JP2009065755A - Vibrating-type motor and vibrating-type compressor using the same - Google Patents

Vibrating-type motor and vibrating-type compressor using the same Download PDF

Info

Publication number
JP2009065755A
JP2009065755A JP2007230173A JP2007230173A JP2009065755A JP 2009065755 A JP2009065755 A JP 2009065755A JP 2007230173 A JP2007230173 A JP 2007230173A JP 2007230173 A JP2007230173 A JP 2007230173A JP 2009065755 A JP2009065755 A JP 2009065755A
Authority
JP
Japan
Prior art keywords
type motor
magnet
movable part
vibration type
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007230173A
Other languages
Japanese (ja)
Inventor
Shin Matsumoto
伸 松本
Keiji Oshima
恵司 大嶋
Satoyuki Matsushita
智行 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2007230173A priority Critical patent/JP2009065755A/en
Publication of JP2009065755A publication Critical patent/JP2009065755A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibrating-type motor capable of achieving low cost and high reliability by simplifying a design parameter and improving motor efficiently without reducing thrust force increase effects by an auxiliary magnet, and to provide a movable magnet-type compressor using the same. <P>SOLUTION: The vibrating-type motor is provided with: a movable portion having a substantially cylindrical main magnet made of a permanent magnet having inner and outer peripheral sides magnetized on different poles, and substantially cylindrical auxiliary magnets each coaxially joined to both axial end portions of the main magnet and made of a permanent magnet having inner and outer peripheral sides magnetized on the magnetism reverse to those of the main magnet; a plurality of exciting yokes having two leg portions opposite to the movable portion via a predetermined gap portion on the radius direction outside of the movable portion and equally disposed in the circumferential direction of the movable portion; exciting coils individually wound on each of the plurality of exciting yokes and generating a magnetic flux to the leg portions; and a cylindrical back yoke disposed to be opposite to the exciting yokes on the diameter direction inside of the movable portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、スターリング冷凍機の振動型圧縮機等に使用可能な振動型モータおよびそれを用いた振動型圧縮機に関するものである。   The present invention relates to a vibration type motor that can be used for a vibration type compressor of a Stirling refrigerator, and a vibration type compressor using the vibration type motor.

従来から、この種の振動型モータとして、可動磁石型のリニアモータ(以下、単に可動磁石型モータともいう)が使用されている。
図5,図6は、可動磁石型モータの駆動原理を説明するための概略的な構成図であり、何れもほぼ円筒状のモータの中心軸Cに沿った断面図の一部を示している。
図5において、101は励磁ヨーク、102は励磁コイル、103はバックヨーク、104は励磁ヨーク101とバックヨーク103との間の空隙部に配置され、かつ内周側及び外周側が異極に着磁された円筒状の永久磁石からなる可動部、201は可動部104による磁束である。なお、可動部104を支持するケーシングは図示を省略してある。
多くの可動磁石型モータでは、図示する如く可動部104として単極着磁された単一の永久磁石が使用されており、この可動部104はピストン(図示せず)と一体的に連結されていると共に、可動部104の軸方向両端部は、励磁ヨーク101の脚幅内に収められている。
図5に示すように、可動部104の外周側をN極、内周側をS極とした場合、外周側から発生した磁束201は可動部104の外側を回って内周側に戻る。このため、可動部104の軸方向両端部では、上記の磁束201が、あたかも紙面垂直方向にそれぞれ逆向きに電流を流した場合に発生する磁束と等価になる。これを、永久磁石の等価電流IMと呼ぶ。
Conventionally, a movable magnet type linear motor (hereinafter also simply referred to as a movable magnet type motor) has been used as this type of vibration type motor.
FIG. 5 and FIG. 6 are schematic configuration diagrams for explaining the driving principle of the movable magnet type motor, and all show a part of a sectional view along the central axis C of the substantially cylindrical motor. .
In FIG. 5, 101 is an exciting yoke, 102 is an exciting coil, 103 is a back yoke, 104 is disposed in a gap between the exciting yoke 101 and the back yoke 103, and the inner and outer peripheral sides are magnetized to have different polarities. The movable part 201 made of a cylindrical permanent magnet is a magnetic flux generated by the movable part 104. The casing that supports the movable portion 104 is not shown.
In many movable magnet type motors, a single permanent magnet magnetized as the movable part 104 is used as shown in the figure, and this movable part 104 is integrally connected to a piston (not shown). In addition, both end portions in the axial direction of the movable portion 104 are accommodated within the leg width of the excitation yoke 101.
As shown in FIG. 5, when the outer peripheral side of the movable part 104 is an N pole and the inner peripheral side is an S pole, the magnetic flux 201 generated from the outer peripheral side goes around the outer side of the movable part 104 and returns to the inner peripheral side. For this reason, at both ends in the axial direction of the movable portion 104, the magnetic flux 201 is equivalent to the magnetic flux generated when current flows in the opposite direction in the direction perpendicular to the paper surface. This is called the equivalent current I M of the permanent magnet.

図6に示す如く、励磁コイル102に交流電流を加えて磁束Bを発生させ、この磁束Bを等価電流IMが存在する空隙部Gに鎖交させると、空隙部Gに配置された可動部104は、フレミングの左手の法則に従い、図の左右方向の力(推力)を受けて往復運動する。
上記の推力Fは、簡易的に数式1によって算出することができる。
As shown in FIG. 6, when a magnetic flux B is generated by applying an alternating current to the exciting coil 102 and this magnetic flux B is linked to the gap G where the equivalent current I M exists, the movable part disposed in the gap G In accordance with Fleming's left-hand rule, 104 reciprocates in response to a horizontal force (thrust) in the figure.
The thrust F can be simply calculated by Equation 1.

