JP2005310659A - Manufacturing method for organic el panel - Google Patents

Manufacturing method for organic el panel Download PDF

Info

Publication number
JP2005310659A
JP2005310659A JP2004128558A JP2004128558A JP2005310659A JP 2005310659 A JP2005310659 A JP 2005310659A JP 2004128558 A JP2004128558 A JP 2004128558A JP 2004128558 A JP2004128558 A JP 2004128558A JP 2005310659 A JP2005310659 A JP 2005310659A
Authority
JP
Japan
Prior art keywords
organic
panel
reverse bias
bias voltage
leak inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004128558A
Other languages
Japanese (ja)
Other versions
JP4882091B2 (en
JP2005310659A5 (en
Inventor
Yotaro Shiraishi
洋太郎 白石
Tokuo Shinpo
徳夫 新保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2004128558A priority Critical patent/JP4882091B2/en
Publication of JP2005310659A publication Critical patent/JP2005310659A/en
Publication of JP2005310659A5 publication Critical patent/JP2005310659A5/ja
Application granted granted Critical
Publication of JP4882091B2 publication Critical patent/JP4882091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a failure caused by the growth of a defective part and a failure caused by a predetermined acceleration test in a latent failure point accompanying stress applied by aging processing. <P>SOLUTION: In a first leak inspection process S4, a predetermined reverse bias voltage is impressed between a positive electrode and a negative electrode after an element formation process A1 for measuring a first leak current value. In a stress impression process S5, a second reverse bias voltage higher than the first reverse bias voltage impressed in the first leak inspection process S4 is impressed. In a second leak inspection process S6, a third reverse bias voltage substantially equal to the first reverse bias voltage is impressed after the stress impression process S5 for measuring a second leak current value. In an element determination process S7, it is determined whether the organic EL element is good or defective based on results of the first leak inspection process S4 and the second leak inspection process S6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、少なくとも発光層を有する有機層を陽極と陰極とで挟持した有機EL素子を、透光性の支持基板上に配設してなる有機EL(エレクトロルミネッセンス)パネルの製造方法に関するものである。   The present invention relates to a method for manufacturing an organic EL (electroluminescence) panel in which an organic EL element having an organic layer having at least a light emitting layer sandwiched between an anode and a cathode is disposed on a translucent support substrate. is there.

従来、有機ELパネルとしては、ガラス材料からなる透光性基板上に、ITO(indium tin oxide)等によって陽極となる透明電極と、正孔注入層,正孔輸送層,発光層及び電子輸送層からなる有機層と、陰極となるアルミニウム(Al)等の非透光性の背面電極とを順次積層して積層体である有機EL素子を形成し、この積層体を覆うガラス材料からなる封止部材を透光性基板上に配設してなるものが知られている。このような有機ELパネルは、例えば特許文献1に開示されている。   Conventionally, as an organic EL panel, a transparent electrode serving as an anode made of ITO (indium tin oxide) or the like, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are formed on a transparent substrate made of a glass material. An organic EL element that is a laminated body is formed by sequentially laminating an organic layer made of aluminum and a non-transparent back electrode such as aluminum (Al) that becomes a cathode, and a sealing made of a glass material that covers the laminated body A member in which a member is disposed on a translucent substrate is known. Such an organic EL panel is disclosed in Patent Document 1, for example.

かかる有機ELパネルの製造工程において、蒸着法もしくはスパッタリング法等によって前記各電極及び前記各層を形成する場合の真空槽内に、サブミクロン(数μm以下)単位の塵やゴミ等の異物が混入することがあり、この混入を防ぐことは実質上無理である。従って、前記透明電極形成後に、前記透明電極上に前記異物が付着し、この異物が付着した状態にて前記有機層を形成すると、膜厚が10nm〜100nmと非常に薄い前記有機層が部分的に更に薄くなってしまう個所(以下、欠陥部と記す)が発生し、この欠陥部を有する有機層上に前記背面電極を堆積させると、前記透明電極と前記背面電極とが短絡したり、あるいはリークが生じる恐れがあり、発光部である前記有機層が発光しなくなることから有機ELパネルの歩留まりが低下してしまうといった問題点を有していた。   In the manufacturing process of such an organic EL panel, foreign matter such as dust and debris in units of submicrons (several μm or less) is mixed in the vacuum chamber when the electrodes and the layers are formed by vapor deposition or sputtering. It is practically impossible to prevent this contamination. Accordingly, after the transparent electrode is formed, the foreign matter adheres on the transparent electrode, and when the organic layer is formed in a state where the foreign matter is attached, the very thin organic layer having a thickness of 10 nm to 100 nm is partially formed. When the back electrode is deposited on the organic layer having the defective portion, the transparent electrode and the back electrode are short-circuited, or There is a possibility that leakage may occur, and the organic layer which is a light emitting portion does not emit light, so that the yield of the organic EL panel is lowered.

このような問題点を解決するものとして、本願出願人は、特許文献2に開示されている有機ELパネルの製造方法を提案している。この製造方法としては、陽極と陰極との間に少なくとも発光層を含む有機層を挟んでなる有機EL素子を形成する有機EL素子形成工程と、前記有機EL素子における前記陽極と前記陰極との両電極間に逆バイアス電圧を印加するエージング処理を行って前記有機EL素子の欠陥部をオープン破壊させ、短絡及びリークを防止するエージング処理工程とを備えるものである。
特開2001−267066号公報 特開2003−282249号公報
In order to solve such problems, the present applicant has proposed a method for manufacturing an organic EL panel disclosed in Patent Document 2. The manufacturing method includes an organic EL element forming step of forming an organic EL element having an organic layer including at least a light emitting layer between an anode and a cathode, and both the anode and the cathode in the organic EL element. And an aging treatment step of performing an aging treatment in which a reverse bias voltage is applied between the electrodes to open-break the defective portion of the organic EL element and prevent a short circuit and a leak.
JP 2001-267066 A JP 2003-282249 A

しかしながら、前述したエージング処理工程を含む製造工程であっても、長期的な製品駆動に伴う前記欠陥部の成長による故障、あるいはエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障の点で、改善の余地があった。   However, even in the manufacturing process including the above-described aging process, a failure due to the growth of the defective part due to long-term product driving or a predetermined accelerated test of a potential failure point due to stress applied in the aging process There was room for improvement in terms of failure.

本発明の前述した問題点に着目し、欠陥部の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障を未然に防ぐことが可能であり、また電極間の短絡やリークの発生を抑制し、有機ELパネルの歩留まりを向上させることが可能な有機ELパネルの製造方法を提供するものである。   Paying attention to the above-mentioned problems of the present invention, it is possible to prevent a failure due to a growth of a defective portion and a failure due to a predetermined acceleration test of a potential failure point accompanying a stress applied by an aging process, and between electrodes. An organic EL panel manufacturing method capable of suppressing the occurrence of short circuit and leakage and improving the yield of the organic EL panel is provided.

本発明は、前述した課題を解決するため、請求項1に記載した有機ELパネルの製造方法のように、少なくとも発光層を有する有機層を陽極と陰極とで狭持した有機EL素子を透光性の支持基板上に形成してなる有機EL素子形成工程と、前記有機EL素子形成工程後に、前記陽極及び前記陰極からなる両電極間に所定の逆バイアス電圧を印加し、漏れ電流値を計測するリーク検査工程と、前記リーク検査工程の計測結果に基づいて前記有機EL素子の良否を判定する素子判定工程と、を少なくとも含むものである。   In order to solve the above-described problems, the present invention provides an organic EL element having an organic layer having at least a light-emitting layer sandwiched between an anode and a cathode as in the method for producing an organic EL panel according to claim 1. After forming the organic EL element formed on the conductive support substrate and the organic EL element forming step, a predetermined reverse bias voltage is applied between the anode and the cathode, and the leakage current value is measured. And a device determination step for determining the quality of the organic EL device based on a measurement result of the leak inspection step.

また、請求項1に記載の有機ELパネルの製造方法において、請求項2に記載の有機ELパネルの製造方法は、前記リーク検査工程内にエージング処理を含んでなるものである。   Moreover, the manufacturing method of the organic electroluminescent panel of Claim 1 WHEREIN: The manufacturing method of the organic electroluminescent panel of Claim 2 includes an aging process in the said leak test process.

