.

内部固定子は磁性材であるのでリニアモータの磁束は、内部ヨークと内部固定子との間の間隙と、内部固定子とを通過し、磁気飽和を起すようなことはほとんどない。シリンダのシリンダ肉厚を薄くすること、シリンダと可動体との間隙の幅を微小にすることとで、請求項1と同じ理由で外部固定子と可動体の間の磁気抵抗は小さくなり、また内部ヨークと内部固定子の間隙を微小にすることにより、該間隙による磁気抵抗も小さくなり、従来技術のコイル可動型のリニアモータよりも効率が向上し、蓄冷型冷凍機用のリニア圧縮機の効率が高くなる。   Since the internal stator is a magnetic material, the magnetic flux of the linear motor hardly passes through the gap between the internal yoke and the internal stator and the internal stator and causes magnetic saturation. By reducing the cylinder wall thickness of the cylinder and reducing the width of the gap between the cylinder and the movable body, the magnetic resistance between the external stator and the movable body is reduced for the same reason as in claim 1, and By reducing the gap between the inner yoke and the inner stator, the magnetic resistance due to the gap is also reduced, and the efficiency is improved over the conventional coil-movable linear motor, and the linear compressor for the regenerative refrigerator is used. Increases efficiency.

また、請求項に記載の発明では、調整部材およびピストンの少なくと一つが非磁性体
あることにより、調整部材およびピストンの少なくとも一つは磁束が流れ難く、無駄な漏
れ磁束が少なくなるので、蓄冷冷凍機用のリニア圧縮機の効率が高くなる。
Further, in the invention according to claim 2 , since at least one of the adjusting member and the piston is a non-magnetic material, at least one of the adjusting member and the piston hardly flows magnetic flux, and wasteful leakage magnetic flux is reduced. The efficiency of the linear compressor for the cold storage refrigerator is increased.

以下に本発明の実施例の図面を参照しつつ詳細に説明する。   The present invention will be described in detail below with reference to the drawings of the embodiments of the present invention.

(実施例1)
図1は、本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で、永久磁石が内部ヨークに設けられる場合を示す。詳しくは、リニア圧縮機の共振周波数を蓄冷型冷凍機の冷凍効率を高くする運転周波数に合わせる調整を示す図である。
Example 1
FIG. 1 is a cross-sectional view in which a refrigeration generator is connected to a linear compressor for a regenerative refrigerator according to the present invention, and shows a case where a permanent magnet is provided on an internal yoke. In detail, it is a figure which shows the adjustment which adjusts the resonance frequency of a linear compressor to the operating frequency which makes the refrigerating efficiency of a cool storage type refrigerator high.

蓄冷型冷凍機の冷凍効率を高くする運転周波数が、リニア圧縮機の共振周波数より低い場合に対応する共振周波数の調整を示す図である。 It is a figure which shows adjustment of the resonance frequency corresponding to the case where the operation frequency which raises the refrigerating efficiency of a cool storage type refrigerator is lower than the resonance frequency of a linear compressor.

蓄冷型冷凍機20aは、リニア圧縮機20に冷凍発生部18が接続され、リニア圧縮機20は、シリンダ部1と、シリンダ部1に外嵌するリニアモータ5の外部固定子6と、シリンダ部1に摺動可能に挿入されるリニアモータ5の可動体10とから構成される。   The regenerative refrigerator 20a has a refrigeration generator 18 connected to the linear compressor 20, and the linear compressor 20 includes the cylinder portion 1, the external stator 6 of the linear motor 5 that fits outside the cylinder portion 1, and the cylinder portion. 1 and a movable body 10 of a linear motor 5 that is slidably inserted into the body 1.

シリンダ部1は、円筒状のシリンダ2と、円筒状のシリンダ2の両端にそれぞれ気密に固着されるヘッド3と、キャップ4とから構成され、ヘッド3はガスが流動する流路孔3aを備える。   The cylinder portion 1 includes a cylindrical cylinder 2, a head 3 that is airtightly fixed to both ends of the cylindrical cylinder 2, and a cap 4, and the head 3 includes a flow path hole 3 a through which a gas flows. .

リニアモータ5の外部固定子6は、磁性材の外ヨーク8とコイル7を備える。外ヨーク8は、断面が略コの字状の形状をしており、外ヨーク8がシリンダ2の外周面にリング形状に外嵌固定される。コイル7は、シリンダ2の軸周りに導線が巻かれ、外ヨーク8の略コの字状の溝に装着される。尚、上記したリニアモータ5の外部固定子6においては、磁性材の外ヨーク8を径軸方向に2分割しても良い。   The external stator 6 of the linear motor 5 includes an outer yoke 8 and a coil 7 made of a magnetic material. The outer yoke 8 has a substantially U-shaped cross section, and the outer yoke 8 is externally fixed to the outer peripheral surface of the cylinder 2 in a ring shape. The coil 7 has a conducting wire wound around the axis of the cylinder 2 and is mounted in a substantially U-shaped groove of the outer yoke 8. In the external stator 6 of the linear motor 5 described above, the outer yoke 8 made of a magnetic material may be divided into two in the radial axis direction.

リニアモータ5の可動体10は、略円柱形状の磁性材の内部ヨーク11と、内部ヨーク11の中央外周に設けた溝に接着された円筒状の永久磁石12と、内部ヨーク11に配備されるピストン13と、調整部材14とが設けられる。永久磁石12は、径方向に、例えば外周面側がN極、内周面側がS極に磁化される。内部ヨーク11の両端の凸部には、それぞれ非磁性材のピストンと非磁性材の調整部材14が篏合固定される。また、内部ヨーク11の両端側の外周面には樹脂摺動材のライダリング11aが接着され、ライダリング11aの外周面は、シリンダ2の内周面に対し微小な間隙(例えば略0.02mm)を持って挿入されスムーズに摺動できるとともに、内部ヨーク11と、永久磁石12と、ピストン13と、調整部材14のそれぞれの外周面がシリンダ2の内周面に接触するの防ぐ。   The movable body 10 of the linear motor 5 is disposed on the inner yoke 11 of a substantially columnar magnetic material, a cylindrical permanent magnet 12 bonded to a groove provided on the center outer periphery of the inner yoke 11, and the inner yoke 11. A piston 13 and an adjustment member 14 are provided. The permanent magnet 12 is magnetized in the radial direction, for example, the outer peripheral surface side is an N pole and the inner peripheral surface side is an S pole. A non-magnetic piston and a non-magnetic adjusting member 14 are fixedly engaged with the convex portions at both ends of the inner yoke 11. Also, a resin sliding material rider ring 11a is bonded to the outer peripheral surfaces of both ends of the inner yoke 11, and the outer peripheral surface of the rider ring 11a has a minute gap (for example, approximately 0.02 mm) with respect to the inner peripheral surface of the cylinder 2. ) And can slide smoothly, and the outer peripheral surfaces of the inner yoke 11, the permanent magnet 12, the piston 13, and the adjusting member 14 are prevented from coming into contact with the inner peripheral surface of the cylinder 2.

ピストン13は、樹脂摺動材のピストンリング13aが設けられ、ピストン13と、ピストンリング13aと、シリンダ部1とから圧縮空間15が形成される。また、シリンダ部1と、調整部材14を備えた可動体10と、ピストンリング13aとからバッファ空間16が形成される。   The piston 13 is provided with a piston ring 13 a made of a resin sliding material, and a compression space 15 is formed from the piston 13, the piston ring 13 a, and the cylinder portion 1. In addition, a buffer space 16 is formed from the cylinder portion 1, the movable body 10 including the adjustment member 14, and the piston ring 13 a.