Figure 2009065755
ここで、Bは空隙部Gの磁束密度、LMは可動部104の周方向の平均長さである。
数式1において、通常のB・I・L則と異なって等価電流IMが2倍されているのは、本モデルでは可動部104の軸方向両端部の2箇所に等価電流IMが存在するためである。
一方、可動部104は、図示していない軸方向に適正なばね力を持つ機械ばね(例えば、コイルばねや板ばね)を設置している(特許文献2参照)。これは、機械振動の共振点で運転させることで、入力電力を抑えることができるからである。一般的には、スターリング冷凍機では、40〜80Hzの比較的低周波数で運転される。
また、図5,図6に示すように、励磁ヨーク101が励磁コイル102を覆うように配置するには、励磁ヨーク101を分割可能な構造とし、励磁ヨーク101と励磁コイル102を別個に製造した後に組み合わせて整合する必要がある。具体的には、励磁ヨーク101を、円筒周方向に分割された構造(特許文献2参照)や、円筒軸方向に脚部111,112が分割可能な構造とし、後に組み合わせて整合することが多い。
Figure 2009065755
Here, B is the magnetic flux density of the gap G, and L M is the average length in the circumferential direction of the movable portion 104.
In Equation 1, the equivalent current I M is doubled unlike the normal B · I · L rule. In this model, the equivalent current I M exists at two positions on both ends of the movable portion 104 in the axial direction. Because.
On the other hand, the movable part 104 is provided with a mechanical spring (for example, a coil spring or a leaf spring) having an appropriate spring force in the axial direction (not shown) (see Patent Document 2). This is because the input power can be suppressed by operating at the resonance point of mechanical vibration. Generally, a Stirling refrigerator is operated at a relatively low frequency of 40 to 80 Hz.
Also, as shown in FIGS. 5 and 6, in order to arrange the excitation yoke 101 so as to cover the excitation coil 102, the excitation yoke 101 has a structure that can be divided, and the excitation yoke 101 and the excitation coil 102 are manufactured separately. It is necessary to combine and match later. Specifically, the excitation yoke 101 has a structure divided in the cylindrical circumferential direction (see Patent Document 2) or a structure in which the leg portions 111 and 112 can be divided in the cylindrical axis direction, and is often combined and matched later. .

ところで、モータの体格を変えずに(LM=一定)、推力Fを大きくするためには、数式1から明らかなように、空隙部の磁束密度Bまたは等価電流IMを増加させればよい。
まず、磁束密度Bを増加させるには、空隙部のギャップ長を短くするか、励磁コイル102を流れる励磁電流を増加させる必要がある。しかし、前者の方法は、可動部104及びそれを支える部材が薄くなるため強度不足や加工コストの上昇を招き易く、後者の方法はジュール熱損失(I2R)が増大して性能の低下を招くという問題がある。
一方、等価電流IMを増加させるには、可動部104としての永久磁石の厚さを変えるほか、磁力がより大きい永久磁石を使うことが考えられるが、いずれもコストを上昇させる原因となる。
そこで、推力Fを大きくするための別の方法として、図7に示すような構造が考えられる。この可動磁石型モータは、円筒状の主磁石105の軸方向両端部に、主磁石105とは逆方向に着磁された円筒状の補助磁石106,107を同軸状かつ一体的に接合して可動部104Aを形成し、等価電流IMを仮想的に増加させたものである。
なお、図7の構造によると、非励磁状態において主磁石105と補助磁石106,107との接合部分において磁束が打ち消し合うことにより、図5,図6の構造に比べて可動部104Aの中立位置における保持力が強くなり、いわゆる自動中立位置決め(セルフセンタリング)が容易になるという利点もある。
By the way, in order to increase the thrust F without changing the physique of the motor (L M = constant), it is sufficient to increase the magnetic flux density B or the equivalent current I M in the air gap as is apparent from Equation 1. .
First, in order to increase the magnetic flux density B, it is necessary to shorten the gap length of the gap or increase the exciting current flowing through the exciting coil 102. However, in the former method, the movable part 104 and the member supporting it are thinned, so that the strength is insufficient and the processing cost is likely to increase. The latter method increases Joule heat loss (I 2 R) and decreases performance. There is a problem of inviting.
On the other hand, in order to increase the equivalent current I M , it is conceivable to use a permanent magnet having a larger magnetic force in addition to changing the thickness of the permanent magnet as the movable portion 104. However, both of them cause an increase in cost.
Therefore, as another method for increasing the thrust F, a structure as shown in FIG. 7 can be considered. In this movable magnet type motor, cylindrical auxiliary magnets 106 and 107 magnetized in the opposite direction to the main magnet 105 are coaxially and integrally joined to both ends of the cylindrical main magnet 105 in the axial direction. The movable portion 104A is formed, and the equivalent current I M is virtually increased.
According to the structure of FIG. 7, the neutral position of the movable portion 104 </ b> A compared to the structures of FIGS. 5 and 6 by canceling out the magnetic flux at the joint between the main magnet 105 and the auxiliary magnets 106 and 107 in the non-excited state. There is also an advantage that the holding force in the is increased and so-called automatic neutral positioning (self-centering) is facilitated.