また、請求項1に記載の有機ELパネルの製造方法において、請求項3に記載の有機ELパネルの製造方法は、前記素子判定工程は、前記漏れ電流値の絶対値と所定の規格値との比較結果に基づいて、前記有機EL素子の良否を判定するものである。   Moreover, in the manufacturing method of the organic EL panel according to claim 1, in the manufacturing method of the organic EL panel according to claim 3, the element determination step includes: an absolute value of the leakage current value and a predetermined standard value. The quality of the organic EL element is determined based on the comparison result.

また、請求項4に記載した有機ELパネルの製造方法のように、少なくとも発光層を有する有機層を陽極と陰極とで狭持した有機EL素子を透光性の支持基板上に形成してなる有機EL素子形成工程と、前記有機EL素子形成工程後に、前記陽極及び前記陰極からなる両電極間に所定の第1の逆バイアス電圧を印加し、第1の漏れ電流値を計測する第1のリーク検査工程と、前記第1のリーク検査工程により印加された前記第1の逆バイアス電圧以上の第2の逆バイアス電圧を印加するストレス印加工程と、前記ストレス印加工程後に、前記第1の逆バイアス電圧と略同等な第3の逆バイアス電圧を印加し、第2の漏れ電流値を計測する第2のリーク検査工程と、前記第1のリーク検査工程と前記第2のリーク検査工程との計測結果に基づいて前記有機EL素子の良否を判定する素子判定工程と、を少なくとも含むものである。   In addition, as in the method of manufacturing an organic EL panel according to claim 4, an organic EL element having an organic layer having at least a light emitting layer sandwiched between an anode and a cathode is formed on a translucent support substrate. A first first reverse bias voltage is applied between both the anode and the cathode after the organic EL element forming step and the organic EL element forming step, and a first leakage current value is measured. A leak inspection step; a stress application step of applying a second reverse bias voltage equal to or higher than the first reverse bias voltage applied in the first leak inspection step; and the first reverse bias after the stress application step. A second leak inspection step of applying a third reverse bias voltage substantially equal to the bias voltage and measuring a second leakage current value; the first leak inspection step; and the second leak inspection step. Based on measurement results Quality and device determination step of determining the organic EL element includes at least the.

また、請求項4に記載の有機ELパネルの製造方法において、請求項5に記載の有機ELパネルの製造方法は、前記有機EL素子形成工程と前記第1のリーク検査工程との間にエージング処理工程を含むものである。   Moreover, the manufacturing method of the organic electroluminescent panel of Claim 4 WHEREIN: The manufacturing method of the organic electroluminescent panel of Claim 5 is an aging process between the said organic EL element formation process and the said 1st leak test process. It includes a process.

また、請求項4に記載の有機ELパネルの製造方法において、請求項6に記載の有機ELパネルの製造方法は、前記ストレス印加工程内にエージング処理工程を含んでなるものである。   Moreover, the manufacturing method of the organic EL panel of Claim 4 WHEREIN: The manufacturing method of the organic EL panel of Claim 6 comprises an aging process process in the said stress application process.

また、請求項4に記載の有機ELパネルの製造方法において、請求項7に記載の有機ELパネルの製造方法のように、前記素子判定工程は、前記第1の漏れ電流値と前記第2の漏れ電流値との差を求め、この差と所定の規格値との比較結果に基づいて前記有機EL素子の良否を判定するものである。   Moreover, in the manufacturing method of the organic EL panel according to claim 4, as in the manufacturing method of the organic EL panel according to claim 7, the element determination step includes the first leakage current value and the second leakage current value. A difference from the leakage current value is obtained, and the quality of the organic EL element is judged based on a comparison result between the difference and a predetermined standard value.

本発明は、少なくとも発光層を有する有機層を陽極と陰極とで挟持した有機EL素子を、透光性の支持基板上に配設してなる有機ELパネルの製造方法に関し、欠陥部の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障を抑制することが可能であり、また両電極間における短絡及びリークの発生を抑制することが可能となり、有機ELパネルの歩留まりを向上させることができる。   The present invention relates to a method for manufacturing an organic EL panel in which an organic EL element having at least an organic layer having a light emitting layer sandwiched between an anode and a cathode is disposed on a translucent support substrate, and by growth of a defect portion It is possible to suppress a failure due to a predetermined acceleration test at a potential failure point due to a stress applied by the failure and the aging process, and it is possible to suppress a short circuit and a leak between both electrodes, and the organic EL The yield of the panel can be improved.

以下、添付図面に基づいて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1及び図2において、有機ELパネル1は、ガラス基板(支持基板)2と、透明電極(陽極)3,絶縁層4,有機層5及び背面電極(陰極)6を順次積層形成してなる積層体である有機EL素子7を封止キャップ8によって覆ってなる。   1 and 2, an organic EL panel 1 is formed by sequentially laminating a glass substrate (support substrate) 2, a transparent electrode (anode) 3, an insulating layer 4, an organic layer 5 and a back electrode (cathode) 6. The organic EL element 7 which is a laminate is covered with a sealing cap 8.

ガラス基板2は、長方形形状からなる透光性の支持基板である。   The glass substrate 2 is a translucent support substrate having a rectangular shape.

透明電極3は、ガラス基板2上にITO等の導電性材料によって構成され、日の字型の表示セグメント部3aと、個々のセグメントからそれぞれ引き出し形成されたリード部3bと、リード部3bの終端部に設けられる電極部3cとを備えている。尚、電極部3cは、ガラス基板2の一辺に集中的に配設されている。   The transparent electrode 3 is made of a conductive material such as ITO on the glass substrate 2, and is formed of a sun-shaped display segment portion 3a, a lead portion 3b formed by being drawn from each segment, and a terminal end of the lead portion 3b. The electrode part 3c provided in a part is provided. The electrode portion 3c is intensively disposed on one side of the glass substrate 2.

絶縁層4は、ポリイミド系等の絶縁材料からなり、表示セグメント部3aに対応した窓部4aと、背面電極6の後述する電極部に対応する切り欠き部4bとを有し、発光領域の輪郭を鮮明に表示するため、透明電極3の表示セグメント部3aの周縁部と若干重なるように窓部4aが形成され、また、透明電極3と背面電極6との絶縁を確保するためにリード部3b上を覆うように配設される。   The insulating layer 4 is made of an insulating material such as polyimide, and has a window portion 4a corresponding to the display segment portion 3a and a notch portion 4b corresponding to an electrode portion described later of the back electrode 6, and has a contour of the light emitting region. In order to display the image clearly, a window portion 4a is formed so as to slightly overlap the peripheral edge portion of the display segment portion 3a of the transparent electrode 3, and a lead portion 3b is provided to ensure insulation between the transparent electrode 3 and the back electrode 6. It is arranged so as to cover the top.

有機層5は、少なくとも発光層を有するものであれば良いが、本発明の実施の形態においては正孔注入層,正孔輸送層,発光層及び電子輸送層を順次積層形成してなるものである。有機層5は、絶縁層4における窓部4aの形成箇所に対応するように所定の大きさをもって配設される。   The organic layer 5 may have at least a light emitting layer, but in the embodiment of the present invention, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are sequentially laminated. is there. The organic layer 5 is disposed with a predetermined size so as to correspond to the location of the window 4a in the insulating layer 4.

背面電極6は、アルミ(Al)やアルミリチウム(Al-Li),マグネシウム銀(Mg-Ag)等の金属性の導電性材料から構成され、有機層5上に配設される。背面電極6は、透明電極3における各電極部3cが形成されるガラス基板2の一辺に設けられるリード部6aと電気的に接続される。尚、リード部6aの終端部には、電極部(引き出し部)6bが設けられ、リード部6a及び電極部6bは透明電極3と同材料により形成される。   The back electrode 6 is made of a metallic conductive material such as aluminum (Al), aluminum lithium (Al-Li), or magnesium silver (Mg-Ag), and is disposed on the organic layer 5. The back electrode 6 is electrically connected to a lead portion 6a provided on one side of the glass substrate 2 on which each electrode portion 3c in the transparent electrode 3 is formed. Note that an electrode portion (leading portion) 6b is provided at the terminal portion of the lead portion 6a, and the lead portion 6a and the electrode portion 6b are formed of the same material as the transparent electrode 3.