圧縮空間15は、ヘッド3の流路孔3aから配管17を介して、例えば、スターリング冷凍機やパルス冷凍機などの蓄冷型冷凍機20aの冷凍発生部18に接続され、シリンダ部1内にはヘリウムが充填される。   The compression space 15 is connected to a refrigeration generator 18 of a regenerator chiller 20 a such as a Stirling refrigerator or a pulse refrigerator from a flow path hole 3 a of the head 3 through a pipe 17. Filled with helium.

図2は、本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で、永久磁石が内部ヨークに設けられる場合を示す。詳しくは、蓄冷型冷凍機の冷凍効率を高くする運転周波数が、リニア圧縮機の共振周波数より高い場合に対応する共振周波数の調整を示す図である。図2において、外部固定子、シリンダ部およびその構成部材は、図1と同じであるので、図1と同一の符号を付す。   FIG. 2 is a cross-sectional view in which a refrigeration generating unit is connected to a linear compressor for a regenerative refrigerator according to the present invention, and shows a case where a permanent magnet is provided in an internal yoke. In detail, it is a figure which shows adjustment of the resonant frequency corresponding to the case where the operating frequency which makes the refrigerating efficiency of a cool storage type refrigerator high is higher than the resonant frequency of a linear compressor. In FIG. 2, the external stator, the cylinder portion, and the constituent members thereof are the same as those in FIG.

図2に示される蓄冷型冷凍機40aのリニア圧縮機40が図1のリニア圧縮機20と異なる点は、リニアモータ35の可動体30の構造が異なることと、新たに内部固定子34が設けられたことである。即ち、磁性材の内部ヨーク31は、貫通する孔31bが設けられ、孔31bの内周面に対し微小な間隙(例えば、略0.05mm)を持って磁性材の内部固定子34が挿入され、内部固定子34はキャップ4の凹部に固定される。   The linear compressor 40 of the regenerative refrigerator 40a shown in FIG. 2 differs from the linear compressor 20 of FIG. 1 in that the structure of the movable body 30 of the linear motor 35 is different and a new internal stator 34 is provided. It is that. That is, the magnetic material inner yoke 31 is provided with a through hole 31b, and the magnetic material inner stator 34 is inserted into the inner peripheral surface of the hole 31b with a small gap (for example, approximately 0.05 mm). The internal stator 34 is fixed to the recess of the cap 4.

内部ヨーク31の一端側の凸には、非磁性材のピストン33が篏合固定され、ピストン33には樹脂摺動材のピストンリング33aが設けられる。また、内部ヨーク31の外周側には、図1の内部ヨーク11と同様に2つ割りで同じよに磁化された永久磁石32と、樹脂摺動材のライダリング31aが接着される。このようにして可動体30は、ライダリング31aを備えた内部ヨーク31と、永久磁石32と、ピストンリング33aを備えたピストン33とから構成される。   A piston 33 made of a non-magnetic material is mated and fixed to the convex on one end side of the inner yoke 31, and a piston ring 33 a made of a resin sliding material is provided on the piston 33. Further, a permanent magnet 32 that is magnetized in the same manner in two portions and a rider ring 31a made of a resin sliding material are bonded to the outer peripheral side of the inner yoke 31 in the same manner as the inner yoke 11 in FIG. In this way, the movable body 30 includes the internal yoke 31 provided with the rider ring 31a, the permanent magnet 32, and the piston 33 provided with the piston ring 33a.

ピストン33とヘッド3側のシリンダ部1との間に圧縮空間15が形成され、キャップ4側のシリンダ部1と、可動体30の内部ヨーク31と、内部固定子34との間にバッファ空間36が形成される。   A compression space 15 is formed between the piston 33 and the cylinder portion 1 on the head 3 side, and a buffer space 36 is provided between the cylinder portion 1 on the cap 4 side, the internal yoke 31 of the movable body 30, and the internal stator 34. Is formed.

尚、内部固定子34のピストン33側の端面が図2の2点鎖線で示されるように短く、且つ可動体30がフルストローク移動してもピストン33の背面に当らない場合は、ピストン33の背部の空間33bを設けなくてもよい。   If the end face of the internal stator 34 on the piston 33 side is short as shown by the two-dot chain line in FIG. 2 and the movable body 30 does not hit the back surface of the piston 33 even if it moves full stroke, The back space 33b may not be provided.

次に、実施例1の作用と効果について説明する。   Next, the operation and effect of the first embodiment will be described.

図1においてコイル7が無通電の場合、可動体10は、永久磁石12により図示の中立位置に保持される。コイル7に電流を流すと、図示の太線の閉じた磁束が生じ、可動体10は矢印A方向に移動する。電流の流れ方向を反対にすると、磁束の方向も変わり、矢印Aと反対の方向に移動する。つまりコイル7に交流電流を通電すると、可動体10が往復動し、圧縮空間15でヘリウムが圧縮、膨張され、圧縮空間15のヘリウムは配管17を介して蓄冷型冷凍機20aの冷凍発生部18へ往復流動を繰り返し、冷凍発生部18で冷凍を発生する。   In FIG. 1, when the coil 7 is not energized, the movable body 10 is held by the permanent magnet 12 in the neutral position shown in the figure. When a current is passed through the coil 7, a magnetic flux with a thick line shown in the figure is generated, and the movable body 10 moves in the direction of arrow A. When the current flow direction is reversed, the direction of the magnetic flux is also changed, and moves in the direction opposite to the arrow A. That is, when an alternating current is applied to the coil 7, the movable body 10 reciprocates, and helium is compressed and expanded in the compression space 15. The refrigeration generator 18 generates refrigeration by repeating the reciprocating flow.

可動体10は、圧縮空間15のヘリウムの圧縮、膨張によって生じるガスバネと、バッファ空間16のヘリウムの圧縮、膨張によって生じるガスバネと、永久磁石12の磁気バネとを合成した合成バネとにより振動系を形成し、固有の共振周波数を持つ。   The movable body 10 has a vibration system composed of a gas spring generated by compression and expansion of helium in the compression space 15, a gas spring generated by compression and expansion of helium in the buffer space 16, and a magnetic spring of the permanent magnet 12. Formed and has a unique resonant frequency.

図2のリニア圧縮機40も図1のリニア圧縮機20と同様に、コイル7に交流電流を通電すると、可動体30が往復動し、蓄冷型冷凍機40aの冷凍発生部18で冷凍を発生する。また、可動体30も、圧縮空間15で生じるガスバネと、バッファ空間36で生じるガスバネと、永久磁石32の磁気バネとを合成した合成バネとにより振動系を形成し、固有の共振周波数を持つ。   As in the linear compressor 20 of FIG. 1, when the AC current is supplied to the coil 7, the movable body 30 reciprocates and the refrigeration generator 18 of the regenerator type refrigerator 40a generates refrigeration in the linear compressor 40 of FIG. To do. The movable body 30 also forms a vibration system by a synthetic spring obtained by synthesizing the gas spring generated in the compression space 15, the gas spring generated in the buffer space 36, and the magnetic spring of the permanent magnet 32, and has a specific resonance frequency.

リニア圧縮機20、40は共に、共振周波数の近傍で稼動すると可動体10、30のストロークが大きくなり、圧縮効率が高くなり、可動体10、30の質量を変えるとリニア圧縮機20、40の共振周波数はそれぞれ変わる。   When both linear compressors 20 and 40 are operated in the vicinity of the resonance frequency, the strokes of the movable bodies 10 and 30 are increased, the compression efficiency is increased, and when the mass of the movable bodies 10 and 30 is changed, the linear compressors 20 and 40 The resonance frequency varies.

