JP2009207335A - Current differential guard relay - Google Patents

Current differential guard relay Download PDF

Info

Publication number
JP2009207335A
JP2009207335A JP2008049996A JP2008049996A JP2009207335A JP 2009207335 A JP2009207335 A JP 2009207335A JP 2008049996 A JP2008049996 A JP 2008049996A JP 2008049996 A JP2008049996 A JP 2008049996A JP 2009207335 A JP2009207335 A JP 2009207335A
Authority
JP
Japan
Prior art keywords
current
differential
ratio
suppression
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008049996A
Other languages
Japanese (ja)
Other versions
JP2009207335A5 (en
JP5068200B2 (en
Inventor
Shigeto Oda
重遠 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008049996A priority Critical patent/JP5068200B2/en
Priority to KR1020080067874A priority patent/KR100949003B1/en
Priority to CN200810214677XA priority patent/CN101521370B/en
Publication of JP2009207335A publication Critical patent/JP2009207335A/en
Publication of JP2009207335A5 publication Critical patent/JP2009207335A5/ja
Application granted granted Critical
Publication of JP5068200B2 publication Critical patent/JP5068200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • H02H7/0455Differential protection of transformers taking into account saturation of current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/226Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for wires or cables, e.g. heating wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the operation time without causing operation reliability to be reduced. <P>SOLUTION: A first restricting current portion 16 generates a first restricting current Ires1 by the sum of actual values of self end currents I1, I2 and an actual value of an opposite end current Ir. A second restricting current portion 17 generates a second restricting current Ires2 by the sum of the actual values of the self end currents I1, I2 and either an actual value of the opposite end current Ir or the actual value of a current obtained, by multiplying the opposite end current Ir by K times (a real number satisfying K>1). In the second restricting current portion 17, when there is no output from a first ratio differential operation result of the opposite-end side transmitted from the opposite end side, a value obtained by multiplying the opposite end current Ir by K times is selected as an input signal; and when there is an output from the first ratio differential operation result, the actual value of the opposite end current is selected as the input signal, and when there is an output from among a second ratio differential operation result of the self end side, a relay action signal to a circuit breaker provided in a bus connecting line, is generated and outputted. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、1.5CB方式で構成される変電所の母線からの電力用送電線を保護する電力用送電線の電流差動保護リレーに関するものであり、特に、相手側変電所とキャリアー信号によって送電線に流れる電流を相互に送受信して差動保護する電流差動保護リレーに関するものである。   The present invention relates to a current differential protection relay of a power transmission line that protects a power transmission line from a bus of a substation configured in a 1.5CB system, and in particular, by a counterpart substation and a carrier signal. The present invention relates to a current differential protection relay that differentially protects a current flowing in a transmission line by transmitting and receiving each other.

発電所や変電所における母線構成の1つに、2本の母線の間の母線連絡線に2台または3台の遮断器を設置し、各遮断器間に送電線を接続する1.5CB方式の母線構成(以下、1.5CB母線構成という)がある。1.5CB母線構成の送電線の保護には、母線連絡路に設置された変流器から得られた電流と、送電線の対向端の変電所の母線に同様に設置された変流器から得られた電流に基づいて遮断器をトリップするリレー動作信号を出力する電流差動保護リレーが用いられる。   1.5CB system that installs two or three circuit breakers in the bus connection line between two buses and connects the power transmission line between each circuit breaker in one of the bus configurations in the power plant or substation Bus configuration (hereinafter referred to as 1.5CB bus configuration). For the protection of transmission lines with 1.5 CB bus configuration, the current obtained from the current transformer installed in the bus connection path and the current transformer installed in the bus line of the substation at the opposite end of the transmission line are used. A current differential protection relay that outputs a relay operation signal that trips the circuit breaker based on the obtained current is used.

たとえば、従来の電流差動保護リレーは、1.5CB母線構成における送電線を挟む母線連絡路に設置された各変流器から得られる電流と、送電線の対向端の変電所の母線に同様に設置された各変流器から得られる電流が合成された対向端電流と、を用いて差動保護演算を実行し、実行した演算結果をリレー動作信号として出力する。   For example, the conventional current differential protection relay is similar to the current obtained from each current transformer installed in the bus connection path sandwiching the transmission line in the 1.5CB bus configuration and the bus of the substation opposite to the transmission line. The differential protection calculation is executed using the opposite-end current obtained by synthesizing the currents obtained from the current transformers installed in, and the calculation result is output as a relay operation signal.

より具体的に説明すると、従来の電流差動保護リレーは、自身が接続される母線連絡線に設置された2個の変流器から得られる各電流と、受信した対向端の電流から得られる電流との3つの電流の瞬時値の和の実効値(以下、瞬時値和の実効値(ベクトル和の実効値)という)を求める差動演算と、3つの電流のそれぞれの実効値を求めるとともに、これらの各実効値の和(以下、実効値和(実効値のスカラー和)という)を求める抑制演算とを行う。また、従来の電流差動保護リレーは、瞬時値和の実効値および実効値和を用いて比率差動演算を行って比率差動演算結果を対向端側の電流差動保護リレーに送信するとともに、この比率差動演算結果を受信した電流差動保護リレーが、自身の比率差動演算結果と、受信した比率差動演算結果とに基づき、遮断器を制御するためのリレー動作信号を生成して出力する。   More specifically, the conventional current differential protection relay is obtained from each current obtained from the two current transformers installed on the bus connecting line to which the current differential relay is connected and the received current at the opposite end. While calculating the effective value of the sum of the instantaneous values of the three currents with the current (hereinafter referred to as the effective value of the instantaneous value sum (the effective value of the vector sum)) and the effective value of each of the three currents Then, a suppression operation for obtaining a sum of these effective values (hereinafter referred to as an effective value sum (scalar sum of effective values)) is performed. In addition, the conventional current differential protection relay performs the ratio differential calculation using the effective value of the instantaneous value sum and the RMS value sum and transmits the ratio differential calculation result to the current differential protection relay on the opposite end side. The current differential protection relay that receives this ratio differential calculation result generates a relay operation signal for controlling the circuit breaker based on its ratio differential calculation result and the received ratio differential calculation result. Output.

従来の電流差動保護リレーは、上記のように構成されているので、例えば、母線上に送電線外部故障が発生し、その母線に連なる2個の変流器の一方の変流器に母線連絡線に流れる電流と送電線を経由して対向端より流れる電流が集中するためによって生じる変流器の飽和によって差電流が発生した場合でも、抑制電流を電流差動保護リレーに入力される3つの電流(自身が配置される母線連絡路の2個の変流器からの電流、および対向端の電流差動保護リレーからの電流)の各実効値の和で計算するため、抑制電流を確保することが可能となり、自端での誤動作を防止することができる。   Since the conventional current differential protection relay is configured as described above, for example, a power line external failure occurs on the bus, and the bus is connected to one of the two current transformers connected to the bus. Even when a current difference flows due to the saturation of the current transformer caused by the concentration of the current flowing through the connection line and the current flowing from the opposite end via the transmission line, the suppression current is input to the current differential protection relay 3 Since the current value from the two current transformers (currents from the two current transformers on the bus connection path where they are placed and the current from the current differential protection relay at the opposite end) is calculated, the suppression current is secured. This makes it possible to prevent malfunctions at its own end.

一方、受信した対向端の電流は、変流器の飽和を含む合成電流であり、差電流と等しい相手端電流を受信するため、対向端の抑制電流が小さく比率差動演算自体は不要動作する可能性があるが、自端の比率差動演算結果と、対向端から受信した比率差動演算結果と、の論理積をとることでリレー動作信号の不要出力を防止している。(例えば、特許文献1参照)。   On the other hand, the received current at the opposite end is a combined current including saturation of the current transformer, and receives the opposite end current equal to the difference current. Although there is a possibility, an unnecessary output of the relay operation signal is prevented by taking a logical product of the ratio differential calculation result of the own end and the ratio differential calculation result received from the opposite end. (For example, refer to Patent Document 1).

特開平1−227617号公報JP-A-1-227617

上記のような従来の電流差動保護リレーは、リレー動作信号を出力する場合、対向端側の比率差動演算結果を必要とするため、例えば送電線系統の内部故障が発生した場合に、故障を検出してからリレー動作信号を出力するまでの動作時間が、対向端側の比率差動演算結果を得る伝送遅延時間分だけ長くなるという問題があった。なお、伝送遅延時間は、おおむね数ms〜10数msであり、高速動作を要求される送電線保護リレーとしては問題になる場合がある。   The conventional current differential protection relay as described above requires a ratio differential calculation result on the opposite end side when outputting a relay operation signal. For example, when an internal failure of a transmission line system occurs, a failure occurs. There is a problem that the operation time from the detection of the signal until the relay operation signal is output becomes longer by the transmission delay time for obtaining the ratio differential calculation result on the opposite end side. Note that the transmission delay time is about several ms to several tens of ms, which may be a problem as a power transmission line protection relay that requires high-speed operation.

本発明は、上記に鑑みてなされたものであって、動作の信頼性を低下させることなく、動作時間を短縮することができる電流差動保護リレーを得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a current differential protection relay capable of shortening the operation time without reducing the operation reliability.

上述した課題を解決し、目的を達成するために、本発明にかかる電流差動保護リレーは、1.5CB母線構成における送電線を挟む母線連絡線に設置された各変流器から得られる各自端電流と、送電線の対向端における送電線を挟む母線連絡線に設置された各変流器から得られる電流を合成した対向端電流と、のベクトル和の実効値として表される差電流を算出する差電流部と、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第1の抑制電流を算出する第1の抑制電流部と、前記差電流と前記第1の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第1の比率差動演算結果として出力する第1の比率差動演算部と、前記第1の比率差動演算結果に基づき、前記母線連絡線に設置された遮断器をトリップするリレー動作信号を生成して出力する出力部と、を備えた電流差動保護リレーにおいて、対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力無の場合には、前記各自端電流の各実効値と、前記対向端電流に1を超える所定の実数値を乗じた値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出し、対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力有の場合には、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出する第2の抑制電流部と、前記差電流と前記第2の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第2の比率差動演算結果として出力する第2の比率差動演算部と、を備え、前記出力部は、自端側の前記第2の比率差動演算結果が出力有の場合に前記リレー動作信号を出力することを特徴とする。   In order to solve the above-described problems and achieve the object, the current differential protection relay according to the present invention is obtained by each of the current transformers obtained from each of the current transformers installed on the bus connection line sandwiching the power transmission line in the 1.5CB bus configuration. The difference current expressed as the effective value of the vector sum of the end current and the opposite end current obtained by synthesizing the current obtained from each current transformer installed on the bus connecting line across the transmission line at the opposite end of the transmission line is A first suppression that calculates a first suppression current expressed as a scalar sum of three effective values by the difference current part to be calculated, the effective values of the respective end currents, and the effective value of the opposing end currents A first differential ratio calculation that performs a ratio differential calculation based on the current unit, the difference current, and the first suppression current, and outputs a result of the ratio differential calculation as a first ratio differential calculation result. And the first ratio differential calculation result, An output section for generating and outputting a relay operation signal for tripping a circuit breaker installed on the line connecting line, and the first differential of the opposite end side transmitted from the opposite end side. If the result of the differential differential operation is no output, a scalar sum of three effective values obtained by multiplying each effective value of each self-end current by a value obtained by multiplying the opposite-end current by a predetermined real value exceeding 1 When the first ratio differential calculation result on the opposite end side transmitted from the opposite end side has an output, each effective value of each own end current is calculated. A second suppression current unit that calculates a second suppression current expressed as a scalar sum of three effective values according to the effective value of the opposite-end current, the difference current, and the second suppression current The ratio differential calculation based on the ratio differential calculation is performed, and the result of the ratio differential calculation is the second ratio difference. A second ratio differential calculation unit that outputs as a calculation result, and the output unit outputs the relay operation signal when the second ratio differential calculation result on its own side has an output. It is characterized by.

この発明によれば、各自端電流の各実効値と、対向端電流の実効値と、による3つの実効値のスカラー和として表される第1の抑制電流を算出する第1の抑制電流部とは別に、対向端側から送信された対向端側の第1の比率差動演算結果が出力無の場合には、各自端電流の各実効値と、対向端電流に1を超える所定の実数値を乗じた値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出し、対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力有の場合には、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出する第2の抑制電流部が具備される。すなわち、この第2の抑制電流部では、対向端側から送信された対向端側の第1の比率差動演算結果が出力無の場合には、対向端電流に1を超える所定の実数値を乗じたものが入力信号として選択され、対向端側から送信された対向端側の第1の比率差動演算結果が出力有の場合には、対向端電流そのものが入力信号として選択され、自端側の第2の比率差動演算結果がリレーオンを表す出力の場合に、母線連絡線に設置された遮断器に対するリレー動作信号が出力されるので、対向端の動作信号がなくてもリレー動作信号を出力することができ、動作の信頼性を低下させることなく、動作時間を短縮することができる電流差動保護リレーを得ることができるという効果を奏する。   According to the present invention, the first suppression current unit that calculates the first suppression current expressed as a scalar sum of the three effective values based on the effective values of the respective end currents and the effective value of the opposite end current; In addition, when the first ratio differential operation result transmitted from the opposite end side is not output, each effective value of each own end current and a predetermined real value exceeding 1 in the opposite end current And a second suppression current expressed as a scalar sum of three effective values by the value multiplied by the first effective differential differential operation result on the opposite end side transmitted from the opposite end side is output. If yes, a second suppression current for calculating a second suppression current expressed as a scalar sum of three effective values based on the effective values of the self-terminal currents and the effective value of the counter-terminal currents Are provided. That is, in the second suppression current unit, when the first ratio differential operation result transmitted from the opposed end side is not output, a predetermined real value exceeding 1 is set to the opposed end current. When the multiplied signal is selected as an input signal and the first ratio differential operation result transmitted from the opposite end side is output, the opposite end current itself is selected as the input signal and Since the relay operation signal for the circuit breaker installed on the bus connecting line is output when the second ratio differential calculation result on the side is an output indicating relay ON, the relay operation signal is output even if there is no operation signal at the opposite end. Can be output, and there is an effect that it is possible to obtain a current differential protection relay that can shorten the operation time without lowering the operation reliability.

以下に、本発明にかかる電流差動保護リレーの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a current differential protection relay according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1〜図3を用いて、本発明の実施の形態1にかかる電流差動保護リレーを説明する。図1は、本実施の形態にかかる電流差動保護リレーが設置される1.5CB母線方式の母線構成を示す図である。図1において、1.5CB母線方式の母線構成は、A端の母線51と母線52とを接続する母線連絡線に3台の遮断器CB1〜CB3が配置され、遮断器CB1と遮断器CB2との間に変流器CT1が配置され、遮断器CB3と母線52との間に変流器CT2が配置され、B端の母線53と母線54とを接続する母線連絡線に3台の遮断器CB1r〜CB3rが配置され、遮断器CB1rと遮断器CB2rとの間に変流器CT1rが配置され、遮断器CB3rと母線54との間に変流器CT2rが配置され、遮断器CB2と遮断器CB3との間と、遮断器CB2rと遮断器CB3rとの間とに送電線3が接続されており、電流差動保護リレー1には変流器CT1,CT2からの電流I1,I2が入力され、電流差動保護リレー2には変流器CT1r,CT2rからの電流I1r,I2rが入力されるとともに、電流差動保護リレー1と電流差動保護リレー2とは伝送路4によって通信可能となっている。
Embodiment 1 FIG.
The current differential protection relay according to the first exemplary embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a bus configuration of a 1.5 CB bus system in which a current differential protection relay according to the present embodiment is installed. In FIG. 1, the 1.5CB bus system has a bus configuration in which three circuit breakers CB1 to CB3 are arranged on the bus connecting line connecting the A-end bus 51 and the bus 52, and the circuit breakers CB1 and CB2 The current transformer CT1 is arranged between them, the current transformer CT2 is arranged between the circuit breaker CB3 and the bus 52, and three circuit breakers are connected to the bus connecting line connecting the bus 53 and the bus 54 at the B end. CB1r to CB3r are disposed, a current transformer CT1r is disposed between the circuit breaker CB1r and the circuit breaker CB2r, a current transformer CT2r is disposed between the circuit breaker CB3r and the bus bar 54, and the circuit breaker CB2 and the circuit breaker are disposed. The power transmission line 3 is connected between the CB3 and between the circuit breaker CB2r and the circuit breaker CB3r. The current differential protection relay 1 receives the currents I1 and I2 from the current transformers CT1 and CT2. The current differential protection relay 2 has a current transformer C 1r, current from CT2r I1r, with I2r is input, and can communicate with the transmission path 4 is a current differential protection relay 1 and the current differential protection relay 2.

A端の電流差動保護リレー1は、変流器CT1,CT2からの電流I1,I2と、送電線の対向端(B端)の電流差動保護リレー2から得られる電流I1rと電流I2rとを合成(I1r+I2r)した電流(以下、電流Irという)との3つの電流により差動保護演算を行って遮断器CB2,CB3を制御するリレー動作信号を出力して送電線3を保護する。B端側の電流差動保護リレー2は、変流器CT1r,CT2rからの電流I1r,I2rと、送電線の対向端側(A端側)の電流差動保護リレー1から得られる電流I1と電流I2とを合成した電流との3つの電流により差動保護演算を行って遮断器CB2r,CB3rを制御するリレー動作信号を出力して送電線3を保護する。   The A-terminal current differential protection relay 1 includes currents I1 and I2 from the current transformers CT1 and CT2, and currents I1r and I2r obtained from the current differential protection relay 2 at the opposite end (B end) of the transmission line. Is subjected to differential protection calculation with three currents (I1r + I2r) combined (I1r + I2r) and outputs a relay operation signal for controlling the circuit breakers CB2 and CB3 to protect the transmission line 3. The current differential protection relay 2 on the B end side includes currents I1r and I2r from the current transformers CT1r and CT2r, and a current I1 obtained from the current differential protection relay 1 on the opposite end side (A end side) of the transmission line. The differential protection calculation is performed with three currents, which are the combined current I2 and the current I2, and a relay operation signal for controlling the circuit breakers CB2r and CB3r is output to protect the transmission line 3.

A端の電流差動保護リレー1からみると、電流I1,I2は自端電流であり、電流Irは対向端電流である。逆に、B端の電流差動保護リレー2からみると、電流I1r,I2rは自端電流であり、電流(I1+I2)は対向端電流である。なお、これらの電流差動保護リレー1,2は、入力される電流は異なるが、同一の機能を備えている。   When viewed from the A-terminal current differential protection relay 1, the currents I1 and I2 are self-currents, and the current Ir is a counter-current. Conversely, when viewed from the B-terminal current differential protection relay 2, the currents I1r and I2r are self-currents, and the current (I1 + I2) is a counter-end current. These current differential protection relays 1 and 2 have the same function, although the input current is different.

つぎに、電流差動保護リレーの機能について図2を参照して説明する。図2は、実施の形態1にかかる電流差動保護リレーの構成を示すブロック図である。図2において、電流差動保護リレー1は、入力電流変換部10,11、入力電流合成部12、同期遅延部9、受信電流変換部13、対向端電流K倍部14、差電流部15、第1の抑制電流部16、第2の抑制電流部17、第1の比率差動演算部18、第2の比率差動演算部19、対向端比率差動演算結果受信部20、出力部21、および送信部23を備えている。   Next, the function of the current differential protection relay will be described with reference to FIG. FIG. 2 is a block diagram of the configuration of the current differential protection relay according to the first embodiment. In FIG. 2, the current differential protection relay 1 includes input current conversion units 10 and 11, an input current synthesis unit 12, a synchronization delay unit 9, a reception current conversion unit 13, a counter current K multiplication unit 14, a difference current unit 15, First suppression current unit 16, second suppression current unit 17, first ratio differential calculation unit 18, second ratio differential calculation unit 19, opposed end ratio differential calculation result reception unit 20, output unit 21 And a transmission unit 23.

入力電流変換部10,11は、変流器CT1,CT2からの電流I1,I2を電流差動保護リレー1内に取り込んで電流差動保護リレー内で扱う電流値に変換する。具体的に、入力電流変換部10,11は、電流I1,I2を取り込んで変流器CT1,CT2の2次側と絶縁し、取り込んだ電流I1,I2の高調波を除去した後に電流I1,I2の電流値をデジタル信号の自端電流データに変換する。同期遅延部9は、対向端の電流差動保護リレー2から通知される電流信号の伝搬遅延時間を考慮し、電流I1,I2を遅延させて対向端の電流差動保護リレー2から通知される電流Irの電流値と電流I1,I2の各電流値とが同時刻の電流値となるように電流I1,I2を変換する。   The input current conversion units 10 and 11 take the currents I1 and I2 from the current transformers CT1 and CT2 into the current differential protection relay 1 and convert them into current values handled in the current differential protection relay. Specifically, the input current converters 10 and 11 capture the currents I1 and I2 and insulate them from the secondary sides of the current transformers CT1 and CT2, and remove the harmonics of the captured currents I1 and I2. The current value of I2 is converted into self-end current data of a digital signal. The synchronization delay unit 9 considers the propagation delay time of the current signal notified from the current differential protection relay 2 at the opposite end, delays the currents I1 and I2, and notifies from the current differential protection relay 2 at the opposite end. The currents I1 and I2 are converted so that the current value of the current Ir and the current values of the currents I1 and I2 become the current values at the same time.

入力電流合成部12は、入力電流変換部10,11によって変換された各自端電流データを加算(ベクトル加算)し、加算した電流を合成電流(対向端の電流差動保護リレー2からみた対向端電流)として送信部23に伝達する。送信部23は、入力電流合成部12によって合成された合成電流をキャリアー信号として、後述する比率差動演算結果(第1の比率差動演算部18の出力)とともに伝送路4を介して電流差動保護リレー2に送信する。   The input current synthesis unit 12 adds (vector addition) the respective end current data converted by the input current conversion units 10 and 11, and the added current is the combined current (the opposite end as viewed from the current differential protection relay 2 at the opposite end). Current)) to the transmitter 23. The transmission unit 23 uses the combined current combined by the input current combining unit 12 as a carrier signal, together with a ratio differential calculation result (output of the first ratio differential calculation unit 18) described later, and a current difference via the transmission line 4. Transmit to the dynamic protection relay 2.

受信電流変換部13は、伝送路4を介して対向端の電流差動保護リレー2が送信した対向端電流Irを受信し、受信した対向端電流Irを電流差動保護リレー1内で扱う対向端電流データに変換する。   The reception current converter 13 receives the opposite end current Ir transmitted from the current differential protection relay 2 at the opposite end via the transmission line 4, and handles the received opposite end current Ir in the current differential protection relay 1. Convert to edge current data.

差電流部15は、時刻同期された電流I1,I2の各自端電流データ、すなわち入力電流変換部10,11によって変換された自端電流データI1,I2が、受信電流(対向端電流Ir)と同時刻になるように補正された同期遅延部9の出力データと、受信電流変換部13によって変換された対向端電流Irの対向端電流データとを加算し、加算して得られた電流データが示す電流の実効値(時刻同期された自端電流I1,I2と、対向端電流Irとの和)を求める。ここで、実効値演算を“rms”によって表記すると、差電流部15の演算結果である差電流Idは、次式で表される。
Id=(I1+I2+Ir)rms … (式1)
The differential current unit 15 includes time-synchronized current data of the currents I1 and I2, that is, the current data I1 and I2 converted by the input current conversion units 10 and 11, and the received current (opposing end current Ir). The output data of the synchronous delay unit 9 corrected to be the same time and the opposite end current data of the opposite end current Ir converted by the reception current conversion unit 13 are added, and the current data obtained by the addition is obtained. The effective value of the current shown (the sum of the time-synchronized self-end currents I1 and I2 and the counter-end current Ir) is obtained. Here, when the effective value calculation is expressed by “rms”, the difference current Id as the calculation result of the difference current unit 15 is expressed by the following equation.
Id = (I1 + I2 + Ir) rms (Formula 1)

第1の抑制電流部16は、上記時刻同期された自端電流I1,I2を表す電流データの実効値と、受信電流変換部13によって変換された対向端電流Irを表す電流データの実効値とを求め、求めたそれぞれの実効値を加算(スカラー加算)して第1の抑制電流を求める。ここで、電流I1の実効値をI1rmsとし、電流I2の実効値をI2rmsとし、対向端電流Irの実効値をIr_rmsとすると、第1の抑制電流Ires1は、次式で表される。
Ires1=I1rms+I2rms+Ir_rms … (式2)
The first suppression current unit 16 includes an effective value of current data representing the time-synchronized currents I1 and I2 and an effective value of current data representing the counter-current Ir converted by the reception current conversion unit 13. And the obtained effective values are added (scalar addition) to obtain the first suppression current. Here, when the effective value of the current I1 is I1rms, the effective value of the current I2 is I2rms, and the effective value of the counter-end current Ir is Ir_rms, the first suppression current Ires1 is expressed by the following equation.
Ires1 = I1rms + I2rms + Ir_rms (Formula 2)

対向端比率差動演算結果受信部20は、伝送路4を介して対向端の電流差動保護リレー2が送信した対向端の第1の比率差動演算結果(対向端比率差動演算結果)を受信する。   The opposite end ratio differential calculation result receiving unit 20 receives the first ratio differential calculation result at the opposite end transmitted by the current differential protection relay 2 at the opposite end via the transmission line 4 (the opposite end ratio differential calculation result). Receive.

対向端電流K倍部14は、対向端比率差動演算結果受信部20からの出力である対向端比率差動演算結果を受信するとともに、対向端比率差動演算結果の出力の有無に応じて、入力された対向端電流Irを第2の抑制電流部17に出力する際の当該対向端電流Irに乗ずべき乗算係数(整定値)を変更する。より具体的には、対向端比率差動演算結果の出力が「有」の場合には、入力された対向端電流Irを1倍、すなわち対向端電流Irをそのまま第2の抑制電流部17に出力する。一方、対向端比率差動演算結果の出力が「無」の場合には、入力された対向端電流IrをK倍して第2の抑制電流部17に出力する。ここで、対向端比率差動演算結果の出力が「有」とは、対向端の第1の比率差動演算部18が、送信部23に「論理“1”」を伝達することを意味し、対向端比率差動演算結果の出力が「無」とは、対向端の第1の比率差動演算部18が、送信部23に「論理“0”」を伝達することを意味する。また、上記乗算係数Kは、「K≧1,Kは実数」を満たす整定値であり、任意の入力手段(図示省略)を用いて設定される。   The counter-end current K multiplication unit 14 receives the counter-end ratio differential calculation result, which is an output from the counter-end ratio differential calculation result receiving unit 20, and according to whether or not the counter-end ratio differential calculation result is output. Then, the multiplication coefficient (settling value) to be multiplied by the counter-end current Ir when the input counter-end current Ir is output to the second suppression current unit 17 is changed. More specifically, when the output of the counter end ratio differential calculation result is “present”, the input counter end current Ir is multiplied by 1, that is, the counter end current Ir is directly supplied to the second suppression current unit 17. Output. On the other hand, when the output of the counter end ratio differential calculation result is “none”, the input counter end current Ir is multiplied by K and output to the second suppression current unit 17. Here, the output of the opposite end ratio differential calculation result “present” means that the first ratio differential calculation unit 18 at the opposite end transmits “logic“ 1 ”” to the transmission unit 23. The output of the opposite end ratio differential calculation result “None” means that the first ratio differential calculation unit 18 at the opposite end transmits “logic“ 0 ”” to the transmission unit 23. The multiplication coefficient K is a set value that satisfies “K ≧ 1, K is a real number”, and is set using any input means (not shown).

ここで、電流I1の実効値をI1rmsとし、電流I2の実効値をI2rmsとし、対向端電流Irの実効値をIr_rmsとすると、第2の抑制電流Ires2は、対向端比率差動演算結果の差異に応じて、次式で表すことができる。
Ires2=I1rms+I2rms+K×Ir_rms …(式3)
なお、(式3)におけるKは、つぎの条件を満足する。
(1)対向端比率差動演算結果の出力が「有」の場合:K=1
(2)対向端比率差動演算結果の出力が「無」の場合:K>1(Kは実数)
Here, if the effective value of the current I1 is I1rms, the effective value of the current I2 is I2rms, and the effective value of the counter-end current Ir is Ir_rms, the second suppression current Ires2 is the difference between the counter-end ratio differential calculation results. Can be expressed by the following equation.
Ires2 = I1rms + I2rms + K × Ir_rms (Formula 3)
Note that K in (Expression 3) satisfies the following condition.
(1) When the output of the opposite end ratio differential calculation result is “present”: K = 1
(2) When the output of the opposite end ratio differential calculation result is “None”: K> 1 (K is a real number)

第1の比率差動演算部18は、差電流部15によって求められた差電流Idと、第1の抑制電流部16によって求められた第1の抑制電流Ires1とに基づいて比率差動演算を行う。第2の比率差動演算部19は、差電流部15によって求められた差電流Idと、第2の抑制電流部17によって求められた第2の抑制電流Ires2とに基づいて比率差動演算を行う。   The first ratio differential calculation unit 18 performs the ratio differential calculation based on the difference current Id obtained by the difference current unit 15 and the first suppression current Ires1 obtained by the first suppression current unit 16. Do. The second ratio differential calculation unit 19 performs the ratio differential calculation based on the difference current Id obtained by the difference current unit 15 and the second suppression current Ires2 obtained by the second suppression current unit 17. Do.

第1の比率差動演算部18および第2の比率差動演算部19では、例えば以下の各条件式((条件1)〜(条件3))に基づく判定処理が行われる。
(条件1)Id≧K1
(条件2)Id≧R1×Ires
(条件3)Id≧R2×Ires+K2
In the first ratio differential calculation unit 18 and the second ratio differential calculation unit 19, for example, determination processing based on the following conditional expressions ((condition 1) to (condition 3)) is performed.
(Condition 1) Id ≧ K1
(Condition 2) Id ≧ R1 × Ires
(Condition 3) Id ≧ R2 × Ires + K2

上記条件式において、Idは差電流部15から入力される差電流であり、Iresは抑制電流(第1の比率差動演算部18においては第1の抑制電流部16から入力される第1の抑制電流、第2の比率差動演算部19においては第2の抑制電流部17から入力される第2の抑制電流)であり、K1、K2、R1、R2は、例えば入力手段によって外部から整定される比率差動演算の特性を示す整定値である。これらの整定値K1、K2、R1、R2は、抑制電流Iresが大きくなると増加する変流器CT1,CT2の誤差に対して誤動作が発生しないように、抑制電流Iresが大きい領域では比率差動動作領域が狭くなるように整定することが好ましい。なお、整定値R2については、変流器CT1,CT2,CT1r,CT2rの飽和による影響を考慮して、「1」を設定するのが一般的である。   In the above conditional expression, Id is a difference current input from the difference current unit 15, and Ires is a suppression current (in the first ratio differential operation unit 18, the first current input from the first suppression current unit 16. In the second ratio differential operation unit 19, the second suppression current is input from the second suppression current unit 17, and K1, K2, R1, and R2 are set from the outside by an input means, for example. It is a settling value which shows the characteristic of ratio differential operation. These settling values K1, K2, R1, and R2 are ratio differential operations in a region where the suppression current Ires is large so that a malfunction does not occur due to an error of the current transformers CT1 and CT2 that increases when the suppression current Ires increases. It is preferable to settle so that the region becomes narrow. The set value R2 is generally set to “1” in consideration of the influence of saturation of the current transformers CT1, CT2, CT1r, and CT2r.

第1の比率差動演算部18は、上記(条件1)〜(条件3)のIresに第1の抑制電流Ires1を代入して比率差動演算を行い、上記(条件1)〜(条件3)がすべて成立した場合には、その旨(条件式の全てが成立)を示す第1の比率差動演算結果を出力し、上記(条件1)〜(条件3)の何れかが不成立の場合には、その旨(少なくとも一つの条件式が不成立)を示す第1の比率差動演算結果を出力する。   The first ratio differential calculation unit 18 performs ratio differential calculation by substituting the first suppression current Ires1 for Ires in the above (condition 1) to (condition 3), and performs the above (condition 1) to (condition 3). ) Are all satisfied, the first ratio differential calculation result indicating that (all the conditional expressions are satisfied) is output, and any of the above (condition 1) to (condition 3) is not satisfied Outputs the first ratio differential calculation result indicating that (at least one conditional expression is not satisfied).

同様に、第2の比率差動演算部19は、上記(条件1)〜(条件3)のIresに第2の抑制電流Ires2を代入して比率差動演算を行い、上記(条件1)〜(条件3)がすべて成立した場合には、その旨(条件式の全てが成立)を示す第2の比率差動演算結果を出力し、上記(条件1)〜(条件3)の何れかが不成立の場合には、その旨(少なくとも一つの条件式が不成立)を示す第2の比率差動演算結果を出力する。   Similarly, the second ratio differential calculation unit 19 performs ratio differential calculation by substituting the second suppression current Ires2 for Ires in the above (condition 1) to (condition 3), and the above (condition 1) to When all of (Condition 3) is satisfied, a second ratio differential calculation result indicating that (All of the conditional expressions are satisfied) is output, and any of the above (Condition 1) to (Condition 3) is output. If not satisfied, a second ratio differential operation result indicating that (at least one conditional expression is not satisfied) is output.

出力部21は、第1の比率差動演算部18によって得られた第1の比率差動演算結果と、第2の比率差動演算部19によって得られた第2の比率差動演算結果との論理積をリレー動作信号として遮断器CB1,CB2に出力する。すなわち、出力部21は、第1の抑制電流Ires1を用いて上記(条件1)〜(条件3)がすべて成立し、かつ、対向端比率差動演算結果の出力が反映された第2の抑制電流Ires2を用いて上記(条件1)〜(条件3)が成立した場合にリレー動作信号を出力し、第1の抑制電流Ires1を用いた上記(条件1)〜(条件3)のうちの少なくとも一つの条件式が不成立の場合、または、第2の抑制電流Ires2を用いた上記(条件1)〜(条件3)のうちの少なくとも一つの条件式が不成立の場合にリレー動作信号を出力しない。   The output unit 21 includes a first ratio differential calculation result obtained by the first ratio differential calculation unit 18 and a second ratio differential calculation result obtained by the second ratio differential calculation unit 19. Is output as a relay operation signal to the circuit breakers CB1 and CB2. That is, the output unit 21 uses the first suppression current Ires1 to satisfy the above (condition 1) to (condition 3), and the second suppression in which the output of the counter end ratio differential calculation result is reflected. A relay operation signal is output when the above (condition 1) to (condition 3) are satisfied using the current Ires2, and at least one of the above (condition 1) to (condition 3) using the first suppression current Ires1 When one conditional expression is not satisfied, or when at least one of the above (condition 1) to (condition 3) using the second suppression current Ires2 is not satisfied, the relay operation signal is not output.

ところで、上記(式1)〜(式3)は、A端側(自端側)の電流差動保護リレー1における差電流Id、第1の抑制電流Ires1、および第2の抑制電流Ires2を表す算出式であった。つぎに、B端側(対向端側)の電流差動保護リレー2における差電流Idr、第1の抑制電流Ires1r、および第2の抑制電流Ires2rを明らかにしておく。   By the way, the above (Expression 1) to (Expression 3) represent the differential current Id, the first suppression current Ires1, and the second suppression current Ires2 in the current differential protection relay 1 on the A end side (own end side). It was a calculation formula. Next, the differential current Idr, the first suppression current Ires1r, and the second suppression current Ires2r in the current differential protection relay 2 on the B end side (opposing end side) will be clarified.

B端の差電流部15は、A端の差電流部15と同様に、自端電流と対向端電流との和の実効値を差電流として求める。ここで、電流差動保護リレー2における各自端電流は「電流I1r」および「電流I2r」であり、対向端電流は「電流(I1+I2)」である。よって、電流差動保護リレー2の差電流部15が求める差電流をIdrは、これらの電流(I1r,I2r,I1,I2)を上記(式1)に適用することにより、次式で表すことができる。
Idr=(I1r+I2r+I1+I2)rms …(式4)
Similarly to the A-terminal difference current unit 15, the B-terminal difference current unit 15 obtains the effective value of the sum of the self-terminal current and the opposed terminal current as the difference current. Here, the respective currents at the current differential protection relay 2 are “current I1r” and “current I2r”, and the opposite-end current is “current (I1 + I2)”. Therefore, the difference current Idr calculated by the difference current unit 15 of the current differential protection relay 2 is expressed by the following equation by applying these currents (I1r, I2r, I1, I2) to the above (Equation 1). Can do.
Idr = (I1r + I2r + I1 + I2) rms (Formula 4)

同様に、B端(電流差動保護リレー2)の第1の抑制電流部16が求める第1の抑制電流Ires1は、自端電流I1rの実効値I1r_rms、自端電流I2rの実効値I2r_rms、および対向端電流(I1+I2)rmsの実効値(I1+I2)rmsを(式2)に適用することにより、次式で表すことができる。
Ires1r=I1r_rms+I2r_rms+(I1+I2)rms …(式5)
Similarly, the first suppression current Ires1 obtained by the first suppression current unit 16 of the B terminal (current differential protection relay 2) is an effective value I1r_rms of the own-end current I1r, an effective value I2r_rms of the own-end current I2r, and By applying the effective value (I1 + I2) rms of the counter-end current (I1 + I2) rms to (Expression 2), it can be expressed by the following expression.
Ires1r = I1r_rms + I2r_rms + (I1 + I2) rms (Formula 5)

一方、B端(電流差動保護リレー2)の第2の抑制電流部17が求める第2の抑制電流Ires2は、対向端電流Irが対向端電流K倍部14を介して第2の抑制電流部17に入力されるため、第1の抑制電流Ires1とは異なった算出式となる。具体的に、この第2の抑制電流Ires2は、自端電流I1rの実効値I1r_rms、自端電流I2rの実効値I2r_rms、および対向端電流(I1+I2)rmsの実効値(I1+I2)rmsを(式3)に適用することにより、次式で表すことができる。
Ires2r=I1r_rms+I2r_rms+K×(I1+I2)rms…(式6)
なお、上記(式6)において、A端(対向端)の第1の比率差動演算部、すなわち電流差動保護リレー1の第1の比率差動演算部18の出力が「有」の場合にはK=1が設定され、第1の比率差動演算部18の出力が「無」の場合にはK>1を満たす所定の実数値が設定されることは、前述のとおりである。
On the other hand, the second suppression current Ires2 obtained by the second suppression current unit 17 of the B end (current differential protection relay 2) is the second suppression current Ires2 via the counter end current K multiplication unit 14. Since it is input to the unit 17, the calculation formula is different from that of the first suppression current Ires1. Specifically, the second suppression current Ires2 is expressed by the effective value I1r_rms of the self-end current I1r, the effective value I2r_rms of the self-end current I2r, and the effective value (I1 + I2) rms of the counter-end current (I1 + I2) rms (formula 3 ) Can be expressed by the following equation.
Ires2r = I1r_rms + I2r_rms + K × (I1 + I2) rms (Formula 6)
In the above (Expression 6), when the output of the first ratio differential calculation unit at the A end (opposing end), that is, the first ratio differential calculation unit 18 of the current differential protection relay 1 is “present” As described above, when K = 1 is set for and the output of the first ratio differential calculation unit 18 is “none”, a predetermined real value satisfying K> 1 is set.

ここで、送電線系統の故障についての若干の補足説明を行っておく。送電線系統の故障には、送電線外部故障と送電線内部故障とがある。送電線内部故障は、変流器CT1,CT2、変流器CT1r,CT2rに囲まれた領域上に生ずる故障であり、送電線外部故障は、上記以外の領域上に生ずる故障である。なお、これらの送電線故障のうち、電流差動保護リレー1および電流差動保護リレー2が検出すべき故障は、送電線内部故障である。   Here, some supplementary explanations regarding the failure of the transmission line system will be given. The failure of the transmission line system includes a transmission line external failure and a transmission line internal failure. A power transmission line internal failure is a failure that occurs on a region surrounded by current transformers CT1, CT2, and current transformers CT1r, CT2r, and a power transmission line external failure is a failure that occurs on a region other than the above. Of these power transmission line failures, the failure to be detected by the current differential protection relay 1 and the current differential protection relay 2 is a power transmission line internal failure.

つぎに、この実施の形態1の電流差動保護リレーの動作について説明する。ここでは、まず、図1に示した1.5CB母線方式の母線構成において、変流器CT2とA端の母線52との間の領域60に送電線外部故障が発生し、この送電線外部故障によって対向端の変流器CT1r,CT2rと自端の変流器CT1とは飽和せず、自端の変流器CT2のみが飽和した場合を一例に挙げて説明する。また、本説明においては、比率差動特性の動作領域の整定値R1,R2として、一般的な比率特性である「R1=0.4」、「R2=1」を用いる。   Next, the operation of the current differential protection relay of the first embodiment will be described. Here, first, in the 1.5CB bus system bus configuration shown in FIG. 1, a transmission line external failure occurs in a region 60 between the current transformer CT2 and the A-end bus 52, and this transmission line external failure Therefore, the case where the current transformers CT1r and CT2r at the opposite ends and the current transformer CT1 at the opposite end are not saturated and only the current transformer CT2 at the own end is saturated will be described as an example. In this description, “R1 = 0.4” and “R2 = 1”, which are general ratio characteristics, are used as the settling values R1 and R2 of the operation area of the ratio differential characteristics.

また、説明の便宜上、さらに、電流I1=電流I2=電流I、および電流I1r=電流I2r=0であるとする。なお、これらの条件は、電流差動保護リレーが誤動作を起こしやすい条件を与えるものである。   For convenience of explanation, it is further assumed that current I1 = current I2 = current I and current I1r = current I2r = 0. These conditions give conditions that the current differential protection relay is liable to malfunction.

変流器CT2が飽和していない場合には、上記(式1)より差電流Idは「0」となる。一方、送電線外部故障によって変流器CT2が飽和している場合には、上記(式1)より差電流Idは「0」とは異なる値となる。ここで、変流器CT2の飽和によって電流I2が実際の電流(送電線外部故障が発生していない正常時の電流)の50%になったと仮定する。この場合、差電流Idは、電流I1,I2の向きが逆向きであることに留意し、上記(式1)より、
Id=(I1+I2+Ir)rms
=(I−0.5×I+0)rms
=0.5×Irms …(式7)
となる。
When the current transformer CT2 is not saturated, the difference current Id is “0” from (Equation 1). On the other hand, when the current transformer CT2 is saturated due to an external failure of the transmission line, the difference current Id is a value different from “0” from the above (Equation 1). Here, it is assumed that the current I2 becomes 50% of the actual current (current at the normal time when no power line external failure occurs) due to saturation of the current transformer CT2. In this case, the difference current Id is noted that the directions of the currents I1 and I2 are opposite, and from the above (Equation 1),
Id = (I1 + I2 + Ir) rms
= (I−0.5 × I + 0) rms
= 0.5 × Irms (Formula 7)
It becomes.

また、差電流Id/抑制電流Iresが大きい方が電流差動保護リレー1は動作し易くなる。よって、電流差動保護リレー1が最も動作しやすい場合を想定して対向端電流の実効値Ir_rmsを「0」とする。
このとき、第1の抑制電流Ires1は、上記(式2)より、
Ires1=I1rms+I2rms+Ir_rms
=Irms+0.5×Irms+0
=1.5×Irms …(式8)
となる。
Further, the current differential protection relay 1 becomes easier to operate when the difference current Id / suppression current Ires is larger. Therefore, assuming that the current differential protection relay 1 is most likely to operate, the effective value Ir_rms of the opposite-end current is set to “0”.
At this time, the first suppression current Ires1 is calculated from the above (Equation 2).
Ires1 = I1rms + I2rms + Ir_rms
= Irms + 0.5 × Irms + 0
= 1.5 × Irms (Formula 8)
It becomes.

上記(式7)および(式8)より、「差電流Id/抑制電流Ires1」は「1/3」となる。したがって、整定値R1を「R1>1/3」が成り立つように整定すると、「差電流Id/第1の抑制電流Ires1<整定値R1」となり、上記(条件2)が不成立となる。よって、第1の比率差動演算部18は、上記(条件1)〜(条件3)のうちの少なくとも一つ(この場合は、条件2)が不成立であることを示す第1の比率差動演算結果が送信部23および出力部21に出力される。また、第1の比率差動演算結果は、送信部23を通じて対向端側の電流差動保護リレー2に送信される。   From (Equation 7) and (Equation 8) above, “difference current Id / suppression current Ires1” is “1/3”. Accordingly, when the set value R1 is set so that “R1> 1/3” holds, “difference current Id / first suppression current Ires1 <settling value R1” is satisfied, and the above (condition 2) is not satisfied. Therefore, the first ratio differential operation unit 18 indicates that the first ratio differential indicating that at least one of the above (condition 1) to (condition 3) (condition 2 in this case) is not satisfied. The calculation result is output to the transmission unit 23 and the output unit 21. Further, the first ratio differential calculation result is transmitted to the current differential protection relay 2 on the opposite end side through the transmission unit 23.

このようにして、出力部21の入力端の一方には、出力無の第1の比率差動演算結果が入力されている。よって、出力部21は、第2の比率差動演算部19の出力結果に依存することなく、リレー動作信号を出力しない。   In this way, the first ratio differential calculation result without output is input to one of the input terminals of the output unit 21. Therefore, the output unit 21 does not depend on the output result of the second ratio differential operation unit 19 and does not output a relay operation signal.

また、電流差動保護リレー1の対向端電流Irは、電流差動保護リレー2からみた自端電流I1r,I2rの和である。したがって、上記(式1)に示した電流差動保護リレー1の差電流は、次式によっても表すことができる。
Id=(I1+I2+I1r+I2r)rms … (式9)
Further, the opposite-end current Ir of the current differential protection relay 1 is the sum of the self-end currents I1r and I2r viewed from the current differential protection relay 2. Therefore, the differential current of the current differential protection relay 1 shown in (Equation 1) can also be expressed by the following equation.
Id = (I1 + I2 + I1r + I2r) rms (Equation 9)

上記(式4)と(式9)との比較によって明らかなように、電流差動保護リレー2の差電流部15が求める差電流Idrは、電流差動保護リレー1の差電流部15が求める差電流Idと等しくなる。よって、変流器CT2の飽和によって電流I2が実際の電流(送電線外部故障が発生していない正常時の電流)の50%になった場合の電流差動保護リレー2の差電流部15が求める差電流Idrは、
Idr=Id=0.5×Irms …(式10)
となる。
As is apparent from the comparison between (Equation 4) and (Equation 9), the difference current Idr obtained by the difference current portion 15 of the current differential protection relay 2 is obtained by the difference current portion 15 of the current differential protection relay 1. It becomes equal to the difference current Id. Therefore, the difference current portion 15 of the current differential protection relay 2 when the current I2 becomes 50% of the actual current (normal current when no external fault of the transmission line has occurred) due to the saturation of the current transformer CT2. The difference current Idr to be obtained is
Idr = Id = 0.5 × Irms (Formula 10)
It becomes.

ここで、上記(式7)を求めたときと同じ条件、すなわち、I1r_rms=I2r_rms=0、I1=I2=Iという条件を用いる。このとき、電流差動保護リレー2の第1の抑制電流Ires1rは、上記(式9)より、
Ires1r=I1r_rms+I2r_rms+(I1+I2)rms
=0+0+(I−0.5×I)rms
=0.5×Irms …(式11)
となる。
Here, the same conditions as when (Equation 7) is obtained, that is, the conditions of I1r_rms = I2r_rms = 0 and I1 = I2 = I are used. At this time, the first suppression current Ires1r of the current differential protection relay 2 is expressed by the above (formula 9).
Ires1r = I1r_rms + I2r_rms + (I1 + I2) rms
= 0 + 0 + (I−0.5 × I) rms
= 0.5 × Irms (Formula 11)
It becomes.

また、電流差動保護リレー2の第2の抑制電流Ires2rは、上記(式6)より、
Ires2r=I1r_rms+I2r_rms+K×(I1+I2)rms
=0+0+K×(I−0.5×I)rms
=0.5×K×Irms …(式12)
となる。
Further, the second suppression current Ires2r of the current differential protection relay 2 is expressed by the above (formula 6).
Ires2r = I1r_rms + I2r_rms + K × (I1 + I2) rms
= 0 + 0 + K × (I−0.5 × I) rms
= 0.5 × K × Irms (Formula 12)
It becomes.

ここで、上記(式10)および(式11)により、電流差動保護リレー2においては、差電流Idrと第1の抑制電流Ires1rとが等しくなるため、「差電流Idr/第1の抑制電流Ires1r=1」となる。よって、誤動作を防止するためには、「差電流Idr/第1の抑制電流Ires1r>1」が成立する必要がある。しかしながら、1端入力の内部故障では「差電流Idr/第1の抑制電流Ires1r=1」となるので、「差電流Idr/第1の抑制電流Ires1r>1」が成立するような整定を行うことはできない。したがって、第1の比率差動演算結果(第1の比率差動演算部18の出力)が、電流差動保護リレー2の動作領域に入ってしまい不要検出の可能性がある。すなわち、上記(条件1)〜(条件3)がすべて成立し、出力部21の一方の入力端に出力有の信号を出力する可能性がある。   Here, according to (Equation 10) and (Equation 11), in the current differential protection relay 2, the difference current Idr and the first suppression current Ires1r are equal to each other, so that “difference current Idr / first suppression current”. Ires1r = 1 ”. Therefore, in order to prevent malfunction, it is necessary to establish “differential current Idr / first suppression current Ires1r> 1”. However, in the case of an internal failure at the one-end input, “difference current Idr / first suppression current Ires1r = 1” is satisfied, so that setting is performed so that “difference current Idr / first suppression current Ires1r> 1” is satisfied. I can't. Therefore, there is a possibility that the first ratio differential calculation result (the output of the first ratio differential calculation unit 18) enters the operation area of the current differential protection relay 2 and is unnecessary detected. That is, all of the above (Condition 1) to (Condition 3) are satisfied, and there is a possibility that a signal with output is output to one input terminal of the output unit 21.

一方、上述したように、電流差動保護リレー1においては、上記(条件1)〜(条件3)のうちの(条件2)が不成立となっているので、第1の比率差動演算結果(第1の比率差動演算部18の出力)は、出力無となっている。その結果、上記(式12)における乗算係数Kは、K>1を満たす実数値で整定される。ここで、例えばK=3と整定すれば、上記(式12)は、
Ires2r=0.5×3×Irms
=1.5×Irms …(式13)
となり、「差電流Idr/第2の抑制電流Ires2r=1/3」となる。よって、「R1>1/3」と整定することで、上記(条件1)〜(条件3)のうちの少なくとも(条件2)を不成立とさせることができる。その結果、出力部21の他方の入力端には、出力無の第2の比率差動演算結果(第2の比率差動演算部19の出力)が入力されるので、リレー動作信号が出力されることはなく、誤動作の防止が可能となる。また、A端の電流差動保護リレー1の第1の比率差動演算部18は、不動作の状態が継続され、出力無の信号を出力し続けるので、上記乗算係数Kの値は維持され、B端の電流差動保護リレー2が、リレー動作信号を出力することはない。
On the other hand, as described above, in the current differential protection relay 1, (Condition 2) out of the (Condition 1) to (Condition 3) is not satisfied, so the first ratio differential calculation result ( The output of the first ratio differential operation unit 18) is not output. As a result, the multiplication coefficient K in (Equation 12) is set to a real value that satisfies K> 1. Here, for example, if K = 3 is set, the above (formula 12) becomes
Ires2r = 0.5 × 3 × Irms
= 1.5 × Irms (Formula 13)
Thus, “difference current Idr / second suppression current Ires2r = 1/3”. Therefore, by setting “R1> 1/3”, at least (condition 2) of the above (condition 1) to (condition 3) can be made unsatisfied. As a result, the second ratio differential calculation result without output (the output of the second ratio differential calculation unit 19) is input to the other input terminal of the output unit 21, so that the relay operation signal is output. Therefore, malfunction can be prevented. Further, the first ratio differential operation unit 18 of the A-terminal current differential protection relay 1 is kept in an inoperative state and continues to output a signal indicating no output, so that the value of the multiplication coefficient K is maintained. The B-terminal current differential protection relay 2 does not output a relay operation signal.

つぎに、図1に示した1.5CB母線方式の母線構成において、例えば電流差動保護リレー1側において、送電線内部故障が発生した場合の動作について説明する。なお、動作の条件としては、上記と同様な条件、すなわちI1=I2=I、I1_rms=I2_rms=0、「K=3」、「R2=1」などの条件を用いる。   Next, in the 1.5CB bus system bus configuration shown in FIG. 1, for example, an operation when a power transmission line internal failure occurs on the current differential protection relay 1 side will be described. As the operation conditions, the same conditions as described above, that is, I1 = I2 = I, I1_rms = I2_rms = 0, “K = 3”, “R2 = 1”, and the like are used.

上記条件では、A端(電流差動保護リレー1)の差電流Id、第1の抑制電流Ires1は、それぞれ上記(式1)および(式2)を用いることにより、次式で表される。
Id=(I1+I2+Ir)rms
=(I+I+0)rms
=2×Irms …(式14)
Ires1=I1rms+I2rms+Ir_rms
=Irms+Irms+0
=2×Irms …(式15)
Under the above conditions, the difference current Id and the first suppression current Ires1 at the A terminal (current differential protection relay 1) are expressed by the following equations using the above (Equation 1) and (Equation 2), respectively.
Id = (I1 + I2 + Ir) rms
= (I + I + 0) rms
= 2 × Irms (Formula 14)
Ires1 = I1rms + I2rms + Ir_rms
= Irms + Irms + 0
= 2 × Irms (Formula 15)

よって、「差電流Id/第1の抑制電流Ires1=1」となる。上記(条件2)が成立するためには、整定値R1を「R1<1」が成り立つように整定する。これにより、A端(電流差動保護リレー1)の第1の比率差動演算結果は出力有となる。   Therefore, “difference current Id / first suppression current Ires1 = 1”. In order to satisfy the above (condition 2), the settling value R1 is set so that “R1 <1” holds. As a result, the first ratio differential calculation result at the A end (current differential protection relay 1) is output.

また、A端(電流差動保護リレー1)の第2の抑制電流Ires2は、上記(式3)を用いることにより、次式で表される。
Ires2=I1rms+I2rms+3×Ir_rms
=(I+I+3×0)rms=2×Irms …(式16)
Further, the second suppression current Ires2 of the A end (current differential protection relay 1) is expressed by the following equation by using the above (Equation 3).
Ires2 = I1rms + I2rms + 3 × Ir_rms
= (I + I + 3 × 0) rms = 2 × Irms (Expression 16)

よって、「差電流Id/第2の抑制電流Ires2=1」となり、電流差動保護リレー1の第2の比率差動演算結果も、電流差動保護リレー1の第1の比率差動演算結果と同様に出力有となる。   Therefore, “difference current Id / second suppression current Ires2 = 1”, and the second ratio differential calculation result of the current differential protection relay 1 is also the first ratio differential calculation result of the current differential protection relay 1. As with the output.

つぎに、送電線内部故障に対して動作し難い場合を考える。その一例として、例えば、I1=I2=I1r=I2r=Iの場合を考える。この条件のとき、A端(電流差動保護リレー1)の差電流Id、第1の抑制電流Ires1は、それぞれ上記(式1)および(式2)を用いることにより、次式で表される。
Id=(I1+I2+Ir)rms
=(I+I+I+I)rms
=4×Irms …(式17)
Ires1=I1rms+I2rms+Ir_rms
=Irms+Irms+Irms+Irms
=4×Irms …(式18)
Next, consider a case where it is difficult to operate against a power line internal failure. As an example, consider the case of I1 = I2 = I1r = I2r = I. Under this condition, the difference current Id and the first suppression current Ires1 at the A terminal (current differential protection relay 1) are expressed by the following equations using the above (Equation 1) and (Equation 2), respectively. .
Id = (I1 + I2 + Ir) rms
= (I + I + I + I) rms
= 4 × Irms (Expression 17)
Ires1 = I1rms + I2rms + Ir_rms
= Irms + Irms + Irms + Irms
= 4 × Irms (Formula 18)

よって、「差電流Id/第1の抑制電流Ires1=1」となる。上記(条件2)が成立させるため、整定値R1を「R1<1」が成り立つように整定する。これにより、A端(電流差動保護リレー1)の第1の比率差動演算結果は出力有となる。   Therefore, “difference current Id / first suppression current Ires1 = 1”. In order to satisfy the above (condition 2), the settling value R1 is set so that “R1 <1” holds. As a result, the first ratio differential calculation result at the A end (current differential protection relay 1) is output.

また、A端(電流差動保護リレー1)の第2の抑制電流Ires2は、上記(式3)を用いることにより、次式で表される。
Ires2=I1rms+I2rms+3×Ir_rms
=(1+1+3×2)Irms=8×Irms …(式19)
Further, the second suppression current Ires2 of the A end (current differential protection relay 1) is expressed by the following equation by using the above (Equation 3).
Ires2 = I1rms + I2rms + 3 × Ir_rms
= (1 + 1 + 3 × 2) Irms = 8 × Irms (Equation 19)

よって、「差電流Id/第2の抑制電流Ires2=4/8=1/2」となる。上記(条件2)が成立するためには、整定値R1を「R1<1/2」に整定する必要がある。また、上述したように送電線外部故障において変流器CT2の飽和による誤動作を防止するためには、整定値R1を「R1>1/3」に整定する必要がある。したがって、整定値R1は、「1/3<R1<1/2」を満たす値(例えば0.35〜0.45までの任意の実数値)に設定(整定)すればよい。このような整定値を用いることにより、送電線内部故障を検出し、かつ、送電線外部故障での変流器CT2の飽和による誤動作を防止することが可能となる。なお、ここでは、対向端電流K倍部14の整定値Kを「3」として説明したが、この値に限られるものではなく、送電線内部故障時に動作可能な値を送電線系統に合わせた整定値を採用すればよい。   Therefore, “difference current Id / second suppression current Ires2 = 4/8 = 1/2”. In order to satisfy the above (condition 2), it is necessary to set the settling value R1 to “R1 <1/2”. Further, as described above, in order to prevent malfunction due to saturation of the current transformer CT2 in the case of an external failure of the transmission line, it is necessary to set the settling value R1 to “R1> 1/3”. Therefore, the settling value R1 may be set (settling) to a value satisfying “1/3 <R1 <1/2” (for example, any real value from 0.35 to 0.45). By using such a set value, it is possible to detect an internal failure of the transmission line and prevent malfunction due to saturation of the current transformer CT2 due to an external failure of the transmission line. In addition, although the setting value K of the counter end current K multiplication part 14 was demonstrated here as "3", it is not restricted to this value, The value which can be operated at the time of a power transmission line internal failure was match | combined with the power transmission line system. A settling value may be adopted.

図3は、第1の比率差動演算部18および第2の比率差動演算部19の比率差動演算の動作領域と、差動電流と抑制電流との比率の関係を示す図である。図3において、縦軸は差電流Idを示しており、横軸は抑制電流を示している。また、破線で示した線L1の傾きは、送電線内部故障に対して動作し難い場合の「差電流Id/抑制電流Ires=1」の比率を示しており、破線で示した線L2は、「差電流Id/抑制電流Ires=1/2」の比率を示しており、破線で示した線L3は、「差電流Id/抑制電流Ires=1/3」の比率を示している。また、一点鎖線で示した線L4は、上記(条件1)の境界値「差電流Id=整定値K」を示しており、一点鎖線で示した線L5は、「整定値R1=0.4」の場合の上記(条件2)の境界値「差電流Id=整定値R1×抑制電流Ires」を示しており、一点鎖線で示した線L6は、「整定値R2=1」の場合の上記(条件3)の境界値「差電流Id=整定値R2×抑制電流Ires+整定値K2」を示しており、上記(条件1)〜(条件3)がすべて成立する領域が電流差動保護リレー1,2の動作領域となる。また、第2の比率差動演算部19の条件式としては、上記説明でも明らかなように、(条件2)であるので、(条件2)だけの構成としてもよい。   FIG. 3 is a diagram showing the relationship between the differential differential operation area of the first ratio differential calculation unit 18 and the second ratio differential calculation unit 19 and the ratio between the differential current and the suppression current. In FIG. 3, the vertical axis indicates the difference current Id, and the horizontal axis indicates the suppression current. In addition, the slope of the line L1 indicated by a broken line indicates the ratio of “difference current Id / suppression current Ires = 1” when it is difficult to operate against a power line internal failure, and the line L2 indicated by the broken line is A ratio of “difference current Id / suppression current Ires = ½” is shown, and a line L3 indicated by a broken line shows a ratio of “difference current Id / suppression current Ires = 1/3”. A line L4 indicated by a one-dot chain line indicates the boundary value “difference current Id = setting value K” in the above (condition 1), and a line L5 indicated by the one-dot chain line indicates “setting value R1 = 0.4. ”Indicates the boundary value“ Difference current Id = Settling value R1 × Suppression current Ires ”in the above (Condition 2), and the line L6 indicated by the alternate long and short dash line indicates the above setting in the case of“ Settling value R2 = 1 ”. The boundary value of (Condition 3) “Differential current Id = Settling value R2 × Suppression current Ires + Settling value K2” is shown, and the region where all of (Condition 1) to (Condition 3) are satisfied is the current differential protection relay 1 , 2 operation area. Further, as is clear from the above description, the conditional expression of the second ratio differential operation unit 19 is (Condition 2), so that only the (Condition 2) may be configured.

このように、この実施の形態1においては、自端電流および対向端電流によって第1の抑制電流を生成する第1の抑制電流部ととともに、自端電流および対向端電流によって第2の抑制電流を生成する第2の抑制電流部が設けられ、対向端の比率差動演算結果(第1の比率差動演算結果)の出力が出力無の場合には、対向端電流に代えて、この対向端電流に1を超える所定の乗算係数を乗じたものを入力として第2の抑制電流を算出しているので、送電線外部故障に対して不要動作し難い比率差動演算結果を得ることが可能となる。また、比率差動演算結果を得る際に、従来のように、対向端の動作信号を待って出力するのではなく、自端の比率差動演算結果(第1、第2の比率差動演算結果)の出力で動作することができるので、従来よりも伝送遅延時間の分だけ高速化することができる。   As described above, in the first embodiment, together with the first suppression current unit that generates the first suppression current by the self-end current and the counter end current, the second suppression current is generated by the self-end current and the counter end current. When the output of the ratio differential calculation result at the opposite end (first ratio differential calculation result) is not output, this counter is replaced with the opposite end current. Since the second suppression current is calculated with the input obtained by multiplying the end current by a predetermined multiplication coefficient exceeding 1, it is possible to obtain a ratio differential calculation result that is unlikely to cause an unnecessary operation with respect to a power line external failure. It becomes. In addition, when obtaining the ratio differential calculation result, it does not wait for the operation signal at the opposite end to be output as in the prior art, but instead of the ratio differential calculation result (first and second ratio differential calculations at its own end). As a result, it is possible to increase the speed by the transmission delay time.

実施の形態2.
実施の形態1の電流差動保護リレーでは、第1の抑制電流部とは別に、対向端の比率差動演算結果の出力の有無に応じて、所定の乗算係数を乗じた対向端電流が入力される第2の抑制電流部を使用することで、送電線外部故障に対して不要動作し難い比率差動演算結果を得るようにしていた。また、実施の形態1では、第1の抑制電流部の出力に基づく第1の比率差動演算結果と、第2の抑制電流部の出力に基づく第2の比率差動演算結果とを出力部に入力することでリレー動作信号を得るようにしていた。一方、実施の形態1の構成では、第2の抑制電流部には、対向端の比率差動演算結果の出力の有無に応じて入力される対向端電流の大きさが変更されるので、第2の比率差動演算部と第1のそれとが同じ条件式で構成される場合、入力信号に対して対向端における第1の比率差動演算結果が反映されていることになる。さらに、実施の形態1の構成では、対向端の比率差動演算結果の出力が「有」の場合には、第1の抑制電流部および第2の抑制電流部の判定処理は同一の結果となる。このため、実施の形態1の構成において、リレー動作信号の出力に第1の比率差動演算結果を用いなくとも、実施の形態1と同等の効果を得ることが可能となる。このような技術思想に基づいて構成したものが、図4に示す電流差動保護リレー1aである。
Embodiment 2. FIG.
In the current differential protection relay according to the first embodiment, a counter-end current multiplied by a predetermined multiplication coefficient is input in accordance with the presence / absence of the output of the ratio differential calculation result of the counter end separately from the first suppression current unit. By using the second suppression current section, a ratio differential calculation result that hardly causes unnecessary operation against a power line external failure is obtained. In the first embodiment, the first ratio differential calculation result based on the output of the first suppression current unit and the second ratio differential calculation result based on the output of the second suppression current unit are output to the output unit. The relay operation signal is obtained by inputting the signal into the. On the other hand, in the configuration of the first embodiment, the magnitude of the counter-end current that is input to the second suppression current unit is changed depending on whether or not the ratio differential calculation result of the counter-end is output. When the ratio differential operation unit 2 and the first ratio differential operation unit are configured by the same conditional expression, the first ratio differential operation result at the opposite end is reflected on the input signal. Further, in the configuration of the first embodiment, when the output of the differential differential calculation result at the opposite end is “present”, the determination processing of the first suppression current unit and the second suppression current unit is the same result. Become. For this reason, in the configuration of the first embodiment, it is possible to obtain the same effect as that of the first embodiment without using the first ratio differential calculation result for the output of the relay operation signal. A current differential protection relay 1a shown in FIG. 4 is configured based on such a technical idea.

図4において、電流差動保護リレー1aは、先の図2に示した実施の形態1の電流差動保護リレー1の出力部21の入力として、第2の比率差動演算部19の出力のみを用いている点が相違点である。なお、先の図2に示した実施の形態1の電流差動保護リレー1と同一の機能を有する構成部分には同一符号を付し、重複する説明は省略する。   In FIG. 4, the current differential protection relay 1a has only the output of the second ratio differential operation unit 19 as the input of the output unit 21 of the current differential protection relay 1 of the first embodiment shown in FIG. The difference is that is used. In addition, the same code | symbol is attached | subjected to the component which has the same function as the current differential protection relay 1 of Embodiment 1 shown in previous FIG. 2, and the overlapping description is abbreviate | omitted.

実施の形態2にかかる電流差動保護リレーによれば、比率差動演算結果を得る際に、従来のように、対向端の動作信号を待って出力するのではなく、自端の比率差動演算結果(第1、第2の比率差動演算結果)の出力で動作することができるので、従来よりも伝送遅延時間の分だけ高速化することができる。また、実施の形態2によれば、実施の形態1との比較において、出力部21にはAND回路等の論理回路を設ける必要がなくなるので、構成を簡易なものとすることができる。   According to the current differential protection relay according to the second embodiment, when the ratio differential calculation result is obtained, instead of waiting for the operation signal at the opposite end to be output and outputting the ratio differential calculation result, Since the operation can be performed with the output of the operation results (first and second ratio differential operation results), the speed can be increased by the transmission delay time compared to the conventional case. Further, according to the second embodiment, in comparison with the first embodiment, it is not necessary to provide the output unit 21 with a logic circuit such as an AND circuit, so that the configuration can be simplified.

以上のように、本発明にかかる電流差動保護リレーは、1.5CB母線構成の送電線の保護に有用であり、特に、高速なリレー出力が要求されるシステムに適している。   As described above, the current differential protection relay according to the present invention is useful for protecting a transmission line having a 1.5CB bus configuration, and is particularly suitable for a system that requires a high-speed relay output.

実施の形態1にかかる電流差動保護リレーが設置される1.5CB母線方式の母線構成を示す図である。It is a figure which shows the bus-bar structure of the 1.5CB bus-bar system in which the current differential protection relay concerning Embodiment 1 is installed. 実施の形態1にかかる電流差動保護リレーの構成を示すブロック図である。1 is a block diagram showing a configuration of a current differential protection relay according to a first exemplary embodiment. 第1の比率差動演算部18および第2の比率差動演算部19の比率差動演算の動作領域と、差動電流と抑制電流との比率の関係を示す図である。It is a figure which shows the relationship of the ratio of the operation area | region of the ratio differential calculation of the 1st ratio differential calculation part 18 and the 2nd ratio differential calculation part 19, and a differential current and a suppression current. 実施の形態2にかかる電流差動保護リレーの構成を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration of a current differential protection relay according to a second exemplary embodiment.

符号の説明Explanation of symbols

1,1a,1b,2 電流差動保護リレー
3 送電線
4 伝送路
9 同期遅延部
10,11 入力電流変換部
12 入力電流合成部
13 受信電流変換部
14 対向端電流K倍部
15 差電流部
16 第1の抑制電流部
17 第2の抑制電流部
18 第1の比率差動演算部
19 第2の比率差動演算部
20 対向端比率差動演算結果受信部
21 出力部(AND条件)
21a 出力部
23 送信部
51,52,53,54 母線
CB1,CB2,CB3,CB1r,CB2r,CB3r 遮断器
CT1,CT2,CT1r,CT2r 変流器
1, 1a, 1b, 2 Current differential protection relay 3 Transmission line 4 Transmission path 9 Synchronization delay unit 10, 11 Input current conversion unit 12 Input current synthesis unit 13 Reception current conversion unit 14 Opposite end current K multiplication unit 15 Difference current unit 16 1st suppression current part 17 2nd suppression current part 18 1st ratio differential calculation part 19 2nd ratio differential calculation part 20 opposing edge ratio differential calculation result receiving part 21 output part (AND condition)
21a Output unit 23 Transmitter unit 51, 52, 53, 54 Bus CB1, CB2, CB3, CB1r, CB2r, CB3r Breaker CT1, CT2, CT1r, CT2r Current transformer

Claims (2)

1.5CB母線構成における送電線を挟む母線連絡線に設置された各変流器から得られる各自端電流と、送電線の対向端における送電線を挟む母線連絡線に設置された各変流器から得られる電流を合成した対向端電流と、のベクトル和の実効値として表される差電流を算出する差電流部と、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第1の抑制電流を算出する第1の抑制電流部と、前記差電流と前記第1の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第1の比率差動演算結果として出力する第1の比率差動演算部と、前記第1の比率差動演算結果に基づき、前記母線連絡線に設置された遮断器をトリップするリレー動作信号を生成して出力する出力部と、を備えた電流差動保護リレーにおいて、
対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力無の場合には、前記各自端電流の各実効値と、前記対向端電流に1を超える所定の実数値を乗じた値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出し、対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力有の場合には、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出する第2の抑制電流部と、
前記差電流と前記第2の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第2の比率差動演算結果として出力する第2の比率差動演算部と、
を備え、
前記出力部は、自端側の前記第2の比率差動演算結果が出力有の場合に前記リレー動作信号を出力することを特徴とする電流作動保護リレー。
Each self-current obtained from each current transformer installed in the bus connection line sandwiching the transmission line in the 1.5CB bus configuration, and each current transformer installed in the bus connection line sandwiching the transmission line at the opposite end of the transmission line A counter current obtained by combining the currents obtained from the above, a difference current part for calculating a difference current expressed as an effective value of a vector sum of the current, an effective value of each of the self-currents, and an effective value of the counter-current A first suppression current unit that calculates a first suppression current expressed as a scalar sum of three effective values according to, and a differential ratio calculation based on the difference current and the first suppression current, A first ratio differential calculation unit that outputs a result of the ratio differential calculation as a first ratio differential calculation result; and a circuit breaker installed on the bus connecting line based on the first ratio differential calculation result Output unit that generates and outputs a relay operation signal that trips In current differential protection relay equipped with,
When the first ratio differential operation result transmitted from the opposite end side is not output, each effective value of each own end current and a predetermined actual value exceeding 1 for the opposite end current are obtained. A second suppression current expressed as a scalar sum of three effective values by a value multiplied by a numerical value is calculated, and the first ratio differential calculation result on the opposite end side transmitted from the opposite end side is calculated. When there is an output, a second suppression current is calculated for calculating a second suppression current expressed as a scalar sum of three effective values based on the effective values of the respective end currents and the effective value of the opposite end current. A current section;
A second differential ratio calculation unit that performs a differential ratio calculation based on the difference current and the second suppression current, and outputs a result of the differential ratio calculation as a second differential ratio calculation result;
With
The output section outputs the relay operation signal when the second ratio differential calculation result on the end side has an output.
1.5CB母線構成における送電線を挟む母線連絡線に設置された各変流器から得られる各自端電流と、送電線の対向端における送電線を挟む母線連絡線に設置された各変流器から得られる電流を合成した対向端電流と、のベクトル和の実効値として表される差電流を算出する差電流部と、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第1の抑制電流を算出する第1の抑制電流部と、前記差電流と前記第1の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第1の比率差動演算結果として出力する第1の比率差動演算部と、前記第1の比率差動演算結果に基づき、前記母線連絡線に設置された遮断器をトリップするリレー動作信号を生成して出力する出力部と、を備えた電流差動保護リレーにおいて、
対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力無の場合には、前記各自端電流の各実効値と、前記対向端電流に1を超える所定の実数値を乗じた値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出し、対向端側から送信された該対向端側の前記第1の比率差動演算結果が出力有の場合には、前記各自端電流の各実効値と、前記対向端電流の実効値と、による3つの実効値のスカラー和として表される第2の抑制電流を算出する第2の抑制電流部と、
前記差電流と前記第2の抑制電流とに基づく比率差動演算を行い、当該比率差動演算の結果を第2の比率差動演算結果として出力する第2の比率差動演算部と、
を備え、
前記出力部は、自端側の前記第1の比率差動演算結果が出力有であり、かつ、自端側の前記第2の比率差動演算結果が出力有の場合に、前記リレー動作信号を出力することを特徴とする電流作動保護リレー。
Each self-current obtained from each current transformer installed in the bus connection line sandwiching the transmission line in the 1.5CB bus configuration, and each current transformer installed in the bus connection line sandwiching the transmission line at the opposite end of the transmission line A counter current obtained by combining the currents obtained from the above, a difference current part for calculating a difference current expressed as an effective value of a vector sum of the current, an effective value of each of the self-currents, and an effective value of the counter-current A first suppression current unit that calculates a first suppression current expressed as a scalar sum of three effective values according to, and a differential ratio calculation based on the difference current and the first suppression current, A first ratio differential calculation unit that outputs a result of the ratio differential calculation as a first ratio differential calculation result; and a circuit breaker installed on the bus connecting line based on the first ratio differential calculation result Output unit that generates and outputs a relay operation signal that trips In current differential protection relay equipped with,
When the first ratio differential operation result transmitted from the opposite end side is not output, each effective value of each own end current and a predetermined actual value exceeding 1 for the opposite end current are obtained. A second suppression current expressed as a scalar sum of three effective values by a value multiplied by a numerical value is calculated, and the first ratio differential calculation result on the opposite end side transmitted from the opposite end side is calculated. When there is an output, a second suppression current is calculated for calculating a second suppression current expressed as a scalar sum of three effective values based on the effective values of the respective end currents and the effective value of the opposite end current. A current section;
A second differential ratio calculation unit that performs a differential ratio calculation based on the difference current and the second suppression current, and outputs a result of the differential ratio calculation as a second differential ratio calculation result;
With
The output unit outputs the relay operation signal when the first ratio differential calculation result on the own end side has an output and the second ratio differential calculation result on the own end side has an output. Current actuated protection relay, characterized in that
JP2008049996A 2008-02-29 2008-02-29 Current differential protection relay Expired - Fee Related JP5068200B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008049996A JP5068200B2 (en) 2008-02-29 2008-02-29 Current differential protection relay
KR1020080067874A KR100949003B1 (en) 2008-02-29 2008-07-14 Current differential protection relay
CN200810214677XA CN101521370B (en) 2008-02-29 2008-08-28 Current differential protection relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049996A JP5068200B2 (en) 2008-02-29 2008-02-29 Current differential protection relay

Publications (3)

Publication Number Publication Date
JP2009207335A true JP2009207335A (en) 2009-09-10
JP2009207335A5 JP2009207335A5 (en) 2010-10-07
JP5068200B2 JP5068200B2 (en) 2012-11-07

Family

ID=41081802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049996A Expired - Fee Related JP5068200B2 (en) 2008-02-29 2008-02-29 Current differential protection relay

Country Status (3)

Country Link
JP (1) JP5068200B2 (en)
KR (1) KR100949003B1 (en)
CN (1) CN101521370B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2533388A1 (en) * 2010-02-03 2012-12-12 Hitachi, Ltd. Digital protection control system and digital protection control apparatus
JP7418245B2 (en) 2020-03-02 2024-01-19 三菱電機株式会社 current differential relay device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697551B2 (en) * 2011-06-06 2015-04-08 三菱電機株式会社 Current differential protection relay
CN102347599A (en) * 2011-09-20 2012-02-08 广东天富电气集团有限公司 Protecting method for internal short-circuit current of generator
CN105899959B (en) * 2014-03-12 2018-09-04 三菱电机株式会社 The apparatus for diagnosis of abnormality of Roche instrument Current Transformer
CN105071345A (en) * 2015-07-31 2015-11-18 西安交通大学 Differential protection hardware circuit with percentage differential and implementation method of differential protection hardware circuit
CN106990381B (en) * 2017-06-02 2020-02-04 国网江苏省电力公司宿迁供电公司 Mutual inductor magnetic saturation detection device
JP7117963B2 (en) * 2018-10-02 2022-08-15 三菱電機株式会社 Protective relay device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227617A (en) * 1988-03-08 1989-09-11 Kansai Electric Power Co Inc:The Current differential relay system
JPH05137235A (en) * 1991-11-11 1993-06-01 Mitsubishi Electric Corp Digital ratio differential relay
JP2004015930A (en) * 2002-06-07 2004-01-15 Toshiba Corp Differential relay device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236636A (en) * 1992-02-24 1993-09-10 Fuji Electric Co Ltd Ratio differential relay
JP2001095143A (en) 1999-09-20 2001-04-06 Hitachi Ltd Current differential protective relay apparatus
DE10163016A1 (en) * 2001-12-20 2003-07-10 Siemens Ag DI-guard
JP2004088919A (en) 2002-08-27 2004-03-18 Kansai Electric Power Co Inc:The Current differential protective relay device
JP4908018B2 (en) 2006-02-28 2012-04-04 株式会社東芝 Current differential relay device, signal processing method thereof, and transmission line protection system
CN100521431C (en) * 2006-07-05 2009-07-29 北京交通大学 Integrated protective system based on current differential principle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227617A (en) * 1988-03-08 1989-09-11 Kansai Electric Power Co Inc:The Current differential relay system
JPH05137235A (en) * 1991-11-11 1993-06-01 Mitsubishi Electric Corp Digital ratio differential relay
JP2004015930A (en) * 2002-06-07 2004-01-15 Toshiba Corp Differential relay device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2533388A1 (en) * 2010-02-03 2012-12-12 Hitachi, Ltd. Digital protection control system and digital protection control apparatus
EP2533388A4 (en) * 2010-02-03 2014-11-12 Hitachi Ltd Digital protection control system and digital protection control apparatus
US9118173B2 (en) 2010-02-03 2015-08-25 Hitachi, Ltd. Digital Protection control system and digital protection control apparatus
JP7418245B2 (en) 2020-03-02 2024-01-19 三菱電機株式会社 current differential relay device

Also Published As

Publication number Publication date
KR100949003B1 (en) 2010-03-23
CN101521370B (en) 2012-05-23
JP5068200B2 (en) 2012-11-07
CN101521370A (en) 2009-09-02
KR20090093753A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5068200B2 (en) Current differential protection relay
US6839210B2 (en) Bus total overcurrent system for a protective relay
JP2018064416A (en) Two parallel line transmission line protection system
KR101986036B1 (en) Protection relay device
WO2013076992A1 (en) Transmission line protective relay device
JP4262155B2 (en) Protective relay device for generator main circuit
JP5383519B2 (en) Current differential protection relay device
US20120224287A1 (en) Fuzzy interference relay and method for current differential protection of a transmission line
JP2008141896A (en) Protection relay
WO2024089826A1 (en) Current differential relay apparatus
JP6315552B2 (en) Power system protection system and power system protection method
JP4836663B2 (en) Loop system protection device and method
JP2577424B2 (en) Current differential relay method
JP4488922B2 (en) Line selection protection relay system and line selection protection relay device
JP2011155723A (en) Power transmission line protection relay system
JP2675207B2 (en) Ratio differential relay system
JP3623378B2 (en) Power system protection relay device
JP2011182547A (en) Bus protection relay system
JPS63316610A (en) Differential relay device
JPH0522838A (en) Protective relay unit
JP2000023348A (en) Current differential relay system for protecting transmission line
JP2006246680A (en) Pcm current differential guard relay device
JPH05137232A (en) Protective relay having function for switching instrument transformer
JP2008228388A (en) Protection relay system
JPS6084917A (en) Display wire protecting relaying device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees