JP2009005565A - Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method - Google Patents

Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method Download PDF

Info

Publication number
JP2009005565A
JP2009005565A JP2007166761A JP2007166761A JP2009005565A JP 2009005565 A JP2009005565 A JP 2009005565A JP 2007166761 A JP2007166761 A JP 2007166761A JP 2007166761 A JP2007166761 A JP 2007166761A JP 2009005565 A JP2009005565 A JP 2009005565A
Authority
JP
Japan
Prior art keywords
section
distribution line
zero
phase current
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007166761A
Other languages
Japanese (ja)
Inventor
Shuhei Fujiwara
修平 藤原
Koji Maeda
耕二 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007166761A priority Critical patent/JP2009005565A/en
Publication of JP2009005565A publication Critical patent/JP2009005565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a distribution line accident zone selecting and blocking device for selectively blocking a distribution line accident zone which enables the discrimination of an earth fault accident zone and blocking only the accident zone without measuring both a zero-phase current and a zero-phase voltage in each zone of a distribution line, and accordingly for reducing measuring cost, and a distribution line accident zone selecting and blocking method. <P>SOLUTION: The distribution line 5 is sectioned by zone switches 4 in the number of n, while CTs (current transformers) 2 in the number of n are provided corresponding to the individual zone switches 4. A switch blocking instruction preparing part 1 receives a measured value of a phase current from each CT 2 via a communication circuit 3 and calculates a difference in the zero-phase current between the adjacent CTs 2. In the case that some of absolute values of the differences exceed a threshold value, a blocking instruction is transmitted to the zone switch 4 of the concerned zone. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力系統の配電線に発生した地絡事故の発生区間を検出し、この事故区間を選択して遮断する装置および方法に関する。   The present invention relates to an apparatus and a method for detecting an occurrence section of a ground fault occurring in a distribution line of an electric power system, and selecting and blocking this accident section.

従来、電力系統の配電線に地絡事故が発生すると、変電所の遮断器を開放して、配電線全体を停電させて故障を除去している。しかしながら、配電線には、線路中間に複数の区分開閉器が設けられており、地絡事故が発生した区分に対応する区分開閉器を開放することで、事故区間のみを停電させて事故を除去することが可能である。このような装置は、配電線事故区間検出切離装置などと呼ばれている(特許文献1および2を参照)。   Conventionally, when a ground fault occurs in a distribution line of a power system, a breaker in a substation is opened to cause a power failure in the entire distribution line to eliminate the failure. However, the distribution line is provided with a plurality of section switches in the middle of the track. By opening the section switch corresponding to the section where the ground fault occurred, the accident can be eliminated by causing only the accident section to power out. Is possible. Such a device is called a distribution line fault section detection / separation device or the like (see Patent Documents 1 and 2).

配電線に地絡事故が発生すると、配電線には微弱な零相電流や零相電圧が発生する。従来の配電線事故区間検出切離装置では、各区分開閉器に地絡方向リレー(継電器)と通信機能を設け、地絡事故に起因して発生した零相電流と零相電圧を各地絡方向リレーにて計測し、零相電流と零相電圧との関係から各区分開閉器に対して地絡発生方向を検出し、さらに通信機能を用いて事故区間を絞り込むことで、事故区間を判別している。   When a ground fault occurs in a distribution line, a weak zero-phase current or zero-phase voltage is generated in the distribution line. In the conventional distribution line fault section detection and disconnection device, each section switch is provided with a ground fault direction relay (relay) and a communication function, and the zero phase current and zero phase voltage generated due to the ground fault are displayed in the direction of each fault. Measured with a relay, detects the ground fault occurrence direction for each division switch from the relationship between zero-phase current and zero-phase voltage, and further identifies the accident section by using the communication function to narrow down the accident section. ing.

特公平07−1980号公報Japanese Patent Publication No. 07-1980 特公平07−4048号公報Japanese Patent Publication No. 07-4048

しかしながら、上記従来の技術によれば以下に示すような問題点があった。すなわち、特許文献1および2に記載の従来の技術においては、地絡事故区間の判別に地絡方向リレーを使用しているが、地絡方向リレーは零相電流と零相電圧の両方の計測を必要とするため、コストが高くなるという問題点があった。特に、零相電圧の計測は、零相電流の計測に比べてコストがかかるため、計測装置のコストが高くなっている。   However, the conventional technique has the following problems. That is, in the conventional techniques described in Patent Documents 1 and 2, a ground fault direction relay is used to determine the ground fault accident section, but the ground fault direction relay measures both zero-phase current and zero-phase voltage. Therefore, there is a problem that the cost becomes high. In particular, the measurement of the zero-phase voltage is more expensive than the measurement of the zero-phase current, and thus the cost of the measuring device is high.

本発明は、上記に鑑みてなされたものであって、配電線の各区分において零相電流と零相電圧の両方を計測することなく、したがって、計測コストを低減させて、地絡事故区間を判別し、当該事故区間のみを遮断させることができる配電線事故区間選択遮断装置および配電線事故区間選択遮断方法を得ることを目的とする。   The present invention has been made in view of the above, and does not measure both the zero-phase current and the zero-phase voltage in each section of the distribution line. An object of the present invention is to obtain a distribution line accident section selective blocking device and a distribution line accident section selective blocking method capable of determining and blocking only the accident section.

上述した課題を解決し、目的を達成するために、本発明にかかる配電線事故区間選択遮断装置は、電力系統の配電線における地絡事故の発生区間を検出し、事故区間を選択して遮断する配電線事故区間選択遮断装置であって、前記配電線に設けられた複数個の区分開閉器と、前記各区分開閉器にそれぞれ対応して前記配電線に設けられた複数個の変流器と、地絡事故の発生区間を判別し、事故区間に対応する区分開閉器に対して、遮断指令を作成する開閉器遮断指令作成部と、前記複数個の区分開閉器、前記複数個の変流器、および前記開閉器遮断指令作成部を相互に接続して通信機能を提供する通信線と、を備え、前記開閉器遮断指令作成部は、前記通信線を介して得られた前記複数個の変流器の相電流の計測値に基づき、前記複数個の変流器について、相互に隣接する変流器間の零相電流の差分の絶対値を算出し、前記絶対値の中に所定のしきい値を超えるものが存在する場合には、前記しきい値よりも大きい前記絶対値を与える区間に対応する区分開閉器に対して、前記通信線を介して遮断指令を送信することを特徴とする。   In order to solve the above-described problems and achieve the object, the distribution line accident section selective interruption device according to the present invention detects a section of occurrence of a ground fault in the distribution line of the power system, and selects and blocks the accident section. A distribution line fault section selective interruption device, comprising: a plurality of division switches provided on the distribution line; and a plurality of current transformers provided on the distribution line corresponding to each of the division switches. Determining a section in which a ground fault has occurred, a switch break command generation unit for generating a break command for the segment switch corresponding to the accident section, the plurality of segment switches, and the plurality of switches. And a communication line that provides a communication function by mutually connecting the switch and the switch breaker command creation unit, and the switch breaker command creation unit includes the plurality of switches obtained via the communication line. Based on the measured value of the phase current of the current transformer. The absolute value of the difference in the zero-phase current between the current transformers adjacent to each other is calculated, and when there is a value exceeding a predetermined threshold among the absolute values, A cut-off command is transmitted via the communication line to a section switch corresponding to a section that gives the absolute value that is greater than.

本発明によれば、複数個の変流器により各相の相電流を計測し、通信線を用いて、これらの計測値を開閉器遮断指令作成部へ送信し、開閉器遮断指令作成部では、零相電流のみに基づいて、地絡発生事故区間の判別を行う。したがって、従来のように零相電流と零相電圧の両方を計測する必要がなく、特に、零相電圧を計測する必要がないことから、計測機器の設置コストが大幅に低減される。このように、計測コストを大幅に低減させて、地絡事故区間を判別し、事故区間のみを選択して遮断することができる、という効果を奏する。   According to the present invention, the phase current of each phase is measured by a plurality of current transformers, and these measured values are transmitted to the switch breaker command creating unit using a communication line. Based on the zero-phase current alone, the ground fault occurrence accident section is determined. Therefore, it is not necessary to measure both the zero-phase current and the zero-phase voltage as in the prior art, and in particular, it is not necessary to measure the zero-phase voltage, so that the installation cost of the measuring device is greatly reduced. Thus, it is possible to greatly reduce the measurement cost, determine the ground fault accident section, and select and block only the accident section.

以下に、本発明にかかる配電線事故区間選択遮断装置および選択遮断方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments of a distribution line accident section selective interruption device and a selective interruption method according to the present invention will be described below in detail based on the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本実施の形態にかかる配電線事故区間選択遮断装置を含む配電システムの構成を示すブロック図である。図2は、本実施の形態を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a power distribution system including a distribution line accident section selection / blocking device according to the present embodiment. FIG. 2 is a flowchart showing the flow of processing when the present embodiment is applied to determine a section in which a ground fault has occurred, select the section, and issue a shutoff command.

図1に示すように、変電所10から配電線5が配線されており、また、変電所10には遮断器7が設けられている。遮断器7は、変電所10から配電線5を介して送電される電力を遮断することができる。   As shown in FIG. 1, a distribution line 5 is wired from a substation 10, and a breaker 7 is provided in the substation 10. The circuit breaker 7 can block the electric power transmitted from the substation 10 via the distribution line 5.

配電線5には、n個の区分開閉器4(1)〜4(n)が設けられており、配電線5は、各区分開閉器4により複数の区間に区分されている。なお、区分開閉器4(i)の添え字(i)は、変電所10から送電方向に対してi番目に設置された区分開閉器であることを示している。また、図1では、例えば、区分開閉器4(2)と区分開閉器4(3)との間に一線地絡事故が発生した場合を示している。   The distribution line 5 is provided with n section switches 4 (1) to 4 (n), and the distribution line 5 is divided into a plurality of sections by each section switch 4. The subscript (i) of the section switch 4 (i) indicates that the section switch is installed i-th from the substation 10 in the power transmission direction. FIG. 1 shows a case where a one-line ground fault has occurred between the section switch 4 (2) and the section switch 4 (3), for example.

配電線5には、各区分開閉器4にそれぞれ対応して、n個のCT(変流器)2(1)〜2(n)が設けられている。なお、CT2(i)の添え字(i)は、区分開閉器4(i)の場合と同様に、変電所10から送電方向に対してi番目に設置された変流器であることを示している。CT2(1)〜2(n)は、それぞれの設置箇所において、配電線5に流れている相電流を計測する。   The distribution line 5 is provided with n CTs (current transformers) 2 (1) to 2 (n) corresponding to the respective section switches 4 respectively. The subscript (i) of CT2 (i) indicates that the current transformer is installed i-th from the substation 10 in the power transmission direction, as in the case of the section switch 4 (i). ing. CT2 (1) -2 (n) measures the phase current which is flowing through the distribution line 5 in each installation location.

開閉器遮断指令作成部1は、各区分開閉器4(1)〜4(n)の開閉を制御して地絡発生区間を遮断するための遮断指令を作成する装置である。開閉器遮断指令作成部1、CT2(1)〜2(n)、および区分開閉器4(1)〜4(n)は、通信線3を介して相互に接続されている。通信線3により、各CT2(1)〜2(n)にて計測された相電流の計測値は、開閉器遮断指令作成部1に送信され、また、開閉器遮断指令作成部1にて作成された遮断指令は、各区分開閉器4(1)〜4(n)へ送信される。このように、通信線3を介して、種々のデータの通信が可能である。なお、通信線3に限らず、開閉器遮断指令作成部1、CT2(1)〜2(n)、および区分開閉器4(1)〜4(n)間の通信機能を実現するものであれば、他の通信手段を用いることができる。本実施の形態にかかる配電線事故区間選択遮断装置は、開閉器遮断指令作成部1と、CT2(1)〜2(n)と、区分開閉器4(1)〜4(n)と、通信機能を実現するための通信線3と、を備え、地絡が発生した事故区間を判別しこの区間を選択して遮断する。   The switch breaker command creation unit 1 is a device that creates a break command for controlling the switching of each of the segment switches 4 (1) to 4 (n) to shut off the ground fault occurrence section. The switch breaker command creation unit 1, CT 2 (1) to 2 (n), and the section switches 4 (1) to 4 (n) are connected to each other via the communication line 3. The measured value of the phase current measured at each CT 2 (1) to 2 (n) by the communication line 3 is transmitted to the switch breaker command creation unit 1 and created by the switch breaker command creation unit 1. The shut-off command thus transmitted is transmitted to each of the segment switches 4 (1) to 4 (n). As described above, various data can be communicated via the communication line 3. Note that the communication function is not limited to the communication line 3, and the communication function between the switch breaker command generation unit 1, CT2 (1) to 2 (n), and the section switches 4 (1) to 4 (n) is realized. For example, other communication means can be used. The distribution line fault section selective interruption device according to the present embodiment includes a switch breaker instruction creation unit 1, CT2 (1) to 2 (n), section switches 4 (1) to 4 (n), and communication. The communication line 3 for realizing the function is provided, an accident section where a ground fault has occurred is determined, and this section is selected and blocked.

次に、本実施の形態の動作、すなわち、配電線事故区間選択遮断方法について、図2を参照して説明する。   Next, the operation of the present embodiment, that is, the distribution line accident section selective blocking method will be described with reference to FIG.

まず、ステップS1において、開閉器遮断指令作成部1は、各CT2(1)〜2(n)にて計測された相電流の計測値を、通信線3を介して受信する。   First, in step S <b> 1, the switch breaker command creation unit 1 receives the measured values of the phase current measured by the CT <b> 2 (1) to 2 (n) via the communication line 3.

ステップS2では、開閉器遮断指令作成部1にて、隣接するCT2間の零相電流の差分を算出する。すなわち、ΔI0(1)=CT2(1)の零相電流−CT2(2)の零相電流、ΔI0(2)=CT2(2)の零相電流−CT2(3)の零相電流、ΔI0(3)=CT2(3)の零相電流−CT2(4)の零相電流、・・・、ΔI0(n−1)=CT2(n−1)の零相電流−CT2(n)の零相電流、をそれぞれ算出する。なお、各CT2の零相電流は、各CT2で計測された各相の相電流の和として計測または算出されるものである。   In step S2, the switch breaker instruction creation unit 1 calculates the difference in zero-phase current between adjacent CT2. That is, ΔI0 (1) = zero-phase current of CT2 (1) −zero-phase current of CT2 (2), ΔI0 (2) = zero-phase current of CT2 (2) −zero-phase current of CT2 (3), ΔI0 ( 3) = zero phase current of CT2 (3) −zero phase current of CT2 (4),..., ΔI0 (n−1) = zero phase current of CT2 (n−1) −zero phase of CT2 (n) Each current is calculated. The zero-phase current of each CT2 is measured or calculated as the sum of the phase currents of each phase measured by each CT2.

続いて、ステップS3では、開閉器遮断指令作成部1にて、零相電流の差分値の絶対値、すなわち、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|を算出し、さらに、各絶対値と、地絡が発生したか否かを判別するためのしきい値とを比較する。そして、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|の中に、しきい値を超えるものが存在するときには、ステップS4に進む。一方、しきい値を超えるものが存在しないときには、ステップS1に戻り、同様の処理を繰り返す。   Subsequently, in step S3, the switch breaker command creation unit 1 uses the absolute value of the difference value of the zero-phase current, that is, | ΔI0 (1) |, | ΔI0 (2) |,. n-1) | is calculated, and each absolute value is compared with a threshold value for determining whether or not a ground fault has occurred. If there is any of | ΔI0 (1) |, | ΔI0 (2) |,..., | ΔI0 (n−1) | that exceeds the threshold value, the process proceeds to step S4. On the other hand, when there is no object exceeding the threshold, the process returns to step S1 and the same processing is repeated.

ステップS4では、開閉器遮断指令作成部1は、通信線3を介して、しきい値を超えた当該区間に対応する区分開閉器4に遮断指令を送信する。図1の場合には、区分開閉器4(2)と4(3)との間に、一線地絡が発生しているため、例えば、|ΔI0(3)|の値がしきい値を超える。そのため、ステップS3にて、|ΔI0(3)|の値がしきい値を超えたことを判定すると、開閉器遮断指令作成部1は、例えば、区分開閉器4(2)および4(3)の両方に遮断指令を送信する。この遮断指令を受信して、区分開閉器4(2)が開放されると、変電所10からの送電は地絡の発生した区間には供給されず、地絡事故発生区間は遮断される。また、区分開閉器4(3)が開放され、さらに、例えば、変電所10とは別の変電所(図示せず)から区分開閉器4(3)〜4(n)の範囲の配電線5に対して逆送電することにより、地絡事故発生区間を除いて電力を供給することができる。   In step S <b> 4, the switch breaker instruction creation unit 1 transmits a breaker instruction to the sorting switch 4 corresponding to the section exceeding the threshold value via the communication line 3. In the case of FIG. 1, since a one-line ground fault has occurred between the section switches 4 (2) and 4 (3), for example, the value of | ΔI0 (3) | exceeds the threshold value. . Therefore, when it is determined in step S3 that the value of | ΔI0 (3) | has exceeded the threshold value, the switch breaker command generation unit 1 performs, for example, the section switches 4 (2) and 4 (3). Send a shutdown command to both. When this disconnection command is received and the section switch 4 (2) is opened, the power transmission from the substation 10 is not supplied to the section where the ground fault occurs, and the section where the ground fault occurs is interrupted. Further, the section switch 4 (3) is opened, and further, for example, the distribution line 5 in the range of the section switches 4 (3) to 4 (n) from a substation (not shown) different from the substation 10 is provided. By performing reverse power transmission, power can be supplied except for the section where the ground fault occurred.

なお、遮断指令を受けた後の区分開閉器4の開放および地絡事故区間の遮断は、変電所10の遮断器7が動作して配電線全体を停電させる前に行われるものとする。   Note that the opening of the section switch 4 and the disconnection of the ground fault accident section after receiving the disconnection command are performed before the circuit breaker 7 of the substation 10 is operated and the entire distribution line is interrupted.

また、本実施の形態では、CT2(1)〜2(n)により相電流を計測し、これらの相電流の各相の和をとることで零相電流を算出しているが、これとは別の形態として、CT2(1)〜2(n)の替わりに、それぞれ零相電流を計測するn個のZCT(零相変流器)を設け、直接零相電流を計測し差分を求めてもよい。   In the present embodiment, the phase current is measured by CT2 (1) to 2 (n), and the zero-phase current is calculated by taking the sum of each phase of these phase currents. As another form, instead of CT2 (1) to 2 (n), n ZCTs (zero phase current transformers) for measuring the zero phase current are provided, and the difference is obtained by directly measuring the zero phase current. Also good.

本実施の形態によれば、CT2(1)〜2(n)により相電流を計測し、通信機能を用いて、これらの計測値を開閉器遮断指令作成部1に送信し、開閉器遮断指令作成部1では、これらの計測値から得られた零相電流に基づいて、地絡発生事故区間の絞り込みと判別を行っている。したがって、従来のように零相電流と零相電圧の両方を計測する必要がなく、特に、零相電圧を計測する必要がないことから、計測機器の設置コストが大幅に低減される。このように、計測コストを大幅に低減させて、地絡事故区間を判別し、事故区間のみを選択して遮断することができるので、地絡事故の発生していない正常な区間を停電させることがなく、系統全体の安定運用を確保することができる。   According to the present embodiment, the phase current is measured by CT2 (1) to 2 (n), and using the communication function, these measured values are transmitted to the switch breaker command creation unit 1, and the switch breaker command The preparation unit 1 narrows down and determines the ground fault occurrence accident section based on the zero-phase current obtained from these measured values. Therefore, it is not necessary to measure both the zero-phase current and the zero-phase voltage as in the prior art, and in particular, it is not necessary to measure the zero-phase voltage, so that the installation cost of the measuring device is greatly reduced. In this way, it is possible to greatly reduce the measurement cost, discriminate the ground fault accident section, select only the accident section and shut off, so that the normal section where the ground fault accident has not occurred can be cut off Therefore, stable operation of the entire system can be ensured.

実施の形態2.
図3は、本実施の形態にかかる配電線事故区間選択遮断装置を含む配電システムの構成を示すブロック図である。図4は、本実施の形態を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing a configuration of a power distribution system including a distribution line accident section selection / cutoff device according to the present embodiment. FIG. 4 is a flowchart showing the flow of processing when the present embodiment is applied to determine a section in which a ground fault has occurred, select that section, and issue a shutoff command.

実施の形態1では、隣接するCT2の零相電流のみに基づいて、地絡事故発生区間の判別を行っている。しかしながら、配電系統での地絡電流は、その大きさが小さいため、検出感度、検出精度に課題がある。また、図1の変電所10に接続された配電線5(自回線)は、さらに、図示していない配電線(他回線)に接続され、配電系統を構成するのが一般的である。このような構成では、開閉器遮断指令作成部1は、自回線以外の他回線で発生した地絡事故を検出してしまい、不要な誤動作を指令する可能性がある。そこで、本実施の形態では、変電所に設置されている既存の地絡方向継電器(リレー)を利用し、そこから得られる地絡発生方向情報を用いて、実施の形態1による判別結果の精度を補い、誤った判別に起因する不要動作の発生を防止する。   In the first embodiment, the ground fault occurrence section is determined based only on the zero-phase current of the adjacent CT2. However, since the magnitude of the ground fault current in the distribution system is small, there are problems in detection sensitivity and detection accuracy. Further, the distribution line 5 (own line) connected to the substation 10 in FIG. 1 is generally further connected to a distribution line (other line) (not shown) to constitute a distribution system. In such a configuration, the switch breaker instruction creation unit 1 may detect a ground fault that has occurred in a line other than its own line, and may command an unnecessary malfunction. Therefore, in the present embodiment, the accuracy of the determination result according to the first embodiment is obtained by using the existing ground fault direction relay (relay) installed in the substation and using the ground fault occurrence direction information obtained therefrom. To prevent the occurrence of unnecessary operations due to incorrect discrimination.

図3に示すように、本実施の形態の構成は、地絡方向継電器(リレー)26が設けられていることを除けば、図1に示す実施の形態1の構成と同様である。そのため、同一の構成要素には、同一の符号を付して、その詳細な説明を省略する。   As shown in FIG. 3, the configuration of the present embodiment is the same as the configuration of the first embodiment shown in FIG. 1 except that a ground fault direction relay (relay) 26 is provided. Therefore, the same components are denoted by the same reference numerals, and detailed description thereof is omitted.

地絡方向継電器26は、通信線3を介して、開閉器遮断指令作成部1、CT2(1)〜2(n)、および区分開閉器4(1)〜4(n)に接続されている。地絡方向継電器26は、配電線5における地絡発生方向を検出し、通信線3を介して開閉器遮断指令作成部1にその結果を送信する。   The ground fault direction relay 26 is connected via the communication line 3 to the switch breaker command generation unit 1, CT2 (1) to 2 (n), and the section switches 4 (1) to 4 (n). . The ground fault direction relay 26 detects the ground fault occurrence direction in the distribution line 5 and transmits the result to the switch breaker command generation unit 1 via the communication line 3.

次に、本実施の形態の動作、すなわち、配電線事故区間選択遮断方法について、図4を参照して説明する。   Next, the operation of the present embodiment, that is, the distribution line accident section selection blocking method will be described with reference to FIG.

まず、ステップS11において、開閉器遮断指令作成部1は、各CT2(1)〜2(n)にて計測された相電流の計測値を、通信線3を介して受信する。   First, in step S <b> 11, the switch breaker instruction creation unit 1 receives the measured values of the phase current measured by the CT <b> 2 (1) to 2 (n) via the communication line 3.

ステップS12では、開閉器遮断指令作成部1にて、隣接するCT2間の零相電流の差分を算出する。すなわち、ΔI0(1)=CT2(1)の零相電流−CT2(2)の零相電流、ΔI0(2)=CT2(2)の零相電流−CT2(3)の零相電流、ΔI0(3)=CT2(3)の零相電流−CT2(4)の零相電流、・・・、ΔI0(n−1)=CT2(n−1)の零相電流−CT2(n)の零相電流、をそれぞれ算出する。なお、各CT2の零相電流は、各CT2で計測された各相の相電流の和として計測または算出されるものである。   In step S12, the switch breaker instruction creation unit 1 calculates the difference in zero-phase current between adjacent CT2. That is, ΔI0 (1) = zero phase current of CT2 (1) −zero phase current of CT2 (2), ΔI0 (2) = zero phase current of CT2 (2) −zero phase current of CT2 (3), ΔI0 ( 3) = zero phase current of CT2 (3) −zero phase current of CT2 (4),..., ΔI0 (n−1) = zero phase current of CT2 (n−1) −zero phase of CT2 (n) Each current is calculated. The zero-phase current of each CT2 is measured or calculated as the sum of the phase currents of each phase measured by each CT2.

ステップS13では、開閉器遮断指令作成部1は、地絡方向継電器26から地絡発生方向を受信する。   In step S <b> 13, the switch breaker instruction creating unit 1 receives the ground fault occurrence direction from the ground fault direction relay 26.

続いて、ステップS14では、開閉器遮断指令作成部1にて、零相電流の差分値の絶対値、すなわち、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|を算出し、さらに、各絶対値と、地絡が発生したか否かを判別するためのしきい値とを比較する。なお、このしきい値は、実施の形態1のしきい値と同じものである。そして、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|の中に、しきい値を超えるものが存在し、かつ、ステップ13にて受信した地絡方向継電器26の地絡発生方向が自回線である配電線5の場合は、ステップ15に進む。一方、しきい値を超えるものが存在しないか、または、地絡発生方向が自回線ではない場合には、ステップS11に戻り、同様の処理を繰り返す。   Subsequently, in step S14, the switch breaker command generation unit 1 uses the absolute value of the difference value of the zero-phase current, that is, | ΔI0 (1) |, | ΔI0 (2) |,. n-1) | is calculated, and each absolute value is compared with a threshold value for determining whether or not a ground fault has occurred. This threshold value is the same as the threshold value in the first embodiment. And | ΔI0 (1) |, | ΔI0 (2) |,..., | ΔI0 (n−1) | If the ground fault occurrence direction of the ground fault direction relay 26 is the distribution line 5 that is the own line, the process proceeds to step 15. On the other hand, if there is nothing exceeding the threshold value, or the ground fault generation direction is not the own line, the process returns to step S11 and the same processing is repeated.

ステップS15では、開閉器遮断指令作成部1は、通信線3を介して、しきい値を超えた当該区間の区分開閉器4に遮断指令を送信する。この動作は、実施の形態1と同様である。   In step S <b> 15, the switch breaker instruction creation unit 1 transmits a breaker instruction to the section switch 4 in the section that exceeds the threshold value via the communication line 3. This operation is the same as in the first embodiment.

本実施の形態によれば、既存の地絡方向継電器26の地絡発生方向情報を用いることにより、実施の形態1による地絡発生事故区間の判別精度を向上させることができる。したがって、計測コストを大幅に低減させ、かつ、判別精度を高めることができるという効果がある。なお、本実施の形態のその他の動作、および効果等は、実施の形態1と同様である。   According to the present embodiment, by using the ground fault occurrence direction information of the existing ground fault direction relay 26, it is possible to improve the determination accuracy of the ground fault occurrence accident section according to the first embodiment. Therefore, the measurement cost can be greatly reduced and the discrimination accuracy can be increased. Other operations, effects, and the like of the present embodiment are the same as those of the first embodiment.

実施の形態3.
図5は、本実施の形態を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。
Embodiment 3 FIG.
FIG. 5 is a flowchart showing the flow of processing when the present embodiment is applied to determine a section where a ground fault has occurred, select that section, and issue a shutoff command.

実施の形態1および2では、隣接するCT2の零相電流に基づいて、地絡事故発生区間の判別を行っている。しかしながら、短絡故障や異地点異相地絡(2つの異なる地点において同時刻に異なる相において地絡が発生した場合)が発生した場合には、大電流が流れ機器に甚大なダメージを与える可能性があり、この場合、区分開閉器4を操作せずに、変電所10の遮断器7により事故を除去すべきである。   In the first and second embodiments, the ground fault occurrence zone is determined based on the zero-phase current of the adjacent CT2. However, if a short-circuit failure or a different-phase ground fault occurs (when a ground fault occurs in two different points at the same time and in different phases), a large current may flow and cause serious damage to the equipment. Yes, in this case, the accident should be removed by the circuit breaker 7 of the substation 10 without operating the section switch 4.

そこで、本実施の形態では、開閉器遮断指令作成部1において、CT2により計測された電流が大きい場合、区分開閉器4の操作を行わないことで、不要動作を防止する。つまり、本実施の形態は、「異地点異相地絡」や「2線以上の接触事故」等に対しては、動作をロックする機能を備えている。   Therefore, in the present embodiment, when the current measured by CT2 is large in the switch breaker command generation unit 1, unnecessary operation is prevented by not operating the segment switch 4. In other words, the present embodiment has a function of locking the operation with respect to “different-point ground fault”, “contact accident of two or more wires”, and the like.

本実施の形態の構成は、図1に示す実施の形態1の構成と同様である。   The configuration of the present embodiment is the same as that of the first embodiment shown in FIG.

次に、本実施の形態の動作、すなわち、配電線事故区間選択遮断方法について、図5を参照して説明する。   Next, the operation of the present embodiment, that is, the distribution line accident section selective blocking method will be described with reference to FIG.

まず、ステップS21において、開閉器遮断指令作成部1は、各CT2(1)〜2(n)にて計測された相電流の計測値を、通信線3を介して受信する。   First, in step S <b> 21, the switch breaker command generation unit 1 receives the measured values of the phase current measured by the CT <b> 2 (1) to 2 (n) via the communication line 3.

ステップS22では、開閉器遮断指令作成部1にて、隣接するCT2間の零相電流の差分を算出する。すなわち、ΔI0(1)=CT2(1)の零相電流−CT2(2)の零相電流、ΔI0(2)=CT2(2)の零相電流−CT2(3)の零相電流、ΔI0(3)=CT2(3)の零相電流−CT2(4)の零相電流、・・・、ΔI0(n−1)=CT2(n−1)の零相電流−CT2(n)の零相電流、をそれぞれ算出する。なお、各CT2の零相電流は、各CT2で計測された各相の相電流の和として計測または算出されるものである。   In step S22, the switch breaker instruction creation unit 1 calculates the difference in zero-phase current between adjacent CT2. That is, ΔI0 (1) = zero phase current of CT2 (1) −zero phase current of CT2 (2), ΔI0 (2) = zero phase current of CT2 (2) −zero phase current of CT2 (3), ΔI0 ( 3) = zero phase current of CT2 (3) −zero phase current of CT2 (4),..., ΔI0 (n−1) = zero phase current of CT2 (n−1) −zero phase of CT2 (n) Each current is calculated. The zero-phase current of each CT2 is measured or calculated as the sum of the phase currents of each phase measured by each CT2.

続いて、ステップS23では、開閉器遮断指令作成部1にて、零相電流の差分値の絶対値、すなわち、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|を算出し、さらに、各絶対値と、地絡が発生したか否かを判別するためのしきい値1とを比較する。なお、このしきい値1は、実施の形態1のしきい値と同じものである。そして、|ΔI0(1)|、|ΔI0(2)|、・・・、|ΔI0(n−1)|の中に、しきい値1を超えるものが存在し、かつ、各相電流の絶対値|CT2(1)|、|CT2(2)|、・・・、|CT2(n)|のすべての値が、しきい値2よりも小さい場合に、ステップS24に進む。しきい値2は、各相電流に上述の短絡故障等を原因とする大電流が流れているか否かを判定するためのしきい値である。一方、|ΔI0(1)|〜|ΔI0(n−1)|のすべてが、しきい値1よりも小さいか、または、|CT2(1)|〜|CT2(n)|のいずれかが、しきい値2を超える場合には、開閉器遮断指令作成部1は区分開閉器4への遮断指令を送信せず、再びステップS21へ分岐する。   Subsequently, in step S23, the switch breaker command generation unit 1 uses the absolute value of the difference value of the zero-phase current, that is, | ΔI0 (1) |, | ΔI0 (2) |,. n-1) | is calculated, and each absolute value is compared with a threshold value 1 for determining whether or not a ground fault has occurred. The threshold value 1 is the same as the threshold value in the first embodiment. Among the | ΔI0 (1) |, | ΔI0 (2) |,... | ΔI0 (n−1) |, there are those exceeding the threshold 1, and the absolute value of each phase current. When all values | CT2 (1) |, | CT2 (2) |,..., | CT2 (n) | are smaller than the threshold value 2, the process proceeds to step S24. The threshold value 2 is a threshold value for determining whether or not a large current due to the above-described short circuit failure or the like flows in each phase current. On the other hand, all of | ΔI0 (1) | to | ΔI0 (n−1) | are smaller than threshold value 1, or any of | CT2 (1) | to | CT2 (n) | When the threshold value 2 is exceeded, the switch breaker command creation unit 1 does not transmit a break command to the segment switch 4, and branches to step S21 again.

ステップS24では、開閉器遮断指令作成部1は、通信線3を介して、しきい値1を超えた当該区間の区分開閉器4に遮断指令を送信する。この動作は、実施の形態1と同様である。   In step S <b> 24, the switch breaker instruction creation unit 1 transmits a breaker instruction to the section switch 4 in the section that exceeds the threshold 1 via the communication line 3. This operation is the same as in the first embodiment.

本実施の形態によれば、開閉器遮断指令作成部1において、|CT2(1)|〜|CT2(n)|のいずれかが、しきい値2を超える場合には、区分開閉器4への遮断指令を送信しないようにすることで、実際には短絡故障や異地点異相地絡等が発生している場合に、区分開閉器4を操作せずに、変電所10の遮断器7の操作等により事故に対処することができる。なお、本実施の形態のその他の動作、および効果等は、実施の形態1と同様である。   According to the present embodiment, when any one of | CT2 (1) | to | CT2 (n) | In this case, when a short circuit failure or an out-of-phase ground fault has occurred, the switch breaker 7 of the substation 10 is not operated without operating the segment switch 4. Accidents can be dealt with by operations. Other operations, effects, and the like of the present embodiment are the same as those of the first embodiment.

以上のように、本発明にかかる配電線事故区間選択遮断装置および選択遮断方法は、計測機器のコストを低減させて、地絡事故を検出することができるので、電力系統に広く適用することができる。   As described above, the distribution line accident section selective interruption device and the selective interruption method according to the present invention can detect the ground fault by reducing the cost of the measuring instrument, and thus can be widely applied to the power system. it can.

実施の形態1にかかる配電線事故区間選択遮断装置を含む配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system containing the distribution line accident area selection interruption | blocking apparatus concerning Embodiment 1. FIG. 実施の形態1を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of applying Embodiment 1 and discriminating the section where a ground-fault accident occurs, selecting the section, and issuing a cutoff command. 実施の形態2にかかる配電線事故区間選択遮断装置を含む配電システムの構成を示すブロック図である。It is a block diagram which shows the structure of the power distribution system containing the distribution line accident area selection interruption | blocking apparatus concerning Embodiment 2. FIG. 実施の形態2を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the process at the time of discriminating the section where a ground fault accident is applied by applying Embodiment 2 and selecting the section. 実施の形態3を適用して地絡事故発生区間を判別し、その区間を選択して遮断指令を行う際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of discriminating the section where a ground fault accident is applied by applying Embodiment 3 and selecting the section.

符号の説明Explanation of symbols

1 開閉器遮断指令作成部
2(1)〜2(n) 変流器(CT)
3 通信線
4(1)〜4(n) 区分開閉器
5 配電線
7 遮断器
10 変電所
26 地絡方向継電器(リレー)
1 Switch breaker command generation part 2 (1)-2 (n) Current transformer (CT)
3 Communication line 4 (1) to 4 (n) Division switch 5 Distribution line 7 Breaker 10 Substation 26 Ground fault direction relay (relay)

Claims (5)

電力系統の配電線における地絡事故の発生区間を検出し、事故区間を選択して遮断する配電線事故区間選択遮断装置であって、
前記配電線に設けられた複数個の区分開閉器と、
前記各区分開閉器にそれぞれ対応して前記配電線に設けられた複数個の変流器と、
地絡事故の発生区間を判別し、事故区間に対応する区分開閉器に対して、遮断指令を作成する開閉器遮断指令作成部と、
前記複数個の区分開閉器、前記複数個の変流器、および前記開閉器遮断指令作成部を相互に接続して通信機能を提供する通信線と、
を備え、
前記開閉器遮断指令作成部は、前記通信線を介して得られた前記複数個の変流器の相電流の計測値に基づき、前記複数個の変流器について、相互に隣接する変流器間の零相電流の差分の絶対値を算出し、前記絶対値の中に所定のしきい値を超えるものが存在する場合には、前記しきい値よりも大きい前記絶対値を与える区間に対応する区分開閉器に対して、前記通信線を介して遮断指令を送信することを特徴とする配電線事故区間選択遮断装置。
A distribution line accident section selection interruption device that detects an occurrence section of a ground fault in a distribution line of an electric power system, and selects and blocks the accident section,
A plurality of section switches provided on the distribution line;
A plurality of current transformers provided in the distribution line corresponding to the respective section switches;
A switch breaker command generation unit that determines the occurrence section of the ground fault accident and creates a shutoff command for the section switch corresponding to the accident section;
A communication line for providing a communication function by mutually connecting the plurality of section switches, the plurality of current transformers, and the switch breaker command generation unit;
With
The switch breaker command creation unit is configured to use the current transformers adjacent to each other for the plurality of current transformers based on the measured values of the phase currents of the current transformers obtained through the communication line. The absolute value of the difference between the zero-phase currents between them is calculated, and if there is an absolute value that exceeds a predetermined threshold value, it corresponds to a section that gives the absolute value larger than the threshold value A distribution line fault section selective blocking device, wherein a blocking command is transmitted to the sorting switch through the communication line.
前記開閉器遮断指令作成部に前記通信線を介して接続された地絡方向継電器をさらに備え、
前記開閉器遮断指令作成部は、前記しきい値による事故区間の判別に加えて、前記通信線を介して得られた前記地絡方向継電器の検出による地絡発生方向が自回線を示している場合のみに、前記遮断指令を送信することを特徴とする請求項1に記載の配電線事故区間選択遮断装置。
Further comprising a ground fault direction relay connected to the switch breaker command creation unit via the communication line,
In addition to the determination of the accident section based on the threshold value, the switch breaker instruction creation unit indicates that the ground fault occurrence direction by the detection of the ground fault direction relay obtained through the communication line indicates the own line. The distribution line accident section selective interruption apparatus according to claim 1, wherein the interruption instruction is transmitted only in the case.
前記開閉器遮断指令作成部は、前記零相電流の差分の絶対値と比較されるしきい値である第1のしきい値による事故区間の判別に加えて、前記複数個の変流器によりそれぞれ計測された相電流の絶対値のすべてが第2のしきい値よりも小さい場合のみに、前記遮断指令を送信することを特徴とする請求項1に記載の配電線事故区間選択遮断装置。   In addition to determining the fault section based on a first threshold value that is a threshold value that is compared with the absolute value of the difference between the zero-phase currents, the switch breaker command generation unit includes a plurality of current transformers. The distribution line fault section selective interruption device according to claim 1, wherein the interruption instruction is transmitted only when all of the absolute values of the measured phase currents are smaller than the second threshold value. 電力系統の配電線における地絡事故の発生区間を検出し、事故区間を選択して遮断する配電線事故区間選択遮断装置であって、
前記配電線に設けられた複数個の区分開閉器と、
前記各区分開閉器にそれぞれ対応して前記配電線に設けられた複数個の零相変流器と、
地絡事故の発生区間を判別し、事故区間に対応する区分開閉器に対して、遮断指令を作成する開閉器遮断指令作成部と、
前記複数個の区分開閉器、前記複数個の零相変流器、および前記開閉器遮断指令作成部を相互に接続し、通信機能を提供する通信線と、
を備え、
前記開閉器遮断指令作成部は、前記通信線を介して得られた前記複数個の零相変流器の零相電流の計測値に基づき、前記複数個の零相変流器について、相互に隣接する零相変流器間の零相電流の差分の絶対値を算出し、前記絶対値の中に所定のしきい値を超えるものが存在する場合には、前記しきい値よりも大きい前記絶対値を与える区間に対応する区分開閉器に対して、前記通信線を介して遮断指令を送信することを特徴とする配電線事故区間選択遮断装置。
A distribution line accident section selection interruption device that detects an occurrence section of a ground fault in a distribution line of an electric power system, and selects and blocks the accident section,
A plurality of section switches provided on the distribution line;
A plurality of zero-phase current transformers provided in the distribution line corresponding to the respective section switches;
A switch breaker command generation unit that determines the occurrence section of the ground fault accident and creates a shutoff command for the section switch corresponding to the accident section;
A plurality of section switches, a plurality of zero-phase current transformers, and the switch breaker command creation unit connected to each other, a communication line providing a communication function;
With
The switch breaker command generation unit is configured to mutually connect the plurality of zero-phase current transformers based on the measured values of the zero-phase currents of the plurality of zero-phase current transformers obtained through the communication line. Calculate the absolute value of the difference of the zero-phase current between adjacent zero-phase current transformers, and when there is a value exceeding a predetermined threshold in the absolute value, the absolute value greater than the threshold A distribution line accident section selective cutoff device, wherein a cutoff command is transmitted via the communication line to a section switch corresponding to a section giving an absolute value.
配電線に設けられた複数個の区分開閉器と、前記各区分開閉器にそれぞれ対応して前記配電線に設けられた複数個の変流器と、地絡事故の発生区間を判別し事故区間に対応する区分開閉器に対して遮断指令を作成する開閉器遮断指令作成部と、前記複数個の区分開閉器、前記複数個の変流器、および前記開閉器遮断指令作成部を相互に接続し通信機能を提供する通信線と、を備えた配電線事故区間選択遮断装置の配電線事故区間選択遮断方法であって、
前記開閉器遮断指令作成部は、前記通信線を介して、前記複数個の変流器から相電流の計測値を受信するステップと、
前記相電流の計測値から零相電流を求め、前記複数個の変流器について、相互に隣接する変流器間の零相電流の差分値を算出するステップと、
前記零相電流の差分の絶対値と所定のしきい値とを比較し、前記零相電流の差分の絶対値の中に、前記しきい値を超えるものが存在するときには、前記しきい値よりも大きい前記絶対値を与える区間に地絡事故が発生したと判別し、当該区間に対応する区分開閉器に対して、前記通信線を介して、遮断指令を送信するステップと、
を含むことを特徴とする配電線事故区間選択遮断方法。
A plurality of section switches provided on the distribution line, a plurality of current transformers provided on the distribution line corresponding to each of the section switches, and a section in which a ground fault has occurred are determined. The switch breaker command creation unit for creating a break command for the segment switch corresponding to the above, the plurality of segment switches, the plurality of current transformers, and the switch breaker command creation unit are connected to each other And a communication line providing a communication function, and a distribution line accident section selective blocking method of a distribution line accident section selective blocking device comprising:
The switch breaker command creation unit receives a phase current measurement value from the plurality of current transformers via the communication line;
Obtaining a zero-phase current from the measured value of the phase current, and for the plurality of current transformers, calculating a difference value of the zero-phase current between mutually adjacent current transformers;
The absolute value of the difference of the zero-phase current is compared with a predetermined threshold value, and when the absolute value of the difference of the zero-phase current exceeds the threshold value, Determining that a ground fault has occurred in the section that gives the absolute value that is greater, and transmitting a shut-off command to the section switch corresponding to the section via the communication line;
A distribution line accident section selective blocking method characterized by comprising:
JP2007166761A 2007-06-25 2007-06-25 Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method Pending JP2009005565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166761A JP2009005565A (en) 2007-06-25 2007-06-25 Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166761A JP2009005565A (en) 2007-06-25 2007-06-25 Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method

Publications (1)

Publication Number Publication Date
JP2009005565A true JP2009005565A (en) 2009-01-08

Family

ID=40321332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166761A Pending JP2009005565A (en) 2007-06-25 2007-06-25 Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method

Country Status (1)

Country Link
JP (1) JP2009005565A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902037A (en) * 2010-07-30 2010-12-01 武汉百叡电力技术有限公司 Distributed single-phase earth fault isolation method in low-current earthed system
JP2012065446A (en) * 2010-09-16 2012-03-29 Takaoka Electric Mfg Co Ltd Power transmission line accident section detection device
CN103308822A (en) * 2013-05-07 2013-09-18 河南理工大学 Small current earth fault line selection method for radial distribution network
CN103840556A (en) * 2014-03-25 2014-06-04 清华大学 Method for sharing multi-interval transient traveling wave signals of intelligent substation in real time
WO2016013053A1 (en) * 2014-07-22 2016-01-28 三菱電機株式会社 Dc power transmission system protection device, protection method, and dc power transmission system
CN107255774A (en) * 2017-06-16 2017-10-17 济南置真电气有限公司 It is a kind of based on the selection method for falsely dropping line tripping combined floodgate information
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144719A (en) * 1986-12-05 1988-06-16 エナジーサポート株式会社 High voltage load switch
JPH05264636A (en) * 1992-03-17 1993-10-12 Matsushita Electric Ind Co Ltd Device for detecting trouble section of distribution line
JPH06113446A (en) * 1992-09-28 1994-04-22 Okinawa Denryoku Kk Fine ground-fault distribution-line recognition apparatus
JPH07298486A (en) * 1994-04-21 1995-11-10 Okinawa Denryoku Kk Apparatus for locating ground-fault point of power distribution line
JP2007116893A (en) * 2005-10-21 2007-05-10 Myongji Univ Industry & Academia Cooperation Foundation Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144719A (en) * 1986-12-05 1988-06-16 エナジーサポート株式会社 High voltage load switch
JPH05264636A (en) * 1992-03-17 1993-10-12 Matsushita Electric Ind Co Ltd Device for detecting trouble section of distribution line
JPH06113446A (en) * 1992-09-28 1994-04-22 Okinawa Denryoku Kk Fine ground-fault distribution-line recognition apparatus
JPH07298486A (en) * 1994-04-21 1995-11-10 Okinawa Denryoku Kk Apparatus for locating ground-fault point of power distribution line
JP2007116893A (en) * 2005-10-21 2007-05-10 Myongji Univ Industry & Academia Cooperation Foundation Device and method for detecting fault section by comparison of phase difference, and magnitude of zero-phase current in non-grounded distribution system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902037A (en) * 2010-07-30 2010-12-01 武汉百叡电力技术有限公司 Distributed single-phase earth fault isolation method in low-current earthed system
JP2012065446A (en) * 2010-09-16 2012-03-29 Takaoka Electric Mfg Co Ltd Power transmission line accident section detection device
CN103308822A (en) * 2013-05-07 2013-09-18 河南理工大学 Small current earth fault line selection method for radial distribution network
CN103840556A (en) * 2014-03-25 2014-06-04 清华大学 Method for sharing multi-interval transient traveling wave signals of intelligent substation in real time
CN103840556B (en) * 2014-03-25 2015-10-28 清华大学 Intelligent substation multi-compartment transient state travelling wave signal Real-Time Sharing method
WO2016013053A1 (en) * 2014-07-22 2016-01-28 三菱電機株式会社 Dc power transmission system protection device, protection method, and dc power transmission system
CN107255774A (en) * 2017-06-16 2017-10-17 济南置真电气有限公司 It is a kind of based on the selection method for falsely dropping line tripping combined floodgate information
CN107255774B (en) * 2017-06-16 2020-01-14 济南置真电气有限公司 Line selection method based on trip and closing information of mistakenly selected line
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor
JP7341070B2 (en) 2020-01-10 2023-09-08 株式会社日立製作所 Ground fault location system and method

Similar Documents

Publication Publication Date Title
US7123459B2 (en) Protective relay capable of protection applications without protection settings
KR100246203B1 (en) A control system and method for high impedance ground fault of power line in a power system
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
EP2206208B1 (en) Differential protection method, system and device
KR101804175B1 (en) Method for determining fault direction, overcurrent protection and displaying fault indication in distribution system with dispersed generation
CN106526429B (en) A kind of ground fault line selecting method with error correction
JP2004080839A (en) Ground direction relay and ground direction relay device
JP4199065B2 (en) Protective relay device
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
KR100437446B1 (en) Sub-system connecting device in power supply system
JP2019507573A (en) Improvements in or related to power systems
CN102204050B (en) Differential protection method and differential protection device
US20020080535A1 (en) Multiple ground fault trip function system and method for same
JP2017192179A (en) DC protection relay system
JP2006020452A (en) Protection relay system for generator main circuit
JP2014081322A (en) Ground fault detection method and device using positive-phase, one-phase voltage
JP2009118678A (en) Power line earth fault protection system
JP5044328B2 (en) Network power transmission protection device
JP2007060797A (en) Generator protective relay device
JP2008278662A (en) Bus protective relaying device
JP4836663B2 (en) Loop system protection device and method
JP3221000B2 (en) Method and apparatus for determining ground fault section of distribution line
KR200347633Y1 (en) Hardware structure of intelligent electronic device for fault detection and selective auto-reclosure
JP2011182547A (en) Bus protection relay system
JP5574666B2 (en) Protective relay device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809