蓄冷型冷凍機20a、40aの冷凍発生部18の冷凍効率を高くする運転周波数は、必ずしもリニア圧縮機20、40の効率を高くする共振周波数とが合うとは限らず、リニア圧縮機20、40の共振周波数を高い冷凍効率が得られる冷凍機の運転周波数に合わせるとリニア圧縮機20、40の消費電力が少なく、蓄冷型冷凍機20a、40aの冷凍発生部18で発生する冷凍量は大きくなる。   The operating frequency for increasing the refrigeration efficiency of the refrigeration generator 18 of the regenerators 20a and 40a does not necessarily match the resonance frequency for increasing the efficiency of the linear compressors 20 and 40. When the resonance frequency of the linear compressors 20 and 40 is matched with the operation frequency of the refrigerator that can obtain high refrigeration efficiency, the power consumption of the linear compressors 20 and 40 is small, and the amount of refrigeration generated by the refrigeration generator 18 of the regenerators 20a and 40a increases. .

従って、蓄冷型冷凍機20aの冷凍効率を高くする運転周波数が、リニア圧縮機20の共振周波数より低い場合は、可動体10の調整部材14を配設したり、調整部材14の質量を大きくすることで、可動体10の質量が増加でき、可動体10の共振周波数は低くなり、該共振周波数は蓄冷型冷凍機20aの冷凍効率を高くする運転周波数に合うとともに、リニア圧縮機の圧縮効率が高くなる。   Therefore, when the operating frequency for increasing the refrigeration efficiency of the regenerative refrigerator 20a is lower than the resonance frequency of the linear compressor 20, the adjustment member 14 of the movable body 10 is disposed or the mass of the adjustment member 14 is increased. Thus, the mass of the movable body 10 can be increased, the resonance frequency of the movable body 10 is lowered, and the resonance frequency matches the operating frequency for increasing the refrigeration efficiency of the regenerator chiller 20a, and the compression efficiency of the linear compressor is increased. Get higher.

蓄冷型冷凍機20aの冷凍効率を高くする運転周波数が、リニア圧縮機20の共振周波数より高い場合は、可動体10に調整部材14の質量を小さくしたり、調整部材14を取除いたり、あるいはピストン53の背面に空間を配備してピストン53の質量を小さくすることにより、可動体10の質量が減少でき、可動体10の共振周波数は高くなり、該共振周波数は蓄冷型冷凍機20aの冷凍効率を高くする運転周波数に合うとともに、リニア圧縮機の圧縮効率が高くなる。   When the operating frequency for increasing the refrigerating efficiency of the regenerator 20a is higher than the resonance frequency of the linear compressor 20, the mass of the adjusting member 14 is reduced in the movable body 10, the adjusting member 14 is removed, or By arranging a space on the back surface of the piston 53 to reduce the mass of the piston 53, the mass of the movable body 10 can be reduced, the resonance frequency of the movable body 10 is increased, and the resonance frequency is reduced by the freezing of the regenerative refrigerator 20a. While matching the operating frequency to increase the efficiency, the compression efficiency of the linear compressor is increased.

以上により、リニア圧縮機20の共振周波数を蓄冷型冷凍機20aの冷凍効率を高くする周波数に合わせるように可動体10の質量を調整でき、蓄冷型冷凍機20aの高い冷凍効率が得られる運転周波数で、高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機20を提供する。   As described above, the mass of the movable body 10 can be adjusted so that the resonance frequency of the linear compressor 20 matches the frequency at which the refrigerating efficiency of the regenerator refrigerator 20a is increased, and the operating frequency at which high refrigerating efficiency of the regenerator refrigerator 20a is obtained. Thus, the linear compressor 20 for a regenerative refrigerator that is driven with high efficiency is provided.

また、蓄冷型冷凍機40aの冷凍効率を高くする運転周波数が、リニア圧縮機40の共振周波数より高い場合は、内部ヨーク31に設けた孔31bに対して、シリンダ部1に固定した磁性材の内部固定子34を微小な間隙を持って往復動可能に挿入する。従って、挿入することで、内部ヨーク31に設けた孔31bの質量分、可動体30の質量は減少し、リニア圧縮機40の共振周波数は内部ヨーク31に孔31bを設けない場合より高くなり、該共振周波数を蓄冷型冷凍機40aの冷凍効率を高くする運転周波数に合わせることが出来る。従って、蓄冷型冷凍機40aの高い冷凍効率が得られる運転周波数で、高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機40を提供できる。   In addition, when the operating frequency for increasing the refrigerating efficiency of the regenerator 40a is higher than the resonance frequency of the linear compressor 40, the magnetic material fixed to the cylinder portion 1 with respect to the hole 31b provided in the internal yoke 31 is used. The internal stator 34 is inserted so as to be able to reciprocate with a small gap. Therefore, by inserting, the mass of the movable body 30 is reduced by the mass of the hole 31b provided in the inner yoke 31, and the resonance frequency of the linear compressor 40 is higher than that in the case where the hole 31b is not provided in the inner yoke 31, The resonance frequency can be adjusted to the operating frequency that increases the refrigeration efficiency of the regenerator type refrigerator 40a. Accordingly, it is possible to provide the linear compressor 40 for a regenerative refrigerator that is driven with high efficiency at an operation frequency at which high refrigerating efficiency of the regenerative refrigerator 40a is obtained.

図2に示すように、ピストン33の背面に空間33bを設けて、可動体30の質量を小さくして、リニア圧縮機40の共振周波数を調整しても良い。   As shown in FIG. 2, a space 33 b may be provided on the back surface of the piston 33 to reduce the mass of the movable body 30 and adjust the resonance frequency of the linear compressor 40.

磁気回路の観点から見ると、外部ヨーク8と内部ヨーク11(図1)、31(図2)と、外部ヨーク8と永久磁石12(図1)、32(図2)とは、シリンダ2と、シリンダ2と可動体10(図2)、30(図3)とのそれぞれの間隙とを介在して磁気回路が形成されており、シリンダ部1のシリンダ2の肉厚を薄くすること、シリンダ2と可動体10(図1)、30(図2)との間のそれぞれの間隙を小さくすることで、外部ヨーク8と内部ヨーク11、31のそれぞれ磁気ギャップG1(図1、図2)、外部ヨーク8と永久磁石12、32の磁気ギャップG1(図1、図2)は小さくなり、磁気ギャップG1は従来技術のコイル可動型のリニアモータのコイル配置によって生じる磁気ギャップより小さくなる。また、内部固定子34は磁性材であるのでリニアモータ35の磁束は、内部ヨーク31と内部固定子34の間隙と、内部固定子34とを通過し、磁束が飽和することはほとんど起こらない。内部ヨーク31と内部固定子34の間隙も微小であり、この間隙に基づく磁気ギャップG2(図2)による磁気抵抗も小さいので、この場合の磁気回路の磁気抵抗は内部固定子34に孔31bがない場合とほぼ同じある。従って、内部固定子34に孔31bがない場合と、孔31bがある場合のいずれの場合も、従来技術のコイル可動型のリニアモータより磁気回路の磁気抵抗が小さく、リニアモータ5、35の効率は従来技術より高くなる。   From the viewpoint of the magnetic circuit, the outer yoke 8, the inner yoke 11 (FIG. 1), 31 (FIG. 2), the outer yoke 8, and the permanent magnets 12 (FIG. 1), 32 (FIG. 2) are the cylinder 2 and A magnetic circuit is formed through the gaps between the cylinder 2 and the movable body 10 (FIG. 2) and 30 (FIG. 3), and the cylinder 2 of the cylinder portion 1 is made thin. 2 and the movable body 10 (FIG. 1) and 30 (FIG. 2) by reducing the respective gaps, the magnetic gap G1 (FIGS. 1 and 2) between the outer yoke 8 and the inner yokes 11 and 31, respectively. The magnetic gap G1 (FIGS. 1 and 2) between the outer yoke 8 and the permanent magnets 12 and 32 is small, and the magnetic gap G1 is smaller than the magnetic gap generated by the coil arrangement of the conventional coil movable linear motor. Further, since the internal stator 34 is a magnetic material, the magnetic flux of the linear motor 35 passes through the gap between the internal yoke 31 and the internal stator 34 and the internal stator 34, and the magnetic flux is hardly saturated. Since the gap between the inner yoke 31 and the inner stator 34 is very small and the magnetic resistance due to the magnetic gap G2 (FIG. 2) based on this gap is small, the magnetic resistance of the magnetic circuit in this case is such that the hole 31b is formed in the inner stator 34. There is almost the same as not. Therefore, in both cases where the internal stator 34 has no hole 31b and the hole 31b, the magnetic resistance of the magnetic circuit is smaller than that of the conventional coil movable linear motor, and the efficiency of the linear motors 5 and 35 is improved. Is higher than the prior art.

また、永久磁石12、32がシリンダ部1の内部の可動体10、30に配備されるのでリニアモータ5、35が小型になる。   Further, since the permanent magnets 12 and 32 are arranged on the movable bodies 10 and 30 inside the cylinder portion 1, the linear motors 5 and 35 are reduced in size.

調整部材14およびピストン13、33の少なくと一つが非磁性体であることにより、調整部材14およびピストン13、3の少なくと一つは磁束が流れ難く、無駄な漏れ磁束が少なくなるので、蓄冷型冷凍機用のリニア圧縮機20、40の効率が高くなる。   Since at least one of the adjustment member 14 and the pistons 13 and 33 is a non-magnetic material, at least one of the adjustment member 14 and the pistons 13 and 3 hardly flows magnetic flux, and wasteful magnetic flux leakage is reduced. The efficiency of the linear compressors 20 and 40 for the type refrigerator is increased.

尚、ピストン13、33にはピストンリング13a、33aを設けてガスをシールするが、ピストンリング13a、33aを設けずピストン13、33に樹脂摺動部材のリング(図示せず)を接着し、リングの外周面とシリンダ2の内周面の間隙を微小にしたクリアランスシール方式でガスをシールしてもよい。この場合、内部ヨーク11、31のピストン側に設けたライダリング11a、31aは設けなくてもよい。   The pistons 13 and 33 are provided with piston rings 13a and 33a to seal the gas, but the piston rings 13a and 33a are not provided, and a ring (not shown) of a resin sliding member is bonded to the pistons 13 and 33. The gas may be sealed by a clearance seal method in which the gap between the outer peripheral surface of the ring and the inner peripheral surface of the cylinder 2 is made minute. In this case, the rider rings 11a and 31a provided on the piston side of the inner yokes 11 and 31 may not be provided.

また、バッファ空間16、36側の可動体10、30の端部をシリンダ部1に固定された板バネ(図示せず)で可動体10,30とシリンダ2が同心になるように支持してもよい。この場合、前述の合成バネは、新たに板バネが加わり、板バネと、圧縮空間15のガスバネと、バッファ空間16、36のガスバネと、磁気バネとを合成したものになる。また、可動体10、30は、ガスシールをクリアランスシールにし、支持を板バネで支持することで、内部ヨーク11、31に接着したライダリング11a、31aを設けないように構成してもよい。   Further, the end portions of the movable bodies 10 and 30 on the buffer spaces 16 and 36 side are supported by a leaf spring (not shown) fixed to the cylinder portion 1 so that the movable bodies 10 and 30 and the cylinder 2 are concentric. Also good. In this case, the above-described combined spring is a combination of a leaf spring, a leaf spring, a gas spring in the compression space 15, a gas spring in the buffer spaces 16 and 36, and a magnetic spring. The movable bodies 10 and 30 may be configured not to provide the rider rings 11a and 31a bonded to the internal yokes 11 and 31 by using a clearance seal as a gas seal and supporting the support with a leaf spring.

(実施例2)
図3は、本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で、永久磁石が外部ヨークに設けられた場合を示す。詳しくは、リニア圧縮機の共振周波数を蓄冷型冷凍機の冷凍効率を高くする運転周波数に合わせる調整を示す図である。
(Example 2)
FIG. 3 is a cross-sectional view in which a refrigeration generator is connected to a linear compressor for a regenerative refrigerator according to the present invention, and shows a case where a permanent magnet is provided on an external yoke. In detail, it is a figure which shows the adjustment which adjusts the resonance frequency of a linear compressor to the operating frequency which makes the refrigerating efficiency of a cool storage type refrigerator high.

図4は図3のBB断面を示し、図5は図3のCC断面を示す。   4 shows a BB cross section of FIG. 3, and FIG. 5 shows a CC cross section of FIG.

図3の蓄冷型冷凍機60aが図1の蓄冷型冷凍機20aと異なる点は、リニア圧縮機60のリニアモータ55の永久磁石52a、52b、52c、52dを外部ヨーク58に設けたことであり、図1と異なる構成について図3、図4、図5を参照しつつ説明する。図1と同じ形状の部位は、図1の符号と同じ符号を付す。   3 differs from the regenerative refrigerator 20a of FIG. 1 in that the permanent magnets 52a, 52b, 52c, 52d of the linear motor 55 of the linear compressor 60 are provided in the external yoke 58. A configuration different from that shown in FIG. 1 will be described with reference to FIGS. 3, 4, and 5. Parts having the same shape as in FIG. 1 are given the same reference numerals as those in FIG.

リニアモータ55は、シリンダ2に挿嵌された外部固定子56と、シリンダ2に摺動可能に外接する可動体50とを備える。   The linear motor 55 includes an external stator 56 inserted into the cylinder 2 and a movable body 50 that circumscribes the cylinder 2 so as to be slidable.

外部固定子56は、外形が四角で内側に突出し互いに対向するティース部58a(図4)、58b(図4)を有する磁性材の磁性鋼板を多数枚積層した外部ヨーク58と、外部ヨーク58のティース部58a、58bにそれぞれ巻かれたコイル57a、57bと、ティース部58aの端部に設けられた円弧状の永久磁石52a、52bと、ティース部58bの端部に設けられた永久磁石52c、52dとから構成される。永久磁石52a、52b、52c、52dの外周面は、それぞれティース部58a、58bに接着材などで固定され、内周面もシリンダ2の外周面に接着材などで固定される。永久磁石52a、52bの外周面はそれぞれS極、N極に、そして内周面はそれぞれN極、S極に磁化され、永久磁石52c、52dの外周面はそれぞれN極、S極に、そして内周面はそれぞれS極、N極に磁化される。   The external stator 56 has an outer yoke 58 in which a plurality of magnetic steel plates made of a magnetic material having a rectangular outer shape and projecting inward and having teeth portions 58a (FIG. 4) and 58b (FIG. 4) facing each other are laminated. Coils 57a and 57b wound around the teeth 58a and 58b, arc-shaped permanent magnets 52a and 52b provided at the ends of the teeth 58a, and permanent magnets 52c provided at the ends of the teeth 58b, 52d. The outer peripheral surfaces of the permanent magnets 52 a, 52 b, 52 c, 52 d are fixed to the tooth portions 58 a, 58 b with an adhesive or the like, respectively, and the inner peripheral surface is also fixed to the outer peripheral surface of the cylinder 2 with an adhesive or the like. The outer peripheral surfaces of the permanent magnets 52a and 52b are magnetized to S and N poles, respectively, and the inner peripheral surfaces are magnetized to N and S poles, respectively, and the outer peripheral surfaces of the permanent magnets 52c and 52d are respectively N and S poles, and The inner peripheral surface is magnetized to the S pole and the N pole, respectively.

外部固定子56の軸方向の内周側の両端には、外部固定子56の位置を固定するストッパ59がシリンダ2の外周面に点溶接などで固定される。   Stoppers 59 for fixing the position of the external stator 56 are fixed to the outer peripheral surface of the cylinder 2 by spot welding or the like at both ends on the inner peripheral side in the axial direction of the external stator 56.

可動体50は、磁性材の円柱状の内部ヨーク51と、内部ヨーク51の両端の凸部に篏合固定した非磁性材のピストン53と、可動体50の質量を調整する非磁性材の調整部材54と、内部ヨーク51の両端側の外周面に接着される樹脂摺動材のライダリング51aと、ピストン53に設けられる樹脂摺動材のピストンリング53aとから構成される。可動体50は、シリンダ2の内周面をスムーズに摺動するようにシリンダ2とライダリング51aとは微小な間隙(例えば、略0.02mm)を持って挿入される。   The movable body 50 includes a columnar inner yoke 51 made of a magnetic material, a piston 53 made of a nonmagnetic material fixedly fitted to convex portions at both ends of the inner yoke 51, and adjustment of a nonmagnetic material that adjusts the mass of the movable body 50. It comprises a member 54, a resin sliding material rider ring 51 a bonded to the outer peripheral surfaces of both ends of the internal yoke 51, and a resin sliding material piston ring 53 a provided on the piston 53. The movable body 50 is inserted between the cylinder 2 and the rider ring 51a with a minute gap (for example, approximately 0.02 mm) so that the inner peripheral surface of the cylinder 2 can slide smoothly.

図6は、本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で、永久磁石が外部ヨークに設けられた場合を示す。詳しくは、蓄冷型冷凍機の冷凍効率を高くする運転周波数が、リニア圧縮機の共振周波数より高い場合に対応する共振周波数の調整を示す図である。   FIG. 6 is a cross-sectional view in which a refrigeration generating unit is connected to a linear compressor for a regenerative refrigerator according to the present invention, and shows a case where a permanent magnet is provided on an external yoke. In detail, it is a figure which shows adjustment of the resonant frequency corresponding to the case where the operating frequency which makes the refrigerating efficiency of a cool storage type refrigerator high is higher than the resonant frequency of a linear compressor.

図7は図6のDD断面を示し、図8は図6のEE断面を示す。   7 shows the DD cross section of FIG. 6, and FIG. 8 shows the EE cross section of FIG.

図6の蓄冷型冷凍機80aが図3の蓄冷型冷凍機60aと異なる点は、リニア圧縮機60のリニアモータ65の可動体70の構造が異なることと、新たに内部固定子74が設けられたことである。図3と異なる構成について図6、図7、図8を参照しつつ説明する。図3と同じ形状の部位は、図3の符号と同じ符号を付す。   6 differs from the regenerative refrigerator 60a of FIG. 3 in that the structure of the movable body 70 of the linear motor 65 of the linear compressor 60 is different and an internal stator 74 is newly provided. That is. A configuration different from FIG. 3 will be described with reference to FIGS. 6, 7, and 8. Parts having the same shape as in FIG. 3 are denoted by the same reference numerals as those in FIG.

磁性材の内部ヨーク71は、貫通する孔71bが篏合固定され、孔71bの内周面に対し微小な間隙(例えば、略0.05mm)を持って磁性材の内部固定子74が挿入され、内部固定子74はキャップ4の凹部に固定される。   The inner yoke 71 made of magnetic material has a through hole 71b fitted and fixed, and an inner stator 74 made of magnetic material is inserted with a small gap (for example, approximately 0.05 mm) from the inner peripheral surface of the hole 71b. The internal stator 74 is fixed to the recess of the cap 4.

内部ヨーク71の一端側の凸には、非磁性材のピストン73が設けられ、ピストン73の外周面には樹脂摺動部材のピストンリング73aが設けられ.また、内部ヨーク71の外周側には、図3の内部ヨーク11と同様に樹脂摺動部材のライダリング71aが接着される。このようにして可動体70は、ライダリング71aを備えた内部ヨーク71と、ピストンリング73aを備えたピストン73とから構成される。   A non-magnetic piston 73 is provided on the convex on one end side of the internal yoke 71, and a piston ring 73a of a resin sliding member is provided on the outer peripheral surface of the piston 73. Further, a lid ring 71a of a resin sliding member is bonded to the outer peripheral side of the inner yoke 71 in the same manner as the inner yoke 11 in FIG. In this way, the movable body 70 includes the internal yoke 71 provided with the rider ring 71a and the piston 73 provided with the piston ring 73a.

尚、内部固定子74のピストン73側の端面が図6の2点鎖線で示されるように短く、且つ可動体70がフルストローク移動してもピストン73の背面に当らない場合は、ピストン73の背部の空間73bを設けなくてもよい。   If the end face of the internal stator 74 on the piston 73 side is short as shown by a two-dot chain line in FIG. 6 and the movable body 70 does not hit the back surface of the piston 73 even if it moves full stroke, The back space 73b may not be provided.

次に、実施例2の作用と効果について説明する。   Next, the operation and effect of the second embodiment will be described.

図3〜図5において、内部ヨーク51の図3の左端側(BB断面側)と永久磁石52a、52cでは、図4に示すようにコイル57a、57bを流れる電流よって生じる磁束Φi1の方向が永久磁石52a、52cの磁束Φm2の方向と同じであると左端側の間隙の磁束はΦi1+Φm1となり強まる。一方、内部ヨーク51の図3の右端側(CC断面側)と永久磁石52b、52dでは、図5に示すようにコイル57a、57bを流れる電流よって生じる磁束Φi2の方向は永久磁石52b、52dの磁束Φm2の方向に対し反対方向であるので、右端側の間隙の磁束は(Φi2−Φm2)となり弱まる。この結果、内部ヨーク51の左端側の間隙の磁束が右端側の間隙の磁束のより大きくなりA方向(図3)に可動体50が移動する。   3-5, at the left end side (BB cross section side) of FIG. 3 of the inner yoke 51 and the permanent magnets 52a, 52c, the direction of the magnetic flux Φi1 generated by the current flowing through the coils 57a, 57b is permanent as shown in FIG. If the direction of the magnetic flux Φm2 of the magnets 52a and 52c is the same, the magnetic flux in the gap on the left end side becomes Φi1 + Φm1 and becomes stronger. On the other hand, on the right end side (CC cross section side) of the internal yoke 51 in FIG. 3 and the permanent magnets 52b and 52d, the direction of the magnetic flux Φi2 generated by the current flowing through the coils 57a and 57b is as shown in FIG. Since the direction is opposite to the direction of the magnetic flux Φm2, the magnetic flux in the gap on the right end side becomes (Φi2-Φm2) and becomes weaker. As a result, the magnetic flux in the gap on the left end side of the inner yoke 51 becomes larger than the magnetic flux in the gap on the right end side, and the movable body 50 moves in the A direction (FIG. 3).

コイル57a、57bを流れる電流の向きが逆方向になると、電流よって生じる磁束Φi1の方向は前述と逆の方向で、左端側の間隙の磁束はΦi1−Φm1となり弱まり、右端側の間隙の磁束は(Φi2+Φm2)となり強まる。結果、内部ヨーク51の左端側の間隙の磁束が右端側の間隙の磁束より小さくなり、図示のA方向の反対方向に可動体50が移動する。つまり、コイル57a、57bに交流電流を流すことで、内部ヨーク51右端側と左端側の間隙の磁束に偏りを生じ、内部ヨーク51、即ち可動体50が往復動する。   When the direction of the current flowing through the coils 57a and 57b is reversed, the direction of the magnetic flux Φi1 generated by the current is opposite to that described above, the magnetic flux in the gap on the left end side becomes Φi1-Φm1, and the magnetic flux in the gap on the right end side is weakened. It becomes (Φi2 + Φm2) and becomes stronger. As a result, the magnetic flux in the gap on the left end side of the inner yoke 51 becomes smaller than the magnetic flux in the gap on the right end side, and the movable body 50 moves in the direction opposite to the A direction shown in the figure. That is, by passing an alternating current through the coils 57a and 57b, the magnetic flux in the gap between the right end side and the left end side of the inner yoke 51 is biased, and the inner yoke 51, that is, the movable body 50 reciprocates.

図6〜図8においても図3〜図5と同じように、コイル57a、57bに交流電流を流すと、図7に示すようにリニアモータ65の左端側(DD断面側)の磁束が(電流による磁束Φi3+永久磁石52a、52cによる磁束Φm3)なり、図8に示すように右端側(EE断面側)の磁束は(電流による磁束Φi4−永久磁石52b、52dによる磁束Φm4)にる。電流の向きが変わると、左端側のギャップの磁束は(Φi3−磁束Φm3)、右端側のギャップの磁束は(Φi4+Φm4)になり、内部ヨーク71の右端側と左端側のギャップの磁束に偏りを生じ、内部ヨーク71、即ち可動体70が往復動する。   6 to 8, as in FIGS. 3 to 5, when an alternating current is passed through the coils 57 a and 57 b, the magnetic flux on the left end side (DD cross section side) of the linear motor 65 becomes (current current) as shown in FIG. 7. As shown in FIG. 8, the magnetic flux on the right end side (EE cross-section side) is (magnetic flux Φi4 due to current-magnetic flux Φm4 due to permanent magnets 52b, 52d). When the direction of the current is changed, the magnetic flux in the gap on the left end side becomes (Φi3−magnetic flux Φm3), the magnetic flux in the gap on the right end side becomes (Φi4 + Φm4), and the magnetic flux in the gap on the right end side and the left end side of the internal yoke 71 is biased. As a result, the inner yoke 71, that is, the movable body 70 reciprocates.

図6が図3と異なる点は、内部ヨーク71を流れる磁束が内部ヨーク71と内部固定74との間の磁気ギャップG2と、内部固定74を流れることである。即ち、図6の場合は内部ヨーク51と内部固定74との間の磁気ギャップG2があるが、図3では内部固定74がないのでこの磁気ギャップG2はないが、内部ヨーク51と内部固定74との間の間隙の幅は、微小であるので磁気ギャップG2の磁気抵抗は小さく磁気回路の磁束にはほとんど影響しない。   6 is different from FIG. 3 in that the magnetic flux flowing through the internal yoke 71 flows through the magnetic gap G2 between the internal yoke 71 and the internal fixing 74 and through the internal fixing 74. FIG. That is, in the case of FIG. 6, there is a magnetic gap G2 between the internal yoke 51 and the internal fixing 74, but in FIG. 3, there is no internal fixing 74, so there is no magnetic gap G2, but the internal yoke 51 and the internal fixing 74 Since the width of the gap between them is very small, the magnetic resistance of the magnetic gap G2 is small and hardly affects the magnetic flux of the magnetic circuit.

図1と、図3の場合と同様に、図3のリニア圧縮機60と、図6のリニア圧縮機80は、それぞれ可動体50、70が圧縮空間15(図3、図6)のヘリウムの圧縮、膨張によって生じるガスバネと、バッファ空間16(図3)、バッファ空間36(図6)のヘリウムの圧縮、膨張によって生じるガスバネと、永久磁石52a、52b、52、52dの磁気バネとを合成した合成バネとにより振動系を形成し、それぞれ固有の共振周波数を持ち、可動体50、70の質量を変えるとこの共振周波数はそれぞれ変わる。   As in the case of FIG. 1 and FIG. 3, the linear compressor 60 of FIG. 3 and the linear compressor 80 of FIG. 6 have helium in the compression space 15 (FIGS. 3 and 6). A gas spring generated by compression and expansion, a gas spring generated by compression and expansion of helium in the buffer space 16 (FIG. 3) and the buffer space 36 (FIG. 6), and magnetic springs of the permanent magnets 52a, 52b, 52, and 52d were synthesized. A vibration system is formed by a synthetic spring, and each has its own resonance frequency. When the masses of the movable bodies 50 and 70 are changed, the resonance frequencies change.

図1の蓄冷型冷凍機20aと同様の理由により、リニア圧縮機60の共振周波数を蓄冷型冷凍機60aの冷凍効率を高くする運転周波数に合わせるように可動体50の質量を調整でき、蓄冷型冷凍機60aの高い冷凍効率が得られる運転周波数で高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機60を提供できる。   For the same reason as the cold storage type refrigerator 20a of FIG. 1, the mass of the movable body 50 can be adjusted so that the resonance frequency of the linear compressor 60 matches the operating frequency that increases the refrigeration efficiency of the cold storage type refrigerator 60a. It is possible to provide the linear compressor 60 for a regenerative refrigerator that is driven with high efficiency at an operation frequency at which high refrigeration efficiency of the refrigerator 60a is obtained.

図3の蓄冷型冷凍機60aの冷凍効率を高くする運転周波数が、リニア圧縮機60の共振周波数より低い場合は、可動体50に調整部材54を配設することで、可動体50の質量が増加するので可動体50の共振周波数は低くなり、該共振周波数は蓄冷型冷凍機60aの冷凍効率を高くする運転周波数に合わせることができる。   When the operating frequency for increasing the refrigeration efficiency of the regenerator type refrigerator 60a of FIG. 3 is lower than the resonance frequency of the linear compressor 60, the adjustment member 54 is disposed on the movable body 50, whereby the mass of the movable body 50 is increased. Since it increases, the resonant frequency of the movable body 50 becomes low, and this resonant frequency can be matched with the operation frequency which raises the refrigerating efficiency of the cool storage type refrigerator 60a.

図2の蓄冷型冷凍機40aと同様、図6の蓄冷型冷凍機80aの冷凍効率を高くする運転周波数が、リニア圧縮機80の共振周波数より高い場合は、内部ヨーク71に設けた孔71bに対して、シリンダ部1に固定した磁性材の内部固定子74を微小な間隙を持って往復動可能に挿入する。従って、挿入することで、内部ヨーク71に設けた孔71bの質量分、可動体70の質量は減少し、リニア圧縮機80の共振周波数は内部ヨーク71に孔71bを設けない場合より高くなり、該共振周波数を蓄冷型冷凍機80aの冷凍効率を高くする運転周波数に合わせることが出来る。従って、蓄冷型冷凍機80aの高い冷凍効率が得られる運転周波数で高い効率で駆動される蓄冷型冷凍機用のリニア圧縮機80を提供できる。   As in the case of the regenerator type refrigerator 40a of FIG. 2, when the operating frequency for increasing the refrigerating efficiency of the regenerator type refrigerator 80a of FIG. On the other hand, an inner stator 74 made of a magnetic material fixed to the cylinder portion 1 is inserted so as to be able to reciprocate with a minute gap. Accordingly, by inserting, the mass of the movable body 70 is reduced by the mass of the hole 71b provided in the inner yoke 71, and the resonance frequency of the linear compressor 80 becomes higher than the case where the hole 71b is not provided in the inner yoke 71, The resonance frequency can be matched with the operation frequency that increases the refrigeration efficiency of the regenerator chiller 80a. Therefore, it is possible to provide the linear compressor 80 for a regenerative refrigerator that is driven with high efficiency at an operation frequency at which high refrigerating efficiency of the regenerative refrigerator 80a is obtained.

図6に示すように、ピストン73の背面に空間73bを設けて、可動体70の質量を小さくして、リニア圧縮機80の共振周波数を調整しても良い。   As shown in FIG. 6, a space 73 b may be provided on the back surface of the piston 73 to reduce the mass of the movable body 70 and adjust the resonance frequency of the linear compressor 80.

磁気回路の関点から見ると、永久磁石52a、52b、52c、52dと内部ヨーク51(図3)、71(図6)とは、それぞれのシリンダ2(図3、図6)と、シリンダ2と内部ヨーク51、71とのそれぞれの間隙とを介在して磁気回路が形成されており、シリンダ部1のシリンダ2の肉厚を薄くすること、シリンダ2と内部ヨーク51、71のそれぞれの間隙を小さくすることとで、外部ヨーク8と内部ヨーク51、71の間の磁気ギャップG1(図3、図6)は小さくなり、磁気ギャップG1は従来技術のコイル可動型のリニアモータのコイル配置によって生じる磁気ギャップより小さくなる。また、内部固定子74は磁性材であるのでリニアモータ65の磁束は、内部ヨーク71と内部固定子74の間隙と、内部固定子74とを通過し、磁束が飽和することはほとんど起こらない。また、内部ヨーク31と内部固定子34の間隙も微小であり、この間隙に基づく磁気ギャップG2による磁気抵抗も小さいので、磁気回路の磁束にはほとんど影響をおよばさない。従って、内部固定子74に孔71bがない場合と、孔71bがある場合のいずれの場合も、従来技術のコイル可動型のリニアモータより磁気回路の磁気抵抗が小さく、リニアモータ55および65の効率は向上し、効率の高いリニア圧縮機用のリニアモータ55、65を提供できる。   From the point of view of the magnetic circuit, the permanent magnets 52a, 52b, 52c, 52d and the inner yokes 51 (FIG. 3), 71 (FIG. 6) include the cylinder 2 (FIGS. 3, 6) and the cylinder 2 respectively. And a gap between each of the inner yokes 51 and 71, and a magnetic circuit is formed. The thickness of the cylinder 2 of the cylinder portion 1 is reduced, and the gap between each of the cylinder 2 and the inner yokes 51 and 71 is reduced. Is reduced, the magnetic gap G1 (FIGS. 3 and 6) between the outer yoke 8 and the inner yokes 51 and 71 becomes smaller, and the magnetic gap G1 depends on the coil arrangement of the conventional coil movable linear motor. Smaller than the resulting magnetic gap. Further, since the internal stator 74 is a magnetic material, the magnetic flux of the linear motor 65 passes through the gap between the internal yoke 71 and the internal stator 74 and the internal stator 74, and the magnetic flux is hardly saturated. Further, the gap between the inner yoke 31 and the inner stator 34 is very small, and the magnetic resistance due to the magnetic gap G2 based on this gap is small, so that the magnetic flux of the magnetic circuit is hardly affected. Therefore, in both cases where the internal stator 74 does not have the hole 71b and the hole 71b, the magnetic resistance of the magnetic circuit is smaller than that of the prior art coil movable linear motor, and the efficiency of the linear motors 55 and 65 is reduced. The linear motors 55 and 65 for the linear compressor with high efficiency can be provided.

また、永久磁石52a、52b、52c、52dはシリンダ2に挿嵌される外部固定子6に配備されるので、ファン(図示せず)などで強制的に冷却でき、永久磁石52a、52b、52c、52dの温度上昇による保持エネルギーの劣化を防げる。   Further, since the permanent magnets 52a, 52b, 52c, and 52d are disposed on the external stator 6 that is inserted into the cylinder 2, the permanent magnets 52a, 52b, and 52c can be forcibly cooled by a fan (not shown). , 52d can prevent the holding energy from deteriorating due to the temperature rise.

調整部材54およびピストン53、73の少なくと一つが非磁性体であることにより、調整部材54およびピストン53、73の少なくと一つは磁束が流れ難く、無駄な漏れ磁束が少なくなるので、蓄冷型冷凍機用のリニア圧縮機60、80の効率が高くなる。   Since at least one of the adjusting member 54 and the pistons 53 and 73 is a non-magnetic material, at least one of the adjusting member 54 and the pistons 53 and 73 hardly flows magnetic flux, and wasteful leakage magnetic flux is reduced. The efficiency of the linear compressors 60 and 80 for the type refrigerator is increased.

本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で永久磁石が内部ヨークに設けられた場合を示し、リニア圧縮機の共振周波数を蓄冷型冷凍機の冷凍効率を高くする運転周波数に合わせる調整を示す図である。The sectional view which connected the freezing generation part to the linear compressor for the cool storage type refrigerator concerning the present invention shows the case where the permanent magnet is provided in the internal yoke, and shows the resonance frequency of the linear compressor as the freezing efficiency of the cool storage type refrigerator. It is a figure which shows the adjustment match | combined with the driving frequency which raises. 本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で永久磁石が内部ヨークに設けられた場合を示し、蓄冷型冷凍機の冷凍効率を高くする運転周波数が、リニア圧縮機の共振周波数より高い場合の調整を示す図である。The cross-sectional view in which the refrigeration generator is connected to the linear compressor for the regenerator type refrigerator according to the present invention shows a case where a permanent magnet is provided in the internal yoke, and the operating frequency for increasing the refrigerating efficiency of the regenerator type refrigerator is It is a figure which shows adjustment in case it is higher than the resonant frequency of a linear compressor. 本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で永久磁石が外部ヨークに設けられた場合を示し、リニア圧縮機の共振周波数を蓄冷型冷凍機の冷凍効率を高くする運転周波数に合わせる調整を示す図である。The sectional view which connected the freezing generating part to the linear compressor for the cool storage type refrigerator concerning the present invention shows the case where the permanent magnet is provided in the external yoke, and shows the resonance frequency of the linear compressor as the freezing efficiency of the cool storage type refrigerator. It is a figure which shows the adjustment match | combined with the driving frequency which raises. 図3のB―B断面を示す。Fig. 4 shows a BB cross section of Fig. 3. 図3のC―C断面を示す。Fig. 4 shows a CC cross section of Fig. 3. 本発明に係わる蓄冷型冷凍機用のリニア圧縮機に冷凍発生部を接続した断面図で永久磁石が外部ヨークに設けられた場合を示し、蓄冷型冷凍機の冷凍効率を高くする運転周波数が、リニア圧縮機の共振周波数より高い場合の調整を示す図である。The cross-sectional view in which the refrigeration generator is connected to the linear compressor for the regenerator type refrigerator according to the present invention shows a case where the permanent magnet is provided on the external yoke, and the operating frequency for increasing the refrigerating efficiency of the regenerator type refrigerator is It is a figure which shows adjustment in case it is higher than the resonant frequency of a linear compressor. 図6のD―D断面を示す。The DD cross section of FIG. 6 is shown. 図6のE―E断面を示す。The EE cross section of FIG. 6 is shown.

符号の説明Explanation of symbols

1 シリンダ部
2 シリンダ
5、35、55、65 リニアモータ
6、56 外部固定子
7、57a、57b コイル
8、58 外部ヨーク
10、30、50、70 可動体
11、31、51、71 内部ヨーク
12、32、52a、52b、52c、52d 永久磁石
13、33、53、73 ピストン
14、54 調整部材
15 圧縮空間
16、36 バッファ空間
18 冷凍発生部
20、40、60、80 リニア圧縮機
20a、40a、60a、80a 蓄冷型冷凍機
31b、71b 孔
DESCRIPTION OF SYMBOLS 1 Cylinder part 2 Cylinder 5, 35, 55, 65 Linear motor 6, 56 External stator 7, 57a, 57b Coil 8, 58 External yoke 10, 30, 50, 70 Movable body 11, 31, 51, 71 Internal yoke 12 , 32, 52a, 52b, 52c, 52d Permanent magnet 13, 33, 53, 73 Piston 14, 54 Adjustment member 15 Compression space 16, 36 Buffer space 18 Refrigeration generator 20, 40, 60, 80 Linear compressor 20a, 40a , 60a, 80a Regenerative refrigerator 31b, 71b Hole

Claims (2)

磁性材の外部ヨークにコイルを備える外部固定子と、前記外部固定子に対し往復動し、磁性材の内部ヨークにピストンを備える可動体と、前記内部ヨークまたは前記外部ヨークのいずれかに備えられる永久磁石と、を備えるリニアモータと、
前記可動体が摺動可能に外接するとともに、前記外部固定子の内周面側に挿嵌される非磁性材のシリンダを備えるシリンダ部と、
前記シリンダ部と前記ピストンとによって形成される圧縮空間と、
前記ピストンに対して反対側の前記可動体とシリンダ部とによって形成されるバッファ空間と、を有する蓄冷型冷凍機用のリニア圧縮機であって、
前記リニア圧縮機は、前記蓄冷型冷凍機の冷凍発生部に接続され、
前記リニア圧縮機の共振周波数を可変とする調整部材を前記可動体に付加し
前記内部ヨークに孔を形成し、前記蓄冷型冷凍機運転周波数が、前記共振周波数より高い場合、前記シリンダ部に固定した磁性材の内部固定子を前記孔に往復動可能に挿入する、ことを特徴とする蓄冷型冷凍機用のリニア圧縮機
An external stator having a coil on an external yoke of magnetic material, a movable body that reciprocates with respect to the external stator and having a piston on an internal yoke of magnetic material, and either the internal yoke or the external yoke. A linear motor comprising a permanent magnet;
A cylinder part including a cylinder of a non-magnetic material that is slidably circumscribed by the movable body and is fitted to the inner peripheral surface side of the external stator;
A compression space formed by the cylinder part and the piston;
A linear compressor for a regenerative refrigerating machine having a buffer space formed by the movable body and a cylinder portion opposite to the piston,
The linear compressor is connected to a refrigeration generator of the regenerator type refrigerator,
An adjustment member that makes the resonance frequency of the linear compressor variable is added to the movable body ,
A hole is formed in the internal yoke, and when the regenerative refrigerator operating frequency is higher than the resonance frequency, an internal stator made of a magnetic material fixed to the cylinder portion is removably inserted into the hole. Characteristic linear compressor for regenerative refrigerator
前記調整部材および前記ピストンの少なくとも一つが非磁性体である、ことを特徴とする請求項1に記載の蓄冷型冷凍機用のリニア圧縮機。 The linear compressor for a regenerative refrigerator according to claim 1, wherein at least one of the adjusting member and the piston is a non-magnetic material.
JP2007204496A 2007-08-06 2007-08-06 Linear compressor for regenerative refrigerator Expired - Fee Related JP5098499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007204496A JP5098499B2 (en) 2007-08-06 2007-08-06 Linear compressor for regenerative refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007204496A JP5098499B2 (en) 2007-08-06 2007-08-06 Linear compressor for regenerative refrigerator

Publications (2)

Publication Number Publication Date
JP2009041791A JP2009041791A (en) 2009-02-26
JP5098499B2 true JP5098499B2 (en) 2012-12-12

Family

ID=40442715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007204496A Expired - Fee Related JP5098499B2 (en) 2007-08-06 2007-08-06 Linear compressor for regenerative refrigerator

Country Status (1)

Country Link
JP (1) JP5098499B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071917B2 (en) * 2014-02-05 2017-02-01 株式会社東芝 Stirling refrigerator
CN108331679B (en) * 2018-04-09 2023-09-22 杨厚成 Acoustic energy generator for preventing radial offset of valve piston
CN112815565A (en) * 2021-01-28 2021-05-18 宁波芯斯特林低温设备有限公司 Stirling refrigerator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626364B2 (en) * 1991-11-06 1997-07-02 ダイキン工業株式会社 Linear motor compressor
JP2001251835A (en) * 2000-03-03 2001-09-14 Cryodevice Inc Linear vibration actuator
JP2003172554A (en) * 2001-12-05 2003-06-20 Fuji Electric Co Ltd Linear motor compressor for reverse stirling cycle refrigerator
JP2004309080A (en) * 2003-04-10 2004-11-04 Sharp Corp Resonance frequency adjusting method and stirling engine
JP2005036682A (en) * 2003-07-17 2005-02-10 Sharp Corp Sterling engine
JP2006144568A (en) * 2004-11-16 2006-06-08 Fuji Electric Holdings Co Ltd Vibration type compressor

Also Published As

Publication number Publication date
JP2009041791A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
KR100846007B1 (en) Stirling engine
JP2007291991A (en) Vibration type compressor
JP2010200522A (en) Reciprocation driving mechanism, and cold storage type refrigerator using the reciprocation driving mechanism and compressor
US10903732B2 (en) Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
JP5162654B2 (en) Superconducting motor
JP5098499B2 (en) Linear compressor for regenerative refrigerator
KR101513611B1 (en) Reciprocating Compressor
JP2008002452A (en) Linear compressor
US20070052508A1 (en) Electromagnetic actuator and stirling engine
JP2009022087A (en) Linear motor, and stirling freezer equipped with the same
JP2010213431A (en) Linear electromagnetic device
JP5391706B2 (en) Linear electromagnetic drive
JP2004056988A (en) Moving coil linear motor, compressor, and refrigerator
JPH04347460A (en) Linear motor compressor
JP2012143044A (en) Superconducting motor
KR100512002B1 (en) Stirling refrigerator's Linear motor mounting
JP3793961B2 (en) Linear motor type lead wire mounting structure
JP2950308B2 (en) Stirling refrigerator
JP2005009397A (en) Oscillatory type compressor
JP2626364B2 (en) Linear motor compressor
JP2009213210A (en) Vibrating motor
JP2009177973A (en) Linear motor, and stirling engine and stirling engine mounted apparatus
JP2546081B2 (en) Linear motor compressor
CN115750269A (en) Linear compressor and refrigerator
JPH1183220A (en) Linear compressor and stirling refrigerating machine using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees