JP2009211994A - Inspection method for organic el element - Google Patents

Inspection method for organic el element Download PDF

Info

Publication number
JP2009211994A
JP2009211994A JP2008055075A JP2008055075A JP2009211994A JP 2009211994 A JP2009211994 A JP 2009211994A JP 2008055075 A JP2008055075 A JP 2008055075A JP 2008055075 A JP2008055075 A JP 2008055075A JP 2009211994 A JP2009211994 A JP 2009211994A
Authority
JP
Japan
Prior art keywords
organic
voltage
electrodes
leakage current
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008055075A
Other languages
Japanese (ja)
Other versions
JP4650505B2 (en
Inventor
Hiromichi Kato
博道 加藤
Masayuki Katayama
片山  雅之
Harumi Suzuki
晴視 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008055075A priority Critical patent/JP4650505B2/en
Priority to KR1020080126490A priority patent/KR101012077B1/en
Publication of JP2009211994A publication Critical patent/JP2009211994A/en
Application granted granted Critical
Publication of JP4650505B2 publication Critical patent/JP4650505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/282Testing of electronic circuits specially adapted for particular applications not provided for elsewhere

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method can inspect open defects caused by aging and suitably determining its quality level, in an organic EL element having an upper electrode with film thickness of 135 nm or more. <P>SOLUTION: In the inspection method for the organic EL element wherein a lower electrode, an organic film including a light-emitting layer, and the upper electrode with film thickness of 135 nm or more are laminated in order on a substrate, voltage V is applied between both electrodes wherein a negative electrode side is set up to be a plus electrode and a positive electrode side is set up to be a minus electrode between the upper and lower electrodes, and leak current flowing between both electrodes is measured for a long period while making the defect section existed on the organic film evident. Thus, instantaneous current accompanied by the open defect can be detected, and it is determined on the basis of the measured leak current that what the instantaneous current is detected is a poor quality product and what the instantaneous current is not detected is a good quality product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機EL素子の検査方法に関するものである。   The present invention relates to an inspection method for an organic EL element.

有機EL素子は、一般に、基板上に、下部電極としての陽極、発光層を含む有機膜、上部電極としての陰極を積層してなるが、有機材料を用いているために、電界や熱によって変質や拡散が起こりやすく、これにより上下両電極の短絡が発生することがある。特に初期のリーク電流が検出限界(たとえば1nA以下)であっても、駆動時に、突然、上下両電極の短絡に至る場合がある。   In general, an organic EL element is formed by laminating an anode as a lower electrode, an organic film including a light emitting layer, and a cathode as an upper electrode on a substrate. However, since an organic material is used, it is altered by an electric field or heat. And diffusion easily occur, which may cause a short circuit between the upper and lower electrodes. In particular, even if the initial leakage current is at the detection limit (for example, 1 nA or less), the upper and lower electrodes may be short-circuited suddenly during driving.

これに対し、特許文献1に示される方法では、有機EL素子の形成後、陰極をプラス極、陽極をマイナス極として、両電極間に発光時に印加する順電圧とは反対の逆バイアス電圧であって、予め求めた欠陥部の破壊電圧及び有機EL素子の破壊電圧の間、且つ、有機EL素子の実駆動時の逆バイアス電圧以上となる電圧範囲の電圧を印加し、欠陥部を顕在化させてオープン破壊するエージングを行うようにしている。これによれば、逆バイアス電圧の印加によって欠陥部にリーク電流が生じ、このリーク電流によるジュール熱で有機材料が膨張して上部電極を飛散されるので、欠陥部が電気的にオープン状態となり、駆動時にリークが生じないようになる。なお。欠陥部とは、異物などの段差によって有機膜が局所的に薄くなり、短絡し易くなっている部位であり、オープン化された欠陥部(以下、オープン欠陥と示す)は、上部電極の飛散により局所的な非発光部となる。   On the other hand, in the method disclosed in Patent Document 1, after the organic EL element is formed, the cathode is the positive electrode and the anode is the negative electrode, and the reverse bias voltage is opposite to the forward voltage applied during light emission between the two electrodes. Then, apply a voltage in a voltage range between the breakdown voltage of the defect portion and the breakdown voltage of the organic EL element obtained in advance and equal to or higher than the reverse bias voltage during actual driving of the organic EL element to make the defect portion obvious. And aging to break open. According to this, a leakage current is generated in the defective portion by applying the reverse bias voltage, and the organic material is expanded by the Joule heat due to the leakage current and is scattered from the upper electrode, so that the defective portion is electrically opened, Leakage does not occur during driving. Note that. The defective part is a part where the organic film is locally thinned by a step such as a foreign substance and is easily short-circuited. The opened defective part (hereinafter referred to as an open defect) is caused by scattering of the upper electrode. It becomes a local non-light-emitting part.

ところが、本発明者が検討したところ、上部電極の膜厚が135nm以上と厚膜の場合、エージングにより生じるオープン欠陥の殆んどが、目視確認できる大きさ(例えば穴径が150μm以上)となることが明らかとなった。このように、目視確認できる大きさのオープン欠陥は、表示品質上問題となる。   However, as a result of studies by the present inventors, when the film thickness of the upper electrode is 135 nm or more, most of the open defects caused by aging are of a size that can be visually confirmed (for example, the hole diameter is 150 μm or more). It became clear. Thus, an open defect having a size that can be visually confirmed causes a problem in display quality.

また、特許文献2に示される方法では、膜厚が135nm以上の上部電極を有する有機EL素子に対し、上下両電極間に逆バイアス電圧として第1の電圧V1を印加して欠陥部を顕在化させるエージングを行った後、上下両電極間に逆バイアス電圧として第2の電圧V2を印加し、この第2の電圧V2を印加したときに正常品のリーク電流よりも欠陥品のリーク電流が大きくなる時間内において、リーク電流の測定を行う。そして、測定されたリーク電流に基づいて有機EL素子の良否を判定するようにしている。これによれば、膜厚が135nm以上の上部電極を有する有機EL素子に対し、リークの発生しやすい欠陥部を顕在化させて良否判定を適切に行うことができる。
特許第3562522号明細書 特開2007−66707号公報
In the method disclosed in Patent Document 2, the first voltage V1 is applied as a reverse bias voltage between the upper and lower electrodes for an organic EL element having an upper electrode having a film thickness of 135 nm or more to reveal a defective portion. After the aging is performed, the second voltage V2 is applied as a reverse bias voltage between the upper and lower electrodes, and when this second voltage V2 is applied, the leakage current of the defective product is larger than the leakage current of the normal product. Within a certain time, the leakage current is measured. The quality of the organic EL element is determined based on the measured leakage current. According to this, it is possible to appropriately determine whether or not the organic EL element having the upper electrode having a film thickness of 135 nm or more is obvious by causing a defective portion that is likely to cause leakage.
Japanese Patent No. 3562522 JP 2007-66707 A

しかしながら、本発明者がさらに検討したところ、膜厚が135nm以上の上部電極を有する有機EL素子でエージングにより顕在化されたオープン欠陥は、その大きさ(孔径)によらず、膜厚が135nm未満の上部電極を有する有機EL素子でエージングにより顕在化されたオープン欠陥よりも、駆動時にオープン欠陥が短絡不良に至りやすいことが明らかとなった。   However, as a result of further examination by the present inventor, the open defect manifested by aging in the organic EL element having the upper electrode having a film thickness of 135 nm or more has a film thickness of less than 135 nm regardless of its size (hole diameter). It has been clarified that the open defect is likely to cause a short circuit failure during driving, rather than the open defect that is manifested by aging in the organic EL element having the upper electrode.

これは、上部電極が厚く飛散しにくいため、エージングによってオープン欠陥が発生しても、オープン欠陥の構造(形状)が短絡しやすい構造(換言すれば、上部電極が下部電極に近い構造)となるうえに、駆動時にオープン欠陥の部位で上下電極が短絡しても、駆動時の電圧がエージングの電圧より小さいために、再度オープン化しにくいためであると考えられる。   This is because the upper electrode is thick and difficult to scatter, so even if an open defect occurs due to aging, the structure (shape) of the open defect is likely to short-circuit (in other words, the structure where the upper electrode is close to the lower electrode). In addition, even if the upper and lower electrodes are short-circuited at the site of the open defect during driving, the voltage at the time of driving is smaller than the aging voltage, so that it is difficult to open again.

したがって、膜厚が135nm以上の上部電極を有する有機EL素子では、市場における短絡不良を防止するために、オープン欠陥を検出する必要がある。上記したように、穴径が大きいものについては目視にて確認することで、オープン欠陥を検出することもできる。しかしながら、オープン欠陥は電気的にオープン状態であるため、目視で確認できない大きさ(例えば穴径が150μm未満)のオープン欠陥については、特許文献2に示されるエージング後のリーク電流測定によっても検出することができない。   Therefore, in an organic EL element having an upper electrode having a film thickness of 135 nm or more, it is necessary to detect an open defect in order to prevent a short circuit failure in the market. As described above, an open defect can be detected by visually confirming a large hole diameter. However, since the open defect is in an electrically open state, an open defect having a size that cannot be visually confirmed (for example, the hole diameter is less than 150 μm) is also detected by leak current measurement after aging disclosed in Patent Document 2. I can't.

本発明は上記問題点に鑑み、膜厚が135nm以上の上部電極を有する有機EL素子において、エージングによって生じたオープン欠陥を検出し、良否判定を適切に行うことのできる有機EL素子の検査方法を提供することを目的とする。   In view of the above-mentioned problems, the present invention provides an organic EL element inspection method capable of detecting open defects caused by aging in an organic EL element having an upper electrode having a film thickness of 135 nm or more and appropriately determining pass / fail. The purpose is to provide.

上記目的を達成する為に、本発明者は鋭意検討を行った。詳細を後述するが、上部電極としての陰極の膜厚が135nm以上であること以外は一般的な構成を有する有機EL素子を用い、上部電極と下部電極の間に欠陥部を顕在化させる電圧Vを印加した。そして、電圧Vを印加する全期間において(すなわちエージング工程中において)、両電極間に流れるリーク電流を測定した。その結果、エージングによってオープン欠陥が生じた有機EL素子では、瞬間電流(瞬間的に大きな値を示すリーク電流)が検出されることを新たに見出した。   In order to achieve the above object, the present inventor has intensively studied. Although details will be described later, an organic EL element having a general configuration except that the film thickness of the cathode as the upper electrode is 135 nm or more is used, and a voltage V that makes a defective portion appear between the upper electrode and the lower electrode. Was applied. Then, the leakage current flowing between both electrodes was measured during the entire period in which the voltage V was applied (that is, during the aging process). As a result, the present inventors have newly found that an instantaneous current (a leak current that instantaneously shows a large value) is detected in an organic EL element in which an open defect has occurred due to aging.

請求項1に記載の発明は、上記知見に基づくものであり、基板上に、下部電極、発光層を含む有機膜、膜厚135nm以上の上部電極が順に積層された有機EL素子の検査方法であって、上下両電極のうち、陰極側をプラス極、陽極側をマイナス極として両電極間に電圧Vを印加し、有機膜に存在する欠陥部を顕在化させるエージング工程と、両電極間に電圧Vを印加する全期間において、両電極間に流れるリーク電流を測定するリーク電流測定工程と、測定されたリーク電流に基づいて、有機EL素子の良否を判定する判定工程と、を備えることを特徴とする。   The invention according to claim 1 is based on the above knowledge, and is an inspection method of an organic EL element in which a lower electrode, an organic film including a light emitting layer, and an upper electrode having a thickness of 135 nm or more are sequentially laminated on a substrate. An aging step of applying a voltage V between both the upper and lower electrodes with the cathode side as a positive electrode and the anode side as a negative electrode to reveal a defective portion existing in the organic film, and between the two electrodes A leakage current measurement step for measuring a leakage current flowing between both electrodes in the entire period of applying the voltage V, and a determination step for determining the quality of the organic EL element based on the measured leakage current. Features.

本発明によれば、上記したように、エージング中に測定されたリーク電流に基づいて、有機EL素子がオープン欠陥を有するか否かを識別することができるので、良否判定を適切に行うことができる。   According to the present invention, as described above, it is possible to identify whether or not the organic EL element has an open defect based on the leak current measured during aging. it can.

請求項1に記載の発明においては、請求項2に記載のように、リーク電流測定工程において、一定の時間間隔Sで両電極間に流れるリーク電流を測定し、測定されたリーク電流に基づいて、有機EL素子の良否を判定しても良い。   In the first aspect of the present invention, as described in the second aspect, in the leakage current measurement step, the leakage current flowing between the two electrodes is measured at a constant time interval S, and based on the measured leakage current. The quality of the organic EL element may be determined.

このように、一定の時間間隔Sで電圧Vの印加中ずっとリーク電流をサンプリングすると、瞬時電流を検出するためのデータ取得数を低減しつつ、測定されたリーク電流に基づいて良否判定などする装置の構成を簡素化することができる。   As described above, when the leakage current is sampled during the application of the voltage V at the constant time interval S, the quality is determined based on the measured leakage current while reducing the number of data acquisition for detecting the instantaneous current. The configuration can be simplified.

請求項2に記載の発明においては、請求項3に記載のように、時間間隔Sを28μs以下とすることが好ましい。これによれば、瞬時電流を確実に検出することができる。この点については、本発明者によって確認されている。   In the invention described in claim 2, as described in claim 3, the time interval S is preferably set to 28 μs or less. According to this, the instantaneous current can be reliably detected. This point has been confirmed by the present inventors.

請求項1〜3いずれかに記載の発明においては、請求項4に記載のように、エージング工程における電圧Vを、有機EL素子の実駆動時に印加される電圧の大きさよりも大きくすると良い。エージング工程は、実駆動時に生じる欠陥を顕在化させる工程であるので、本発明によれば、欠陥の顕在化を促進することができる。   In the invention according to any one of claims 1 to 3, as described in claim 4, the voltage V in the aging process is preferably larger than the voltage applied during actual driving of the organic EL element. Since the aging process is a process of revealing defects generated during actual driving, according to the present invention, it is possible to promote the manifestation of defects.

請求項1〜4いずれかに記載の発明においては、請求項5に記載のように、エージング工程における電圧Vを直流電圧とすると良い。これによれば、電圧を印加するための電源のコストを抑えることができる。また、電圧の制御が簡単になる。   In the invention according to any one of claims 1 to 4, as described in claim 5, the voltage V in the aging process is preferably a DC voltage. According to this, the cost of the power supply for applying a voltage can be held down. Also, the voltage control is simplified.

請求項1〜5いずれかに記載の発明においては、請求項6に記載のように、同一の基板上に複数の有機EL素子がマトリクス状に形成された場合には、エージング工程において、複数の有機EL素子における両電極に対し、一括して電圧Vを印加すると良い。これによれば、複数の有機EL素子に対して一括でオープン欠陥を顕在化させることができる。   In the invention according to any one of claims 1 to 5, when a plurality of organic EL elements are formed in a matrix on the same substrate as described in claim 6, a plurality of organic EL elements are formed in the aging process. The voltage V is preferably applied to both electrodes in the organic EL element at once. According to this, open defects can be manifested in a lump for a plurality of organic EL elements.

請求項1〜6いずれかに記載の発明においては、請求項7に記載のように、電圧Vの印加前と印加後に有機EL素子を点灯させることで、両電極の電気的な接続状態を検査しても良い。このように電圧Vの印加前と印加後に、順方向の電圧を両電極に印加して点灯検査をすると、エージング前の時点やエージング中に両電極の電気的な接続状態が不良となった有機EL素子を検出することができる。すなわち、上記した方法によるオープン欠陥有無の検査の信頼性を向上することができる。   In the invention according to any one of claims 1 to 6, as in claim 7, the electrical connection state of both electrodes is inspected by lighting the organic EL element before and after the voltage V is applied. You may do it. Thus, when a forward voltage is applied to both electrodes before and after application of the voltage V and a lighting inspection is performed, the organic connection state between the electrodes becomes poor at the time before aging or during aging. An EL element can be detected. That is, it is possible to improve the reliability of the inspection for the presence or absence of open defects by the method described above.

先ず、本発明の実施形態について説明する前に、本発明者が本発明を創作するに至った経緯を説明する。本発明者は、エージングにより顕在化された欠陥部としてのオープン欠陥(異物などの段差によって有機膜が局所的に薄くなり、短絡し易くなっている部位であって、エージング工程での電圧印加により上部電極の飛散した局所的な非発光部)について鋭意検討を行った。先ず、上部電極としての陰極の膜厚と短絡不良発生率との関係について精査した。   First, before describing the embodiment of the present invention, the background of the inventor's creation of the present invention will be described. The inventor of the present invention is an open defect (a part where an organic film is locally thinned by a step such as a foreign substance and is easily short-circuited as a defective part that has been manifested by aging. Intensive study was conducted on the local non-light-emitting portion scattered by the upper electrode. First, the relationship between the film thickness of the cathode as the upper electrode and the occurrence rate of short-circuit defects was investigated.

詳しくは、基板上に、下部電極としての陽極、有機膜、上部電極としての陰極が積層され、上部電極の膜厚が異なる複数種類の有機EL素子を準備し、各有機EL素子について、エージングにより生じたオープン欠陥(目視できないものも含む)の個数N1を測定した。そして、上下両電極間に実駆動電圧15Vを10h印加した後、オープン欠陥のうち、駆動によって短絡に至ったもの(オープン欠陥の部位で上下電極が短絡したもの)の個数N2を測定して、短絡不良発生率(N2/N1)を求めた。   Specifically, an anode as the lower electrode, an organic film, and a cathode as the upper electrode are stacked on the substrate, and a plurality of types of organic EL elements having different film thicknesses of the upper electrode are prepared. The number N1 of the generated open defects (including those that cannot be visually observed) was measured. Then, after applying an actual drive voltage of 15 V between the upper and lower electrodes for 10 h, among the open defects, the number N2 of the short-circuited by driving (the upper and lower electrodes are short-circuited at the site of the open defect) is measured. The occurrence rate of short circuit failure (N2 / N1) was determined.

その結果、図1に示すように、上部電極の膜厚が135nm以上では、上部電極の膜厚が135nm未満に比べて短絡不良発生率が大きく、駆動時にオープン欠陥が短絡不良に至りやすいことが明らかとなった。また、上部電極としての膜厚が135nm以上の有機EL素子でエージングにより顕在化されたオープン欠陥は、その大きさ(孔径)によらず、上部電極の膜厚が135nm未満に比べて、駆動時にオープン欠陥が短絡不良に至りやすいことが明らかとなった。図1は、上部電極の膜厚と短絡不良発生率との関係を示す図である。   As a result, as shown in FIG. 1, when the film thickness of the upper electrode is 135 nm or more, the occurrence rate of short-circuit failure is larger than that when the film thickness of the upper electrode is less than 135 nm, and open defects may easily lead to short-circuit failure during driving. It became clear. In addition, the open defect manifested by aging in the organic EL element having a film thickness of 135 nm or more as the upper electrode is not more dependent on the size (hole diameter) than when the film thickness of the upper electrode is less than 135 nm. It became clear that open defects tend to lead to short-circuit defects. FIG. 1 is a diagram showing the relationship between the film thickness of the upper electrode and the incidence of short circuit failure.

これは、エージングによってオープン欠陥が発生しても、上部電極の膜厚が薄いものに比べて厚膜である上部電極が飛散しにくく、上部電極がオープン欠陥を介して下部電極の近くに位置することとなるため、駆動時にオープン欠陥部位で上下電極が短絡しやすいことが一因であると考えられる。また、駆動時にオープン欠陥部位で短絡しても、駆動時の電圧がエージングの電圧より小さいために、再度オープン化しにくいことも一因であると考えられる。   This is because even if an open defect occurs due to aging, the upper electrode, which is a thick film, is less likely to scatter compared to a thin upper electrode, and the upper electrode is located near the lower electrode through the open defect. Therefore, it is considered that one reason is that the upper and lower electrodes are easily short-circuited at the open defect portion during driving. In addition, even if a short circuit occurs at the open defect portion during driving, the voltage during driving is smaller than the aging voltage, and thus it is considered that it is difficult to open again.

このように、従来では表示品質の点で影響がないとされてきた、目視で確認できない大きさ(例えば穴径が150μm未満)のオープン欠陥についても、膜厚が135nm以上の上部電極を有する有機EL素子では、市場において短絡不良が生じる恐れがあることが判明した。   As described above, an open defect having a size that cannot be visually confirmed (for example, a hole diameter of less than 150 μm) that has not been affected in terms of display quality in the past has an upper electrode with a film thickness of 135 nm or more. It has been found that there is a possibility that a short circuit failure may occur in the market for EL elements.

そこで、本発明者は、上部電極としての陰極の膜厚が135nm以上の有機EL素子について、目視以外でのオープン欠陥を検出する方法を見出すべく鋭意検討を行った。具体的には、陰極と下部電極としての陽極の間に欠陥部を顕在化させる電圧Vを印加しつつ、電圧Vの印加期間中、両電極間に流れるリーク電流を測定した。その結果、図2に示すように、エージングによってオープン欠陥が生じない有機EL素子ではリーク電流がほぼ一定であったが、エージングによってオープン欠陥が生じた有機EL素子では、リーク電流としてスパイク様の瞬間的に大きな電流(以下、瞬時電流と示す)が流れることを新たに見出した。図2は、エージング中に有機EL素子に流れるリーク電流の変化を示す図であり、実線がオープン欠陥の生じた有機EL素子、破線がオープン欠陥の生じない有機EL素子の結果を示している。また、横軸を電圧印加時間、縦軸をリーク電流(I)の対数値(logI)としている。この瞬時電流は、欠陥部が電気的にオープン状態となる現象が短期間で起こるために生じるものと考えられる。なお、エージング後に上下両電極間に流れるリーク電流を測定した場合には、オープン欠陥の生じない有機EL素子とオープン欠陥の生じた有機EL素子とで上記のような差は見られなかった。本発明は、この知見に基づくものであり、以下、本発明の実施の形態を図に基づいて説明する。   Therefore, the present inventor has intensively studied to find a method for detecting an open defect other than visual observation with respect to an organic EL element having a cathode film thickness of 135 nm or more as an upper electrode. Specifically, the leakage current flowing between the two electrodes was measured during the period of application of the voltage V while applying the voltage V that reveals the defective portion between the cathode and the anode as the lower electrode. As a result, as shown in FIG. 2, the leak current is almost constant in the organic EL element in which no open defect occurs due to aging. However, in the organic EL element in which the open defect occurs due to aging, a spike-like moment is generated as the leak current. Newly found that a large current (hereinafter referred to as an instantaneous current) flows. FIG. 2 is a diagram showing a change in leakage current flowing through the organic EL element during aging. The solid line indicates the result of the organic EL element in which an open defect occurs, and the broken line indicates the result of the organic EL element in which no open defect occurs. In addition, the horizontal axis represents the voltage application time, and the vertical axis represents the logarithmic value (log I) of the leakage current (I). This instantaneous current is considered to be caused by a phenomenon that the defective portion is electrically opened in a short period of time. When the leakage current flowing between the upper and lower electrodes after aging was measured, the above difference was not observed between the organic EL element in which no open defect occurred and the organic EL element in which the open defect occurred. The present invention is based on this finding, and hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図3は、本発明の第1実施形態に係る有機EL素子の概略構成を示す断面図である。図3に示す有機EL素子100は、基板10、陽極20、発光層を含む有機膜30、陰極40を有している。この有機EL素子100は、陰極40の膜厚が135nm以上と厚膜であること以外は、一般的な有機EL素子と同様の膜構成となっている。
(First embodiment)
FIG. 3 is a cross-sectional view showing a schematic configuration of the organic EL element according to the first embodiment of the present invention. An organic EL element 100 shown in FIG. 3 includes a substrate 10, an anode 20, an organic film 30 including a light emitting layer, and a cathode 40. The organic EL element 100 has a film configuration similar to that of a general organic EL element except that the thickness of the cathode 40 is 135 nm or more.

基板10は、母材(基材)としての役割を果たすものであり、ガラスやプラスチックなどからなる透明基板である。基板10の一面上には、下部電極としての陽極20が積層されている。陽極20の構成材料としては、インジウムスズ酸化物(ITO)などの導電性及び光透過性を有する材料を採用することができる。陽極20における基板10とは反対側の表面上には、有機膜30が積層されている。有機膜30としては、周知の構成、すなわち、発光層のみからなる単層型や発光層以外の正孔注入層、正孔輸送層、電子輸送層、電子注入層などを含む多層型を採用することができる。そして、有機膜30における陽極20とは反対側の表面上には、上部電極としての陰極40が積層されている。陰極40の構成材料としては、アルミニウムなどの導電性の材料を採用することができる。   The substrate 10 plays a role as a base material (base material), and is a transparent substrate made of glass or plastic. An anode 20 as a lower electrode is stacked on one surface of the substrate 10. As a constituent material of the anode 20, a material having conductivity and light transmittance such as indium tin oxide (ITO) can be employed. An organic film 30 is laminated on the surface of the anode 20 opposite to the substrate 10. As the organic film 30, a known configuration, that is, a single layer type including only a light emitting layer or a multilayer type including a hole injection layer other than the light emitting layer, a hole transport layer, an electron transport layer, an electron injection layer and the like is adopted. be able to. A cathode 40 as an upper electrode is laminated on the surface of the organic film 30 opposite to the anode 20. As a constituent material of the cathode 40, a conductive material such as aluminum can be employed.

そして、この有機EL素子100においては、実駆動時には、陽極20をプラス極、陰極40をマイナス極として両電極20,40間に順電圧を印加することにより、有機膜30にて発光がなされ、例えば基板10側から光が取り出されるようになっている。   In the organic EL element 100, during actual driving, the organic film 30 emits light by applying a forward voltage between the electrodes 20 and 40 with the anode 20 as a positive pole and the cathode 40 as a negative pole. For example, light is extracted from the substrate 10 side.

ここで、本実施形態では、同一の基板10に対して、上記した有機EL素子100を行列状(マトリクス状)に複数個形成している。図4は、複数の有機EL素子をマトリクス状に形成した構成を示す概略平面図である。   Here, in the present embodiment, a plurality of the organic EL elements 100 described above are formed in a matrix (matrix shape) on the same substrate 10. FIG. 4 is a schematic plan view showing a configuration in which a plurality of organic EL elements are formed in a matrix.

図4に示されるように、陽極20及び陰極40が、基板10上において互いに交差するようにそれぞれストライプ状に形成されており、これら上下両電極20、40が交差して重なり合う部位が、画素すなわち図3に示される有機EL素子100として構成されている。   As shown in FIG. 4, the anode 20 and the cathode 40 are formed in stripes so as to intersect with each other on the substrate 10, and the portions where the upper and lower electrodes 20, 40 intersect and overlap each other are pixels, It is configured as the organic EL element 100 shown in FIG.

このようなマトリクス状に配置された有機EL素子100においては、図示しない駆動回路によって、複数個の有機EL素子100のうち、所望のものを発光させることで、ディスプレイパネルとして使用できるようになっている。   The organic EL elements 100 arranged in such a matrix can be used as a display panel by causing a desired one of the plurality of organic EL elements 100 to emit light by a drive circuit (not shown). Yes.

次に、有機EL素子100の製造方法について説明する。図5は、有機EL素子の製造方法を示す工程フロー図である。図6は、製造工程のうち、検査工程を説明するフロー図である。図7は、有機EL素子を検査するための装置構成を模式的に示す図である。   Next, a method for manufacturing the organic EL element 100 will be described. FIG. 5 is a process flow diagram illustrating a method for manufacturing an organic EL element. FIG. 6 is a flowchart for explaining the inspection process in the manufacturing process. FIG. 7 is a diagram schematically showing an apparatus configuration for inspecting an organic EL element.

図5に示されるように、先ず上記構成の有機EL素子100を形成する(ステップ10)。具体的には、基板10上にスパッタなどにより下部電極としての陽極20を形成し、有機発光材料を用いて蒸着法により有機膜30を形成する。次いで、アルミニウムなどを蒸着することにより、上部電極としての陰極40を膜厚135nm以上(たとえば、300nm程度)となるように形成する。ここで、本実施形態では、陽極20及び陰極40を、フォトリソグラフィーなどにより、図4に示されるようにストライプ状にそれぞれパターニングすることで、有機EL素子100をマトリクス状に複数個形成する。ここまでが、素子形成工程であり、これにより、図3及び図4に示される有機EL素子100が形成される。   As shown in FIG. 5, first, the organic EL element 100 having the above-described configuration is formed (step 10). Specifically, the anode 20 as a lower electrode is formed on the substrate 10 by sputtering or the like, and the organic film 30 is formed by an evaporation method using an organic light emitting material. Next, by depositing aluminum or the like, the cathode 40 as the upper electrode is formed to have a film thickness of 135 nm or more (for example, about 300 nm). Here, in the present embodiment, a plurality of organic EL elements 100 are formed in a matrix by patterning the anode 20 and the cathode 40 in a stripe shape as shown in FIG. 4 by photolithography or the like. The process up to this point is the element formation step, whereby the organic EL element 100 shown in FIGS. 3 and 4 is formed.

そして、形成された有機EL素子100に対して検査を実行する(ステップ20)。この検査方法が本実施形態に係る特徴部分である。本実施形態においては、図5に示されるように、検査工程を、有機EL素子100の製造工程の一工程として、上記した素子形成工程に続いて連続的に実施する。この検査工程は、有機EL素子100における陰極40をプラス極、陽極20をマイナス極として両電極20,40間に、上記順電圧とは逆方向の直流電圧すなわち逆バイアス電圧を印加し、欠陥部を顕在化させる処理を行うエージング工程と、エージング工程の電圧V印加の全期間において、両電極20,40間に流れるリーク電流を測定するリーク電流測定工程を備えている。すなわち、エージングしつつリーク電流の測定を行う。   And inspection is performed with respect to the formed organic EL element 100 (step 20). This inspection method is a characteristic part according to the present embodiment. In the present embodiment, as shown in FIG. 5, the inspection process is performed continuously as a process of manufacturing the organic EL element 100 following the above-described element formation process. In this inspection process, the cathode 40 in the organic EL element 100 is used as a positive electrode and the anode 20 is used as a negative electrode. An aging step for performing the process of making the material appear, and a leakage current measuring step for measuring the leakage current flowing between the electrodes 20 and 40 during the entire period of application of the voltage V in the aging step. That is, the leakage current is measured while aging.

具体的には、図6に示されるように、先ず両電極20,40間に逆バイアス電圧Vを印加してエージングを行う(ステップ21)。この逆バイアス電圧Vは、有機EL素子100に存在する欠陥部が顕在化する電圧を印加する。本実施形態では、逆バイアス電圧Vを、有機EL素子100の実駆動時に印加される電圧の大きさよりも大きくすることで、オープン欠陥の顕在化を促進するようにしている。この逆バイアス電圧Vの印加は、図7に示されるように直流電源110を用いて行うことができる。本実施形態では、図7に示されるように、複数個の有機EL素子100における上下両電極20,40をそれぞれ、共通の配線を用いて直流電源110に接続し、制御部130により、複数個の有機EL素子100に対して一括して逆バイアス電圧Vを印加するように直流電源110の作動を制御する。したがって、複数個の有機EL素子100について、一括してオープン欠陥有無の検査(検査工程)を行うことができ、短時間の処理が可能となる。しかしながら、逆バイアス電圧Vの印加(検査工程)は、個々の有機EL素子100毎に行っても良い。   Specifically, as shown in FIG. 6, aging is first performed by applying a reverse bias voltage V between the electrodes 20 and 40 (step 21). The reverse bias voltage V is a voltage at which a defective portion existing in the organic EL element 100 becomes apparent. In this embodiment, by making the reverse bias voltage V larger than the voltage applied when the organic EL element 100 is actually driven, the manifestation of open defects is promoted. The reverse bias voltage V can be applied using a DC power supply 110 as shown in FIG. In the present embodiment, as shown in FIG. 7, the upper and lower electrodes 20, 40 in the plurality of organic EL elements 100 are connected to the DC power source 110 using a common wiring, and the control unit 130 controls the plurality of electrodes. The operation of the DC power supply 110 is controlled so that the reverse bias voltage V is applied to the organic EL elements 100 at once. Therefore, the plurality of organic EL elements 100 can be collectively inspected for the presence or absence of open defects (inspection process), and processing in a short time becomes possible. However, the application of the reverse bias voltage V (inspection process) may be performed for each organic EL element 100.

また、逆バイアス電圧Vの印加とともに、両電極20,40間に流れるリーク電流の測定を開始する(ステップ22)。本実施形態では、図7に示されるように、直流電流を測定する電流測定部120が、陰極40と直流電源110との間に電気的に介在されている。なお、電流測定部120は、陽極20と直流電源110との間に介在されても良い。そして、有機EL素子100に逆バイアス電圧Vを印加した状態で、電流測定部120によって有機EL素子100のリーク電流を測定するように、電流測定部120の作動が制御部130によって制御される。また、電流測定部120によって測定されたリーク電流が制御部130に送られ、制御部130では、このリーク電流の値と所定の閾値とを比較して、オープン欠陥の有無を検出する。したがって、一定の時間間隔Sでデータを取得するように、電流測定部120の作動が制御部130によって制御される。   Further, along with the application of the reverse bias voltage V, measurement of the leakage current flowing between the electrodes 20 and 40 is started (step 22). In the present embodiment, as shown in FIG. 7, a current measuring unit 120 that measures a direct current is electrically interposed between the cathode 40 and the direct current power source 110. Note that the current measurement unit 120 may be interposed between the anode 20 and the DC power supply 110. Then, the operation of the current measuring unit 120 is controlled by the control unit 130 so that the current measuring unit 120 measures the leakage current of the organic EL element 100 with the reverse bias voltage V applied to the organic EL element 100. Further, the leakage current measured by the current measuring unit 120 is sent to the control unit 130, and the control unit 130 compares the value of the leakage current with a predetermined threshold value to detect the presence or absence of an open defect. Therefore, the operation of the current measurement unit 120 is controlled by the control unit 130 so as to acquire data at a certain time interval S.

このように、制御部130によって作動制御された電流測定部120により、一定の時間間隔Sで逆バイアス電圧Vの印加中ずっとリーク電流の測定がなされる場合(サンプリングされる)には、時間間隔Sが小さいほど、瞬時電流を測定できる確率が高まる。しかしながら、時間間隔Sを小さくするほど、データ取得数が増えるため、検査装置のコストが増加する。そこで、本発明者は、時間間隔Sと瞬時電流検出率(オープン欠陥検出率)との関係について精査した。オープン欠陥有無については、目視及び顕微鏡による確認を行った。その結果、図8に示すように、時間間隔Sを28μs以下とすれば、瞬時電流、すなわちオープン欠陥を確実に検出することができることを見出した。なお、28μsは、測定された瞬時電流の半値幅とほぼ一致するものであり、本実施形態では、時間間隔Sを28μsとした。図8は、時間間隔Sとオープン欠陥検出率(瞬時電流検出率)との関係を示す図である。   As described above, when the leakage current is measured (sampled) during the application of the reverse bias voltage V at the constant time interval S by the current measurement unit 120 whose operation is controlled by the control unit 130, the time interval is measured. The smaller S is, the higher the probability that an instantaneous current can be measured. However, as the time interval S is reduced, the number of data acquisition increases, and the cost of the inspection apparatus increases. Therefore, the present inventor scrutinized the relationship between the time interval S and the instantaneous current detection rate (open defect detection rate). The presence or absence of open defects was confirmed visually and with a microscope. As a result, as shown in FIG. 8, it has been found that if the time interval S is set to 28 μs or less, an instantaneous current, that is, an open defect can be reliably detected. Note that 28 μs substantially coincides with the measured half-value width of the instantaneous current, and in this embodiment, the time interval S is set to 28 μs. FIG. 8 is a diagram showing the relationship between the time interval S and the open defect detection rate (instantaneous current detection rate).

図6のステップ23に示すように、これら逆バイアス電圧Vの印加とリーク電流の測定は、逆バイアス電圧Vの印加からの経過時間が、欠陥部を顕在化させるための所定時間を経過するまで、実施される。なお、経過時間(欠陥部を顕在化させるための所定時間)は、逆バイアス電圧Vによって変化するので、印加される逆バイアス電圧Vに応じて適宜設定される。本実施形態では、逆バイアス電圧Vが28V、印加時間を60秒とした。   As shown in step 23 of FIG. 6, the application of the reverse bias voltage V and the measurement of the leakage current are performed until the elapsed time from the application of the reverse bias voltage V passes a predetermined time for making the defective portion appear. Implemented. Since the elapsed time (predetermined time for making the defective portion visible) varies depending on the reverse bias voltage V, it is appropriately set according to the applied reverse bias voltage V. In this embodiment, the reverse bias voltage V is 28 V and the application time is 60 seconds.

所定時間が経過した後、逆バイアス電圧の印加とリーク電流の測定を終了する(ステップ24,25)。以上により、検査工程(エージング工程及びリーク電流測定工程)が終了となる。そして、図5に示されるように、判定工程では、検査工程(リーク電流測定工程)にて測定されたリーク電流に基づいて、有機EL素子100の良否を判定する(ステップ30)。本実施形態では、上記したように、電流測定部120によって測定されたリーク電流が、制御部130にて所定の閾値と比較され、瞬間的に閾値を超えるものがオープン欠陥を有するものと判定される。なお、一度閾値を超えてから逆バイアス電圧Vの印加が終了するまでずっと閾値を超えるものが、陽極20と陰極40が短絡したものと判定される。また、閾値以下のものは、陽極20と陰極40が短絡しておらず、且つ、オープン欠陥を有していないものと判定される。なお、有機EL素子100の構造によって、オープン欠陥を有していない正常素子のリーク電流値が異なり、逆バイアス電圧Vによっても瞬時電流のピーク値が変化する。したがって、オープン欠陥有無の判定基準となる閾値は、それぞれの条件に応じて適宜設定される。以上により、有機EL素子100が、実駆動時に短絡に至るオープン欠陥を有しているか否かの判定がなされる。本実施形態では、上記したように、検査工程及び判定工程を、自動化することができる。   After a predetermined time has elapsed, the application of the reverse bias voltage and the measurement of the leakage current are finished (steps 24 and 25). Thus, the inspection process (aging process and leakage current measurement process) is completed. Then, as shown in FIG. 5, in the determination step, the quality of the organic EL element 100 is determined based on the leakage current measured in the inspection step (leakage current measurement step) (step 30). In the present embodiment, as described above, the leakage current measured by the current measuring unit 120 is compared with a predetermined threshold value by the control unit 130, and those that instantaneously exceed the threshold value are determined to have open defects. The In addition, it is determined that the anode 20 and the cathode 40 are short-circuited when the threshold value is exceeded until the application of the reverse bias voltage V is completed after the threshold value is exceeded once. Moreover, the thing below a threshold value determines with the anode 20 and the cathode 40 not being short-circuited, and not having an open defect. Note that the leakage current value of a normal element having no open defect differs depending on the structure of the organic EL element 100, and the peak value of the instantaneous current changes depending on the reverse bias voltage V. Therefore, a threshold value that is a criterion for determining the presence or absence of an open defect is appropriately set according to each condition. As described above, it is determined whether or not the organic EL element 100 has an open defect that causes a short circuit during actual driving. In the present embodiment, as described above, the inspection process and the determination process can be automated.

このように、本実施形態に係る有機EL素子100の検査方法によれば、膜厚が135nm以上の陰極40を有する有機EL素子100に対し、両電極20,40間に逆バイアス電圧Vを印加して欠陥部(オープン欠陥及び陽極20と陰極40の短絡欠陥)を顕在化させつつ、このときに測定されるリーク電流に基づいて有機EL素子100の良否を判定するようにしている。   Thus, according to the inspection method of the organic EL element 100 according to the present embodiment, the reverse bias voltage V is applied between the electrodes 20 and 40 to the organic EL element 100 having the cathode 40 having a film thickness of 135 nm or more. Thus, the defect portion (open defect and short-circuit defect between the anode 20 and the cathode 40) is made obvious, and the quality of the organic EL element 100 is determined based on the leak current measured at this time.

したがって、リーク電流としての瞬時電流の検出有無により、有機EL素子100がオープン欠陥を有するか否かを識別することができるので、良否判定を適切に行うことができる。   Therefore, whether or not the organic EL element 100 has an open defect can be identified based on whether or not an instantaneous current as a leakage current is detected, and therefore it is possible to appropriately determine whether the organic EL element 100 has an open defect.

また、本実施形態では、時間間隔Sを28μs以下として、両電極20,40間に流れるリーク電流をサンプリングするので、瞬時電流を検出するためのデータ取得数を低減しつつ、瞬時電流を確実に検出することができる。また、検査装置の構成を簡素化することができる。   In the present embodiment, since the leak current flowing between the electrodes 20 and 40 is sampled with the time interval S set to 28 μs or less, the instantaneous current is surely reduced while reducing the number of data acquisitions for detecting the instantaneous current. Can be detected. In addition, the configuration of the inspection apparatus can be simplified.

以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。   The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

本実施形態では、エージング工程における逆バイアス電圧Vを直流電圧とする例を示した。このように直流電圧とすると、電圧を印加するための電源のコストを抑えることができる。また、電圧の制御が簡単になる。しかしながら、直流でなくてもよく交流でもよい。実効電圧として狙いの電圧になればよい。   In the present embodiment, an example in which the reverse bias voltage V in the aging process is a DC voltage is shown. Thus, when it is set as a direct current voltage, the cost of the power supply for applying a voltage can be held down. Also, the voltage control is simplified. However, it may not be direct current and may be alternating current. The target voltage may be the effective voltage.

本実施形態では、検査工程を、有機EL素子100の製造工程の一工程として、素子形成工程に続いて連続的に実施する例を示した。しかしながら、素子形成工程とは間を空けて独立した工程として実施しても良い。   In the present embodiment, an example has been shown in which the inspection process is performed continuously as a process of the manufacturing process of the organic EL element 100 following the element formation process. However, it may be implemented as an independent process with a gap from the element forming process.

本実施形態では、検査工程(リーク電流測定工程)の後に、判定工程を実施する例を示した。しかしながら、リーク電流測定工程と判定工程とを同時に行っても良い。つまり、リーク電流の測定と同時に良否判定を行ってもよい。瞬時電流の検出方法も上記例に限定されるものではない。例えば直流電源110と陰極40との間に接続された電流測定用抵抗に生じた電圧がコンパレータにて基準電圧と比較され、瞬時電流の有無に応じて、コンパレータの出力が「1」「0」のいずれかとなるような構成としても良い。この場合、サンプリングではなく、逆バイアス電圧Vの印加中ずっと連続してリーク電流を測定することができるので、瞬時電流を確実に検出することができる。また、所定時間の経過を待たずに、瞬時電流が検出された時点で、検査工程を終了としても良い。   In this embodiment, the example which performs a determination process after the inspection process (leakage current measurement process) was shown. However, the leakage current measurement process and the determination process may be performed simultaneously. That is, pass / fail determination may be performed simultaneously with measurement of the leakage current. The method for detecting the instantaneous current is not limited to the above example. For example, a voltage generated in a current measuring resistor connected between the DC power supply 110 and the cathode 40 is compared with a reference voltage by a comparator, and the output of the comparator is “1” or “0” depending on the presence or absence of an instantaneous current. It is good also as a structure which becomes either of these. In this case, since the leakage current can be measured continuously during the application of the reverse bias voltage V, not the sampling, the instantaneous current can be reliably detected. Alternatively, the inspection process may be terminated when an instantaneous current is detected without waiting for the elapse of a predetermined time.

本実施形態では、検査工程及び判定工程が自動化された例を示したが、特に自動化に限定されるものではない。   In the present embodiment, an example in which the inspection process and the determination process are automated has been described. However, the present invention is not particularly limited to automation.

また、本実施形態では特に言及しなかったが、逆バイアス電圧Vの印加前と印加後に、有機EL素子100における陰極40をマイナス極、陽極20をプラス極として両電極20、40間に順方向の電圧を印加して有機EL素子100を点灯させることで、両電極20,40の電気的な接続状態を検査しても良い。このように点灯検査をすると、エージング前の時点ですでに両電極20,40の電気的な接続状態が不良となっている有機EL素子100や、エージング中に両電極20,40の電気的な接続状態が不良となった有機EL素子100を検出することができる。すなわち、本実施形態に示したオープン欠陥有無の検査の信頼性を向上することができる。   Although not particularly mentioned in the present embodiment, before and after the application of the reverse bias voltage V, the cathode 40 in the organic EL element 100 is a negative electrode and the anode 20 is a positive electrode. The electrical connection state of both electrodes 20 and 40 may be inspected by applying the voltage of 1 and turning on the organic EL element 100. When the lighting inspection is performed in this way, the organic EL element 100 in which the electrical connection state between the electrodes 20 and 40 is already defective before the aging, or the electrical connection between the electrodes 20 and 40 during aging is performed. The organic EL element 100 in which the connection state is defective can be detected. That is, it is possible to improve the reliability of the inspection for the presence or absence of open defects shown in this embodiment.

上部電極の膜厚と短絡不良発生率との関係を示す図である。It is a figure which shows the relationship between the film thickness of an upper electrode, and a short circuit defect incidence. エージング中に有機EL素子に流れるリーク電流の変化を示す図である。It is a figure which shows the change of the leakage current which flows into an organic EL element during aging. 第1実施形態に係る有機EL素子の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the organic EL element which concerns on 1st Embodiment. 複数の有機EL素子をマトリクス状に形成した構成を示す概略平面図である。It is a schematic plan view which shows the structure which formed the some organic EL element in the matrix form. 有機EL素子の製造方法を示す工程フロー図である。It is a process flow figure showing a manufacturing method of an organic EL element. 製造工程のうち、検査工程を説明するフロー図である。It is a flowchart explaining an inspection process among manufacturing processes. 有機EL素子を検査するための装置構成を模式的に示す図である。It is a figure which shows typically the apparatus structure for test | inspecting an organic EL element. 時間間隔Sとオープン欠陥検出率(瞬時電流検出率)との関係を示す図である。It is a figure which shows the relationship between the time interval S and an open defect detection rate (instantaneous current detection rate).

符号の説明Explanation of symbols

10・・・基板
20・・・陽極(下部電極)
30・・・有機膜
40・・・陰極(上部電極)
100・・・有機EL素子
110・・・直流電源
120・・・電流測定部
130・・・制御部
10 ... Substrate 20 ... Anode (lower electrode)
30 ... Organic film 40 ... Cathode (upper electrode)
DESCRIPTION OF SYMBOLS 100 ... Organic EL element 110 ... DC power supply 120 ... Current measurement part 130 ... Control part

Claims (7)

基板上に、下部電極、発光層を含む有機膜、膜厚135nm以上の上部電極が順に積層された有機EL素子の検査方法であって、
前記上下両電極のうち、陰極側をプラス極、陽極側をマイナス極として前記両電極間に電圧Vを印加し、前記有機膜に存在する欠陥部を顕在化させるエージング工程と、
前記両電極間に電圧Vを印加する全期間において、前記両電極間に流れるリーク電流を測定するリーク電流測定工程と、
測定された前記リーク電流に基づいて、前記有機EL素子の良否を判定する判定工程と、を備えることを特徴とする有機EL素子の検査方法。
A method for inspecting an organic EL element in which a lower electrode, an organic film including a light emitting layer, and an upper electrode having a thickness of 135 nm or more are sequentially stacked on a substrate,
Among the upper and lower electrodes, an aging step in which the cathode side is a positive electrode and the anode side is a negative electrode, and a voltage V is applied between the two electrodes to reveal a defective portion existing in the organic film;
A leakage current measurement step for measuring a leakage current flowing between the electrodes in the entire period in which the voltage V is applied between the electrodes;
And a determination step of determining whether the organic EL element is good or not based on the measured leakage current.
前記リーク電流測定工程において、一定の時間間隔Sで前記両電極間に流れるリーク電流を測定し、
測定されたリーク電流に基づいて、前記有機EL素子の良否を判定することを特徴とする請求項1に記載の有機EL素子の検査方法。
In the leakage current measurement step, the leakage current flowing between the electrodes at a constant time interval S is measured,
The inspection method for an organic EL element according to claim 1, wherein the quality of the organic EL element is determined based on the measured leakage current.
前記時間間隔Sとは、28μs以下であることを特徴とする請求項2に記載の有機EL素子の検査方法。   The organic EL element inspection method according to claim 2, wherein the time interval S is 28 μs or less. 前記エージング工程における電圧Vは、前記有機EL素子の実駆動時に印加される電圧の大きさよりも大きいことを特徴とする請求項1〜3いずれか1項に記載の有機EL素子の検査方法。   The method for inspecting an organic EL element according to any one of claims 1 to 3, wherein the voltage V in the aging step is larger than a voltage applied during actual driving of the organic EL element. 前記エージング工程における電圧Vは、直流電圧であることを特徴とする請求項1〜4いずれか1項に記載の有機EL素子の検査方法。   5. The method for inspecting an organic EL element according to claim 1, wherein the voltage V in the aging step is a DC voltage. 同一の前記基板上に、複数の前記有機EL素子がマトリクス状に形成され
前記エージング工程では、複数の前記有機EL素子における前記両電極に対し、一括して前記電圧Vを印加することを特徴とする請求項1〜5いずれか1項に記載の有機EL素子の検査方法。
A plurality of the organic EL elements are formed in a matrix on the same substrate, and in the aging step, the voltage V is collectively applied to the electrodes of the plurality of organic EL elements. The inspection method of the organic EL element according to any one of claims 1 to 5.
前記両電極間に電圧Vを印加する前と印加した後に、前記有機EL素子を点灯させることで、前記両電極の電気的な接続状態を検査することを特徴とする請求項1〜6いずれか1項に記載の有機EL素子の検査方法。   The electrical connection state of the electrodes is inspected by lighting the organic EL element before and after applying the voltage V between the electrodes. The inspection method of the organic EL element of 1 item | term.
JP2008055075A 2008-03-05 2008-03-05 Inspection method for organic EL elements Expired - Fee Related JP4650505B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008055075A JP4650505B2 (en) 2008-03-05 2008-03-05 Inspection method for organic EL elements
KR1020080126490A KR101012077B1 (en) 2008-03-05 2008-12-12 Inspection method for an organic electro luminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008055075A JP4650505B2 (en) 2008-03-05 2008-03-05 Inspection method for organic EL elements

Publications (2)

Publication Number Publication Date
JP2009211994A true JP2009211994A (en) 2009-09-17
JP4650505B2 JP4650505B2 (en) 2011-03-16

Family

ID=41184938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008055075A Expired - Fee Related JP4650505B2 (en) 2008-03-05 2008-03-05 Inspection method for organic EL elements

Country Status (2)

Country Link
JP (1) JP4650505B2 (en)
KR (1) KR101012077B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182048A (en) * 2011-03-02 2012-09-20 Sanken Electric Co Ltd Organic el driving unit
JP2012243718A (en) * 2011-05-24 2012-12-10 Denso Corp Organic el element manufacturing method
WO2013161332A1 (en) * 2012-04-25 2013-10-31 タカノ株式会社 Inspection device for organic el lighting panel
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110310598B (en) * 2019-06-28 2021-05-28 上海天马有机发光显示技术有限公司 Display panel and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414794A (en) * 1990-05-08 1992-01-20 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescence element
JP2003282253A (en) * 2002-01-15 2003-10-03 Denso Corp Manufacturing method of organic el element
JP2005310659A (en) * 2004-04-23 2005-11-04 Nippon Seiki Co Ltd Manufacturing method for organic el panel
JP2007066707A (en) * 2005-08-31 2007-03-15 Denso Corp Manufacturing method of organic el element
JP2007265633A (en) * 2006-03-27 2007-10-11 Denso Corp Manufacturing method of organic el element and manufacturing device of same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414794A (en) * 1990-05-08 1992-01-20 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescence element
JP2003282253A (en) * 2002-01-15 2003-10-03 Denso Corp Manufacturing method of organic el element
JP2005310659A (en) * 2004-04-23 2005-11-04 Nippon Seiki Co Ltd Manufacturing method for organic el panel
JP2007066707A (en) * 2005-08-31 2007-03-15 Denso Corp Manufacturing method of organic el element
JP2007265633A (en) * 2006-03-27 2007-10-11 Denso Corp Manufacturing method of organic el element and manufacturing device of same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182048A (en) * 2011-03-02 2012-09-20 Sanken Electric Co Ltd Organic el driving unit
JP2012243718A (en) * 2011-05-24 2012-12-10 Denso Corp Organic el element manufacturing method
WO2013161332A1 (en) * 2012-04-25 2013-10-31 タカノ株式会社 Inspection device for organic el lighting panel
JP2013229147A (en) * 2012-04-25 2013-11-07 Takano Co Ltd Device of inspecting organic el illumination panel
US9040969B2 (en) 2012-09-20 2015-05-26 Denso Corporation Organic electroluminescence display device and method for manufacturing the same

Also Published As

Publication number Publication date
KR101012077B1 (en) 2011-02-07
KR20090095449A (en) 2009-09-09
JP4650505B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4650505B2 (en) Inspection method for organic EL elements
JP5384590B2 (en) Organic electroluminescent device
JP2006323032A (en) Apparatus and method for repairing defective pixel of flat panel display device
US7710365B2 (en) Determining leakage in matrix-structured electronic devices
JP2007042498A (en) Repairing method of organic el by laser and repairing device by laser
US10840160B2 (en) Display device and method for repairing and detecting thin film transistor of display device
JP2007173205A (en) Organic light emitting display device and defect inspection method of the same
KR100818009B1 (en) Manufacturing method of organic el element and manufacturing device of organic el element
JP2007042492A (en) Repairing method of organic el and repairing device
JP2008014668A (en) Apparatus and method for evaluating organic material
WO2010137452A1 (en) Organic el panel inspection method, organic el panel inspection device, and organic el panel
US10230003B2 (en) Method of evaluating thin-film transistor, method of manufacturing thin-film transistor, and thin-film transistor
KR100785976B1 (en) Manufacturing method for organic el element
JP2009277528A (en) Organic el element inspection repairing method and device
JP2007235087A (en) Static current detecting method and its apparatus
JPH11337454A (en) Wiring pattern inspecting method and its device
JP5578136B2 (en) Manufacturing method of organic EL element
TW200425217A (en) A method for repairing electrode pattern defects
CN108878473B (en) Display panel, manufacturing method and detection method thereof and display device
JP2009075044A (en) Film thickness defective inspection device for conductive polymer layer of organic el panel substrate, and method for inspecting film thickness defective using the same
JP2013029326A (en) Defect inspection method and defect inspection device for organic el panel
JP2006145971A (en) Device and method for inspecting circuit board for display
JP2013098411A (en) Inspection method and inspection apparatus for solar battery
KR20070061974A (en) Apparatus for detecting the defect of a luminescence device and method in the same
JP2015153562A (en) Inspection method for organic el element and inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R151 Written notification of patent or utility model registration

Ref document number: 4650505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees