JP2011155723A - Power transmission line protection relay system - Google Patents

Power transmission line protection relay system Download PDF

Info

Publication number
JP2011155723A
JP2011155723A JP2010013879A JP2010013879A JP2011155723A JP 2011155723 A JP2011155723 A JP 2011155723A JP 2010013879 A JP2010013879 A JP 2010013879A JP 2010013879 A JP2010013879 A JP 2010013879A JP 2011155723 A JP2011155723 A JP 2011155723A
Authority
JP
Japan
Prior art keywords
branch
relay
power supply
transmission line
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010013879A
Other languages
Japanese (ja)
Inventor
Hideaki Takano
英明 高野
Minoru Watanabe
実 渡辺
Takaaki Ishimoto
孝明 石本
Kazuya Takenoue
和也 竹之上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2010013879A priority Critical patent/JP2011155723A/en
Publication of JP2011155723A publication Critical patent/JP2011155723A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission line protection relay system which accurately performs distance measurement by a distance relay in spite of frequent arrangement of a branch power source in parallel/parallel-off directions. <P>SOLUTION: In the power transmission line protection relay system, a power source end distance relay 20 installed at the power source end of the power transmission line includes a distance measuring means which calculates a correction coefficient A=Ic/Ia based on a power source end fault current Ia and a branch end fault current Ic transmitted from a branch end PCM current differential relay 11c through a power source end PCM current differential relay 11a by using the transmission function of the PCM current differential relay, and which performs distance measurement based on the power source end fault current Ia and a power source end bus line fault voltage Va by using the calculated correction coefficient A. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、送電線保護継電システムに関し、特に、主保護用のPCM電流差動継電器の伝送機能を利用して後備保護用の距離継電器の分流効果による距離測定誤差を低減するのに好適な送電線保護継電システムに関する。   The present invention relates to a power transmission line protection relay system, and is particularly suitable for reducing a distance measurement error due to a shunt effect of a rear-end protection distance relay using a transmission function of a PCM current differential relay for main protection. The present invention relates to a transmission line protection relay system.

従来、送電線事故から電力系統を保護するために、伝送機能を有するPCM電流差動継電器(PCM)を主保護として備えるとともに距離継電器(DZ)を後備保護として備えた送電線保護継電システムが採用されている。   Conventionally, in order to protect a power system from a transmission line accident, a transmission line protection relay system including a PCM current differential relay (PCM) having a transmission function as a main protection and a distance relay (DZ) as a back-up protection is provided. It has been adopted.

たとえば、図4(a)に示すような電源が接続されていない送電線については、電源端側(電源1a側)に電源端計器用変流器2a、電源端遮断器3a、電源端PCM電流差動継電器11aおよび電源端距離継電器12aを設置し、負荷端側(電源1aと反対側)に負荷端計器用変流器2b、負荷端遮断器3b、負荷端PCM電流差動継電器11bおよび負荷端距離継電器12bを設置するとともに、電源端PCM電流差動継電器11aと負荷端PCM電流差動継電器11bとを通信回線で接続することにより、送電線保護継電システムを構成している。   For example, for a transmission line to which no power source is connected as shown in FIG. 4A, the power source instrument current transformer 2a, the power source circuit breaker 3a, and the power source PCM current are provided on the power source side (power source 1a side). A differential relay 11a and a power supply end distance relay 12a are installed, and a load end measuring device current transformer 2b, a load end circuit breaker 3b, a load end PCM current differential relay 11b and a load are installed on the load end side (the side opposite to the power supply 1a). The transmission line protection relay system is configured by installing the end distance relay 12b and connecting the power supply end PCM current differential relay 11a and the load end PCM current differential relay 11b via a communication line.

この送電線保護継電システムでは、送電線に事故(送電線事故)が発生すると、電源端PCM電流差動継電器11aが、電源端計器用変流器2aによって検出された電源端事故電流Iaと負荷端PCM電流差動継電器11bから通信回線を介して送信されてくる負荷端計器用変流器2bによって検出された負荷端事故電流Ibとに基づいてこの送電線事故を検出し、電源端遮断器3aを瞬時に遮断(開放)するようにしている。   In this transmission line protection relay system, when an accident (transmission line accident) occurs in the transmission line, the power supply end PCM current differential relay 11a is connected to the power supply end accident current Ia detected by the power supply end current transformer 2a. This power line fault is detected based on the load end fault current Ib detected by the load end current transformer 2b transmitted from the load end PCM current differential relay 11b via the communication line, and the power end is cut off. The device 3a is instantaneously shut off (opened).

このとき、電源端PCM電流差動継電器11aおよび/または負荷端PCM電流差動継電器11bの故障により電源端遮断器3aが瞬時に遮断されなかった場合には、電源端距離継電器12aが、電源端計器用変流器2aによって検出された電源端事故電流Iaと電源端母線に設置された計器用変圧器(不図示)によって検出された電源端母線事故電圧Vaとに基づいて電源端から事故点までの距離測定を行い、その結果に基づいて所定の動作時限で電源端遮断器3aを遮断するようにしている。
なお、電源端距離継電器12aによる距離測定は、図5(a)に示すように、電源端事故電流Iaと電源端母線事故電圧Vaとに基づいて送電線の電源端から事故点までのインピーダンス(%インピーダンス)Z(=Va/Ia)を求めることにより行われる。
At this time, if the power supply end breaker 3a is not instantaneously interrupted due to a failure of the power supply end PCM current differential relay 11a and / or the load end PCM current differential relay 11b, the power supply end distance relay 12a Accident point from power supply end based on power supply end fault current Ia detected by instrument current transformer 2a and power supply end bus fault voltage Va detected by instrument transformer (not shown) installed at power supply end bus Is measured, and based on the result, the power supply circuit breaker 3a is shut off at a predetermined operation time limit.
As shown in FIG. 5 (a), the distance measurement by the power supply end distance relay 12a is performed based on the power supply end fault current Ia and the power supply end bus fault voltage Va. % Impedance) Z (= Va / Ia).

また、図4(b)に示すような分岐電源1cが接続されている送電線については、分岐端側にも分岐端計器用変流器2c、分岐端遮断器3c、分岐端PCM電流差動継電器11cおよび分岐端距離継電器12cを設置するとともに、電源端PCM電流差動継電器11aと負荷端PCM電流差動継電器11bと分岐端PCM電流差動継電器11cとを通信回線で接続することにより、送電線保護継電システムを構成している。   For the transmission line connected to the branch power source 1c as shown in FIG. 4B, the branch end instrument current transformer 2c, the branch end breaker 3c, and the branch end PCM current differential are also provided on the branch end side. The relay 11c and the branch end distance relay 12c are installed, and the power source PCM current differential relay 11a, the load end PCM current differential relay 11b, and the branch end PCM current differential relay 11c are connected by a communication line, thereby Constructs a wire protection relay system.

この送電線保護継電システムにおける電源端距離継電器12aによる距離測定も、電源端事故電流Iaと電源端母線事故電圧Vaとに基づいて送電線の電源端から事故点までのインピーダンスZ(=Va/Ia)を求めることにより行われるが、分岐電源1cからの分岐端事故電流Icの影響によって距離測定に誤差を生じさせる分流効果が問題となる。   The distance measurement by the power supply end distance relay 12a in this power transmission line protection relay system is also performed based on the power supply end fault current Ia and the power supply end bus fault voltage Va. Although Ia) is obtained, a shunt effect that causes an error in distance measurement due to the influence of the branch end fault current Ic from the branch power supply 1c becomes a problem.

すなわち、送電線の負荷端近傍(電源端距離継電器12aの2段保護範囲)で送電線事故が発生したときには、送電線の電源端から分岐点までのインピーダンスを第1のインピーダンスZ1とするとともに送電線の分岐点から事故点までのインピーダンスを第2のインピーダンスZ2とすると、図5(b)に示すように分岐端事故電流Ic=0の場合(すなわち、分岐電源1cが開放されている場合)には、送電線の分岐点から事故点まで流れる事故電流Is=Iaとなるため、電源端距離継電器12aによって測定される送電線の電源端から分岐点までのインピーダンスZA0は(1−1)式で表される。
A0=Va/Ia
=(Ia・Z1+Is・Z2)/Ia
=(Ia・Z1+Ia・Z2)/Ia
=Z1+Z2 (1−1)
一方、図5(c)に示すように分岐端事故電流Ic≠0の場合(すなわち、分岐電源1cが接続されている場合)には、送電線の分岐点から事故点まで流れる事故電流Is=Ia+Icとなるため、電源端距離継電器12aによって測定される送電線の電源端から分岐点までのインピーダンスZAは(1−2)式で表される。
A=Va/Ia
=(Ia・Z1+Is・Z2)/Ia
={Ia・Z1+(Ia+Ic)・Z2}/Ia
=(Z1+Z2)+(Ic/Ia)・Z2 (1−2)
したがって、分岐端事故電流Ic≠0の場合には、電源端距離継電器12aによって測定されるインピーダンスZAには、(1−3)式で表されるように“(Ic/Ia)・Z2”だけ誤差が生じる。
A−ZA 0={(Z1+Z2)+(Ic/Ia)・Z2}−(Z1+Z2
=(Ic/Ia)・Z2 (1−3)
That is, when the transmission line fault occurs in the load end near the transmission line (two-stage protection range of the power supply end distance relay 12a) is adapted to the impedance up to the branch point and the first impedance Z 1 from the power source end of the transmission line when the impedance from the branch point of the transmission line to the fault point and the second impedance Z 2, if the branch end fault current Ic = 0 as shown in FIG. 5 (b) (i.e., the branch power 1c is opened In this case, since the fault current Is flowing from the branch point of the transmission line to the fault point is Is = Ia, the impedance Z A0 from the power supply end of the transmission line to the branch point measured by the power supply end distance relay 12a is (1− 1) It is represented by the formula.
Z A0 = Va / Ia
= (Ia · Z 1 + Is · Z 2 ) / Ia
= (Ia · Z 1 + Ia · Z 2 ) / Ia
= Z 1 + Z 2 (1-1)
On the other hand, as shown in FIG. 5C, when the branch end fault current Ic ≠ 0 (that is, when the branch power supply 1c is connected), the fault current Is = flowing from the branch point of the transmission line to the fault point Since it becomes Ia + Ic, the impedance Z A from the power supply end of the transmission line to the branch point measured by the power supply end distance relay 12a is expressed by equation (1-2).
Z A = Va / Ia
= (Ia · Z 1 + Is · Z 2 ) / Ia
= {Ia · Z 1 + (Ia + Ic) · Z 2 } / Ia
= (Z 1 + Z 2 ) + (Ic / Ia) · Z 2 (1-2)
Therefore, when the branch end fault current Ic ≠ 0, the impedance Z A measured by the power supply end distance relay 12a is “(Ic / Ia) · Z 2 as expressed by the expression (1-3)”. Only an error will occur.
Z A −Z A 0 = {(Z 1 + Z 2 ) + (Ic / Ia) · Z 2 } − (Z 1 + Z 2 )
= (Ic / Ia) · Z 2 (1-3)

そのため、送電線に分岐電源1cが接続されている場合には、分流効果を考慮して電源端距離継電器12aの整定を行っている。
具体的には、電源端距離継電器12aの1段保護範囲の整定は、オーバーリーチが許されないため、分流効果を検討する際の背後電源は自端電流最大および分岐端電流最小として行っており、2段保護範囲および3段保護範囲の整定は、アンダーリーチが許されないため、分流効果を検討する際の背後電源は自端電流最小および分岐端電流最大として行っている。
Therefore, when the branch power supply 1c is connected to the power transmission line, the power supply end distance relay 12a is set in consideration of the shunt effect.
Specifically, since the setting of the one-stage protection range of the power supply end distance relay 12a does not allow overreach, the back power supply when examining the shunt effect is performed with the self-end current maximum and the branch end current minimum, Since the under-reach is not allowed in the setting of the two-stage protection range and the three-stage protection range, the back power supply when considering the shunt effect is set as the self-terminal current minimum and the branch end current maximum.

なお、下記の特許文献1には、通信回線を利用する保護方式および方向距離保護方式を具備した送電線保護リレー装置において、方向距離第1段動作条件を他回線保護リレー装置に受け渡す回路と、他回線保護リレー装置より相手端子方向距離第1段動作条件を受ける回路と、相手端子方向距離第1段動作条件が入力されたことを条件に遮断指令を出力するか方向距離第1段遮断出力時間を切り替える回路を具備することにより、主保護リレー装置が障害や休止の場合でも後備保護DZリレー装置により相手至近端の20%の範囲も高速遮断となるようにし、主保護PCMリレー装置と同等の動作時間を実現して、保護の高速動作および信頼度を維持するようにした送電線保護リレー装置が開示されている。   In Patent Document 1 below, in a power transmission line protection relay device equipped with a protection method using a communication line and a directional distance protection method, a circuit for passing the directional distance first stage operation condition to another line protection relay device; A circuit that receives the first-stage operating condition of the other terminal direction distance from the other line protection relay device, and outputs a cutoff command on condition that the first-stage operating condition of the other terminal direction distance is input By providing a circuit for switching the output time, even if the main protection relay device is faulty or out of service, the rear protection DZ relay device can quickly shut off the 20% range of the near end of the counterpart, and the main protection PCM relay device A transmission line protection relay device is disclosed that realizes an operation time equivalent to the above and maintains high-speed operation and reliability of protection.

特開2008−220051号公報JP 2008-220051 A

しかしながら、分岐電源1cが揚水発電所(複数台の発電機を備える。)である場合には、分岐電源1cの並列・解列が頻繁に行われているため、その都度の電源端距離継電器12aの整定変更の実施は現実的に困難であり、距離測定の誤差については対応できない状況にある。そのため、電力系統の状況によっては電源端距離継電器12aが保護範囲以外の事故でも動作してしまうという問題があった。
また、電力系統構成の変更によって分流効果が変る場合には、その都度作業員が電気所に行って電源端距離継電器12aの整定値の入力変更を実施しなければならないという問題があった。
However, when the branch power source 1c is a pumped storage power plant (provided with a plurality of generators), the branch power source 1c is frequently paralleled / disconnected. In practice, it is difficult to implement the setting change of the distance, and it is difficult to deal with errors in distance measurement. Therefore, depending on the situation of the power system, there is a problem that the power supply end distance relay 12a operates even in an accident other than the protection range.
Further, when the shunt effect changes due to the change of the power system configuration, there is a problem that the worker must go to the electric station each time to change the input of the set value of the power supply end distance relay 12a.

なお、上記の特許文献1に開示された送電線保護リレー装置は、主保護リレー装置の障害時などに後備保護DZリレーの動作タイマを切り替えることにより、後備保護DZリレー装置によって相手至近端の20%の範囲も高速遮断となるようにしたものであり、分岐電源の頻繁な並列・解列に対応することはできない。   In addition, the power transmission line protection relay device disclosed in the above-mentioned Patent Document 1 switches the operation timer of the rear protection DZ relay in the event of a failure of the main protection relay device, so that the near end of the other party is switched by the rear protection DZ relay device. The 20% range is also designed to achieve high-speed shut-off, and cannot cope with frequent parallel / disconnection of branch power supplies.

本発明の目的は、分岐電源の並列・解列が頻繁になされても距離継電器において距離測定を正確に行うことができる送電線保護継電システムを提供することにある。   An object of the present invention is to provide a power transmission line protection relay system capable of accurately measuring a distance in a distance relay even when a branch power supply is frequently paralleled or disconnected.

本発明の送電線保護継電システムは、分岐電源(1c)が接続された送電線の電源端に設置された電源端PCM電流差動継電器(11a)および電源端距離継電器(20)と、該送電線の分岐端に設置された分岐端PCM電流差動継電器(11c)および分岐端距離継電器(12c)とを具備する送電線保護継電システムであって、前記電源端距離継電器が、電源端事故電流(Ia)とPCM電流差動継電器の伝送機能を利用して前記分岐端PCM電流差動継電器から前記電源端PCM電流差動継電器を介して伝送されてくる分岐端事故電流(Ic)とに基づいて補正係数(A)を算出し、該算出した補正係数を用いて前記電源端事故電流および電源端母線事故電圧(Va)に基づいて距離測定を行う距離測定手段を備えることを特徴とする。
ここで、前記距離測定手段が、前記分岐端事故電流を前記電源端事故電流で割ることにより前記補正係数を算出してもよい。
前記距離測定手段が、前記補正係数を次式に代入して前記送電線の分岐点から事故点までの第2のインピーダンス(Z2)を求めたのち、該求めた第2のインピーダンスと前記送電線の電源端から分岐点までの第1のインピーダンス(Z1)とを足して前記送電線の電源端から事故点までのインピーダンスを求め、該求めたインピーダンスに基づいて距離測定を行ってもよい。
2=(ZA−Z1)/(1+A)
1:第1のインピーダンス
2:第2のインピーダンス
A:電源端事故電流および電源端母線事故電圧に基づいて求められたインピーダンス
A:補正係数
また、本発明の送電線保護継電システムは、分岐電源(1c)が接続された送電線の電源端に設置された電源端PCM電流差動継電器(11a)および電源端距離継電器(30)と、該送電線の分岐端に設置された分岐端PCM電流差動継電器(40)および分岐端距離継電器(12c)とを具備する送電線保護継電システムであって、前記分岐電源が複数個の発電機(1c1,1c2)から構成されており、前記電源端距離継電器が、PCM電流差動継電器の伝送機能を利用して前記分岐端PCM電流差動継電器から前記電源端PCM電流差動継電器を介して伝送されてくる発電機入切情報(Sc)に基づいて補正係数(A)を算出し、該算出した補正係数を用いて前記電源端事故電流および電源端母線事故電圧(Va)に基づいて距離測定を行う距離測定手段を備えることを特徴とする。
The power transmission line protection relay system of the present invention includes a power terminal PCM current differential relay (11a) and a power terminal distance relay (20) installed at a power terminal of a power transmission line to which a branch power source (1c) is connected, A power line protection relay system comprising a branch end PCM current differential relay (11c) and a branch end distance relay (12c) installed at a branch end of a power transmission line, wherein the power source distance relay is a power terminal Using the transmission function of the fault current (Ia) and the PCM current differential relay, the branch end fault current (Ic) transmitted from the branch end PCM current differential relay through the power source PCM current differential relay; And a distance measuring means for measuring a distance based on the power supply end fault current and the power supply end bus fault voltage (Va) using the calculated correction coefficient. Do
Here, the distance measuring means may calculate the correction coefficient by dividing the branch end fault current by the power source end fault current.
The distance measuring means substitutes the correction coefficient into the following equation to obtain the second impedance (Z 2 ) from the branch point of the transmission line to the accident point, and then determines the obtained second impedance and the transmission power. The first impedance (Z 1 ) from the power supply end of the electric wire to the branch point may be added to obtain the impedance from the power supply end of the transmission line to the accident point, and the distance may be measured based on the obtained impedance. .
Z 2 = (Z A −Z 1 ) / (1 + A)
Z 1 : First impedance
Z 2 : Second impedance
Z A : Impedance obtained based on power supply end fault current and power supply end bus fault voltage
A: Correction coefficient The power transmission line protection relay system according to the present invention includes a power terminal PCM current differential relay (11a) and a power terminal distance relay installed at the power terminal of the power transmission line to which the branch power supply (1c) is connected. (30) and a branch end PCM current differential relay (40) and a branch end distance relay (12c) installed at the branch end of the power transmission line, wherein the branch power source Is composed of a plurality of generators (1c 1 , 1c 2 ), and the power source distance relay is connected from the branch end PCM current differential relay to the power source end using the transmission function of the PCM current differential relay. A correction coefficient (A) is calculated based on the generator on / off information (Sc) transmitted via the PCM current differential relay, and the power supply end fault current and the power supply end bus fault are calculated using the calculated correction coefficient. Based on voltage (Va) And a distance measuring means for measuring the distance.

本発明の送電線保護継電システムは、以下の効果を奏する。
(1)電源端事故電流とPCM電流差動継電器の伝送機能を利用して分岐端PCM電流差動継電器から電源端PCM電流差動継電器を介して伝送されてくる分岐端事故電流とに基づいて算出した補正係数を用いて電源端事故電流および電源端母線事故電圧に基づいて距離測定を行うことにより、分岐電源の並列・解列が頻繁に行われても電源端距離継電器において距離測定を正確に行うことができる。
(2)PCM電流差動継電器の伝送機能を利用して分岐端PCM電流差動継電器から電源端PCM電流差動継電器を介して伝送されてくる発電機入切情報に基づいて算出した補正係数を用いて電源端事故電流および電源端母線事故電圧に基づいて距離測定を行うことにより、分岐電源の並列・解列が頻繁に行われても電源端距離継電器において距離測定を従来よりも正確に行うことができる。
(3)分岐電源の影響による電源端距離測定の誤差を最小にすることができるため、電源端距離継電器の誤動作や誤不動作を防止できる結果、保護信頼度および供給信頼度を向上させることができる。
(4)主保護用のPCM電流差動継電器の伝送機能を利用して分岐端事故電流または発電機入切情報を伝送するため、新たな伝送手段を追加する必要がない。
The power transmission line protection relay system of the present invention has the following effects.
(1) Based on the power supply end fault current and the branch end fault current transmitted from the branch end PCM current differential relay through the power supply end PCM current differential relay using the transmission function of the PCM current differential relay. By using the calculated correction factor to measure the distance based on the power supply end fault current and the power supply end bus fault voltage, the power supply end distance relay can accurately measure the distance even when the branch power supply is frequently paralleled or disconnected. Can be done.
(2) Using the transmission function of the PCM current differential relay, the correction coefficient calculated based on the generator on / off information transmitted from the branch end PCM current differential relay via the power source PCM current differential relay Using distance measurement based on power supply end fault current and power supply end bus fault voltage, distance measurement is performed more accurately at power supply end distance relays even when branch power supplies are paralleled and disconnected frequently be able to.
(3) Since the error of the power supply end distance measurement due to the influence of the branch power supply can be minimized, the malfunction and malfunction of the power supply end distance relay can be prevented, thereby improving the protection reliability and the supply reliability. it can.
(4) Since the branch end fault current or the generator on / off information is transmitted using the transmission function of the PCM current differential relay for main protection, it is not necessary to add a new transmission means.

本発明の第1の実施例による送電線保護継電システムについて説明するための図であり、(a)は送電線保護継電システムの構成を示す図であり、(b)は(a)に示した電源端距離継電器20の構成を示すブロック図である。It is a figure for demonstrating the power transmission line protection relay system by 1st Example of this invention, (a) is a figure which shows the structure of a power transmission line protection relay system, (b) is (a). It is a block diagram which shows the structure of the shown power supply end distance relay. 従来の電源端距離継電器12aにおける分流効果による距離測定誤差について説明するための図であり、(a)は分岐電源1cが開放されている場合の距離測定について説明するための図であり、(b)は分岐電源1cが接続されている場合の距離測定について説明するための図である。It is a figure for demonstrating the distance measurement error by the shunt effect in the conventional power supply end distance relay 12a, (a) is a figure for demonstrating the distance measurement in case the branch power supply 1c is open | released, (b ) Is a diagram for explaining the distance measurement when the branch power supply 1c is connected. 本発明の第2の実施例による送電線保護継電システムについて説明するための図であり、(a)は送電線保護継電システムの構成を示す図であり、(b)は(a)に示した電源端距離継電器30の構成を示すブロック図である。It is a figure for demonstrating the power transmission line protection relay system by 2nd Example of this invention, (a) is a figure which shows the structure of a power transmission line protection relay system, (b) is a figure to (a). It is a block diagram which shows the structure of the shown power supply end distance relay. 従来の送電線保護継電システムの構成について説明するための図であり、(a)は分岐電源1cが接続されていない送電線における構成を示す図であり、(b)は分岐電源1cが接続されている送電線における構成を示す図である。It is a figure for demonstrating the structure of the conventional power transmission line protection relay system, (a) is a figure which shows the structure in the power transmission line to which the branch power supply 1c is not connected, (b) is the branch power supply 1c connected It is a figure which shows the structure in the transmitted power line. 従来の送電線保護継電システムにおける電源端距離継電器12aによる距離測定について説明するための図であり、(a)は分岐電源1cが接続されていない場合の距離測定について説明するための図であり、(b)は分岐事故電流Ic=0の場合の距離測定について説明するための図であり、(c)は分岐事故電流Ic≠0の場合の距離測定について説明するための図である。It is a figure for demonstrating the distance measurement by the power supply end distance relay 12a in the conventional power transmission line protection relay system, (a) is a figure for demonstrating the distance measurement in case the branch power supply 1c is not connected. (B) is a figure for demonstrating the distance measurement in case of branch fault current Ic = 0, (c) is a figure for demonstrating the distance measurement in case of branch fault current Ic ≠ 0.

上記の目的を、電源端距離継電器が、電源端事故電流とPCM電流差動継電器の伝送機能を利用して分岐端PCM電流差動継電器から電源端PCM電流差動継電器を介して伝送されてくる分岐端事故電流とに基づいて補正係数を算出し、算出した補正係数を用いて電源端事故電流および電源端母線事故電圧に基づいて距離測定を行うことにより実現した。   For the above purpose, the power supply end distance relay is transmitted from the branch end PCM current differential relay through the power supply end PCM current differential relay using the transmission function of the power supply end fault current and the PCM current differential relay. The correction coefficient is calculated based on the branch end fault current, and the distance is measured based on the power source end fault current and the power end bus fault voltage using the calculated correction coefficient.

以下、本発明の送電線保護継電システムの実施例について図面を参照して説明する。
まず、本発明の第1の実施例による送電線保護継電システムについて、図1および図2を参照して説明する。
本実施例による送電線保護継電システムは、図1(a)に示す電源端距離継電器20が、電源端計器用変流器2aから入力される電源端事故電流IaとPCM電流差動継電器の伝送機能を利用して分岐端PCM電流差動継電器11cから電源端PCM電流差動継電器11aを介して入力される分岐端事故電流Icとに基づいて補正係数Aを算出し、算出した補正係数Aを用いて電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて距離測定を行う点で、図4(b)に示した従来の送電線保護継電システムと異なる。
Embodiments of a power transmission line protection relay system according to the present invention will be described below with reference to the drawings.
First, a power transmission line protection relay system according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG.
In the power line protection relay system according to the present embodiment, the power supply end distance relay 20 shown in FIG. 1A includes a power supply end fault current Ia input from the power supply end current transformer 2a and a PCM current differential relay. The correction coefficient A is calculated based on the branch end fault current Ic input from the branch end PCM current differential relay 11c through the power source PCM current differential relay 11a using the transmission function, and the calculated correction coefficient A Is different from the conventional transmission line protection relay system shown in FIG. 4B in that distance measurement is performed based on the power supply end fault current Ia and the power supply end bus fault voltage Va.

そのため、電源端距離継電器20は、図1(b)に示すように、電源端事故電流Iaと分岐端事故電流Icとに基づいて補正係数Aを算出する補正係数演算部21と、補正係数演算部21によって算出された補正係数Aを用いて電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて距離測定を行う距離測定部22と、距離測定部22によって行われた距離測定に基づいて送電線事故を検出すると電源端遮断器3aを所定の動作時限後に遮断(開放)するための電源端トリップ信号TRaを発生するトリップ信号発生部23とを備える。   Therefore, as shown in FIG. 1B, the power supply end distance relay 20 includes a correction coefficient calculation unit 21 that calculates a correction coefficient A based on the power supply end fault current Ia and the branch end fault current Ic, and a correction coefficient calculation. Based on the distance measurement performed by the distance measurement unit 22, the distance measurement unit 22 that measures the distance based on the power supply end fault current Ia and the power supply end bus fault voltage Va using the correction coefficient A calculated by the unit 21. And a trip signal generator 23 for generating a power supply trip signal TRa for cutting off (opening) the power supply circuit breaker 3a after a predetermined operation time when a power transmission line accident is detected.

次に、補正係数演算部21における補正係数Aの算出および距離測定部22における距離測定の詳細について説明する。
上記(1−3)式で示したように、分岐電源1cが接続されている場合(すなわち、Ic≠0の場合)には、電源端距離継電器20によって電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて求められるインピーダンスZAは(Ic/Ia)・Z2だけの誤差を含む。
そこで、上記(1−2)式より、送電線の分岐点から事故点までの第2のインピーダンスZ2は(2−1)式で表されるため、
2=(ZA−Z1)/{1+(Ic/Ia)}
=(ZA−Z1)/(1+A) (2−1)
分岐端事故電流Icを電源端事故電流Iaで割ることにより補正係数A(=Ic/Ia)を補正係数演算部21によって算出し、距離測定部22において電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて測定した送電線の電源端から事故点までのインピーダンスZA(=Va/Ia)と既知の送電線の電源端から分岐点までの第1のインピーダンスZ1と補正係数演算部21によって算出された補正係数Aとを上記(2−1)式に代入することにより、送電線の分岐点から事故点までの第2のインピーダンスZ2を求める。
距離測定部22は、送電線の電源端から分岐点までの第1のインピーダンスZ1と求めた送電線の分岐点から事故点までの第2のインピーダンスZ2とを足すことにより、送電線の電源端から事故点までのインピーダンス(=Z1+Z2)を求め、求めたインピーダンスに基づいて距離測定を行う。
これにより、送電線に分岐電源1cが接続されていても、電源端距離継電器20では距離測定の誤差を“0”とすることができる。
Next, details of calculation of the correction coefficient A in the correction coefficient calculation unit 21 and distance measurement in the distance measurement unit 22 will be described.
As shown in the above equation (1-3), when the branch power supply 1c is connected (that is, when Ic ≠ 0), the power supply end distance relay 20 causes the power supply end fault current Ia and the power supply end bus fault. The impedance Z A obtained based on the voltage Va includes an error of (Ic / Ia) · Z 2 .
Therefore, from the above equation (1-2), the second impedance Z 2 from the branch point of the transmission line to the accident point is expressed by equation (2-1).
Z 2 = (Z A −Z 1 ) / {1+ (Ic / Ia)}
= (Z A -Z 1 ) / (1 + A) (2-1)
The correction coefficient A (= Ic / Ia) is calculated by the correction coefficient calculation unit 21 by dividing the branch end fault current Ic by the power supply end fault current Ia, and the distance measurement unit 22 calculates the power supply end fault current Ia and the power supply end bus fault voltage. Impedance Z A (= Va / Ia) from the power supply end of the transmission line to the accident point measured based on Va, the first impedance Z 1 from the power supply end of the known transmission line to the branch point, and the correction coefficient calculation unit 21 The second impedance Z 2 from the branch point of the transmission line to the accident point is obtained by substituting the correction coefficient A calculated by the equation (2-1) into the above equation (2-1).
The distance measuring unit 22 adds the first impedance Z 1 from the power supply end of the transmission line to the branch point and the second impedance Z 2 from the calculated branch point of the transmission line to the accident point, thereby The impedance (= Z 1 + Z 2 ) from the power supply end to the accident point is obtained, and the distance is measured based on the obtained impedance.
Thereby, even if the branch power supply 1c is connected to the power transmission line, the power supply end distance relay 20 can set the distance measurement error to “0”.

たとえば、電源端距離継電器20の2段保護範囲の整定を行う際に背後電源を自端電流最小および分岐端電流最大とした場合には、図2(a),(b)に示すように、電源1aのインピーダンス=0.140、分岐電源1cのインピーダンス=0.484、送電線の電源端から分岐点までの第1のインピーダンスZ1=0.154、送電線の分岐点から事故点までの第2のインピーダンスZ2=0.374、分岐送電線の分岐電源1cから分岐点までの第3のインピーダンスZ3=0.051とすると、分岐事故電流Ic=0の場合に電源端距離継電器20から見たときのインピーダンスZA0は、
A0=Z1+Z2=0.154+0.374=0.528
となる(図2(a)参照)。
一方、分岐事故電流Ic≠0の場合に電源端距離継電器20から見たときのインピーダンスZAは、
Ia=(0.484+0.051)/{(0.140+0.154)+(0.484+0.051)}×Is
=0.645×Is
Ic=(0.140+0.154)/{(0.140+0.154)+(0.484+0.051)}×Is
=0.355×Is
より、
Ic/Ia=(0.355×Is)/(0.645×Is)
=0355/0.645
=0.550
となるため、
A=0.154+0.374×{1+(Ic/Ia)}
=0.154+0.374×(1+0.550)
=0.734
となる。
その結果、従来の距離測定では、
A−ZA0=(0.734−0.528)/0.528×100=39.0(%)
の誤差が生じていたのに対して、電源端距離継電器20では誤差を“0”とすることができる。
For example, when setting the power supply distance relay 20 in the two-stage protection range with the back power supply set to the local current minimum and the branch current maximum, as shown in FIGS. 2 (a) and 2 (b), Impedance of power source 1a = 0.140, impedance of branch power source 1c = 0.484, first impedance Z 1 from power line end of transmission line to branch point Z = 0.154, distance from branch point of transmission line to accident point When the second impedance Z 2 = 0.374 and the third impedance Z 3 = 0.051 from the branch power source 1c to the branch point of the branch transmission line, the power source end distance relay 20 when the branch fault current Ic = 0. Impedance Z A0 when viewed from
Z A0 = Z 1 + Z 2 = 0.154 + 0.374 = 0.528
(See FIG. 2A).
On the other hand, when the branch fault current Ic ≠ 0, the impedance Z A when viewed from the power source distance relay 20 is
Ia = (0.484 + 0.051) / {(0.140 + 0.154) + (0.484 + 0.051)} × Is
= 0.645 x Is
Ic = (0.140 + 0.154) / {(0.140 + 0.154) + (0.484 + 0.051)} × Is
= 0.355 x Is
Than,
Ic / Ia = (0.355 × Is) / (0.645 × Is)
= 0355 / 0.645
= 0.550
So that
Z A = 0.154 + 0.374 × {1+ (Ic / Ia)}
= 0.154 + 0.374 × (1 + 0.550)
= 0.734
It becomes.
As a result, in conventional distance measurement,
Z A −Z A0 = (0.734−0.528) /0.528×100=39.0 (%)
However, in the power supply end distance relay 20, the error can be set to “0”.

次に、本発明の第2の実施例による送電線保護継電システムについて、図3および図4を参照して説明する。
本実施例による送電線保護継電システムは、図3(a)に示す電源端距離継電器30が、分岐電源1cから分岐端PCM電流差動継電器40に入力されたのちPCM電流差動継電器の伝送機能を利用して分岐端PCM電流差動継電器40から電源端PCM電流差動継電器11aを介して入力される分岐電源入切情報Sc(分岐電源1cを構成する第1および第2の発電機1c1,1c2と分岐端母線との間に設置されている第1および第2の発電機遮断器の入切状態を示す情報(すなわち、分岐電源1cが揚水発電所である場合には稼動中の発電機の台数))に基づいて補正係数Aを算出し、算出した補正係数Aを用いて電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて距離測定を行う点で、上述した第1の実施例による送電線保護継電システムと異なる。
Next, a transmission line protection relay system according to a second embodiment of the present invention will be described with reference to FIGS.
The transmission line protection relay system according to the present embodiment transmits the PCM current differential relay after the power source distance relay 30 shown in FIG. 3A is input from the branch power source 1c to the branch end PCM current differential relay 40. Branch power on / off information Sc (first and second generators 1c constituting the branch power source 1c) input from the branch end PCM current differential relay 40 through the power source PCM current differential relay 11a using the function. Information indicating the on / off state of the first and second generator breakers installed between 1 and 1c 2 and the branch end bus (ie, in operation when the branch power source 1c is a pumped storage power plant) The correction coefficient A is calculated based on the number of generators)), and the distance is measured based on the power supply end fault current Ia and the power supply end bus fault voltage Va using the calculated correction coefficient A. Transmission line according to one embodiment Different from the MamoruTsugi power system.

そのため、分岐端PCM電流差動継電器40は、分岐電源1cから入力される分岐電源入切情報Scを内蔵の伝送機能を利用して電源端PCM電流差動継電器11aに伝送する手段を備える点で、従来の分岐端PCM電流差動継電器11cと異なる。
また、電源端距離継電器30は、図3(b)に示すように、発電機入切情報Scに基づいて補正係数Aを演算する補正係数演算部31と、補正係数演算部31によって演算された補正係数Aを用いて電源端事故電流Iaおよび電源端母線事故電圧Vaに基づいて距離測定を行う距離測定部32と、距離測定部32における距離測定に基づいて送電線事故を検出すると電源端遮断器3aを遮断するための電源端トリップ信号TRaを発生するトリップ信号発生部33とを備える。
Therefore, the branch end PCM current differential relay 40 includes means for transmitting the branch power on / off information Sc input from the branch power source 1c to the power source PCM current differential relay 11a using a built-in transmission function. This is different from the conventional branch end PCM current differential relay 11c.
Further, as shown in FIG. 3B, the power supply end distance relay 30 is calculated by the correction coefficient calculation unit 31 that calculates the correction coefficient A based on the generator on / off information Sc, and the correction coefficient calculation unit 31. A distance measurement unit 32 that performs distance measurement based on the power supply end fault current Ia and the power supply end bus fault voltage Va using the correction coefficient A, and a power supply end cutoff when a transmission line fault is detected based on the distance measurement in the distance measurement unit 32 A trip signal generator 33 for generating a power supply trip signal TRa for shutting off the device 3a.

本実施例による送電線保護継電システムでも、電源端距離継電器30における距離測定の誤差を低減することができるが、発電機入切情報Scに基づいて分岐端事故電流Icを定めて補正係数A(=Ic/Ia)を演算するため、第1の実施例による電源端距離継電器20に比べて距離測定の精度が落ちる。   Even in the transmission line protection relay system according to the present embodiment, it is possible to reduce the error of the distance measurement in the power supply end distance relay 30, but the correction coefficient A is determined by determining the branch end accident current Ic based on the generator on / off information Sc. Since (= Ic / Ia) is calculated, the accuracy of distance measurement is lower than that of the power supply end distance relay 20 according to the first embodiment.

たとえば、電源端距離継電器30の2段保護範囲の整定を行う際に背後電源を自端電流最大および分岐端電流最大とした場合に、電源1aのインピーダンス=0.096、分岐電源1cのインピーダンス=0.484、送電線の電源端から分岐点までのインピーダンスZ1=0.154、送電線の分岐点から事故点までのインピーダンスZ2=0.374、分岐送電線の分岐電源1cから分岐点までのインピーダンスZ3=0.051とすると、電源端距離継電器30から見たときのインピーダンスZAは、
Ia=(0.484+0.051)/{(0.096+0.154)+(0.484+0.051)}×Is
=0.681×Is
Ic=(0.096+0.154)/{(0.096+0.154)+(0.484+0.051)}×Is
=0.319×Is
より、
Ic/Ia=(0.319×Is)/(0.681×Is)
=0319/0.681
=0.468
となるため、
A=0.154+0.374×{1+(Ic/Ia)}
=0.154+0.374×(1+0.468)
=0.703
となる。
その結果、距離測定の改善は、
(0.734−0.703)/0.703×100=4.4(%)
となる。
For example, when setting the two-stage protection range of the power supply end distance relay 30 with the back power supply set to the maximum self-end current and the maximum branch end current, the impedance of the power supply 1a = 0.096, the impedance of the branch power supply 1c = 0.484, impedance Z 1 = 0.154 from the power supply end of the transmission line to the branch point, impedance Z 2 = 0.374 from the branch point of the transmission line to the accident point, branch point from the branch power supply 1c of the branch transmission line Impedance Z 3 = 0.051, the impedance Z A when viewed from the power supply end distance relay 30 is
Ia = (0.484 + 0.051) / {(0.096 + 0.154) + (0.484 + 0.051)} × Is
= 0.681 x Is
Ic = (0.096 + 0.154) / {(0.096 + 0.154) + (0.484 + 0.051)} × Is
= 0.319 x Is
Than,
Ic / Ia = (0.319 × Is) / (0.681 × Is)
= 0319 / 0.681
= 0.468
So that
Z A = 0.154 + 0.374 × {1+ (Ic / Ia)}
= 0.154 + 0.374 × (1 + 0.468)
= 0.703
It becomes.
As a result, the improvement in distance measurement is
(0.734-0.703) /0.703×100=4.4 (%)
It becomes.

1a 電源
1c 分岐電源
1c1,1c2 第1および第2の発電機
2a,2b,2c 電源端、負荷端および分岐端計器用変流器
3a,3b,3c 電源端、負荷端および分岐端遮断器
11a,11b,11c 電源端、負荷端および分岐端PCM電流差動継電器
12a,12b,12c 電源端、負荷端および分岐端距離継電器
20,30 電源端距離継電器
21,31 補正係数演算部
22,32 距離測定部
23,33 トリップ信号発生部
40 分岐端PCM電流差動継電器
A 補正係数
Ia,Ib,Ic 電源端、負荷端および分岐端事故電流
Is 事故電流
Va 電源端母線事故電圧
Z,Z1〜Z3,ZA0,ZA インピーダンス
TRa 電源端トリップ信号
Sc 発電機入切情報
1a power supply 1c branch power supply 1c 1 , 1c 2 first and second generators 2a, 2b, 2c power supply end, load end and branch end instrument current transformer 3a, 3b, 3c power supply end, load end and branch end cutoff 11a, 11b, 11c Power supply end, load end and branch end PCM current differential relays 12a, 12b, 12c Power supply end, load end and branch end distance relays 20, 30 Power end distance relays 21, 31 Correction coefficient calculation unit 22, 32 Distance measurement unit 23, 33 Trip signal generation unit 40 Branch end PCM current differential relay A Correction factor Ia, Ib, Ic Power supply end, load end and branch end fault current Is Accident current Va Power supply end bus fault voltage Z, Z 1 ~Z 3, Z A0, Z A impedance TRa supply terminal trip signal Sc generator on-off information

Claims (4)

分岐電源(1c)が接続された送電線の電源端に設置された電源端PCM電流差動継電器(11a)および電源端距離継電器(20)と、該送電線の分岐端に設置された分岐端PCM電流差動継電器(11c)および分岐端距離継電器(12c)とを具備する送電線保護継電システムであって、
前記電源端距離継電器が、電源端事故電流(Ia)とPCM電流差動継電器の伝送機能を利用して前記分岐端PCM電流差動継電器から前記電源端PCM電流差動継電器を介して伝送されてくる分岐端事故電流(Ic)とに基づいて補正係数(A)を算出し、該算出した補正係数を用いて前記電源端事故電流および電源端母線事故電圧(Va)に基づいて距離測定を行う距離測定手段を備える、
ことを特徴とする、送電線保護継電システム。
A power source PCM current differential relay (11a) and a power source distance relay (20) installed at the power source end of the transmission line to which the branch power source (1c) is connected, and a branch end installed at the branch end of the power transmission line A power line protection relay system comprising a PCM current differential relay (11c) and a branch end distance relay (12c),
The power terminal distance relay is transmitted from the branch terminal PCM current differential relay through the power terminal PCM current differential relay using a transmission function of a power terminal fault current (Ia) and a PCM current differential relay. A correction coefficient (A) is calculated based on the coming branch end fault current (Ic), and distance measurement is performed based on the power supply end fault current and the power supply end bus fault voltage (Va) using the calculated correction coefficient. A distance measuring means;
A transmission line protection relay system characterized by that.
前記距離測定手段が、前記分岐端事故電流を前記電源端事故電流で割ることにより前記補正係数を算出することを特徴とする、請求項1記載の送電線保護継電システム。   2. The transmission line protection relay system according to claim 1, wherein the distance measuring means calculates the correction coefficient by dividing the branch end fault current by the power source end fault current. 前記距離測定手段が、前記補正係数を次式に代入して前記送電線の分岐点から事故点までの第2のインピーダンス(Z2)を求めたのち、該求めた第2のインピーダンスと前記送電線の電源端から分岐点までの第1のインピーダンス(Z1)とを足して前記送電線の電源端から事故点までのインピーダンスを求め、該求めたインピーダンスに基づいて距離測定を行う、
2=(ZA−Z1)/(1+A)
1:第1のインピーダンス
2:第2のインピーダンス
A:電源端事故電流および電源端母線事故電圧に基づいて求められたインピーダンス
A:補正係数
ことを特徴とする、請求項2記載の送電線保護継電システム。
The distance measuring means substitutes the correction coefficient into the following equation to obtain the second impedance (Z 2 ) from the branch point of the transmission line to the accident point, and then determines the obtained second impedance and the transmission power. Adding the first impedance (Z 1 ) from the power source end of the electric wire to the branch point to obtain the impedance from the power source end of the transmission line to the accident point, and performing distance measurement based on the obtained impedance;
Z 2 = (Z A −Z 1 ) / (1 + A)
Z 1 : First impedance
Z 2 : Second impedance
Z A : Impedance obtained based on power supply end fault current and power supply end bus fault voltage
The transmission line protection relay system according to claim 2, wherein A: a correction coefficient.
分岐電源(1c)が接続された送電線の電源端に設置された電源端PCM電流差動継電器(11a)および電源端距離継電器(30)と、該送電線の分岐端に設置された分岐端PCM電流差動継電器(40)および分岐端距離継電器(12c)とを具備する送電線保護継電システムであって、
前記分岐電源が複数個の発電機(1c1,1c2)から構成されており、
前記電源端距離継電器が、PCM電流差動継電器の伝送機能を利用して前記分岐端PCM電流差動継電器から前記電源端PCM電流差動継電器を介して伝送されてくる発電機入切情報(Sc)に基づいて補正係数(A)を算出し、該算出した補正係数を用いて前記電源端事故電流および電源端母線事故電圧(Va)に基づいて距離測定を行う距離測定手段を備える、
ことを特徴とする、送電線保護継電システム。
Power supply end PCM current differential relay (11a) and power supply end distance relay (30) installed at the power supply end of the transmission line to which the branch power supply (1c) is connected, and the branch end installed at the branch end of the transmission line A power line protection relay system comprising a PCM current differential relay (40) and a branch end distance relay (12c),
The branch power source is composed of a plurality of generators (1c 1 , 1c 2 ),
The power source end distance relay is transmitted from the branch end PCM current differential relay through the power end PCM current differential relay using the transmission function of the PCM current differential relay. ) Based on the power supply end fault current and the power supply end bus fault voltage (Va) using the calculated correction coefficient.
A transmission line protection relay system characterized by that.
JP2010013879A 2010-01-26 2010-01-26 Power transmission line protection relay system Withdrawn JP2011155723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010013879A JP2011155723A (en) 2010-01-26 2010-01-26 Power transmission line protection relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010013879A JP2011155723A (en) 2010-01-26 2010-01-26 Power transmission line protection relay system

Publications (1)

Publication Number Publication Date
JP2011155723A true JP2011155723A (en) 2011-08-11

Family

ID=44541263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010013879A Withdrawn JP2011155723A (en) 2010-01-26 2010-01-26 Power transmission line protection relay system

Country Status (1)

Country Link
JP (1) JP2011155723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969692A (en) * 2012-12-12 2013-03-13 四川省电力公司 Branch coefficient calculation method based on real-time data of power grid
US20170358914A1 (en) * 2016-06-14 2017-12-14 Meshed Power Systems, Inc. Fault recovery systems and methods for electrical power distribution networks
CN118362877A (en) * 2024-06-17 2024-07-19 惠州市乐亿通科技股份有限公司 Relay electrical life test system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969692A (en) * 2012-12-12 2013-03-13 四川省电力公司 Branch coefficient calculation method based on real-time data of power grid
US20170358914A1 (en) * 2016-06-14 2017-12-14 Meshed Power Systems, Inc. Fault recovery systems and methods for electrical power distribution networks
US10680430B2 (en) * 2016-06-14 2020-06-09 Tikla Com Inc. Fault recovery systems and methods for electrical power distribution networks
CN118362877A (en) * 2024-06-17 2024-07-19 惠州市乐亿通科技股份有限公司 Relay electrical life test system and method

Similar Documents

Publication Publication Date Title
CA3089648C (en) Method and system providing feeder fault response
US11605948B2 (en) Communication-based permissive protection scheme for power distribution networks
US20160020601A1 (en) Power bay protection device and a method for portecting power bays
JP2017017832A (en) Server device
JP2007244138A (en) Protective circuit
JP2011155723A (en) Power transmission line protection relay system
JP2010284057A (en) Characteristic test system for protective relay device
JP2013090445A (en) Power system protection system
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JP2013062974A (en) Protection relay system
Pan et al. Protection issues and solutions for protecting feeder with distributed generation
US8755159B2 (en) System of current protection of a primary electrical distribution box
JP2008259327A (en) Reclosing method
JP2007006673A (en) Digital protective relay system for main circuit of generator
JP5903143B1 (en) Disconnection detection apparatus and method
JP2017060249A (en) System stabilization system
KR20150048997A (en) System for protective control of electric power system
JP2014192953A (en) Transmission line protection device, and transmission line protection system
JP2019068571A (en) Channel selection protection relay device and parallel two-line power transmission line protection system
KR102127471B1 (en) Total AI Backup Protection System for Substation
JP6645759B2 (en) Current differential relay system
WO2024105742A1 (en) Breaking device, power supply system, control device, setting value determination method, and program
JP7414661B2 (en) Wind power generation systems and protection and control devices for wind power generation systems
RU2611059C2 (en) Method of measurement for detecting fault of three-phase network
KR200347633Y1 (en) Hardware structure of intelligent electronic device for fault detection and selective auto-reclosure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20131113