以上のように、ガラス基板2上に透明電極3と絶縁層4と有機層5と背面電極6とを順次積層して有機EL素子7が構成される。   As described above, the organic EL element 7 is configured by sequentially laminating the transparent electrode 3, the insulating layer 4, the organic layer 5, and the back electrode 6 on the glass substrate 2.

封止キャップ8は、有機EL素子7を収納するための凹部形状の収納部8aと、収納部8aを取り巻くように形成され、ガラス基板とUV硬化型接着剤9を介して接合するための接合部8bとを有している。封止キャップ8は、透明電極3の電極部3b及び背面電極6の電極部6aが露出するようにガラス基板2よりも若干小さ目に構成されている。   The sealing cap 8 is formed so as to surround the recessed storage portion 8 a for storing the organic EL element 7 and the storage portion 8 a, and is bonded to the glass substrate via the UV curable adhesive 9. Part 8b. The sealing cap 8 is configured to be slightly smaller than the glass substrate 2 so that the electrode portion 3b of the transparent electrode 3 and the electrode portion 6a of the back electrode 6 are exposed.

以上の各部によってセグメント表示式の有機ELパネル1が構成される。   The segment display type organic EL panel 1 is configured by the above-described units.

以上のようにして得られた有機ELパネル1の電極部3c,6bに、少なくともドライバ部,電源部及び制御部からなる駆動回路(図示しない)を電気的に接続する。そして前記駆動回路により、少なくとも順方向(有機EL素子7をダイオード成分とした場合に、背面電極6をマイナス電位とし、透明電極3をプラス電位とした方向)の発光駆動電圧成分を有する所定の駆動波形を発生し、有機ELパネル1に印加することで有機ELパネル1での表示が得られる。   A drive circuit (not shown) including at least a driver unit, a power supply unit, and a control unit is electrically connected to the electrode units 3c and 6b of the organic EL panel 1 obtained as described above. A predetermined drive having a light emission drive voltage component in at least a forward direction (a direction in which the back electrode 6 is set to a negative potential and the transparent electrode 3 is set to a positive potential when the organic EL element 7 is a diode component) by the drive circuit. A display on the organic EL panel 1 can be obtained by generating a waveform and applying it to the organic EL panel 1.

また、前記発光駆動電圧成分としては、定電圧、または定電流が挙げられるが、有機ELパネル1の輝度安定性と発光寿命の確保をする上では定電流であることが望ましい。   The light emission drive voltage component may be a constant voltage or a constant current, and is preferably a constant current in order to ensure the luminance stability and the light emission life of the organic EL panel 1.

また、前記駆動波形は、前記発光駆動電圧成分以外にグランド電圧(0V)成分や逆電圧成分などの異なる電圧成分を含むこともある。前記グランド電圧成分あるいは前記逆電圧成分は、駆動方式に係る制御の制約により含まれる場合もあるし、表示品位を向上させたり輝度減衰を抑制させたり、製品駆動中に透明電極3と背面電極6との間の電気的短絡として発生する欠陥部(後述する)を修復する目的で含まれる場合もある。   The drive waveform may include different voltage components such as a ground voltage (0 V) component and a reverse voltage component in addition to the light emission drive voltage component. The ground voltage component or the reverse voltage component may be included due to control restrictions relating to the driving method, improve display quality, suppress luminance attenuation, and the transparent electrode 3 and the back electrode 6 during product driving. It may be included for the purpose of repairing a defective portion (described later) that occurs as an electrical short between the two.

また、前記駆動波形は、有機ELパネル1の表示意匠(寸法、セグメントまたはドット数、色、輝度)あるいは駆動方式(直流点灯、単純マトリクス駆動、アクティブマトリクス駆動など)の選択によって決定される。   The drive waveform is determined by selecting a display design (size, number of segments or dots, color, brightness) of the organic EL panel 1 or a drive method (DC lighting, simple matrix drive, active matrix drive, etc.).

次に、図3から図5を用いて本発明の第1の実施形態における有機ELパネル1の製造方法を説明する。   Next, a method for manufacturing the organic EL panel 1 according to the first embodiment of the present invention will be described with reference to FIGS.

先ず、素子形成工程(有機EL素子形成工程)S1にて、蒸着及びエッチング処理を適宜行うことで、ガラス基板2上に透明電極3,絶縁層4,有機層5及び背面電極6を順次積層形成し、所定の発光形状の有機EL素子7を得る。尚、図4は、有機EL素子7の部分拡大断面図であり、有機EL素子7の形成工程において、透明電極3の形成工程後に、透明電極3上に異物11が付着し、この状態にて絶縁層4,有機層5及び背面電極6が順次積層された状態を示している。   First, a transparent electrode 3, an insulating layer 4, an organic layer 5 and a back electrode 6 are sequentially stacked on the glass substrate 2 by appropriately performing vapor deposition and etching treatment in an element forming step (organic EL element forming step) S1. Thus, an organic EL element 7 having a predetermined light emission shape is obtained. FIG. 4 is a partial enlarged cross-sectional view of the organic EL element 7. In the formation process of the organic EL element 7, after the formation process of the transparent electrode 3, the foreign material 11 adheres on the transparent electrode 3, and in this state An insulating layer 4, an organic layer 5, and a back electrode 6 are sequentially stacked.

そして、素子形成工程S1後に、パネル化工程S2にて、所定の酸素濃度を有する窒素雰囲気中にて、ガラス基板2上に封止ガラス8をUV硬化型接着剤9を介し配設し、UVを照射することによって有機EL素子7を気密的に封止し、有機ELパネル1を得る。   Then, after the element forming step S1, in a panel forming step S2, a sealing glass 8 is disposed on the glass substrate 2 via a UV curable adhesive 9 in a nitrogen atmosphere having a predetermined oxygen concentration, and UV. , The organic EL element 7 is hermetically sealed, and the organic EL panel 1 is obtained.

次に、エージング処理工程S3にて、異物11が付着した状態の有機EL素子7を有する有機ELパネル1の透明電極3と背面電極6との各電極部3c,6bに電源装置Pを接続し、両電極3,6間に、製品の駆動時に印加する発光駆動電圧(例えば、5V)を順方向(有機EL素子7をダイオード成分とした場合に、背面電極6をマイナス電位とし、透明電極3をプラス電位とした方向)に所定時間印加し、その後に、製品の駆動時に印加する発光駆動電圧と逆駆動電圧のいづれよりも大きな絶対値を有する修復電圧(例えば−25V)を逆バイアス方向(有機EL素子7をダイオード成分とした場合に、背面電極6をプラス電位とし、透明電極3をマイナス電位とする方向)に所定時間印加し(逆バイアス電圧)、有機層5が部分的に薄くなった箇所(丸印にて示されている部分)である有機EL素子7の欠陥部12をオープン破壊させ、短絡及びリークを防止する。尚、図5は、エージング処理工程S3にて欠陥部12をオープン破壊した状態を示す図である。   Next, in the aging treatment step S3, the power supply device P is connected to the electrode portions 3c and 6b of the transparent electrode 3 and the back electrode 6 of the organic EL panel 1 having the organic EL element 7 with the foreign matter 11 attached. The light emission drive voltage (for example, 5 V) applied between the electrodes 3 and 6 when driving the product is forward (when the organic EL element 7 is a diode component, the back electrode 6 is set to a negative potential, and the transparent electrode 3 Is applied for a predetermined time, and thereafter, a repair voltage (for example, −25V) having an absolute value larger than either the light emission drive voltage or the reverse drive voltage applied when the product is driven is applied in the reverse bias direction ( When the organic EL element 7 is a diode component, it is applied for a predetermined time (reverse bias voltage) in a direction in which the back electrode 6 has a positive potential and the transparent electrode 3 has a negative potential), and the organic layer 5 is partially thin. The became point defect part 12 of the organic EL element 7 is (part indicated by a circle) is opened fracture, to prevent a short circuit and leakage. FIG. 5 is a diagram showing a state in which the defect portion 12 is open broken in the aging treatment step S3.

次に、第1のリーク検査工程S4にて、第1の逆バイアス電圧(例えば−15V)を有機EL素子7の各電極部3c,6bに電源装置Pから印加し、その際の有機EL素子7の第1の漏れ電流(漏れ電流)I1を計測する。尚、第1の漏れ電流値I1の計測は、常温雰囲気中にて行われ、セグメント表示部3a単位、セグメント表示部3a全体となるパネル単位、あるいは予め定められた複数のセグメント単位等、任意に設定し計測することが可能である。   Next, in the first leak inspection step S4, a first reverse bias voltage (for example, −15 V) is applied from the power supply device P to each electrode portion 3c, 6b of the organic EL element 7, and the organic EL element at that time 7 first leakage current (leakage current) I1 is measured. The first leakage current value I1 is measured in a room temperature atmosphere, and can be arbitrarily set to a segment display unit 3a unit, a panel unit for the entire segment display unit 3a, or a plurality of predetermined segment units. It is possible to set and measure.

前記第1の逆バイアス電圧の値は、有機ELパネルの漏れ電流を検出するに十分な最低限の値とすることが望ましい。逆バイアス値を大きくすることで漏れ電流の値は大きくなるので検査は容易となるが、検査中の漏れ電流による不良部の進行・拡大も加速されるからである。   The value of the first reverse bias voltage is desirably a minimum value sufficient to detect the leakage current of the organic EL panel. This is because increasing the reverse bias value increases the leakage current value, thereby facilitating the inspection, but it also accelerates the progress and expansion of the defective portion due to the leakage current during the inspection.

次に、ストレス印加工程S5にて、有機ELパネル1の通常の駆動条件よりも厳しいストレス電圧(例えば、−20V)にて有機EL素子7を所定時間、所定温度下で駆動する。   Next, in the stress application step S5, the organic EL element 7 is driven at a predetermined temperature for a predetermined time under a stress voltage (for example, −20 V) that is stricter than the normal driving conditions of the organic EL panel 1.

前記ストレス電圧の値は、後述するデルタ値を検出するに十分であり、かつ有機EL素子7の絶縁破壊などの不良を生じない範囲とする必要がある。また、生産性の見地から短時間、かつ常温下の駆動であることが好ましい。第1のリーク検査工程S4、ストレス印加工程S5、第2のリーク検査工程S6を連続して同一の装置にて実施することが高い生産性を得る手法のひとつである。   The stress voltage value needs to be within a range that is sufficient for detecting a delta value, which will be described later, and that does not cause defects such as dielectric breakdown of the organic EL element 7. In addition, it is preferable that the driving is performed in a short time at room temperature from the viewpoint of productivity. One method for obtaining high productivity is to perform the first leak inspection step S4, the stress application step S5, and the second leak inspection step S6 in succession on the same apparatus.

次に、第2のリーク検査工程S6にて、第1のリーク検査工程S3と略同様な条件、即ち有機ELパネル1の通常の駆動電圧と略同等な逆バイアス電圧(第2の逆バイアス電圧)を有機EL素子7の各電極部3c,6bに電源装置Pから印加し、その際の有機EL素子7の第1の漏れ電流I2の計測と同等の計測内容によって第2の漏れ電流(漏れ電流)I2を計測する。尚、第2の漏れ電流値の計測は、常温雰囲気中にて行われる。   Next, in the second leak inspection step S6, substantially the same conditions as the first leak inspection step S3, that is, a reverse bias voltage (second reverse bias voltage) substantially equal to the normal drive voltage of the organic EL panel 1 is used. ) Is applied to each electrode 3c, 6b of the organic EL element 7 from the power supply device P, and the second leakage current (leakage) is measured according to the measurement content equivalent to the measurement of the first leakage current I2 of the organic EL element 7 at that time. Current) I2 is measured. The second leakage current value is measured in a room temperature atmosphere.

第1のリーク検査工程S4及び第2のリーク検査工程S6の検出において配慮すべき要素として以下に示す(1)〜(4)が挙げられる。   The following (1) to (4) are listed as elements to be considered in the detection of the first leak inspection step S4 and the second leak inspection step S6.

(1) 電流の検出精度:リーク検査に要求される電流検出精度は、一括で計測する面積や配線抵抗、有機層5の構成等により変化する。発明者らの知見によれば、計測値として得られるリーク電流値は高々数nAである。電流検出精度は、好ましくは1nA、より好ましくは0.2nAの精度を有することが好ましい。
(2) 検出時のパネル温度:有機半導体からなる有機ELパネル1のリーク電流は、大きな温度依存性を有する。検出時の温度が上昇するとリーク電流値も増大する傾向を示す。検査工程におけるパネルの温度は、好ましくは±5℃で管理する必要がある。
(3)検出時の遮光:有機半導体からなる有機ELパネル1は、外部から可視または紫外光が入射することで所謂光電効果により素子内に起電力が生じ光電流が発生する。発明者らの知見によれば、通常の作業環境(例えば、蛍光灯下500LUX)での前記光電流は、検出すべきリーク電流の値に対して無視できない大きさである。検出工程におけるリーク検査は、遮光環境にて実施する必要がある。
(4)検出の時定数:有機EL素子7を構成する透明電極3,有機層5及び背面電極6は、逆バイアス下において、コンデンサと抵抗の並列回路と見做されるし、また検査回路も有限の回路定数を有する。このため第1,第2の逆バイアス印加開始直後には、コンデンサ成分の充放電が容量―抵抗(CR)時定数で観測される。発明者らの知見によれば、充放電電流は検出すべきリーク電流に対して十分大きい。実際の計測に際しては、逆バイアスの印加開始から電流計測開始までの間に一定の待機時間を設けて前記充放電電流が、検出すべきリーク電流に対して十分小さくなってから電流計測するなどの配慮が必要となる。
(1) Current detection accuracy: The current detection accuracy required for leak inspection varies depending on the area to be measured at once, the wiring resistance, the configuration of the organic layer 5, and the like. According to the knowledge of the inventors, the leak current value obtained as a measured value is several nA at most. The current detection accuracy is preferably 1 nA, more preferably 0.2 nA.
(2) Panel temperature at the time of detection: The leak current of the organic EL panel 1 made of an organic semiconductor has a large temperature dependence. As the temperature at the time of detection rises, the leak current value tends to increase. The panel temperature in the inspection process should preferably be controlled at ± 5 ° C.
(3) Light shielding during detection: In the organic EL panel 1 made of an organic semiconductor, an electromotive force is generated in the element due to a so-called photoelectric effect when visible or ultraviolet light is incident from the outside, and a photocurrent is generated. According to the knowledge of the inventors, the photocurrent in a normal working environment (for example, 500 LUX under a fluorescent lamp) is a magnitude that cannot be ignored with respect to the value of the leakage current to be detected. The leak inspection in the detection process needs to be performed in a light shielding environment.
(4) Time constant of detection: The transparent electrode 3, the organic layer 5 and the back electrode 6 constituting the organic EL element 7 are regarded as a parallel circuit of a capacitor and a resistor under a reverse bias, and an inspection circuit is also provided. Has a finite circuit constant. For this reason, immediately after the first and second reverse bias application starts, charging / discharging of the capacitor component is observed with a capacitance-resistance (CR) time constant. According to the knowledge of the inventors, the charge / discharge current is sufficiently larger than the leak current to be detected. In actual measurement, a certain standby time is provided between the start of reverse bias application and the start of current measurement, and the charge / discharge current becomes sufficiently small with respect to the leakage current to be detected. Consideration is required.

次に、素子判定工程S7にて、第1,第2のリーク検査工程S4,S6により求められた第1,第2の漏れ電流I1,I2を用いて、有機EL素子7の良否を判定する。素子判定工程S6は、有機ELパネル1(有機EL素子7)の冷熱サイクルや高温駆動等の耐久試験によって得られた故障個所の第1,第2の漏れ電流値I1,I2の差(以下、デルタ値という)に基づいて所定の規格値(デルタ値の規格値)X1が定められ、この規格値X1と、第2の漏れ電流値I2から第1の漏れ電流値I1を減算した減算値との比較結果に基づいて、有機EL素子7の良否(有機ELパネルの良否)が決定される。尚、規格値X1は、機種依存性を有するために有機ELパネル1の機種に応じて設定することが望ましい。   Next, in the element determination step S7, the quality of the organic EL element 7 is determined using the first and second leakage currents I1 and I2 obtained in the first and second leak inspection steps S4 and S6. . The element determination step S6 is a difference between the first and second leakage current values I1 and I2 (hereinafter, referred to as failure points) obtained by endurance tests such as a cooling cycle and high-temperature driving of the organic EL panel 1 (organic EL element 7) A predetermined standard value (standard value of the delta value) X1 is determined based on the delta value, and this standard value X1 and a subtraction value obtained by subtracting the first leakage current value I1 from the second leakage current value I2 The quality of the organic EL element 7 (the quality of the organic EL panel) is determined based on the comparison result. The standard value X1 is desirably set according to the model of the organic EL panel 1 because it has model dependence.

即ち、素子判定工程S6は、第2のリーク検査工程S6で得られた第2の漏れ電流値I2から第1のリーク検査工程S4で得られた第1の漏れ電流値I1を減算し(I2−I1)、この減算値の結果が規格値X1以下である場合(式(1)参照)、有機EL素子7において、欠陥部の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障が、所定の連続駆動時間内(例えば、5000時間〜10000時間)において発生しないとする良品であると判定し、有機ELパネル1を駆動回路(図示しない)と接続するモジュール組立工程等の後工程に流すものであり、また前記減算値の結果が規格値X1を上回る場合(式(2)参照)、有機EL素子7において、前記故障が所定の連続駆動時間内において発生する可能性が大きい不良品として判定する工程である。
規格値X1≧I2−I1・・・(1)
規格値X1<I2−I1・・・(2)
That is, the element determination step S6 subtracts the first leakage current value I1 obtained in the first leakage inspection step S4 from the second leakage current value I2 obtained in the second leakage inspection step S6 (I2 -I1) When the result of this subtraction value is less than or equal to the standard value X1 (see formula (1)), in the organic EL element 7, potential failure points due to failure caused by growth of defective portions and stress applied by aging treatment Is determined to be a non-defective product that does not cause a failure due to a predetermined acceleration test within a predetermined continuous drive time (for example, 5000 hours to 10000 hours), and the organic EL panel 1 is connected to a drive circuit (not shown). When the result of the subtraction value exceeds the standard value X1 (see Expression (2)), the failure occurs in the organic EL element 7 for a predetermined continuous drive time. A step of determining as defective is likely to occur in.
Standard value X1 ≧ I2-I1 (1)
Standard value X1 <I2-I1 (2)

かかる有機ELパネル1の製造方法は、エージング処理工程S2後において、第1のリーク検査工程S3によって第1の漏れ電流I1を計測し、ストレス印加工程S4にて所定のストレス(逆バイアス電圧の印加)を付与した後に、第2のリーク検査工程S5によって第1のリーク検査工程S3と同様に第2の漏れ電流I2を計測し、その後工程にて第2の漏れ電流I2と第1の漏れ電流I1との差と、前記耐久試験にって得られた所定の規格値X1とを比較し、この比較結果によって、有機EL素子7における連続駆動に伴う耐久性の良否を判断することで、有機ELパネル1の商品寿命(連続駆動)を確保できることを見出したことに特徴を有するものである。   In the method of manufacturing the organic EL panel 1, after the aging treatment step S2, the first leakage current I1 is measured by the first leakage inspection step S3, and a predetermined stress (reverse bias voltage application is applied in the stress application step S4. ), The second leakage current I2 is measured by the second leakage inspection step S5 in the same manner as the first leakage inspection step S3, and then the second leakage current I2 and the first leakage current are measured in the subsequent steps. The difference between I1 and the predetermined standard value X1 obtained by the durability test is compared, and the result of this comparison is used to determine whether the organic EL element 7 is durable or not due to continuous driving. It is characterized by finding that the product life (continuous driving) of the EL panel 1 can be secured.

従って、有機ELパネル1の製造方法に、第1のリーク検査工程S4,ストレス印加工程S5,第2のリーク検査工程S6及び素子判定工程S7を含むようにすることで、有機EL素子7における欠陥部12の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障の発生の恐れがある有機ELパネル1の市場への流出を未然に防ぐことができるようになる。   Therefore, the manufacturing method of the organic EL panel 1 includes the first leak inspection step S4, the stress application step S5, the second leak inspection step S6, and the element determination step S7. It is possible to prevent the organic EL panel 1 from flowing out to the market, which may cause a failure due to a predetermined accelerated test of a potential failure point due to a failure caused by the growth of the unit 12 and a stress applied by the aging process. Become.

次に、図6を用いて本発明の第2の実施形態について説明するが、前述した第1の実施形態と同様もしく相当個所には同一符号を付してその詳細な説明は省く。   Next, a second embodiment of the present invention will be described with reference to FIG. 6. However, the same reference numerals are used for the same portions as in the first embodiment described above, and detailed descriptions thereof are omitted.

第2の実施形態における有機ELパネル1の製造方法が第1の実施形態における有機ELパネル1の製造方法に比べ異なる点は、パネル化工程S2後のエージング処理工程S3を設けず、第1のリーク検査工程S4後に行うストレス印加工程S10にてエージング処理工程を兼ねる点にある。   The difference between the manufacturing method of the organic EL panel 1 in the second embodiment and the manufacturing method of the organic EL panel 1 in the first embodiment is that the aging treatment step S3 after the paneling step S2 is not provided, The stress application process S10 performed after the leak inspection process S4 also serves as an aging process.

ストレス印加工程S10は、異物11が付着した状態の有機EL素子7を有する有機ELパネル1の透明電極3と背面電極6との各電極部3c,6bに電源装置Pを接続し、両電極3,6間に、製品の駆動時に印加する発光駆動電圧を順方向に所定時間印加し、その後に、製品の駆動時に印加する発光駆動電圧と逆駆動電圧のいづれよりも大きな絶対値を有する修復電圧を逆バイアス方向に所定時間印加し、有機層5が部分的に薄くなった箇所である有機EL素子7の欠陥部12をオープン破壊させるエージング処理を行うことによってストレス印加工程とするものである。   In the stress application step S10, the power supply device P is connected to the electrode portions 3c and 6b of the transparent electrode 3 and the back electrode 6 of the organic EL panel 1 having the organic EL element 7 in a state in which the foreign matter 11 is adhered. , 6, a light emission drive voltage applied during product driving is applied in a forward direction for a predetermined time, and then a repair voltage having an absolute value larger than either the light emission drive voltage or reverse drive voltage applied during product drive. Is applied in a reverse bias direction for a predetermined time, and an aging process is performed to open-break the defective portion 12 of the organic EL element 7 where the organic layer 5 is partially thinned, thereby forming a stress application step.

従って、ストレス印加工程S10において、エージング処理とストレス印加を兼ねるようにすることで、素子判定工程S11における規格値X2は、前述の第1の実施形態における規格値X1とは異なるものとなるが、有機EL素子7の良否判定を行う素子判定工程S11については、前述した素子判定工程S7と同様である。   Therefore, in the stress application step S10, the standard value X2 in the element determination step S11 is different from the standard value X1 in the first embodiment by combining the aging process and the stress application. About element determination process S11 which performs quality determination of the organic EL element 7, it is the same as that of element determination process S7 mentioned above.

かかる第2の実施形態における有機ELパネル1の製造方法は、ストレス印加工程S10において、ストレス印加とエージング処理とを兼ねることによって、製造工程を簡素化することができるとともに、有機EL素子7における欠陥部12の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障の発生の恐れがある有機ELパネル1の市場への投入を未然に防ぐことができるようになる。   The manufacturing method of the organic EL panel 1 according to the second embodiment can simplify the manufacturing process by combining the stress application and the aging process in the stress application step S10, and can also provide a defect in the organic EL element 7. It is possible to prevent the organic EL panel 1 from being put into the market, which may cause a failure due to a predetermined acceleration test of a potential failure point due to a failure caused by the growth of the unit 12 and stress applied by the aging process. Become.

次に、図7を用いて本発明の第3の実施形態について説明するが、前述した第1,第2の実施形態と同様もしく相当個所には同一符号を付してその詳細な説明は省く。   Next, a third embodiment of the present invention will be described with reference to FIG. 7. The same reference numerals are used for the same parts as in the first and second embodiments described above, and the detailed description thereof is as follows. Omit.

第3の実施形態における有機ELパネル1の製造方法は、第2の実施形態における有機ELパネル1の製造方法と同様にパネル化工程S2後のエージング処理工程S3を設けず、ストレス印加工程S12にてエージング処理工程を兼ねるとともに、リーク検査工程S13を1工程とし、このリーク検査工程S13にて得られる漏れ電流値に基づいて有機ELパネル1の良否を判定することに特徴を有するものである。   The manufacturing method of the organic EL panel 1 in the third embodiment is not provided with the aging treatment step S3 after the paneling step S2 as in the manufacturing method of the organic EL panel 1 in the second embodiment, and the stress applying step S12. This also serves as an aging treatment step, and has a feature in that the leak inspection step S13 is one step and the quality of the organic EL panel 1 is determined based on the leakage current value obtained in the leak inspection step S13.

ストレス印加工程S12は、パネル化工程S2後に、第2の実施形態と同様に、異物11が付着した状態の有機EL素子7を有する有機ELパネル1の透明電極3と背面電極6との各電極部3c,6bに電源装置Pを接続し、両電極3,6間に、製品の駆動時に印加する発光駆動電圧を順方向に所定時間印加し、その後に、製品の駆動時に印加する発光駆動電圧と逆駆動電圧のいづれよりも大きな絶対値を有する修復電圧を逆バイアス方向に所定時間印加し、有機層5が部分的に薄くなった箇所である有機EL素子7の欠陥部12をオープン破壊させるエージング処理を行うことによってストレス印加工程とするものである。   In the stress application step S12, each electrode of the transparent electrode 3 and the back electrode 6 of the organic EL panel 1 having the organic EL element 7 in a state in which the foreign matter 11 is adhered, after the paneling step S2, as in the second embodiment. The power supply device P is connected to the parts 3c and 6b, and a light emission drive voltage applied when the product is driven is applied between the electrodes 3 and 6 in the forward direction for a predetermined time, and thereafter the light emission drive voltage applied when the product is driven. A repair voltage having an absolute value larger than any of the reverse drive voltages is applied in the reverse bias direction for a predetermined time, and the defective portion 12 of the organic EL element 7 where the organic layer 5 is partially thinned is open broken. By performing the aging process, the stress application process is performed.

また、リーク検査工程S13は、ストレス印加工程S12後に、前述の第1,第2の実施形態における第1,第2のリーク検査工程S4,S6と同様に漏れ電流I3を検出する。そして、素子判定工程S14にて、リーク検査工程S13にて得られた漏れ電流I3の絶対値Yと、有機ELパネル1における冷熱サイクルや高温駆動等の耐久試験によって得られた故障個所の漏れ電流値に基づいて定められる所定の規格値X3とを比較し、絶対値Yが規格値X3以下の場合(式(3)参照)、有機EL素子7において、欠陥部12の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障が、所定の連続駆動時間内において発生しないとする良品であると判定し、有機ELパネル1を駆動回路(図示しない)と接続するモジュール組立工程等の後工程に流すものであり、また前記比較結果が規格値X3を上回る場合(式(4)参照)には、有機EL素子7において、前記故障が所定の連続駆動時間内において発生する可能性が大きい不良品として判定するものである。
規格値X3≦絶対値Y・・・(3)
規格値X3<絶対値Y・・・(4)
In the leak inspection step S13, after the stress application step S12, the leakage current I3 is detected as in the first and second leak inspection steps S4 and S6 in the first and second embodiments. Then, in the element determination step S14, the absolute value Y of the leakage current I3 obtained in the leakage inspection step S13, and the leakage current of the fault location obtained by the durability test such as the cooling cycle and high temperature driving in the organic EL panel 1 A predetermined standard value X3 determined based on the value is compared, and when the absolute value Y is equal to or smaller than the standard value X3 (see Expression (3)), in the organic EL element 7, failure due to the growth of the defective portion 12 and aging processing It is determined that the failure caused by the predetermined acceleration test at the potential failure point due to the stress applied in step 1 does not occur within a predetermined continuous drive time, and the organic EL panel 1 is connected to a drive circuit (not shown). In the case where the comparison result exceeds the standard value X3 (see formula (4)), the organic EL element 7 has the above-mentioned reason. There is for determining as defective is likely to occur within a predetermined continuous driving time.
Standard value X3 ≦ absolute value Y (3)
Standard value X3 <absolute value Y (4)

かかる第3の実施形態における有機ELパネル1の製造方法は、ストレス印加工程S12において、ストレス印加とエージング処理とを兼ねるとともに、このストレス印加工程S12後に1工程からなるリーク検査工程S13と、このリーク検査工程S13により得られた計測結果に基づいて素子判定工程S14にて有機ELパネル1の良否を判定することから、製造工程を第1,第2の実施形態における有機ELパネル1の製造工程に比べ更に簡素化することができるとともに、有機EL素子7における欠陥部12の成長による故障及びエージング処理で付与されるストレスに伴う潜在故障点の所定の加速試験による故障の発生の恐れがある有機ELパネル1の市場への投入を未然に防ぐことができるようになる。   The manufacturing method of the organic EL panel 1 according to the third embodiment combines the stress application and the aging process in the stress application step S12, and the leak inspection step S13 including one step after the stress application step S12. Since the quality of the organic EL panel 1 is determined in the element determination step S14 based on the measurement result obtained in the inspection step S13, the manufacturing process is changed to the manufacturing process of the organic EL panel 1 in the first and second embodiments. Organic EL that can be further simplified and that may cause failure due to a predetermined accelerated test of potential failure points due to failure caused by growth of defective portion 12 in organic EL element 7 and stress applied by aging treatment The panel 1 can be prevented from entering the market.

尚、本発明の各実施形態では、セグメント表示式の有機ELパネル1を例に挙げて説明したが、本発明は、少なくとも一方が透光性の第1,第2電極ラインをそれぞれ複数備え、前記各電極ラインを交差する状態で配設するとともに、前記各電極ライン間に少なくとも発光層を含む有機層を挟持してドットマトリクス状の有機EL素子(発光部)を透光性基板上に構成する有機ELパネルの製造方法に適用しても良い。また、ドットマトリクス型の有機EL素子を備えた有機ELパネルにおいて、漏れ電流を計測する場合にあっては、ドット単位、走査ライン毎、あるいは表示エリア毎等の何れであっても良い。   In each embodiment of the present invention, the segment display type organic EL panel 1 has been described as an example. However, the present invention includes a plurality of first and second electrode lines each having at least one of light transmission, The electrode lines are arranged so as to intersect with each other, and an organic layer including at least a light emitting layer is sandwiched between the electrode lines so that a dot matrix organic EL element (light emitting portion) is formed on a light transmitting substrate. You may apply to the manufacturing method of the organic electroluminescent panel to do. Further, in the case of measuring the leakage current in an organic EL panel provided with a dot matrix type organic EL element, it may be in units of dots, scan lines, display areas, or the like.

また、本発明の各実施形態では、ストレス印加工程,リーク検査工程及び素子判定工程からなる一連の判定工程を経て有機ELパネル1の良否を判定するものであったが、この判定工程を繰り返し行うものであっても良い。また、不良品と判定された有機ELパネル1を再度、前記判定工程に投入することで再判定を行うことができ、この再判定の結果として良品の有機ELパネル1が得られることで、製造工程の歩留まりを向上させることができる。   In each embodiment of the present invention, the quality of the organic EL panel 1 is determined through a series of determination steps including a stress application step, a leak inspection step, and an element determination step. This determination step is repeated. It may be a thing. In addition, the organic EL panel 1 determined to be defective can be re-determined by putting it again into the determination step, and as a result of the re-determination, a non-defective organic EL panel 1 can be obtained. The process yield can be improved.

また、前述した各実施形態では、パネル化工程S2後に一連の前記判定工程を設けるようにしたが、素子形成工程S1後に前記判定工程を設け、前記判定工程後にパネル化工程S2を設けるようにしても良く、本発明の前記判定工程は、素子形成工程S1以降であれは良い。   In each of the embodiments described above, a series of the determination steps are provided after the panel formation step S2. However, the determination step is provided after the element formation step S1, and the panel formation step S2 is provided after the determination step. The determination process of the present invention may be performed after the element formation process S1.

また、前述した各実施形態では、規格値と漏れ電流値を比較し、漏れ電流値が規格値以下であった際に良品として扱うものであったが、例えば、規格値と漏れ電流値とを比較し、漏れ電流値が規格値未満とすることによって、素子判定工程における判定条件をより厳しいもものとすることが可能であり、有機ELパネルの歩留まりの関係で前記判定条件を設定することが望ましい。   Further, in each of the embodiments described above, the standard value and the leakage current value are compared and treated as a non-defective product when the leakage current value is equal to or less than the standard value. In comparison, when the leakage current value is less than the standard value, it is possible to make the determination condition in the element determination process more severe, and the determination condition can be set in relation to the yield of the organic EL panel. desirable.

また、前述した第2,第3の実施形態では、ストレス印加工程S10,S12において、第1の実施形態におけるエージング処理工程を用いてストレス印加工程としたが、本発明にあっては、前述したエージング処理工程の換わりに第1の実施形態で述べたストレス印加工程S5と同等の条件によって第2,第3の実施形態におけるストレス印加工程S10,S12を処理するものであっても良く、本発明の請求項1及び請求項4に記載の有機ELパネルの製造方法にあっては、必ずしもエージング処理工程を必要とするものではない。   In the second and third embodiments described above, in the stress applying steps S10 and S12, the aging process step in the first embodiment is used as the stress applying step. However, in the present invention, the stress applying step is described above. Instead of the aging treatment step, the stress application steps S10 and S12 in the second and third embodiments may be processed under the same conditions as the stress application step S5 described in the first embodiment. In the manufacturing method of the organic electroluminescent panel of Claim 1 and Claim 4, an aging process process is not necessarily required.

本発明の実施形態の有機ELパネルを示す斜視図である。It is a perspective view which shows the organic electroluminescent panel of embodiment of this invention. 同上実施形態の有機ELパネルの部分断面図である。It is a fragmentary sectional view of the organic electroluminescent panel of embodiment same as the above. 同上実施形態の有機ELパネルの異物が付着した状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state to which the foreign material of the organic electroluminescent panel of embodiment same as the above adhered. 同上実施形態の有機ELパネルの異物が取れた状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state from which the foreign material of the organic electroluminescent panel of embodiment same as the above was removed. 本発明の第1の実施形態の有機ELパネルの製造工程を示す図である。It is a figure which shows the manufacturing process of the organic electroluminescent panel of the 1st Embodiment of this invention. 本発明の第2の実施形態の有機ELパネルの製造工程を示す図である。It is a figure which shows the manufacturing process of the organic electroluminescent panel of the 2nd Embodiment of this invention. 本発明の第3の実施形態の有機ELパネルの製造工程を示す図である。It is a figure which shows the manufacturing process of the organic electroluminescent panel of the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 有機ELパネル
2 ガラス基板(支持基板)
3 透明電極(陽極)
5 有機層
6 背面電極(陰極)
7 有機EL素子
11 異物
12 欠陥部
S1 素子形成工程(有機EL素子形成工程)
S3 エージング処理工程
S4 第1のリーク検査工程
S5,S10,S12 ストレス印加工程
S6 第2のリーク検査工程
S7,S11,S14 素子判定工程
P 電源装置
1 Organic EL panel 2 Glass substrate (support substrate)
3 Transparent electrode (anode)
5 Organic layer 6 Back electrode (cathode)
7 Organic EL element 11 Foreign matter 12 Defect part S1 Element formation process (organic EL element formation process)
S3 Aging process S4 First leak inspection process S5, S10, S12 Stress application process S6 Second leak inspection process S7, S11, S14 Element determination process P Power supply device

Claims (7)

少なくとも発光層を有する有機層を陽極と陰極とで狭持した有機EL素子を透光性の支持基板上に形成してなる有機EL素子形成工程と、
前記有機EL素子形成工程後に、前記陽極及び前記陰極からなる両電極間に所定の逆バイアス電圧を印加し、漏れ電流値を計測するリーク検査工程と、
前記リーク検査工程の計測結果に基づいて前記有機EL素子の良否を判定する素子判定工程と、
を少なくとも含むことを特徴とする有機ELパネルの製造方法。
An organic EL element forming step in which an organic EL element having at least an organic layer having a light emitting layer sandwiched between an anode and a cathode is formed on a translucent support substrate;
After the organic EL element forming step, a leakage inspection step of measuring a leakage current value by applying a predetermined reverse bias voltage between both the anode and the cathode,
An element determination process for determining the quality of the organic EL element based on the measurement result of the leak inspection process;
A method for producing an organic EL panel comprising:
前記リーク検査工程内にエージング処理を含んでなることを特徴とする請求項1に記載の有機ELパネルの製造方法。 2. The method of manufacturing an organic EL panel according to claim 1, wherein an aging process is included in the leak inspection process. 前記素子判定工程は、前記漏れ電流値の絶対値と所定の規格値との比較結果に基づいて、前記有機EL素子の良否を判定することを特徴とする請求項1に記載の有機ELパネルの製造方法。 2. The organic EL panel according to claim 1, wherein the element determination step determines the quality of the organic EL element based on a comparison result between an absolute value of the leakage current value and a predetermined standard value. Production method. 少なくとも発光層を有する有機層を陽極と陰極とで狭持した有機EL素子を透光性の支持基板上に形成してなる有機EL素子形成工程と、
前記有機EL素子形成工程後に、前記陽極及び前記陰極からなる両電極間に所定の第1の逆バイアス電圧を印加し、第1の漏れ電流値を計測する第1のリーク検査工程と、
前記第1のリーク検査工程により印加された前記第1の逆バイアス電圧以上の第2の逆バイアス電圧を印加するストレス印加工程と、
前記ストレス印加工程後に、前記第1の逆バイアス電圧と略同等な第3の逆バイアス電圧を印加し、第2の漏れ電流値を計測する第2のリーク検査工程と、
前記第1のリーク検査工程と前記第2のリーク検査工程との計測結果に基づいて前記有機EL素子の良否を判定する素子判定工程と、
を少なくとも含むことを特徴とする有機ELパネルの製造方法。
An organic EL element forming step in which an organic EL element having at least an organic layer having a light emitting layer sandwiched between an anode and a cathode is formed on a translucent support substrate;
After the organic EL element forming step, a first leakage inspection step of applying a predetermined first reverse bias voltage between both the anode and the cathode and measuring a first leakage current value;
Applying a second reverse bias voltage equal to or higher than the first reverse bias voltage applied in the first leak inspection step;
After the stress applying step, applying a third reverse bias voltage substantially equal to the first reverse bias voltage and measuring a second leakage current value;
An element determination step for determining pass / fail of the organic EL element based on measurement results of the first leak inspection step and the second leak inspection step;
A method for producing an organic EL panel comprising:
前記有機EL素子形成工程と前記第1のリーク検査工程との間にエージング処理工程を含むことを特徴とする請求項4に記載の有機ELパネルの製造方法。 The method of manufacturing an organic EL panel according to claim 4, further comprising an aging process step between the organic EL element forming step and the first leak inspection step. 前記ストレス印加工程内にエージング処理工程を含んでなることを特徴とする請求項4に記載の有機ELパネルの製造方法。 The method for producing an organic EL panel according to claim 4, further comprising an aging treatment step in the stress application step. 前記素子判定工程は、前記第1の漏れ電流値と前記第2の漏れ電流値との差を求め、この差と所定の規格値との比較結果に基づいて前記有機EL素子の良否を判定することを特徴とする請求項4に記載の有機ELパネルの製造方法。 The element determination step obtains a difference between the first leakage current value and the second leakage current value, and determines whether the organic EL element is acceptable based on a comparison result between the difference and a predetermined standard value. The manufacturing method of the organic electroluminescent panel of Claim 4 characterized by the above-mentioned.
JP2004128558A 2004-04-23 2004-04-23 Manufacturing method of organic EL panel Expired - Fee Related JP4882091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004128558A JP4882091B2 (en) 2004-04-23 2004-04-23 Manufacturing method of organic EL panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004128558A JP4882091B2 (en) 2004-04-23 2004-04-23 Manufacturing method of organic EL panel

Publications (3)

Publication Number Publication Date
JP2005310659A true JP2005310659A (en) 2005-11-04
JP2005310659A5 JP2005310659A5 (en) 2007-03-29
JP4882091B2 JP4882091B2 (en) 2012-02-22

Family

ID=35439168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004128558A Expired - Fee Related JP4882091B2 (en) 2004-04-23 2004-04-23 Manufacturing method of organic EL panel

Country Status (1)

Country Link
JP (1) JP4882091B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265633A (en) * 2006-03-27 2007-10-11 Denso Corp Manufacturing method of organic el element and manufacturing device of same
JP2008066003A (en) * 2006-09-04 2008-03-21 Sanyo Electric Co Ltd Defect inspection method of electroluminescent display, defect correction method, and method of manufacturing electroluminescent display
JP2009211994A (en) * 2008-03-05 2009-09-17 Denso Corp Inspection method for organic el element
JP2011049159A (en) * 2009-07-28 2011-03-10 Semiconductor Energy Lab Co Ltd Inspection method and manufacturing method for light-emitting device
WO2011155159A1 (en) * 2010-06-07 2011-12-15 パナソニック株式会社 Method for manufacturing organic el display device
WO2013186961A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Defect detection method, method for repairing organic el element, and organic el display panel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414794A (en) * 1990-05-08 1992-01-20 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescence element
JP2001085164A (en) * 1999-07-14 2001-03-30 Nec Corp Organic electroluminescent element, and method and device for manufacturing panel
JP2001313168A (en) * 2000-04-28 2001-11-09 Idemitsu Kosan Co Ltd Organic electroluminescent element and manufacturing method of the same
WO2002093186A1 (en) * 2001-05-15 2002-11-21 Koninklijke Philips Electronics N.V. Display device comprising a plurality of leds
JP2003031360A (en) * 2001-07-11 2003-01-31 Tdk Corp Organic el element and its manufacturing method
JP2003051384A (en) * 2001-06-01 2003-02-21 Semiconductor Energy Lab Co Ltd Repairing method and manufacturing method of light emitting device
JP2003234187A (en) * 2001-12-06 2003-08-22 Fuji Electric Co Ltd Passive matrix organic thin film light emitting display and its restoration method
JP2003282253A (en) * 2002-01-15 2003-10-03 Denso Corp Manufacturing method of organic el element
JP2004031335A (en) * 2002-04-30 2004-01-29 Semiconductor Energy Lab Co Ltd Light-emitting device and method of fabricating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414794A (en) * 1990-05-08 1992-01-20 Idemitsu Kosan Co Ltd Manufacture of organic electroluminescence element
JP2001085164A (en) * 1999-07-14 2001-03-30 Nec Corp Organic electroluminescent element, and method and device for manufacturing panel
JP2001313168A (en) * 2000-04-28 2001-11-09 Idemitsu Kosan Co Ltd Organic electroluminescent element and manufacturing method of the same
WO2002093186A1 (en) * 2001-05-15 2002-11-21 Koninklijke Philips Electronics N.V. Display device comprising a plurality of leds
JP2004520624A (en) * 2001-05-15 2004-07-08 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device having a plurality of LEDs
JP2003051384A (en) * 2001-06-01 2003-02-21 Semiconductor Energy Lab Co Ltd Repairing method and manufacturing method of light emitting device
JP2003031360A (en) * 2001-07-11 2003-01-31 Tdk Corp Organic el element and its manufacturing method
JP2003234187A (en) * 2001-12-06 2003-08-22 Fuji Electric Co Ltd Passive matrix organic thin film light emitting display and its restoration method
JP2003282253A (en) * 2002-01-15 2003-10-03 Denso Corp Manufacturing method of organic el element
JP2004031335A (en) * 2002-04-30 2004-01-29 Semiconductor Energy Lab Co Ltd Light-emitting device and method of fabricating the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007265633A (en) * 2006-03-27 2007-10-11 Denso Corp Manufacturing method of organic el element and manufacturing device of same
KR100818009B1 (en) 2006-03-27 2008-03-31 가부시키가이샤 덴소 Manufacturing method of organic el element and manufacturing device of organic el element
JP2008066003A (en) * 2006-09-04 2008-03-21 Sanyo Electric Co Ltd Defect inspection method of electroluminescent display, defect correction method, and method of manufacturing electroluminescent display
JP2009211994A (en) * 2008-03-05 2009-09-17 Denso Corp Inspection method for organic el element
JP4650505B2 (en) * 2008-03-05 2011-03-16 株式会社デンソー Inspection method for organic EL elements
JP2011049159A (en) * 2009-07-28 2011-03-10 Semiconductor Energy Lab Co Ltd Inspection method and manufacturing method for light-emitting device
WO2011155159A1 (en) * 2010-06-07 2011-12-15 パナソニック株式会社 Method for manufacturing organic el display device
US8597067B2 (en) 2010-06-07 2013-12-03 Panasonic Corporation Method of manufacturing organic electroluminescence display device
JP5620988B2 (en) * 2010-06-07 2014-11-05 パナソニック株式会社 Manufacturing method of organic EL display device
WO2013186961A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Defect detection method, method for repairing organic el element, and organic el display panel
CN103733728A (en) * 2012-06-14 2014-04-16 松下电器产业株式会社 Defect detection method, method for repairing organic EL element, and organic EL display panel
US9121914B2 (en) 2012-06-14 2015-09-01 Joled Inc. Defect detection method, method for repairing organic EL element, and organic EL display panel
JPWO2013186961A1 (en) * 2012-06-14 2016-02-01 株式会社Joled Defect detection method, organic EL element repair method, and organic EL display panel
CN103733728B (en) * 2012-06-14 2017-03-08 株式会社日本有机雷特显示器 Defect inspection method, the restorative procedure of organic EL element and organic EL display panel

Also Published As

Publication number Publication date
JP4882091B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US20070141942A1 (en) Method of repairing and apparatus for repairing multi-color organic light-emitting display device
JP5317325B2 (en) Light emitting device
JP5105681B2 (en) Organic electroluminescent device
US10373537B2 (en) Method for detecting array substrate of display panel
JP2002203672A (en) Manufacturing method of organic el element
JP2003282253A (en) Manufacturing method of organic el element
US7834544B2 (en) Organic electroluminescent display device having a moisture-proof film
WO2013038454A1 (en) Organic el element manufacturing method and evaluation method
JP4882091B2 (en) Manufacturing method of organic EL panel
JP2009277549A (en) Organic electroluminescent panel and defect detecting method of the same
EP2579685B1 (en) Method of manufacturing organic el illuminating device
JP4826079B2 (en) Manufacturing method of organic EL element
JP2008276030A (en) Method of manufacturing organic el display
JP2014063573A (en) Organic el display device
JP2001176661A (en) Brightness restoration method of organic el element and organic el element
JP4873244B2 (en) Organic EL panel
JP2007066707A (en) Manufacturing method of organic el element
JP2008204767A (en) Manufacturing method of electronic device equipment, and manufacturing device of electronic device equipment
JP2003282249A (en) Organic el panel and its manufacturing method
JP4733445B2 (en) Organic EL display substrate
JP2007095458A (en) Substrate for organic el panel, inspection method of organic el panel and manufacturing method of organic el display device
JP3804835B1 (en) Manufacturing method of organic EL panel
KR100595250B1 (en) method for aging of organics electroluminunce device
JP2008311094A (en) Organic el panel
JP2005101008A (en) Organic electroluminescent element and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4882091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees