JP2009118678A - Power line earth fault protection system - Google Patents

Power line earth fault protection system Download PDF

Info

Publication number
JP2009118678A
JP2009118678A JP2007290454A JP2007290454A JP2009118678A JP 2009118678 A JP2009118678 A JP 2009118678A JP 2007290454 A JP2007290454 A JP 2007290454A JP 2007290454 A JP2007290454 A JP 2007290454A JP 2009118678 A JP2009118678 A JP 2009118678A
Authority
JP
Japan
Prior art keywords
zero
ground fault
phase
accident
distribution line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007290454A
Other languages
Japanese (ja)
Other versions
JP5224783B2 (en
Inventor
Koichi Nakanishi
康一 中西
Yoshiaki Date
義明 伊達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2007290454A priority Critical patent/JP5224783B2/en
Publication of JP2009118678A publication Critical patent/JP2009118678A/en
Application granted granted Critical
Publication of JP5224783B2 publication Critical patent/JP5224783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power line earth fault protection system capable of avoiding malfunction even if a residual current is large. <P>SOLUTION: A power line earth fault protection system 10 includes a calculation part 12 consisting of an accident type discriminating processing in which zero phase voltage V<SB>0</SB>and first to fourth zero phase currents I<SB>01</SB>-I<SB>04</SB>input from an input processing part 11 are stored in a memory 13 at specified time intervals, and it is discriminated whether an earth fault accident is a bus line earth fault accident, a single circuit simple earth fault accident, or a different point different phase earth fault accident, based on a zero phase voltage change amount ΔV<SB>0</SB>and first to fourth zero phase current change amounts ΔI<SB>01</SB>-ΔI<SB>04</SB>acquired from the zero phase voltage and the first to fourth zero phase currents I<SB>01</SB>-I<SB>04</SB>before and in earth fault accident read from the memory 13, and a shielded breaker decision processing for deciding breakers to be shielded and their order among first to fourth breakers 5<SB>1</SB>-5<SB>4</SB>based on the first to fourth zero phase current amounts ΔI<SB>01</SB>-ΔI<SB>04</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、配電線地絡保護システムに関し、特に、母線から分岐された複数の配電線にそれぞれ設置された複数の遮断器を制御して複数の配電線を地絡事故から保護するのに好適な配電線地絡保護システムに関する。   The present invention relates to a distribution line ground fault protection system, and particularly suitable for protecting a plurality of distribution lines from a ground fault by controlling a plurality of circuit breakers respectively installed on a plurality of distribution lines branched from a bus. To a distribution line ground fault protection system.

従来、配電用変電所において6kV母線連絡遮断器を入れて、他の母線と並用する際には、母線から分岐されている複数の配電線(回線)を所定の順序に従って順次遮断していく配電線地絡順序遮断の機能をロックしていた。   Conventionally, when a 6kV busbar breaker is installed at a distribution substation and used in parallel with other busbars, the distribution lines (lines) branched from the busbars are sequentially cut off in a predetermined order. The function of the electric wire ground fault sequence interruption was locked.

この問題を解決する一手法として、下記の特許文献1に開示されている地絡方向継電器における手法を採用することが考えられる。この地絡方向継電器では、分岐回路における零相電圧および零相電流の実効値および位相を演算するとともに、その演算値を上書き記憶する過程で零相電圧の演算実効値および位相に基づく最新の電圧ベクトルと上書き記憶された零相電圧の実効値および位相に基づく電圧ベクトルとの電圧ベクトル差と、零相電流の演算実効値および位相に基づく最新の電流ベクトルと上書き記憶された零相電流の実効値および位相に基づく電流ベクトルとの電流ベクトル差とを演算し、電流ベクトル差の実効値が所定値を超えた場合に、電圧ベクトル差の位相に対する電流ベクトル差の位相に基づいて分岐回路が地絡しているか否かを判定することにより、地絡の発生していない状態で流れる漏れ電流の影響を受けることなく地絡した電路を確実に判定することができるようにしている。   As a technique for solving this problem, it is conceivable to employ a technique in a ground fault direction relay disclosed in Patent Document 1 below. This ground fault direction relay calculates the effective value and phase of the zero-phase voltage and zero-phase current in the branch circuit, and overwrites and stores the calculated value in the process of writing the latest voltage based on the calculated effective value and phase of the zero-phase voltage. Voltage vector difference between the vector and the voltage vector based on the effective value and phase of the zero-phase voltage stored overwritten, the latest current vector based on the calculated effective value and phase of the zero-phase current, and the effective zero-phase current stored overwritten The current vector difference with the current vector based on the value and the phase is calculated, and when the effective value of the current vector difference exceeds a predetermined value, the branch circuit is grounded based on the phase of the current vector difference with respect to the phase of the voltage vector difference. By determining whether or not there is a ground fault, it is possible to reliably determine the ground fault circuit without being affected by the leakage current that flows in the absence of a ground fault. So that it is possible.

なお、本出願人は、下記の特許文献2において、従来の順序遮断機能方式では予め遮断順序を決めているために事故回線以外の遮断が行われる可能性が大きくかつ事故除去時間も遅かったことを解決するために、高抵抗接地系統の母線に接続される回線の電流を検出し、事故が継続している時に事故の可能性の高い回線を優先的に選択して遮断することにより、事故継続時間を短縮するとともに、停電範囲を狭くして系統の復旧を容易にする保護継電装置を提案している。
特開2004−201356号公報 特開2004−297967号公報
In addition, in the following Patent Document 2, the applicant of the present invention had a high possibility of blocking other than the accident line and the accident removal time was also slow because the conventional order blocking function method determined the blocking order in advance. In order to solve the problem, the current of the line connected to the bus of the high resistance grounding system is detected, and when the accident continues, the line with high possibility of the accident is preferentially selected and cut off. We have proposed a protective relay device that shortens the duration and narrows the power outage range to facilitate system recovery.
JP 2004-201356 A JP 2004-297967 A

しかしながら、上記の特許文献1に開示されている地絡方向継電器では、分岐回路の零相電圧および零相電流の実効値および位相の変化量に基づく電圧ベクトル差および電流ベクトル差を用いて分岐回路が地絡しているか否かを判定するので、残留電流が小さい回線では有効であるかもしれないが、残留電流が大きい回線では、自回線地絡時に健全回線からの零相電流の流入があっても零相電流があまり変化しないことがあるため、検出感度を大きくする必要が生じる。このため、残留電流が大きい回線において検出感度を大きくし過ぎると誤動作をする可能性があるという問題がある。   However, in the ground fault direction relay disclosed in Patent Document 1, the branch circuit uses the voltage vector difference and the current vector difference based on the effective values of the zero-phase voltage and zero-phase current of the branch circuit and the amount of phase change. May be effective for circuits with small residual current, but for circuits with large residual current, zero-phase current may flow from the sound line when there is a ground fault. However, since the zero-phase current may not change much, it is necessary to increase the detection sensitivity. For this reason, there is a problem that malfunction may occur if the detection sensitivity is excessively increased in a line having a large residual current.

本発明の目的は、残留電流が大きくても誤動作をしないようにすることができる配電線地絡保護システムを提供することにある。   An object of the present invention is to provide a distribution line ground fault protection system capable of preventing malfunction even when a residual current is large.

本発明の配電線地絡保護システムは、母線(1)から分岐された複数の配電線(21〜24)にそれぞれ設置された複数の遮断器(51〜54)を制御して該複数の配電線を地絡事故から保護するための配電線地絡保護システム(10)であって、前記母線に設置された接地形計器用変圧器(7)から入力される零相電圧(V0)の地絡事故前後の変化量(ΔV0)と前記複数の配電線にそれぞれ設置された複数の零相変流器(61〜64)からそれぞれ入力される複数の零相電流(I01〜I04)の地絡事故前後の変化量(ΔI01〜ΔI04)とに基づいて、地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理を行う事故種別判定処理手段(12)と、該事故種別判定処理手段における判定結果に応じて、前記複数の零相電流の地絡事故前後の変化量に基づいて前記複数の遮断器のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理を行う遮断対象遮断器決定処理手段(12)とを具備することを特徴とする。
ここで、前記事故種別判定処理手段および前記遮断対象遮断器決定処理手段が、前記零相電圧が零相電圧整定値以上であることを条件として前記事故種別判定処理および前記遮断対象遮断器決定処理を行ってもよい。
前記事故種別判定処理手段が、零相電圧の地絡事故前後の変化量に対して零相電流の地絡事故前後の変化量の位相が90°程度の遅れとなっている配電線は健全回線であるとみなして前記事故種別判定処理を行い、前記遮断対象遮断器決定処理手段が、健全回線である配電線以外の配電線を流れる零相電流の地絡事故前後の変化量の総和の位相が90°程度の進みとなっている場合に、地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように前記遮断対象遮断器決定処理を行ってもよい。
前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量の位相がすべて−90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記母線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定してもよい。
前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量のうちの1つの零相電流の地絡事故前後の変化量の位相が90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記複数の配電線のうち該1つの零相電流が流れた配電線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、前記複数の遮断器のうち該1つの零相電流が流れた配電線に設置された遮断器のみを遮断するように決定してもよい。
前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量のうちの2つ以上の零相電流の地絡事故前後の変化量の総和の位相が90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記複数の配電線のうち該2つ以上の零相電流が流れた配電線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、該2つ以上の零相電流のうち地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定してもよい。
前記零相電圧が零相電圧整定値よりも小さい微地絡が前記複数の配電線において発生した場合には、前記事故種別判定処理手段が、前記複数の配電線のうち前記零相電圧の地絡事故前後の変化量に対して地絡事故前後の変化量の総和の位相が−90°±αの範囲内にない2つ以上の零相電流が流れた配電線における微地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、該2つ以上の複数の零相電流のうち地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定してもよい。
また、本発明の配電線地絡保護システムは、母線(1)から分岐された複数の配電線(21〜24)にそれぞれ設置された複数の遮断器(51〜54)を制御して該複数の配電線を地絡事故から保護するための配電線地絡保護システム(10)であって、前記母線に設置された接地形計器用変圧器(7)から入力されるアナログの零相電圧(V0)と前記複数の配電線にそれぞれ設置された複数の零相変流器(61〜64)からそれぞれ入力される複数のアナログの零相電流(I01〜I04)を所定のサンプリング周期でサンプリングしアナログ/ディジタル変換したのちに所定の周波数成分のみを抽出することにより、該アナログの零相電圧および該複数のアナログの零相電流をディジタルの零相電圧および複数のディジタルの零相電流に変換する入力処理部(11)と、該入力処理部から入力される前記ディジタルの零相電圧および前記複数のディジタルの零相電流を所定の時間間隔でメモリ(13)に格納するとともに、該メモリから読み出した地絡事故時および地絡事故前の零相電圧および複数の零相電流から求めた零相電圧の地絡事故前後の変化量(ΔV0)および複数の零相電流の地絡事故前後の変化量(ΔI01〜ΔI04)に基づいて地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理、および、前記複数の零相電流の地絡事故前後の変化量に基づいて前記複数の配電線にそれぞれ設置された複数の遮断器(51〜54)のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理を行う演算部(12)とを具備することを特徴とする。
ここで、前記演算部から入力されるかつ前記遮断する遮断器およびその順番を指示する遮断指示信号に従って、前記複数の遮断器のうち該遮断指示信号によって指示された遮断器をそれぞれ遮断するための1つ以上のトリップ信号(T1〜T4)を生成し、該生成した1つ以上のトリップ信号を該遮断指示信号によって指示された順番に出力するトリップ信号生成部(14)と、該トリップ信号生成部から入力される前記1つ以上トリップ信号を入力の順番に前記遮断指示信号によって指示された遮断器にそれぞれ出力するトリップ信号出力部(15)とをさらに具備してもよい。
零相電圧整定値を設定するための整定部(16)をさらに具備し、前記演算部が、前記零相電圧が前記零相電圧整定値以上であることを条件として前記事故種別判定処理および前記遮断対象遮断器決定処理を行ってもよい。
The distribution line ground fault protection system of the present invention controls a plurality of circuit breakers (5 1 to 5 4 ) respectively installed on a plurality of distribution lines (2 1 to 2 4 ) branched from the bus (1). A distribution line ground fault protection system (10) for protecting the plurality of distribution lines from a ground fault, which is a zero-phase voltage (7) input from a grounded instrument transformer (7) installed on the bus. V 0 ) before and after the ground fault accident (ΔV 0 ) and a plurality of zero-phase currents respectively input from a plurality of zero-phase current transformers (6 1 to 6 4 ) installed on the plurality of distribution lines. Based on the amount of change (ΔI 01 to ΔI 04 ) before and after the ground fault in (I 01 to I 04 ), the ground fault is the result of the bus ground fault, one-line simple ground fault, and different-point ground fault Accident type determination processing means (12) for performing an accident type determination process for determining which is an accident type determination processing unit A circuit breaker determination process for determining a circuit breaker to be interrupted among the plurality of circuit breakers and an order thereof is performed based on a change amount of the plurality of zero-phase currents before and after the ground fault according to a determination result in the stage. And a circuit breaker determination processing means (12) to be interrupted.
Here, the accident type determination processing means and the interruption target circuit breaker determination processing means are configured such that the accident type determination processing and the interruption target circuit breaker determination processing are performed on the condition that the zero phase voltage is equal to or higher than a zero phase voltage set value. May be performed.
The distribution line in which the phase of the change amount of the zero-phase current before and after the ground fault accident is delayed by about 90 ° with respect to the change amount of the zero phase voltage before and after the ground fault accident is a healthy line The interruption type circuit breaker determination processing means, the phase of the sum total of the amount of change before and after the ground fault of the zero-phase current flowing through the distribution line other than the distribution line that is a healthy line When the current is about 90 °, the circuit breaker to be interrupted is sequentially disconnected from the circuit breaker installed on the distribution line through which the zero-phase current having a large change amount before and after the ground fault accident flows. A determination process may be performed.
When the phases of the change amounts of the plurality of zero phase currents before and after the ground fault accident are all within a range of −90 ° ± α with respect to the change amounts of the zero phase voltage before and after the ground fault accident, the accident type determination The processing means determines that it is a ground fault in the bus, and the circuit breaker determination processing means is a circuit breaker installed on a distribution line through which a zero-phase current having a large amount of change before and after the ground fault flows. You may determine so that it may interrupt | block in order.
The phase of the change amount of the zero phase current before and after the ground fault of the plurality of zero phase currents before and after the ground fault is 90 ° with respect to the change amount of the zero phase voltage before and after the ground fault. When within the range of ± α, the accident type determination processing means determines that there is a ground fault in the distribution line in which the one zero-phase current has flowed among the plurality of distribution lines, and the interruption target interruption The circuit breaker determination processing means may determine to block only the circuit breaker installed on the distribution line through which the one zero-phase current flows among the plurality of circuit breakers.
The sum of the amount of change of two or more zero-phase currents before and after the ground fault of the plurality of zero-phase currents before and after the ground fault accident with respect to the amount of change of the zero phase voltage before and after the ground fault When the phase is in the range of 90 ° ± α, the accident type determination processing means determines that a ground fault has occurred in the distribution line in which the two or more zero-phase currents flowed among the plurality of distribution lines. Then, the circuit breaker determination processing means for breaking the circuit breaks in order from the circuit breaker installed on the distribution line through which the zero-phase current having a large change amount before and after the ground fault accident flows among the two or more zero-phase currents. You may decide to go.
When a fine ground fault in which the zero-phase voltage is smaller than the zero-phase voltage settling value occurs in the plurality of distribution lines, the accident type determination processing means is configured to cause the zero-phase voltage ground in the plurality of distribution lines. This is a micro ground fault in a distribution line in which two or more zero-phase currents that are not in the range of −90 ° ± α of the sum of the amount of change before and after the ground fault accident with respect to the amount of change before and after the fault accident. From the circuit breaker installed on the distribution line through which the zero-phase current having a large amount of change before and after the ground fault among the two or more zero-phase currents flows. You may determine so that it may interrupt | block in order.
Also, distribution line ground fault protection system of the present invention, controls the bus (1) a plurality of distribution lines branched from (21 to 24) to respectively installed a plurality of circuit breakers (5 1 to 5 4) And a distribution line ground fault protection system (10) for protecting the plurality of distribution lines from a ground fault, and an analog input from a grounded instrument transformer (7) installed on the bus. A plurality of analog zero-phase currents (I 01 to I 04 ) respectively input from a zero-phase voltage (V 0 ) and a plurality of zero-phase current transformers (6 1 to 6 4 ) respectively installed on the plurality of distribution lines. ) At a predetermined sampling period and analog / digital conversion, and then extracting only a predetermined frequency component, thereby converting the analog zero-phase voltage and the plurality of analog zero-phase currents into a digital zero-phase voltage and a plurality of analog zero-phase voltages. For digital zero-phase current An input processing unit (11) for switching, and the digital zero-phase voltage and the plurality of digital zero-phase currents input from the input processing unit are stored in a memory (13) at predetermined time intervals, and the memory The amount of change (ΔV 0 ) of the zero-phase voltage before and after the ground-fault accident and the ground-fault accidents of the plurality of zero-phase currents obtained from the zero-phase voltage and the plurality of zero-phase currents before and after the ground fault An accident type determination process for determining whether the ground fault is a bus ground fault, one-line simple ground fault, or different-point ground fault accident based on the amount of change (ΔI 01 to ΔI 04 ) before and after, , determine the breakers and the order to block the plurality of zero-phase current multiple breakers installed respectively ground fault based on the amount of change before and after the plurality of distribution lines (5 1 to 5 4) Perform the target circuit breaker decision process Characterized by comprising a calculation unit (12).
Here, according to the breaker instruction signal that is input from the calculation unit and that interrupts the breaker and the order of the breaker, the breaker instructed by the breaker instruction signal among the plurality of breakers one or more generates a trip signal (T 1 through T 4), trip signal generating unit for one or more trip signal thus generated is output in the order designated by the blocking instruction signal (14), said trip A trip signal output unit (15) that outputs the one or more trip signals input from the signal generation unit to the circuit breakers instructed by the interruption instruction signal in the order of input may be further provided.
And further comprising a settling unit (16) for setting a zero-phase voltage settling value, wherein the calculation unit sets the accident type determination process and the condition on the condition that the zero-phase voltage is not less than the zero-phase voltage settling value. A circuit breaker determination process may be performed.

本発明の配電線地絡保護システムは、以下に示す効果を奏する。
(1)零相電圧の地絡事故前後の変化量と複数の零相電流の地絡事故前後の変化量とに基づいて地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理を行うとともに、事故種別判定処理における判定結果に応じて、複数の零相電流の地絡事故前後の変化量に基づいて複数の遮断器のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理を行うことにより、残留電流が大きくても誤動作をしないようにすることができる。
(2)零相電圧が零相電圧整定値以上であることを条件として事故種別判定処理および遮断対象遮断器決定処理を行うことにより、地絡方向継電装置と地絡過電圧継電装置とを一体化することができる。
(3)母線地絡事故の場合に複数の零相電流のうち地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくことにより、母線を他の母線と並用しても地絡順序遮断を確実に行うことができる。
The distribution line ground fault protection system of the present invention has the following effects.
(1) Based on the amount of change in the zero-phase voltage before and after the ground fault and the amount of change in the multiple zero-phase currents before and after the ground fault, the ground fault is a bus ground fault, one-line simple ground fault, and different points. Accident type determination processing is performed to determine which of the different-phase ground faults, and a plurality of interruptions are performed based on the amount of change of the zero-phase currents before and after the ground fault accident according to the determination result in the accident type determination processing. By performing the circuit breaker determination process for determining the circuit breaker to be interrupted and the order of the circuit breakers, it is possible to prevent malfunction even if the residual current is large.
(2) The ground fault direction relay device and the ground fault overvoltage relay device can be obtained by performing the accident type determination process and the breaker circuit breaker determination process on condition that the zero phase voltage is equal to or higher than the zero phase voltage settling value. Can be integrated.
(3) In the case of a bus ground fault, by sequentially shutting off from the circuit breaker installed on the distribution line through which the zero phase current with a large amount of change before and after the ground fault accident flows among the multiple zero phase currents, Even if the bus is used in parallel with other buses, the ground fault sequence can be reliably cut off.

上記の目的を、零相電圧の地絡事故前後の変化量と複数の零相電流の地絡事故前後の変化量とに基づいて地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定するとともに、事故種別判定処理における判定結果に応じて、複数の零相電流の地絡事故前後の変化量に基づいて複数の遮断器のうち遮断する遮断器およびその順番を決定することにより実現した。   Based on the amount of change of the zero-phase voltage before and after the ground-fault accident and the amount of change of the plurality of zero-phase currents before and after the ground-fault accident, the ground-fault accident is a bus-ground fault, one-line simple ground fault, and Determine which of the different-phase out-of-phase ground-fault accidents, and break out of the multiple circuit breakers based on the amount of change of the zero-phase current before and after the ground-fault accident according to the determination result in the accident type determination process This was achieved by determining the circuit breakers to perform and their order.

以下、本発明の配電線地絡保護システムの実施例について、図面を参照して説明する。
本発明の一実施例による配電線地絡保護システム10は、図1に示すように、母線1に設置された接地形計器用変圧器(GPT)7から入力される零相電圧V0と、母線1から分岐された第1乃至第4の配電線21〜24にそれぞれ設置された第1乃至第4の零相変流器(ZCT)61〜64からそれぞれ入力される第1乃至第4の零相電流I01〜I04とに基づいて、第1乃至第4の配電線21〜24にそれぞれ設置された第1乃至第4の遮断器(CB)51〜54を制御するものである。
Embodiments of the distribution line ground fault protection system of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, a distribution line ground fault protection system 10 according to an embodiment of the present invention includes a zero-phase voltage V 0 input from a grounded instrument transformer (GPT) 7 installed on the bus 1, First input from first to fourth zero-phase current transformers (ZCT) 6 1 to 6 4 respectively installed in first to fourth distribution lines 2 1 to 2 4 branched from the bus 1. 1st to 4th circuit breakers (CB) 5 1 to 5 respectively installed in the 1st to 4th distribution lines 2 1 to 2 4 based on 1st to 4th zero phase currents I 01 to I 04 4 is controlled.

配電線地絡保護システム10は、図2に示すように、入力処理部11と、演算部12と、メモリ13と、トリップ信号生成部14と、トリップ信号出力部15と、整定部16と、整定指令入出力部17と、伝送制御部18とを具備する。   As shown in FIG. 2, the distribution line ground fault protection system 10 includes an input processing unit 11, a calculation unit 12, a memory 13, a trip signal generation unit 14, a trip signal output unit 15, a settling unit 16, A setting command input / output unit 17 and a transmission control unit 18 are provided.

入力処理部11は、零相電圧V0および第1乃至第4の零相電流I01〜I04を所定のサンプリング周期でサンプリングしアナログ/ディジタル変換したのちに所定の周波数成分(たとえば、商用周波数60Hz成分)のみを抽出することにより、アナログの零相電圧V0およびアナログの第1乃至第4の零相電流I01〜I04をディジタルの零相電圧V0およびディジタルの第1乃至第4の零相電流I01〜I04に変換する。 The input processing unit 11 samples the zero-phase voltage V 0 and the first to fourth zero-phase currents I 01 to I 04 at a predetermined sampling period, performs analog / digital conversion, and then performs a predetermined frequency component (for example, a commercial frequency). By extracting only the 60 Hz component), the analog zero-phase voltage V 0 and the analog first to fourth zero-phase currents I 01 to I 04 are converted into the digital zero-phase voltage V 0 and the first to fourth digital zero-phase voltages. To zero-phase currents I 01 to I 04 .

演算部12は、入力処理部11から入力されるディジタルの零相電圧V0およびディジタルの第1乃至第4の零相電流I01〜I04を所定の時間間隔でメモリ13に格納する。このとき、演算部12は、地絡事故前のディジタルの零相電圧V0(残留零相電圧)およびディジタルの第1乃至第4の零相電流I01〜I04(残留零相電流)も格納する。
また、演算部12は、メモリ13から読み出した地絡事故時および地絡事故前の零相電圧V0および第1乃至第4の零相電流I01〜I04から求めた零相電圧V0の地絡事故前後の変化量(ベクトル差)ΔV0(以下、「零相電圧変化量ΔV0」と称する。)および第1乃至第4の零相電流I01〜I04の地絡事故前後の変化量(ベクトル差)ΔI01〜ΔI04(以下、「第1乃至第4の零相電流変化量ΔI01〜ΔI04」と称する。)に基づいて地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理と、第1乃至第4の零相電流変化量ΔI01〜ΔI04に基づいて第1乃至第4の遮断器51〜54のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理とを行う。
The arithmetic unit 12 stores the digital zero-phase voltage V 0 and the digital first to fourth zero-phase currents I 01 to I 04 input from the input processing unit 11 in the memory 13 at predetermined time intervals. At this time, the calculation unit 12 also calculates the digital zero-phase voltage V 0 (residual zero-phase voltage) and the digital first to fourth zero-phase currents I 01 to I 04 (residual zero-phase current) before the ground fault. Store.
The arithmetic unit 12 is zero-phase voltage obtained from a ground fault time and ground fault before the zero-phase voltage V 0 and the first to fourth zero-phase currents I 01 ~I 04 read from the memory 13 V 0 Change (vector difference) ΔV 0 (hereinafter referred to as “zero phase voltage change amount ΔV 0 ”) before and after the ground fault accident and ground fault accident before and after the first to fourth zero phase currents I 01 to I 04 On the basis of the change amount (vector difference) ΔI 01 to ΔI 04 (hereinafter referred to as “first to fourth zero-phase current change amounts ΔI 01 to ΔI 04 ”). First to fourth based on an accident type determination process for determining whether a line simple ground fault or a different-point different-phase ground fault and the first to fourth zero-phase current variations ΔI 01 to ΔI 04 breaker for interrupting of the circuit breaker 5 1 to 5 4 and performing the blocking target breaker determination process for determining the order.

このとき、演算部12は、零相電圧V0が整定部16から入力される零相電圧整定値以上であることを条件として(すなわち、地絡過電圧継電装置の動作を前提とすることにより、地絡過電圧継電装置の機能を持たせる。)、以下に示す考え方に基づいて事故種別判定処理を行う。
図3(a)に一例を示すように、地絡事故が生じた配電線(地絡回線)を流れる零相電流の地絡事故前後の変化量の総和(ベクトル和)ΔI0i1+ΔI0i2の位相は零相電圧変化量ΔV0に対して90°程度進む。また、図3(b)に一例を示すように、地絡事故が生じていない配電線(健全回線)を流れる零相電流の地絡事故前後の変化量ΔI001〜ΔI004の位相は零相電圧変化量ΔV0に対して90°程度遅れる。
そこで、零相電圧変化量ΔV0に対して地絡事故前後の変化量の位相が90°程度の遅れとなっている配電線は健全回線であるとみなす。
一方、健全回線である配電線以外の配電線を流れる零相電流の地絡事故前後の変化量の総和の位相が90°程度の進みとなっている場合には、地絡事故前後の変化量が大きい(すなわち、地絡事故前後の変化量の振幅が大きい)零相電流が流れた配電線に設置された遮断器から順番に遮断していく。
なお、地絡事故前後の変化量(零相電流変化量)とするのは、残留零相電流の影響を除去するためである。
At this time, the arithmetic unit 12 is based on the condition that the zero-phase voltage V 0 is equal to or higher than the zero-phase voltage set value input from the settling unit 16 (that is, on the premise of the operation of the ground fault overvoltage relay device). The function of the ground fault overvoltage relay device is provided.) The accident type determination processing is performed based on the following concept.
As shown in FIG. 3 (a) as an example, the phase of the total sum (vector sum) ΔI 0i1 + ΔI 0i2 of the amount of change of the zero-phase current flowing through the distribution line (ground fault line) where the ground fault has occurred before and after the ground fault Advances about 90 ° with respect to the zero-phase voltage variation ΔV 0 . Further, as shown in FIG. 3B, for example, the phase of the change amounts ΔI 001 to ΔI 004 before and after the ground fault of the zero phase current flowing through the distribution line (sound line) where no ground fault has occurred is zero phase. It is delayed by about 90 ° with respect to the voltage change amount ΔV 0 .
Therefore, the distribution line in which the phase of the change amount before and after the ground fault accident is delayed by about 90 ° with respect to the zero-phase voltage change amount ΔV 0 is regarded as a healthy line.
On the other hand, if the phase of the sum of the amount of change of the zero-phase current flowing through the distribution line other than the distribution line that is a healthy line is about 90 °, the amount of change before and after the ground fault The circuit breaker is cut off in order from the circuit breaker installed on the distribution line through which the zero-phase current has flowed (that is, the amplitude of the change amount before and after the ground fault is large).
The change amount before and after the ground fault (zero phase current change amount) is used to remove the influence of the residual zero phase current.

したがって、図1に示した電力系統においては、演算部12は、零相電圧V0が整定部16から入力される零相電圧整定値以上であることを条件として、以下のようにして事故種別判定処理および遮断対象遮断器決定処理を行う。 Therefore, in the electric power system shown in FIG. 1, the arithmetic unit 12 performs the following operation on the condition that the zero-phase voltage V 0 is equal to or higher than the zero-phase voltage set value input from the settling unit 16 as follows. Judgment processing and breaking target circuit breaker determination processing are performed.

(1)母線地絡事故
図4(a)に示すように、零相電圧変化量ΔV0に対して第1乃至第4の零相電流変化量ΔI01〜ΔI04(全回線の零相電流)の位相がすべて−90°±α(たとえば、α=10°)の範囲内にある場合には、演算部12は、母線1における地絡事故(母線地絡事故)であると判定する。
また、演算部12は、地絡事故時の第1乃至第4の零相電流I01〜I04と地絡事故前の第1乃至第4の零相電流I01〜I04(残留零相電流)とをメモリ13から読み出して、前者と後者とのベクトル差を求めることにより第1乃至第4の零相電流変化量ΔI01〜ΔI04を求め、求めた零相電流変化量が大きい順番に第1乃至第4の遮断器51〜54を遮断するように指示する遮断指示信号を生成する。
(1) Bus ground fault As shown in FIG. 4 (a), the first to fourth zero-phase current changes ΔI 01 to ΔI 04 (zero-phase currents of all lines) with respect to the zero-phase voltage change ΔV 0 . ) Are all within a range of −90 ° ± α (for example, α = 10 °), the calculation unit 12 determines that a ground fault has occurred on the bus 1 (bus ground fault).
The calculation unit 12 also includes the first to fourth zero-phase currents I 01 to I 04 at the time of the ground fault and the first to fourth zero-phase currents I 01 to I 04 (the residual zero phase before the ground fault). Current) is read from the memory 13, and the vector difference between the former and the latter is obtained to obtain the first to fourth zero-phase current change amounts ΔI 01 to ΔI 04 , and the obtained zero-phase current change amounts are in descending order. A cutoff instruction signal for instructing to shut off the first to fourth breakers 5 1 to 5 4 is generated.

(2)1回線単純地絡事故
零相電圧変化量ΔV0に対して第1乃至第4の零相電流変化量ΔI01〜ΔI04のうちの1つの零相電流変化量の位相が−90°±αの範囲内にない場合には、演算部12は、第1乃至第4の配電線21〜24のうちこの零相電流が流れた配電線における地絡事故(1回線単純地絡事故)であると判定するとともに、第1乃至第4の遮断器51〜54のうちこの配電線に設置された遮断器のみを遮断するように指示する遮断指示信号を生成する。
たとえば、図4(b)に示すように、零相電圧変化量ΔV0に対して第1の零相電流変化量ΔI01の位相が90°±αの範囲内にある場合には、演算部12は、第1の配電線21における地絡事故であると判定するとともに、第1の遮断器51のみを遮断するように指示する遮断指示信号を生成する。
(2) One-line simple ground fault A phase of one zero-phase current change amount among the first to fourth zero-phase current change amounts ΔI 01 to ΔI 04 with respect to the zero-phase voltage change amount ΔV 0 is −90. If not within the range of ±± α, the calculation unit 12 causes the ground fault in the distribution line in which the zero-phase current flows among the first to fourth distribution lines 2 1 to 2 4 (single line simple ground). together determined to be fault accident), it generates a blocking instruction signal instructing to block only the installed circuit breaker to the first to the distribution line of the fourth breaker 5 1 to 5 4.
For example, as shown in FIG. 4B, when the phase of the first zero-phase current change amount ΔI 01 is within the range of 90 ° ± α with respect to the zero-phase voltage change amount ΔV 0 , 12 determines that it is a ground fault in the first distribution line 2 1, and generates an interruption instruction signal instructing to interrupt only the first circuit breaker 5 1 .

(3)異地点異相地絡事故
零相電圧変化量ΔV0に対して第1乃至第4の零相電流変化量ΔI01〜ΔI04のうちの2つ以上の零相電流変化量の総和の位相が90°±αの範囲内にある場合には、演算部12は、第1乃至第4の配電線21〜24のうちこれらの零相電流が流れた配電線における地絡事故(異地点異相地絡事故)であると判定する。
たとえば、図4(c)に示すように、零相電圧変化量ΔV0に対して第1および第2の零相電流変化量ΔI01,ΔI02の総和ΔI01+ΔI02の位相が90°±αの範囲内にある場合には、演算部12は、第1および第2の配電線21,22における地絡事故であると判定する。
また、演算部12は、零相電圧変化量ΔV0に対して零相電流変化量の位相が−90°±α内にない2つ以上の零相電流のうち零相電流変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように指示する遮断指示信号を生成する。
たとえば、図4(c)に示した例において、第2の零相電流変化量ΔI02の方が第1の零相電流変化量ΔI01よりも大きい場合には、第2の遮断器52および第1の遮断器51の順番に遮断していくように指示する遮断指示信号を生成する。
(3) Different-point / out-of-phase ground fault A total of two or more zero-phase current variations among the first to fourth zero-phase current variations ΔI 01 to ΔI 04 with respect to the zero-phase voltage variation ΔV 0 When the phase is in the range of 90 ° ± α, the calculation unit 12 causes a ground fault in the distribution line in which these zero-phase currents flow among the first to fourth distribution lines 2 1 to 2 4 ( It is determined that it is a different point ground fault accident).
For example, as shown in FIG. 4C, the phase of the sum ΔI 01 + ΔI 02 of the first and second zero-phase current changes ΔI 01 and ΔI 02 with respect to the zero-phase voltage change ΔV 0 is 90 ° ±. When it is within the range of α, the calculation unit 12 determines that a ground fault has occurred in the first and second distribution lines 2 1 and 2 2 .
In addition, the calculation unit 12 has a zero-phase current change amount which is large among two or more zero-phase currents whose phase of the zero-phase current change amount is not within −90 ° ± α with respect to the zero-phase voltage change amount ΔV 0 . A breaking instruction signal is generated to instruct to break in order from a breaker installed on the distribution line through which the phase current flows.
For example, in the example shown in FIG. 4C, when the second zero-phase current change amount ΔI 02 is larger than the first zero-phase current change amount ΔI 01 , the second circuit breaker 5 2. And the interruption | blocking instruction | indication signal which instruct | indicates to interrupt | block in order of the 1st circuit breaker 51 is produced | generated.

トリップ信号生成部14は、演算部12から入力される遮断指示信号に従って、第1乃至第4の遮断器51〜54のうちの遮断指示信号によって指示された1つ以上の遮断器をそれぞれ遮断するための1つ以上のトリップ信号(第1乃至第4のトリップ信号T1〜T4のうちの1つ以上)を生成し、生成した1つ以上のトリップ信号を遮断指示信号によって指示された順番に出力する。
トリップ信号出力部15は、トリップ信号生成部14から入力される1つ以上のトリップ信号を第1乃至第4の遮断器51〜54のうちの遮断指示信号によって指示された1つ以上の遮断器にそれぞれ出力する。
The trip signal generation unit 14 sets one or more circuit breakers instructed by the interruption instruction signal among the first to fourth circuit breakers 5 1 to 5 4 according to the interruption instruction signal input from the arithmetic unit 12. One or more trip signals (one or more of the first to fourth trip signals T 1 to T 4 ) for generating the cutoff are generated, and the generated one or more trip signals are instructed by the cutoff instruction signal. Are output in the order they are specified.
The trip signal output unit 15 receives one or more trip signals input from the trip signal generation unit 14 by one or more of the first to fourth circuit breakers 5 1 to 5 4 instructed by the interruption instruction signal. Output to each circuit breaker.

整定部16は、中央監視装置などから伝送制御部18および整定指令入出力部17を介して送られてくる整定指令信号に応じて、零相電圧整定値および第1乃至第4の零相電流整定値を設定する。   The settling unit 16 receives the zero-phase voltage set value and the first to fourth zero-phase currents in response to a set command signal sent from the central monitoring device or the like via the transmission control unit 18 and the set command input / output unit 17. Set the settling value.

整定指令入出力部17は、中央監視装置などからの整定指令信号および試験指令信号などを伝送制御部18から受け取ったり、整定部16から入力される整定指令信号、整定記録データおよび試験記録データなどを中央監視装置などに伝送制御部18を介して送信したりする。
伝送制御部18は、中央監視装置などとの間で各種の信号を無線で送受信する。
The settling command input / output unit 17 receives a settling command signal and a test command signal from a central monitoring device or the like from the transmission control unit 18, a settling command signal input from the settling unit 16, settling recording data, test recording data, and the like. Is transmitted to the central monitoring device or the like via the transmission control unit 18.
The transmission control unit 18 wirelessly transmits and receives various signals to and from the central monitoring device.

次に、配電線地絡保護システム10の動作について、図5に示すフローチャートを参照して説明する。
配電線地絡保護システム10の入力処理部11は、接地形計器用変圧器7から入力されるアナログの零相電圧V0と第1乃至第4の零相変流器61〜64からそれぞれ入力されるアナログの第1乃至第4の零相電流I01〜I04とを所定のサンプリング周期でサンプリングしアナログ/ディジタル変換したのちに所定の周波数成分のみを抽出することにより、ディジタルの零相電圧V0およびディジタルの第1乃至第4の零相電流I01〜I04を生成し、生成したディジタルの零相電圧V0およびディジタルの第1乃至第4の零相電流I01〜I04を演算部12に出力する(ステップS11)。
Next, the operation of the distribution line ground fault protection system 10 will be described with reference to the flowchart shown in FIG.
The input processing unit 11 of the distribution line ground fault protection system 10 includes an analog zero-phase voltage V 0 input from the grounded-type instrument transformer 7 and first to fourth zero-phase current transformers 6 1 to 6 4. The analog first to fourth zero-phase currents I 01 to I 04 that are respectively input are sampled at a predetermined sampling period, and after analog / digital conversion, only a predetermined frequency component is extracted, thereby obtaining a digital zero. first to phase voltages V 0 and digital to generate a fourth zero-phase current I 01 ~I 04, generated first through the digital zero-phase voltage V 0 and the digital-fourth zero-phase current I 01 ~I 04 is output to the calculation unit 12 (step S11).

演算部12は、入力処理部11から入力される零相電圧V0および第1乃至第4の零相電流I01〜I04を所定の時間間隔でメモリ13に格納する。
また、演算部12は、零相電圧V0および第1乃至第4の零相電流I01〜I04に基づいて地絡事故が発生したか否かをチェックする(ステップS12)。
The calculation unit 12 stores the zero-phase voltage V 0 and the first to fourth zero-phase currents I 01 to I 04 input from the input processing unit 11 in the memory 13 at predetermined time intervals.
In addition, the arithmetic unit 12 checks whether or not a ground fault has occurred based on the zero-phase voltage V 0 and the first to fourth zero-phase currents I 01 to I 04 (step S12).

その結果、地絡事故が発生していると判定すると、演算部12は、零相電圧V0が零相電圧整定値以上であるか否かをチェックして、零相電圧V0が零相電圧整定値以上であると上述した事故種別判定処理を行う(ステップS13)。 As a result, if it is determined that a ground fault has occurred, the computing unit 12 checks whether the zero-phase sequence voltage V 0 is the zero-phase voltage set value or more, the zero-phase voltage V 0 is the zero-phase The accident type determination process described above is performed when the voltage is equal to or greater than the voltage set value (step S13).

演算部12は、地絡事故が母線地絡事故であると判定すると、上述した遮断対象遮断器決定処理を行って、第1乃至第4の零相電流変化量ΔI01〜ΔI04が大きい順番に第1乃至第4の遮断器51〜54を遮断するように指示する遮断指示信号を生成し、生成した遮断指示信号をトリップ信号生成部14に出力する(ステップS14)。
たとえば第1の零相電流変化量ΔI01から第4の零相電流変化量ΔI04の順番で大きい場合には、トリップ信号生成部14は、遮断指示信号に従って、第1乃至第4の遮断器51〜54をそれぞれ遮断するための第1乃至第4のトリップ信号T1〜T4を生成したのち、生成した第1乃至第4のトリップ信号T1〜T4を第1トリップ信号T1から第4のトリップ信号T4の順番でトリップ信号出力部15に出力する。
トリップ信号出力部15は、第1乃至第4のトリップ信号T1〜T4をトリップ信号生成部14から送られてくる順番で第1乃至第4の遮断器51〜54にそれぞれ出力する(ステップS17)。
When the calculation unit 12 determines that the ground fault is a bus ground fault, the calculation unit 12 performs the above-described circuit breaker determination process, and the first to fourth zero-phase current change amounts ΔI 01 to ΔI 04 are in descending order. the first to fourth breaker 5 1 to 5 4 to generate a blocking instruction signal instructing to block, and outputs the generated power off instructing signal to the trip signal generator 14 (step S14).
For example, when the first zero-phase current change amount ΔI 01 is large in the order of the fourth zero-phase current change amount ΔI 04 , the trip signal generation unit 14 performs the first to fourth circuit breakers according to the cut-off instruction signal. After generating the first to fourth trip signals T 1 to T 4 for cutting off 5 1 to 5 4 , respectively, the generated first to fourth trip signals T 1 to T 4 are used as the first trip signal T. output from the 1 to the trip signal output section 15 in the fourth order of the trip signal T 4.
The trip signal output unit 15 outputs the first to fourth trip signals T 1 to T 4 to the first to fourth circuit breakers 5 1 to 5 4 in the order sent from the trip signal generation unit 14, respectively. (Step S17).

また、演算部12は、地絡事故が第1乃至第4の配電線21〜24のいずれか1つで発生した1回線単純地絡事故であると判定すると、上述した遮断対象遮断器決定処理を行って、第1乃至第4の遮断器51〜54のうち地絡事故が発生した配電線に設置された遮断器のみを遮断するように指示する遮断指示信号を生成し、生成した遮断指示信号をトリップ信号生成部14に出力する(ステップS15)。
たとえば第3の配電線23で地絡事故が発生したと判定した場合には、トリップ信号生成部14は、遮断指示信号に従って、第3の遮断器53を遮断するための第3のトリップ信号T3のみを生成したのち、生成した第3のトリップ信号T3をトリップ信号出力部15に出力する。
トリップ信号出力部15は、第3のトリップ信号T3を第3の遮断器53に出力する(ステップS17)。
When the arithmetic unit 12 determines that the ground fault is a one-line simple ground fault occurring in any one of the first to fourth distribution lines 2 1 to 2 4 , the circuit breaker to be interrupted as described above. A determination process is performed to generate a cut-off instruction signal instructing to cut off only the breaker installed in the distribution line in which the ground fault has occurred among the first to fourth breakers 5 1 to 5 4 . The generated cutoff instruction signal is output to the trip signal generator 14 (step S15).
For example, when the third earth fault in distribution line 2 3 is determined to have occurred, the trip signal generator 14, in accordance with power off instructing signal, a third trip to cut off the third circuit breakers 5 3 After generating only the signal T 3 , the generated third trip signal T 3 is output to the trip signal output unit 15.
Trip signal output unit 15 outputs the third trip signal T 3 in the third circuit breakers 5 3 (step S17).

さらに、演算部12は、地絡事故が第1乃至第4の配電線21〜24の2つ以上で発生した異地点異相地絡事故であると判定すると、上述した遮断対象遮断器決定処理を行って、第1乃至第4の遮断器51〜54のうち地絡事故が発生した2つ以上の配電線に設置された遮断器を、零相電流変化量が大きい零相電流が流れた配電線に設置されたものから順番に遮断していくように指示する遮断指示信号を生成し、生成した遮断指示信号をトリップ信号生成部14に出力する(ステップS16)。
たとえば第2および第4の配電線22,24で発生した異地点異相地絡事故であると判定し、第4の零相電流変化量ΔI04の方が第2の零相電流変化量ΔI02よりも大きい場合には、トリップ信号生成部14は、遮断指示信号に従って、第2および第4の遮断器52,54をそれぞれ遮断するための第2および第4のトリップ信号T2,T4を生成したのち、生成した第2および第4のトリップ信号T2,T4を第4のトリップ信号T4および第2のトリップ信号T2の順番でトリップ信号出力部15に出力する。
トリップ信号出力部15は、第4のトリップ信号T4を第4の遮断器54に出力したのち、第2のトリップ信号T2を第2の遮断器52に出力する(ステップS17)。
Furthermore, if the arithmetic unit 12 determines that the ground fault is a different-point, out-of-phase ground fault that has occurred in two or more of the first to fourth distribution lines 2 1 to 24, the above-described circuit breaker to be interrupted is determined. The circuit breakers installed in the two or more distribution lines where the ground fault has occurred among the first to fourth circuit breakers 5 1 to 5 4 are processed, and the zero phase current having a large amount of change in the zero phase current A shutoff instruction signal is generated to instruct to shut off in order from the one installed on the distribution line through which the current flows, and the generated shutoff instruction signal is output to the trip signal generation unit 14 (step S16).
For example, it is determined that a different-point / out-of-phase ground fault has occurred in the second and fourth distribution lines 2 2 and 2 4 , and the fourth zero-phase current variation ΔI 04 is the second zero-phase current variation. When it is larger than ΔI 02 , the trip signal generation unit 14 second and fourth trip signals T 2 for shutting off the second and fourth circuit breakers 5 2 and 5 4 , respectively, according to the shut-off instruction signal. , T 4 are generated, and the generated second and fourth trip signals T 2 , T 4 are output to the trip signal output unit 15 in the order of the fourth trip signal T 4 and the second trip signal T 2. .
Trip signal output unit 15 outputs the fourth trip signal T 4 after outputted to the fourth circuit breaker 5 4, the second trip signal T 2 to the second circuit breaker 5 2 (step S17).

なお、零相電圧V0が零相電圧整定値よりも小さい微地絡が第1乃至第4の配電線21〜24において発生した場合には、演算部12が異地点異相地絡事故時と同じ事故種別判定処理および遮断対象遮断器決定処理を行って、零相電流変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくようにしてもよい。 Incidentally, the zero-phase voltage V 0 is less finely ground than the zero-phase voltage set point is in the event of the first to fourth distribution line 2 1 to 2 4, the arithmetic unit 12 is different point hetero-phase ground fault Perform the same accident type determination process and breaker target breaker determination process as at the same time so that the circuit breakers are shut off in order from the breaker installed on the distribution line through which the zero-phase current flow is large. Good.

本発明の一実施例による配電線地絡保護システム10が使用される電力系統について説明するための図である。It is a figure for demonstrating the electric power grid | system in which the distribution line ground fault protection system 10 by one Example of this invention is used. 図1に示した配電線地絡保護システム10の構成を示すブロック図である。It is a block diagram which shows the structure of the distribution line ground fault protection system 10 shown in FIG. 図2に示した演算部12における事故種別判定処理の基になる考え方について説明するための図である。It is a figure for demonstrating the concept used as the basis of the accident classification determination process in the calculating part 12 shown in FIG. 図2に示した演算部12における事故種別判定処理および遮断対象遮断器決定処理について説明するための図である。It is a figure for demonstrating the accident classification determination process and the interruption | blocking object circuit breaker determination process in the calculating part 12 shown in FIG. 図1に示した配電線地絡保護システム10の動作について説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the distribution line ground fault protection system 10 shown in FIG.

符号の説明Explanation of symbols

1 母線
1〜24 第1乃至第4の配電線
3 変圧器
4 変圧器二次遮断器
1〜54 第1乃至第4の遮断器
1〜64 第1乃至第4の零相変流器
7 接地形計器用変圧器
10 配電線地絡保護システム
11 入力処理部
12 演算部
13 メモリ
14 トリップ信号生成部
15 トリップ信号出力部
16 整定部
17 整定指令入出力部
18 伝送制御部
0 零相電圧
ΔV0 零相電圧変化量
ΔI0 零相電流変化量
01〜I04 第1乃至第4の零相電流
ΔI01〜ΔI04 第1乃至第4の零相電流変化量
ΔI0i1,ΔI0i2,ΔI001〜ΔI004 零相電流の地絡事故前後の変化量
1〜T4 第1乃至第4のトリップ信号
S11〜S17 ステップ
1 Busbar 2 1 to 2 4 First to Fourth Distribution Lines 3 Transformer 4 Transformer Secondary Circuit Breaker 5 1 to 5 4 First to Fourth Circuit Breaker 6 1 to 6 4 First to Fourth Zero Phase transformer 7 Grounding-type instrument transformer 10 Distribution line ground fault protection system 11 Input processing unit 12 Calculation unit 13 Memory 14 Trip signal generation unit 15 Trip signal output unit 16 Setting unit 17 Setting command input / output unit 18 Transmission control unit V 0 Zero-phase voltage ΔV 0 Zero-phase voltage change amount ΔI 0 Zero-phase current change amount I 01 to I 04 First to fourth zero-phase current ΔI 01 to ΔI 04 First to fourth zero-phase current change amount ΔI 0i1, ΔI 0i2, ΔI 001 ~ΔI 004 amount of change earth fault before and after the zero-phase current T 1 through T 4 first to fourth trip signal S11~S17 step

Claims (10)

母線(1)から分岐された複数の配電線(21〜24)にそれぞれ設置された複数の遮断器(51〜54)を制御して該複数の配電線を地絡事故から保護するための配電線地絡保護システム(10)であって、
前記母線に設置された接地形計器用変圧器(7)から入力される零相電圧(V0)の地絡事故前後の変化量(ΔV0)と前記複数の配電線にそれぞれ設置された複数の零相変流器(61〜64)からそれぞれ入力される複数の零相電流(I01〜I04)の地絡事故前後の変化量(ΔI01〜ΔI04)とに基づいて、地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理を行う事故種別判定処理手段(12)と、
該事故種別判定処理手段における判定結果に応じて、前記複数の零相電流の地絡事故前後の変化量に基づいて前記複数の遮断器のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理を行う遮断対象遮断器決定処理手段(12)と、
を具備することを特徴とする、配電線地絡保護システム。
Protect the multiple distribution lines from ground faults by controlling the multiple circuit breakers (5 1 to 5 4 ) installed on the multiple distribution lines (2 1 to 2 4 ) branched from the bus (1). Distribution line ground fault protection system (10) for
The amount of change (ΔV 0 ) before and after the ground fault of the zero-phase voltage (V 0 ) input from the grounded-type instrument transformer (7) installed on the bus and a plurality of installed respectively on the plurality of distribution lines Based on the amount of change (ΔI 01 to ΔI 04 ) before and after the ground fault of a plurality of zero phase currents (I 01 to I 04 ) respectively input from the zero phase current transformers (6 1 to 6 4 ) of An accident type determination processing means (12) for performing an accident type determination process for determining whether the ground fault is a bus ground fault, a single-line simple ground fault, or a different-point different-phase ground fault;
According to the determination result in the accident type determination processing means, the circuit breaker to be disconnected among the plurality of circuit breakers based on the amount of change of the plurality of zero-phase currents before and after the ground fault and the interruption target interruption for determining the order thereof Circuit breaker determination processing means (12) for performing circuit determination processing,
A distribution line ground fault protection system, comprising:
前記事故種別判定処理手段および前記遮断対象遮断器決定処理手段が、前記零相電圧が零相電圧整定値以上であることを条件として前記事故種別判定処理および前記遮断対象遮断器決定処理を行うことを特徴とする、請求項1記載の配電線地絡保護システム。   The accident type determination processing means and the breaker breaker determination processing means perform the accident type determination process and the breaker breaker determination process on condition that the zero phase voltage is equal to or higher than a zero phase voltage set value. The distribution line ground fault protection system according to claim 1, wherein: 前記事故種別判定処理手段が、零相電圧の地絡事故前後の変化量に対して零相電流の地絡事故前後の変化量の位相が90°程度の遅れとなっている配電線は健全回線であるとみなして前記事故種別判定処理を行い、
前記遮断対象遮断器決定処理手段が、健全回線である配電線以外の配電線を流れる零相電流の地絡事故前後の変化量の総和の位相が90°程度の進みとなっている場合に、地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように前記遮断対象遮断器決定処理を行う、
ことを特徴とする、請求項1または2記載の配電線地絡保護システム。
The distribution line in which the phase of the change amount of the zero-phase current before and after the ground fault accident is delayed by about 90 ° with respect to the change amount of the zero phase voltage before and after the ground fault accident is a healthy line The accident type determination process,
When the circuit breaker determination processing means to be interrupted is a phase of the sum total of the amount of change before and after the ground fault accident of the zero-phase current flowing through the distribution line other than the distribution line that is a healthy line, The circuit breaker determination process to be interrupted is performed so that the circuit breaker is sequentially disconnected from the circuit breaker installed in the distribution line through which the zero phase current having a large change amount before and after the ground fault accident flows
The distribution line ground fault protection system according to claim 1 or 2, characterized by the above.
前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量の位相がすべて−90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記母線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定することを特徴とする、請求項3記載の配電線地絡保護システム。   When the phases of the change amounts of the plurality of zero phase currents before and after the ground fault accident are all within a range of −90 ° ± α with respect to the change amounts of the zero phase voltage before and after the ground fault accident, the accident type determination The processing means determines that it is a ground fault in the bus, and the circuit breaker determination processing means is a circuit breaker installed on a distribution line through which a zero-phase current having a large amount of change before and after the ground fault flows. 4. The distribution line ground fault protection system according to claim 3, wherein the system is determined so as to cut off in order. 前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量のうちの1つの零相電流の地絡事故前後の変化量の位相が90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記複数の配電線のうち該1つの零相電流が流れた配電線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、前記複数の遮断器のうち該1つの零相電流が流れた配電線に設置された遮断器のみを遮断するように決定することを特徴とする、請求項3または4記載の配電線地絡保護システム。   The phase of the change amount of the zero phase current before and after the ground fault of the plurality of zero phase currents before and after the ground fault is 90 ° with respect to the change amount of the zero phase voltage before and after the ground fault. When within the range of ± α, the accident type determination processing means determines that there is a ground fault in the distribution line in which the one zero-phase current has flowed among the plurality of distribution lines, and the interruption target interruption The circuit breaker determination processing means determines to block only the circuit breaker installed in the distribution line through which the one zero-phase current flows among the plurality of circuit breakers. Distribution line ground fault protection system. 前記零相電圧の地絡事故前後の変化量に対して前記複数の零相電流の地絡事故前後の変化量のうちの2つ以上の零相電流の地絡事故前後の変化量の総和の位相が90°±αの範囲内にある場合に、前記事故種別判定処理手段が、前記複数の配電線のうち該2つ以上の零相電流が流れた配電線における地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、該2つ以上の零相電流のうち地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定することを特徴とする、請求項3乃至5いずれかに記載の配電線地絡保護システム。   The sum of the amount of change of two or more zero-phase currents before and after the ground fault of the plurality of zero-phase currents before and after the ground fault accident with respect to the amount of change of the zero phase voltage before and after the ground fault When the phase is in the range of 90 ° ± α, the accident type determination processing means determines that a ground fault has occurred in the distribution line in which the two or more zero-phase currents flowed among the plurality of distribution lines. Then, the circuit breaker determination processing means for breaking the circuit breaks in order from the circuit breaker installed on the distribution line through which the zero-phase current having a large change amount before and after the ground fault accident flows among the two or more zero-phase currents. 6. The distribution line ground fault protection system according to claim 3, wherein the distribution line ground fault protection system is determined so as to follow. 前記零相電圧が零相電圧整定値よりも小さい微地絡が前記複数の配電線において発生した場合には、前記事故種別判定処理手段が、前記複数の配電線のうち前記零相電圧の地絡事故前後の変化量に対して地絡事故前後の変化量の総和の位相が−90°±αの範囲内にない2つ以上の零相電流が流れた配電線における微地絡事故であると判定し、前記遮断対象遮断器決定処理手段が、該2つ以上の複数の零相電流のうち地絡事故前後の変化量が大きい零相電流が流れた配電線に設置された遮断器から順番に遮断していくように決定することを特徴とする、請求項1乃至6いずれかに記載の配電線地絡保護システム。   When a fine ground fault in which the zero-phase voltage is smaller than the zero-phase voltage settling value occurs in the plurality of distribution lines, the accident type determination processing means is configured to cause the zero-phase voltage ground in the plurality of distribution lines. This is a micro ground fault in a distribution line in which two or more zero-phase currents that are not in the range of −90 ° ± α of the sum of the amount of change before and after the ground fault accident with respect to the amount of change before and after the fault accident. From the circuit breaker installed on the distribution line through which the zero-phase current having a large amount of change before and after the ground fault among the two or more zero-phase currents flows. It determines so that it may interrupt | block in order, The distribution line ground fault protection system in any one of the Claims 1 thru | or 6 characterized by the above-mentioned. 母線(1)から分岐された複数の配電線(21〜24)にそれぞれ設置された複数の遮断器(51〜54)を制御して該複数の配電線を地絡事故から保護するための配電線地絡保護システム(10)であって、
前記母線に設置された接地形計器用変圧器(7)から入力されるアナログの零相電圧(V0)と前記複数の配電線にそれぞれ設置された複数の零相変流器(61〜64)からそれぞれ入力される複数のアナログの零相電流(I01〜I04)を所定のサンプリング周期でサンプリングしアナログ/ディジタル変換したのちに所定の周波数成分のみを抽出することにより、該アナログの零相電圧および該複数のアナログの零相電流をディジタルの零相電圧および複数のディジタルの零相電流に変換する入力処理部(11)と、
該入力処理部から入力される前記ディジタルの零相電圧および前記複数のディジタルの零相電流を所定の時間間隔でメモリ(13)に格納するとともに、該メモリから読み出した地絡事故時および地絡事故前の零相電圧および複数の零相電流から求めた零相電圧の地絡事故前後の変化量(ΔV0)および複数の零相電流の地絡事故前後の変化量(ΔI01〜ΔI04)に基づいて地絡事故が母線地絡事故、1回線単純地絡事故および異地点異相地絡事故のいずれであるかを判定する事故種別判定処理、および、前記複数の零相電流の地絡事故前後の変化量に基づいて前記複数の配電線にそれぞれ設置された複数の遮断器(51〜54)のうち遮断する遮断器およびその順番を決定する遮断対象遮断器決定処理を行う演算部(12)と、
を具備することを特徴とする、配電線地絡保護システム。
Protect the multiple distribution lines from ground faults by controlling the multiple circuit breakers (5 1 to 5 4 ) installed on the multiple distribution lines (2 1 to 2 4 ) branched from the bus (1). Distribution line ground fault protection system (10) for
An analog zero-phase voltage (V 0 ) input from the grounded-type instrument transformer (7) installed on the bus and a plurality of zero-phase current transformers (6 1 to 6) respectively installed on the plurality of distribution lines. 6 4 ), a plurality of analog zero-phase currents (I 01 to I 04 ) respectively input from the analog signal are sampled at a predetermined sampling period and subjected to analog / digital conversion, and then only a predetermined frequency component is extracted. An input processing unit (11) for converting the zero-phase voltage and the plurality of analog zero-phase currents into a digital zero-phase voltage and a plurality of digital zero-phase currents;
The digital zero-phase voltage and the plurality of digital zero-phase currents input from the input processing unit are stored in a memory (13) at predetermined time intervals, and at the time of a ground fault and a ground fault read from the memory. The amount of change (ΔV 0 ) before and after the ground fault accident of the zero phase voltage obtained from the zero phase voltage and the plurality of zero phase currents before the accident and the amount of change (ΔI 01 to ΔI 04 ) before and after the ground fault of the plurality of zero phase currents. ) To determine whether the ground fault is a bus ground fault, one-line simple ground fault or different-point out-of-phase ground fault, and ground faults of the plurality of zero-phase currents. based on the amount of change before and after the accident operation performing breakers and the blocking target breaker determination process for determining the order in which blocking of the plurality the plurality of circuit breakers installed respectively on the distribution line (5 1 to 5 4) Part (12);
A distribution line ground fault protection system, comprising:
前記演算部から入力されるかつ前記遮断する遮断器およびその順番を指示する遮断指示信号に従って、前記複数の遮断器のうち該遮断指示信号によって指示された遮断器をそれぞれ遮断するための1つ以上のトリップ信号(T1〜T4)を生成し、該生成した1つ以上のトリップ信号を該遮断指示信号によって指示された順番に出力するトリップ信号生成部(14)と、
該トリップ信号生成部から入力される前記1つ以上トリップ信号を入力の順番に前記遮断指示信号によって指示された遮断器にそれぞれ出力するトリップ信号出力部(15)と、
をさらに具備することを特徴とする、請求項8記載の配電線地絡保護システム。
One or more for interrupting each of the plurality of circuit breakers indicated by the circuit breaker instruction signal according to the circuit breaker to be interrupted and the circuit breaker instruction signal input from the arithmetic unit A trip signal generator (14) that generates a trip signal (T 1 to T 4 ) and outputs the generated one or more trip signals in the order instructed by the shut-off instruction signal;
A trip signal output unit (15) for outputting the one or more trip signals input from the trip signal generation unit to the circuit breakers instructed by the interrupt instruction signal in the order of input;
The distribution line ground fault protection system according to claim 8, further comprising:
零相電圧整定値を設定するための整定部(16)をさらに具備し、
前記演算部が、前記零相電圧が前記零相電圧整定値以上であることを条件として前記事故種別判定処理および前記遮断対象遮断器決定処理を行うことを特徴とする、請求項9記載の配電線地絡保護システム。
A settling unit (16) for setting a zero-phase voltage settling value;
10. The distribution according to claim 9, wherein the calculation unit performs the accident type determination process and the breaking target circuit breaker determination process on condition that the zero phase voltage is equal to or higher than the zero phase voltage set value. Electric wire ground fault protection system.
JP2007290454A 2007-11-08 2007-11-08 Distribution line ground fault protection system Active JP5224783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290454A JP5224783B2 (en) 2007-11-08 2007-11-08 Distribution line ground fault protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290454A JP5224783B2 (en) 2007-11-08 2007-11-08 Distribution line ground fault protection system

Publications (2)

Publication Number Publication Date
JP2009118678A true JP2009118678A (en) 2009-05-28
JP5224783B2 JP5224783B2 (en) 2013-07-03

Family

ID=40785161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290454A Active JP5224783B2 (en) 2007-11-08 2007-11-08 Distribution line ground fault protection system

Country Status (1)

Country Link
JP (1) JP5224783B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590700A (en) * 2011-12-23 2012-07-18 山东电力集团公司淄博供电公司 Method and device for quickly locating faults of overhead line on basis of time synchronization
JP2017093069A (en) * 2015-11-05 2017-05-25 関西電力株式会社 Ground fault detector
CN112152191A (en) * 2020-09-01 2020-12-29 国网陕西省电力公司榆林供电公司 Fault processing method, device and storage medium for distribution line

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194631A (en) * 1983-04-18 1984-11-05 四国電力株式会社 High voltage distribution line ground-fault defect channel detecting system
JPH01206822A (en) * 1988-02-08 1989-08-21 Shikoku Electric Power Co Inc Method and device for instantaneously detecting ground feeder
JPH01127332U (en) * 1988-02-20 1989-08-31
JPH0467722A (en) * 1990-07-05 1992-03-03 Hasegawa Denki Kogyo Kk Method and device for instantaneously detecting ground line
JPH0479720A (en) * 1990-07-20 1992-03-13 Kansai Electric Power Co Inc:The Method of detecting and breaking ground fault circuit
JPH04355621A (en) * 1991-05-31 1992-12-09 Meidensha Corp Minute grounding selective relay

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59194631A (en) * 1983-04-18 1984-11-05 四国電力株式会社 High voltage distribution line ground-fault defect channel detecting system
JPH01206822A (en) * 1988-02-08 1989-08-21 Shikoku Electric Power Co Inc Method and device for instantaneously detecting ground feeder
JPH01127332U (en) * 1988-02-20 1989-08-31
JPH0467722A (en) * 1990-07-05 1992-03-03 Hasegawa Denki Kogyo Kk Method and device for instantaneously detecting ground line
JPH0479720A (en) * 1990-07-20 1992-03-13 Kansai Electric Power Co Inc:The Method of detecting and breaking ground fault circuit
JPH04355621A (en) * 1991-05-31 1992-12-09 Meidensha Corp Minute grounding selective relay

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590700A (en) * 2011-12-23 2012-07-18 山东电力集团公司淄博供电公司 Method and device for quickly locating faults of overhead line on basis of time synchronization
JP2017093069A (en) * 2015-11-05 2017-05-25 関西電力株式会社 Ground fault detector
CN112152191A (en) * 2020-09-01 2020-12-29 国网陕西省电力公司榆林供电公司 Fault processing method, device and storage medium for distribution line

Also Published As

Publication number Publication date
JP5224783B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
EP3570400B1 (en) Method and apparatus for use in earth-fault protection
EP3570399B1 (en) Method and apparatus for use in earth-fault protection
JP2009005565A (en) Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method
JP5224783B2 (en) Distribution line ground fault protection system
KR20190110411A (en) Out of order discrimination apparatus and protective relay apparatus
JP2010164514A (en) Fault point locator
JP2010166769A (en) Ground distance relay device
JP2008160910A (en) Protective relay device
JP2011182548A (en) Bus protection system
JP2010183745A (en) Short-circuit protector
JP2011182547A (en) Bus protection relay system
JP5247164B2 (en) Protective relay device
JP2016152741A (en) Ground directional relay
JP3902150B2 (en) Protective relay device
JP4836663B2 (en) Loop system protection device and method
JP2009183121A (en) Distribution line compensating reactor system and distribution line compensating reactor setting method
JPH0327716A (en) Method and apparatus for reclosing of transmission system
JP2007336711A (en) Digital protection relay incorporating phase control
JPH09166651A (en) Oscilloscope apparatus for electric power
Kasztenny et al. Advanced protection, automation, and control functions
JP2010288408A (en) Ground fault protection relay system
JP2011004455A (en) Protective relay device
Tholomier et al. Adaptive protection of transmission lines during wide area disturbances
JP5224760B2 (en) Disconnection protection relay
JPS6242448B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R150 Certificate of patent or registration of utility model

Ref document number: 5224783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250