図7に示したように、主磁石と一対の補助磁石とからなる可動部を備えた従来技術として、特許文献1に記載された可動磁石型モータが公知となっている。
図8は、特許文献1に記載された可動磁石型モータの構成図である。図8において、201はバックヨーク、202は励磁コイル、203は励磁ヨーク、204は可動部、205は主磁石、206,207は補助磁石、300はスターリングエンジン、301はケーシング、302はピストン、303はディスプレイサーである。また、210は可動部204の中立位置を示す。
米国特許第5148066号明細書(Fig.1) 特開2005−9397号公報
As shown in FIG. 7, a movable magnet type motor described in Patent Document 1 is known as a conventional technique including a movable portion including a main magnet and a pair of auxiliary magnets.
FIG. 8 is a configuration diagram of the movable magnet type motor described in Patent Document 1. In FIG. In FIG. 8, 201 is a back yoke, 202 is an exciting coil, 203 is an exciting yoke, 204 is a movable part, 205 is a main magnet, 206 and 207 are auxiliary magnets, 300 is a Stirling engine, 301 is a casing, 302 is a piston, 303 Is a display server. Reference numeral 210 denotes a neutral position of the movable unit 204.
US Pat. No. 5,148,066 (FIG. 1) Japanese Patent Laid-Open No. 2005-9397

従来技術において、図5,図6に示した可動部104が単一の永久磁石の場合には、磁石の変位量が大きくなるほど励磁ヨーク101を通る磁束が大きくなり、励磁コイル102の鎖交磁束が大きく変化する。
図7に示した可動部104Aが主磁石105と補助磁石106,107を使用した場合には、励磁ヨーク101において、脚部111,112のみでほとんどの磁束がループするため、励磁コイル102の鎖交磁束がほとんど変化しない。しかし、略円筒状に巻かれた励磁コイル102を使用しているため、励磁コイル102の円筒軸に沿って永久磁石からなる可動部104Aが運動すると、励磁コイル102の鎖交磁束が変化する。
いずれの場合においても励磁コイル102の鎖交磁束が変化するために起電力が発生し、電気共振の設計をするに際してこの起電力を考慮しなければならず、設計を困難にさせていた。
また、励磁ヨーク101を分割可能な構造とし、励磁ヨーク101と励磁コイル102を組み合わせて整合することで、コスト的に高いものとなっていた。さらに、励磁コイル102を励磁ヨーク101が覆っているため、励磁コイル102の放熱環境が悪くモータ全体の効率を低下させるといった問題もあった。
In the prior art, when the movable part 104 shown in FIGS. 5 and 6 is a single permanent magnet, the magnetic flux passing through the excitation yoke 101 increases as the displacement of the magnet increases, and the interlinkage magnetic flux of the excitation coil 102 increases. Changes significantly.
When the movable portion 104A shown in FIG. 7 uses the main magnet 105 and the auxiliary magnets 106 and 107, most of the magnetic flux loops only in the leg portions 111 and 112 in the excitation yoke 101. Almost no change in magnetic flux. However, since the exciting coil 102 wound in a substantially cylindrical shape is used, the interlinkage magnetic flux of the exciting coil 102 changes when the movable portion 104A made of a permanent magnet moves along the cylindrical axis of the exciting coil 102.
In either case, an electromotive force is generated because the interlinkage magnetic flux of the exciting coil 102 changes, and this electromotive force must be taken into consideration when designing electrical resonance, making the design difficult.
Further, the excitation yoke 101 has a structure that can be divided, and the excitation yoke 101 and the excitation coil 102 are combined and matched, so that the cost is high. Further, since the exciting yoke 101 covers the exciting coil 102, there is a problem that the heat radiation environment of the exciting coil 102 is bad and the efficiency of the entire motor is lowered.

一方、励磁コイル102の半径方向外側に放射状に励磁ヨーク101を分割配置した場合には、複数ある励磁ヨークの全てを一本の励磁コイル102により励磁していることから、コイルインピーダンスが大きくなることでモータの力率が悪化し、電源への負担が大きくなっていた。
そこで、本発明の解決課題は、補助磁石による推力増大効果を低減させることなく、設計パラメータを簡素化し、モータの効率を上げ、低コスト、高信頼性を実現する振動型モータおよびそれを用いた可動磁石型圧縮機を提供することにある。
On the other hand, when the exciting yoke 101 is radially arranged radially outside the exciting coil 102, all of the plural exciting yokes are excited by the single exciting coil 102, so that the coil impedance is increased. As a result, the power factor of the motor deteriorated, increasing the burden on the power supply.
Therefore, the problem to be solved by the present invention is to use a vibration type motor that simplifies design parameters, increases the efficiency of the motor, realizes low cost, and achieves high reliability without reducing the effect of increasing thrust by the auxiliary magnet. The object is to provide a movable magnet compressor.

上記課題を解決するため、請求項1に係る発明は、
内周側及び外周側が異極に着磁された永久磁石からなるほぼ円筒状の主磁石と、この主磁石の軸方向両端部にそれぞれ同軸状に接合され、かつ、内周側及び外周側が前記主磁石とは逆極性で着磁された永久磁石からなるほぼ円筒状の補助磁石とを有する可動部、
前期可動部の半径方向外側に一定の空隙部を介して、前記可動部に対向する二つの脚部を備え、前記可動部の円周方向に均等に配置された複数個の励磁ヨーク、
前記複数個の励磁ヨークに個別に巻装され、前記脚部に磁束を発生させる励磁コイル、
前記可動部の半径方向内側に、前記励磁ヨークと対向するように配置されている、円筒状のバックヨークを備え、
前記励磁コイルに交流電流を通流して前記可動部を軸方向に往復動させるようにしたことを特徴とする。
請求項2に係る発明は、請求項1に記載した振動型モータにおいて、前記励磁ヨークが磁束方向に分割せず一体で構成されていることを特徴とする。
請求項3に係る発明は、請求項1または請求項2に記載した振動型モータにおいて、前記励磁ヨークが電磁鋼板を積層し、カシメ接合していることを特徴とする。
In order to solve the above problem, the invention according to claim 1
A substantially cylindrical main magnet composed of permanent magnets magnetized with different polarities on the inner peripheral side and the outer peripheral side, and the axially opposite ends of the main magnet are respectively joined coaxially, and the inner peripheral side and the outer peripheral side are A movable part having a substantially cylindrical auxiliary magnet made of a permanent magnet magnetized with a polarity opposite to that of the main magnet;
A plurality of exciting yokes provided with two legs opposed to the movable part through a constant gap on the radially outer side of the movable part in the previous period, and arranged evenly in the circumferential direction of the movable part;
An exciting coil that is individually wound around the plurality of exciting yokes and generates magnetic flux in the legs;
A cylindrical back yoke disposed on the radially inner side of the movable part so as to face the excitation yoke,
An alternating current is passed through the exciting coil to reciprocate the movable part in the axial direction.
According to a second aspect of the present invention, in the vibration type motor according to the first aspect, the excitation yoke is integrally formed without being divided in the magnetic flux direction.
According to a third aspect of the present invention, in the vibration type motor according to the first or second aspect, the excitation yoke is formed by laminating electromagnetic steel sheets and crimping.

請求項4に係る発明は、請求項1乃至請求項3に記載した振動型モータにおいて、前記可動部の軸方向長さを、前記励磁ヨーク脚部にあって前期可動部に最も近い面の外側端部間の距離よりも長くしたことを特徴とする。
請求項5に係る発明は、請求項1乃至請求項4に記載した振動型モータを搭載した振動型圧縮機において、外部との気密を保持する圧力ケーシングを有し、前記圧力ケーシングの内部において、前記圧力ケーシングの内壁と前記励磁コイルが接触していることを特徴とする。
請求項6に係る発明は、請求項1乃至請求項4に記載した振動型モータを搭載した振動型圧縮機において、前記励磁コイルが、良熱伝導材料により一体となるようモールド成型され、前記圧力ケーシングの内部において、前記圧力ケーシングの内壁と前記モールド成型部が接触していることを特徴とする。
According to a fourth aspect of the present invention, in the vibration type motor according to any one of the first to third aspects, the axial length of the movable portion is outside the surface closest to the previous movable portion in the excitation yoke leg portion. It is characterized by being longer than the distance between the end portions.
The invention according to claim 5 is a vibration type compressor equipped with the vibration type motor according to any one of claims 1 to 4, further comprising a pressure casing that maintains airtightness with the outside, and inside the pressure casing, The inner wall of the pressure casing and the exciting coil are in contact with each other.
According to a sixth aspect of the present invention, in the vibration type compressor mounted with the vibration type motor according to any one of the first to fourth aspects, the exciting coil is molded so as to be integrated with a good heat conductive material, and the pressure is increased. Inside the casing, the inner wall of the pressure casing and the molded part are in contact with each other.

本発明によれば、補助磁石による推力増大効果を低減させることなく、設計パラメータを簡素化し、モータの効率を上げ、低コスト、高信頼性を実現する振動型モータおよびそれを用いた可動磁石型圧縮機を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, without reducing the thrust increase effect by an auxiliary magnet, the design parameter is simplified, the efficiency of the motor is increased, and the vibration type motor that realizes low cost and high reliability, and the movable magnet type using the same It is possible to provide a compressor.

以下、図に沿って本発明の実施形態を説明する。
図1は本発明に係る振動型モータの実施態様の主要部を示す構成図であり、モータ中心軸Cに沿った断面図である。図2は図1に示したA−A切断面の切断図である。
図1または図2において、1は励磁ヨーク、2は励磁ヨーク1に個別に巻装された励磁コイル、3はバックヨーク、4は励磁ヨーク1とバックヨーク3との空隙部に配置された円筒状の永久磁石からなる可動部である。
可動部4は、外周側をN極、内周側をS極に着磁した円筒状の主磁石5の軸方向両端部に、主磁石5とは逆方向に着磁された円筒状の補助磁石6,7を同軸状かつ一体的に連結して構成されている。また、主磁石5及び補助磁石6,7は磁石ホルダ10に固定されている。なお、8,9は、主磁石5と補助磁石6,7との接合部である。
主磁石5及び補助磁石6,7には、例えばネオジウムやサマリウムといった希土類の永久磁石が用いられる。
励磁コイル2が個別に巻装された複数の励磁ヨーク1は、図2に示すように円筒状の可動部4の半径方向外側に、磁束を発生させる2つの脚部11,12の内径を基準に放射状に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a main part of an embodiment of a vibration type motor according to the present invention, and is a cross-sectional view along a motor central axis C. 2 is a cross-sectional view taken along the line AA shown in FIG.
In FIG. 1 or FIG. 2, 1 is an excitation yoke, 2 is an excitation coil individually wound around the excitation yoke 1, 3 is a back yoke, and 4 is a cylinder disposed in the gap between the excitation yoke 1 and the back yoke 3. It is a movable part which consists of a permanent magnet.
The movable portion 4 is a cylindrical auxiliary magnet magnetized in the opposite direction to the main magnet 5 at both ends in the axial direction of the cylindrical main magnet 5 magnetized with the N pole on the outer peripheral side and the S pole on the inner peripheral side. Magnets 6 and 7 are coaxially and integrally connected. The main magnet 5 and the auxiliary magnets 6 and 7 are fixed to the magnet holder 10. In addition, 8 and 9 are joint parts of the main magnet 5 and the auxiliary magnets 6 and 7.
For the main magnet 5 and the auxiliary magnets 6 and 7, rare earth permanent magnets such as neodymium and samarium are used.
As shown in FIG. 2, the plurality of exciting yokes 1 in which the exciting coils 2 are individually wound are based on the inner diameters of the two leg portions 11 and 12 that generate magnetic fluxes on the radially outer side of the cylindrical movable portion 4. Are arranged radially.

励磁ヨーク1は磁束方向に分割されずに一体に構成している。磁束方向に分割される場合に比べて、励磁ヨーク1の磁気抵抗が低減し、モータ効率が向上するからである。また、脚部11,12の内径の同軸度は加工精度で決定されることになり、バックヨークとのクリアランスを均一に構成することが容易となる。これにより、製品性能のばらつきが抑えられると同時に、設計公差を緩和することが可能となり、コストダウンを図ることもできる。
励磁ヨーク1は、鉄板や珪素鋼板などを複数、積層して形成する方が好ましい。振動型モータのように交番磁界が加わる場合には、磁束に垂直な方向を絶縁することにより、励磁ヨーク1に発生する渦電流を抑制し、性能の低下を防止できるからである。
なお、励磁ヨーク1を積層して形成する場合には、プレス加工等をした積層用の鋼板等をカシメ接合することが好ましい。積層用の鋼板等をカシメ接合してブロック化することで、そのまま励磁コイル2の巻線加工が可能となるからである。さらに、積層された鋼板等が励磁コイル2により固定されて広がらなくなるため、溶接等の後加工を無くすこともでき、コストダウンを図ることができるからである。
軸方向に沿った補助磁石6,7の長さは、モータストロークとして要求される最大変位時にも、可動部4の両端部(補助磁石6,7の各一端)が脚部11,12にあって可動部4に最も近い面にかからないような長さとなっている。これは、補助磁石6,7の長さが短い場合には、補助磁石6,7の外側端部に存在する等価電流(図8参照)による反力を発生させてしまい、推力の増大効果が小さくなってしまうためである。
The excitation yoke 1 is integrally formed without being divided in the magnetic flux direction. This is because the magnetic resistance of the excitation yoke 1 is reduced and the motor efficiency is improved as compared with the case where the magnetic flux is divided in the magnetic flux direction. Further, the coaxiality of the inner diameters of the leg portions 11 and 12 is determined by the processing accuracy, and it becomes easy to configure a uniform clearance with the back yoke. As a result, variations in product performance can be suppressed, and at the same time, design tolerances can be relaxed, and costs can be reduced.
The exciting yoke 1 is preferably formed by laminating a plurality of iron plates, silicon steel plates and the like. This is because when an alternating magnetic field is applied like a vibration type motor, by insulating the direction perpendicular to the magnetic flux, eddy currents generated in the excitation yoke 1 can be suppressed and performance degradation can be prevented.
In addition, when laminating | stacking and forming the excitation yoke 1, it is preferable to crimp-bond the laminated steel plate etc. which carried out the press work. This is because the winding of the exciting coil 2 can be performed as it is by making the blocks by laminating steel plates for lamination and the like into blocks. Further, since the laminated steel plates are fixed by the exciting coil 2 and do not spread, post-processing such as welding can be eliminated, and the cost can be reduced.
The lengths of the auxiliary magnets 6 and 7 along the axial direction are such that both end portions of the movable portion 4 (one end of each of the auxiliary magnets 6 and 7) are in contact with the leg portions 11 and 12 even at the maximum displacement required as a motor stroke. Thus, the length does not reach the surface closest to the movable portion 4. This is because, when the lengths of the auxiliary magnets 6 and 7 are short, a reaction force due to an equivalent current (see FIG. 8) existing at the outer ends of the auxiliary magnets 6 and 7 is generated. This is because it becomes smaller.

支持ばね13,14はリング形状のスペーサ15,16を介して励磁ヨーク1と締結されている。なお、スペーサ15,16は非磁性材料(例えばステンレス)が用いられる。さらに、磁石ホルダ10の両端部は、支持ばね13,14に締結されている。
この支持ばね13,14は、例えば円板にスパイラル形状のスリットを加工したものが複数枚積層されたフレクシャーベアリングなるものが、一般的によく使用されている。この種のばねは、径方向の剛性が大きく強固に支持できるが、軸方向の剛性は小さく自由に振動することができるからである。
これにより、励磁ヨーク1を固定し、複数の励磁コイル2に同位相の交流電流を流すことで、主磁石5および補助磁石6,7に推力が働き、可動部4が固定されている磁石ホルダ10が左右へ運動することとなる。
複数の励磁ヨーク1に励磁コイル2が個別に巻装され、円筒状の可動部4の半径方向外側に放射状に配置されたことにより、励磁コイル2の内部で永久磁石が運動することはなく、励磁コイル2には起電力がほとんど発生せず、動特性を考慮した設計が容易になる。
また、分割された励磁ヨーク1を個別の励磁コイル2により励磁することで、コイルのインダクタンス成分が並列に配置された回路になり、インダクタンス成分が低減されことで、力率を向上することができる。
The support springs 13 and 14 are fastened to the excitation yoke 1 via ring-shaped spacers 15 and 16. The spacers 15 and 16 are made of a nonmagnetic material (for example, stainless steel). Further, both end portions of the magnet holder 10 are fastened to the support springs 13 and 14.
As the support springs 13 and 14, for example, a flexure bearing formed by laminating a plurality of spiral-shaped slits on a disk is generally used. This is because this type of spring has a great rigidity in the radial direction and can be strongly supported, but has a small rigidity in the axial direction and can vibrate freely.
As a result, the exciting yoke 1 is fixed, and an alternating current having the same phase is passed through the plurality of exciting coils 2, whereby a thrust acts on the main magnet 5 and the auxiliary magnets 6 and 7, and the magnet holder in which the movable part 4 is fixed. 10 will move left and right.
Since the excitation coils 2 are individually wound around the plurality of excitation yokes 1 and are arranged radially outside the cylindrical movable part 4, the permanent magnets do not move inside the excitation coil 2. The exciting coil 2 generates almost no electromotive force, and the design considering dynamic characteristics becomes easy.
Further, by exciting the divided excitation yokes 1 with individual excitation coils 2, a circuit in which the inductance components of the coils are arranged in parallel is obtained, and the power factor can be improved by reducing the inductance components. .

次に、図3は振動型モータを用いた圧縮機の実施態様の一つを示した構成図である。図3に示す圧縮機は、前述の振動型モータ21を覆うように圧力ケーシング22が設置されている。本発明に係る振動型モータの励磁コイル2はモータの最大外径部に存在する。よって、励磁コイル2と圧力ケーシング22を接触するように構成することが可能である。具体的な接触方法としては、圧入や焼きばめといった接触圧を高める方法で実現可能である。
このように構成することで、励磁コイル2の発熱を直に表面積の大きい圧力ケーシング22に熱伝導できるようになり、振動型モータ21の保護だけでなく、モータ効率も向上させることができる。
次に、図4は振動型モータを用いた圧縮機のもう一つの実施態様を示した構成図である。
図4に示すように、振動型モータ21から圧力ケーシング22への熱伝導性を高めると同時に、振動型モータ21の組立時の作業性を高めるために、少なくとも励磁ヨーク1および励磁コイル2を含む振動型モータ21の外周部を良熱伝導材料31(例えばアルミニウム)にてモールド成型する。こうすることで、圧力ケーシング22と振動型モータの接触面が大きくなり、より放熱を促進することができ、励磁コイル2の絶縁の信頼性が向上する。
Next, FIG. 3 is a block diagram showing one embodiment of a compressor using a vibration type motor. In the compressor shown in FIG. 3, a pressure casing 22 is installed so as to cover the vibration type motor 21 described above. The exciting coil 2 of the vibration type motor according to the present invention exists in the maximum outer diameter portion of the motor. Therefore, the exciting coil 2 and the pressure casing 22 can be configured to contact each other. A specific contact method can be realized by a method of increasing the contact pressure such as press fitting or shrink fitting.
With this configuration, heat generated by the exciting coil 2 can be directly conducted to the pressure casing 22 having a large surface area, and not only the vibration type motor 21 can be protected but also the motor efficiency can be improved.
Next, FIG. 4 is a block diagram showing another embodiment of a compressor using a vibration type motor.
As shown in FIG. 4, at least the excitation yoke 1 and the excitation coil 2 are included in order to increase the thermal conductivity from the vibration type motor 21 to the pressure casing 22 and at the same time improve the workability at the time of assembly of the vibration type motor 21. The outer periphery of the vibration type motor 21 is molded with a good heat conductive material 31 (for example, aluminum). By doing so, the contact surface between the pressure casing 22 and the vibration type motor is increased, heat dissipation can be further promoted, and the insulation reliability of the exciting coil 2 is improved.

なお、組立は実施例2と同様に、圧入や焼きばめといった接触圧力が大きい方法で行われる。   As in the second embodiment, the assembly is performed by a method having a large contact pressure such as press fitting or shrink fitting.

本発明に係る振動型モータの実施態様を示す構成図である。It is a block diagram which shows the embodiment of the vibration type motor which concerns on this invention. 本発明に係る振動型モータのA−A断面図である。It is AA sectional drawing of the vibration type motor which concerns on this invention. 本発明に係る振動型モータを用いた圧縮機の第1実施態様の構成図である。It is a block diagram of the 1st embodiment of the compressor using the vibration type motor which concerns on this invention. 本発明に係る振動型モータを用いた圧縮機の第2実施態様の構成図である。It is a block diagram of the 2nd embodiment of the compressor using the vibration type motor which concerns on this invention. 可動磁石型モータの駆動原理を説明するための構成図である。It is a block diagram for demonstrating the drive principle of a movable magnet type motor. 可動磁石型モータの駆動原理を説明するための構成図である。It is a block diagram for demonstrating the drive principle of a movable magnet type motor. 従来技術を説明するための構成図である。It is a block diagram for demonstrating a prior art. 特許文献1に記載された従来技術を示す構成図である。It is a block diagram which shows the prior art described in patent document 1.

符号の説明Explanation of symbols

1:励磁ヨーク
2:励磁コイル
3:バックヨーク
4:可動部
5:主磁石
6,7:補助磁石
8,9:接合部
10:磁石ホルダ
11,12:脚部
13,14:支持ばね
15,16:スペーサ
1: Excitation yoke 2: Excitation coil 3: Back yoke 4: Moving part 5: Main magnet 6, 7: Auxiliary magnet 8, 9: Joint part 10: Magnet holder 11, 12: Leg part 13, 14: Support spring 15, 16: Spacer

Claims (6)

内周側及び外周側が異極に着磁された永久磁石からなるほぼ円筒状の主磁石と、この主磁石の軸方向両端部にそれぞれ同軸状に接合され、かつ、内周側及び外周側が前記主磁石とは逆極性で着磁された永久磁石からなるほぼ円筒状の補助磁石とを有する可動部、
前記可動部の半径方向外側に一定の空隙部を介して、前記可動部に対向する二つの脚部を備え、前記可動部の円周方向に均等に配置された複数個の励磁ヨーク、
前記複数個の励磁ヨークに個別に巻装され、前記脚部に磁束を発生させる励磁コイル、
前記可動部の半径方向内側に、前記励磁ヨークと対向するように配置されている、円筒状のバックヨークを備え、
前記励磁コイルに交流電流を通流して前記可動部を軸方向に往復動させるようにしたことを特徴とする振動型モータ。
A substantially cylindrical main magnet composed of permanent magnets magnetized with different polarities on the inner peripheral side and the outer peripheral side, and the axially opposite ends of the main magnet are respectively joined coaxially, and the inner peripheral side and the outer peripheral side are A movable part having a substantially cylindrical auxiliary magnet made of a permanent magnet magnetized with a polarity opposite to that of the main magnet;
A plurality of exciting yokes provided with two legs facing the movable part through a constant gap on the radially outer side of the movable part, and arranged uniformly in the circumferential direction of the movable part;
An exciting coil that is individually wound around the plurality of exciting yokes and generates magnetic flux in the legs;
A cylindrical back yoke disposed on the radially inner side of the movable part so as to face the excitation yoke,
An oscillation type motor characterized in that an alternating current is passed through the excitation coil to reciprocate the movable part in the axial direction.
前記励磁ヨークが磁束方向に分割せず一体で構成されていることを特徴とする請求項1に記載した振動型モータ。   2. The vibration type motor according to claim 1, wherein the excitation yoke is integrally formed without being divided in the magnetic flux direction. 前記励磁ヨークが電磁鋼板を積層し、カシメ接合していることを特徴とする請求項1または請求項2に記載した振動型モータ。   3. The vibration type motor according to claim 1, wherein the excitation yoke is formed by laminating electromagnetic steel plates and crimping. 前記可動部の軸方向長さを、前記励磁ヨーク脚部にあって前期可動部に最も近い面の外側端部間の距離よりも長くしたことを特徴とする請求項1乃至請求項3のいずれか1項に記載した振動型モータ。   4. The axial length of the movable part is longer than the distance between the outer end portions of the surface of the excitation yoke leg that is closest to the previous movable part. The vibration type motor described in item 1. 外部との気密を保持する圧力ケーシングを有し、前記圧力ケーシングの内部において、前記圧力ケーシングの内壁と前記励磁コイルが接触していることを特徴とする請求項1乃至請求項4のいずれか1項に記載した振動型モータを搭載した振動型圧縮機。   5. The pressure casing according to claim 1, further comprising a pressure casing that maintains airtightness with the outside, wherein the inner wall of the pressure casing and the excitation coil are in contact with each other inside the pressure casing. A vibration type compressor equipped with the vibration type motor described in the section. 前記励磁コイルが、良熱伝導材料により一体となるようモールド成型され、前記圧力ケーシングの内部において、前記圧力ケーシングの内壁と前記モールド成型部が接触していることを特徴とする請求項1乃至請求項4のいずれか1項に記載した振動型モータを搭載した振動型圧縮機。
The said exciting coil is molded so that it may become united with a good heat conductive material, and the inner wall of the said pressure casing and the said molding part are contacting in the inside of the said pressure casing. 5. A vibration type compressor equipped with the vibration type motor described in any one of items 4 above.
JP2007230173A 2007-09-05 2007-09-05 Vibrating-type motor and vibrating-type compressor using the same Withdrawn JP2009065755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007230173A JP2009065755A (en) 2007-09-05 2007-09-05 Vibrating-type motor and vibrating-type compressor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007230173A JP2009065755A (en) 2007-09-05 2007-09-05 Vibrating-type motor and vibrating-type compressor using the same

Publications (1)

Publication Number Publication Date
JP2009065755A true JP2009065755A (en) 2009-03-26

Family

ID=40559827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007230173A Withdrawn JP2009065755A (en) 2007-09-05 2007-09-05 Vibrating-type motor and vibrating-type compressor using the same

Country Status (1)

Country Link
JP (1) JP2009065755A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506989A (en) * 2011-10-26 2012-06-20 西安工业大学 Speed-type vibration sensor with adjustable magnetic circuit
CN104682657A (en) * 2015-02-17 2015-06-03 刘远芳 Alternate mobile power generation structure and remote control device
WO2018020859A1 (en) * 2016-07-26 2018-02-01 Thk株式会社 Actuator
JP2018098984A (en) * 2016-12-16 2018-06-21 住友理工株式会社 Electromagnetic actuator
WO2020053838A1 (en) * 2018-09-14 2020-03-19 Mykhaylo Teplechuk Apparatus and method for charge pump power conversion
JP2020159321A (en) * 2019-03-27 2020-10-01 いすゞ自動車株式会社 Fluid machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109408A (en) * 1975-03-07 1976-09-28 Matsushita Electric Ind Co Ltd
JPS5244620A (en) * 1975-10-03 1977-04-07 Matsushita Electric Ind Co Ltd Tape recorder
JPS6460242A (en) * 1987-08-27 1989-03-07 Yaskawa Denki Seisakusho Kk Canned motor
US5148066A (en) * 1991-08-19 1992-09-15 Sunpower, Inc. Linear generator or motor with integral magnetic spring
US5175457A (en) * 1991-10-28 1992-12-29 Mechanical Technology Incorporated Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JP2004286009A (en) * 2003-03-06 2004-10-14 Fuji Electric Systems Co Ltd Vibration compressor
JP2005009397A (en) * 2003-06-19 2005-01-13 Fuji Electric Holdings Co Ltd Oscillatory type compressor
JP2006325385A (en) * 2005-05-17 2006-11-30 Lg Electronics Inc Stator of linear motor
JP2007291991A (en) * 2006-04-26 2007-11-08 Fuji Electric Holdings Co Ltd Vibration type compressor
JP2008206344A (en) * 2007-02-21 2008-09-04 Fuji Electric Systems Co Ltd Oscillation type motor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51109408A (en) * 1975-03-07 1976-09-28 Matsushita Electric Ind Co Ltd
JPS5244620A (en) * 1975-10-03 1977-04-07 Matsushita Electric Ind Co Ltd Tape recorder
JPS6460242A (en) * 1987-08-27 1989-03-07 Yaskawa Denki Seisakusho Kk Canned motor
US5148066A (en) * 1991-08-19 1992-09-15 Sunpower, Inc. Linear generator or motor with integral magnetic spring
US5175457A (en) * 1991-10-28 1992-12-29 Mechanical Technology Incorporated Linear motor or alternator plunger configuration using variable magnetic properties for center row and outer rows of magnets
JP2004286009A (en) * 2003-03-06 2004-10-14 Fuji Electric Systems Co Ltd Vibration compressor
JP2005009397A (en) * 2003-06-19 2005-01-13 Fuji Electric Holdings Co Ltd Oscillatory type compressor
JP2006325385A (en) * 2005-05-17 2006-11-30 Lg Electronics Inc Stator of linear motor
JP2007291991A (en) * 2006-04-26 2007-11-08 Fuji Electric Holdings Co Ltd Vibration type compressor
JP2008206344A (en) * 2007-02-21 2008-09-04 Fuji Electric Systems Co Ltd Oscillation type motor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506989A (en) * 2011-10-26 2012-06-20 西安工业大学 Speed-type vibration sensor with adjustable magnetic circuit
CN104682657A (en) * 2015-02-17 2015-06-03 刘远芳 Alternate mobile power generation structure and remote control device
WO2018020859A1 (en) * 2016-07-26 2018-02-01 Thk株式会社 Actuator
JP2018019477A (en) * 2016-07-26 2018-02-01 Thk株式会社 Actuator
JP2018098984A (en) * 2016-12-16 2018-06-21 住友理工株式会社 Electromagnetic actuator
WO2020053838A1 (en) * 2018-09-14 2020-03-19 Mykhaylo Teplechuk Apparatus and method for charge pump power conversion
US10897195B2 (en) 2018-09-14 2021-01-19 Chaoyang Semiconductor Jiangyin Technology Co., Ltd. Apparatus and method for charge pump power conversion
JP2020159321A (en) * 2019-03-27 2020-10-01 いすゞ自動車株式会社 Fluid machine

Similar Documents

Publication Publication Date Title
US8569916B2 (en) Electrical machine apparatus
US6946754B2 (en) Linear motor and linear compressor
JP6385670B2 (en) Linear drive for pump
TW201334371A (en) Electric machine
US9059626B2 (en) Electric machine with linear mover
JP2009065755A (en) Vibrating-type motor and vibrating-type compressor using the same
JP4962040B2 (en) Vibration type motor
JP2011078202A (en) Axial gap motor
JP2022501988A (en) Linear electric machine
JP3818243B2 (en) Linear vibrator
JP6426931B2 (en) Generator
JPH08130862A (en) Moving magnet linear actuator
JP2001078417A (en) Linear actuator
US20080203829A1 (en) Vibrating-type motor
JP5589507B2 (en) Mover and stator of linear drive unit
JP5391706B2 (en) Linear electromagnetic drive
JP5151183B2 (en) Axial gap type rotating electric machine and compressor
JP3624109B2 (en) Compressor for cryogenic refrigerator and armature coil used therefor
JP4770183B2 (en) Linear compressor
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP2009065754A (en) Vibrating-type motor
JP2009213210A (en) Vibrating motor
JP2002034225A (en) Magnet-movable liner motor
JP5874246B2 (en) Linear drive mover
JP2008271753A (en) Armature for cylindrical linear motor, and the cylindrical linear motor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A625 Written request for application examination (by other person)

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A625

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Effective date: 20120831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121029