JP2012065446A - Power transmission line accident section detection device - Google Patents

Power transmission line accident section detection device Download PDF

Info

Publication number
JP2012065446A
JP2012065446A JP2010207419A JP2010207419A JP2012065446A JP 2012065446 A JP2012065446 A JP 2012065446A JP 2010207419 A JP2010207419 A JP 2010207419A JP 2010207419 A JP2010207419 A JP 2010207419A JP 2012065446 A JP2012065446 A JP 2012065446A
Authority
JP
Japan
Prior art keywords
current
section
transmission line
sensors
accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010207419A
Other languages
Japanese (ja)
Inventor
Toshiharu Yamada
敏晴 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP2010207419A priority Critical patent/JP2012065446A/en
Publication of JP2012065446A publication Critical patent/JP2012065446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PROBLEM TO BE SOLVED: To enable it to detect a accident occurrence section accurately without causing a blind area and an overlapped area in the case of dividing a power transmission line into a plurality of sections in order to make a charging current of the power transmission line small.SOLUTION: There are provided: a plurality of photoelectric current sensors S1-S5 which are arranged at different positions along a power transmission line 100, and which detect a current which flows in the power transmission line 100; a digital type current differential relay 104 which, based on the current which two adjacent photoelectric current sensors S1-S5 detect, determines whether an accident has arisen or not in a section sandwiched by the two current sensors S1-S5; and output relays 108 which output information on the section where the digital type current differential relay 104 has determined that an accident has arisen. Photoelectric current sensors S2-S4 other than photoelectric current sensors S1 and S5 of both ends are made to serve a double purpose in order to form sections of both sides of photoelectric current sensors S2-S4, and thereby, a plurality of sections sandwiched by adjacent two photoelectric current sensors S1-S5 are formed contiguously.

Description

本発明は、送電線の事故区間を検出する送電線事故区間検出装置に関する。   The present invention relates to a power transmission line accident section detection apparatus that detects a power transmission line accident section.

電力を送電する送電線は、架空送電線と地中送電線とに分けられる。架空送電線は、鉄塔、木柱、コンクリート柱等に電力ケーブルを敷設し電力を空中搬送するもので、雷、鳥獣、風雨、設備の劣化等の要因によって送電線事故が発生する。
また、地中送電線は、洞道等に電力ケーブルを敷設し電力を地中搬送するもので、設備の劣化等による送電設備の絶縁破壊によって送電線事故が発生する。
Transmission lines that transmit power are divided into overhead transmission lines and underground transmission lines. An overhead power transmission line lays power cables on steel towers, wooden pillars, concrete pillars, etc., and carries power in the air. Transmission line accidents occur due to factors such as lightning, birds and beasts, wind and rain, and equipment deterioration.
The underground power transmission line is a cable that lays a power cable in a cave or the like and transports the power underground. A transmission line accident occurs due to insulation breakdown of the power transmission equipment due to deterioration of the equipment.

そこで、送電設備に各種センサを取り付け、送電線のどの区間で事故が発生したのかを検出する送電線事故区間検出装置が開発されている。
地中送電線の両端に電流センサを取り付け、各電流センサの電流検出情報を用いた電流差動リレーによって、地中送電線の地絡事故が発生した事故区間を検出する従来の送電線事故区間検出装置では、各電流センサから前記電流差動リレーに流入する電流のベクトル和である差動電流に基づいて事故区間を検出するように構成している。前記送電線事故区間検出装置では、区間外部の事故時に発生する地中送電線の充電電流の流出によって電流差動リレーが不要に動作しないような対策が行われている。
Thus, a transmission line accident section detection device has been developed that attaches various sensors to a power transmission facility and detects in which section of the transmission line an accident has occurred.
Conventional transmission line accident section where current sensors are attached to both ends of underground transmission line, and the fault section where a ground fault occurred in underground transmission line is detected by current differential relay using current detection information of each current sensor The detection device is configured to detect an accident section based on a differential current that is a vector sum of currents flowing from each current sensor into the current differential relay. In the transmission line accident section detection device, measures are taken so that the current differential relay does not operate unnecessarily due to the outflow of the charging current of the underground transmission line that occurs at the time of an accident outside the section.

例えば、特許文献1に記載された発明では、地中送電線の充電電流に所定の余裕度を加味した電流値を、事故が生じたか否かを判定する基準電流として電流差動リレーの検出感度を下げることにより、電流差動リレーが不要に動作しないようにしている。これにより、地中送電線の事故区間を検出することは可能である。
しかしながら、特許文献1記載の発明では、地絡事故を確実に検出するためには、検出感度を、中性点抵抗器電流を基準に選定(通常60%〜80%)する必要があるが、長距離地中送電線等では、充電電流が中性点抵抗器電流よりも大きくなるため、適用できないという問題がある。
For example, in the invention described in Patent Document 1, the detection sensitivity of the current differential relay is used as a reference current for determining whether or not an accident has occurred, using a current value in which a predetermined margin is added to the charging current of the underground transmission line. By lowering the value, the current differential relay is prevented from operating unnecessarily. Thereby, it is possible to detect the accident section of the underground power transmission line.
However, in the invention described in Patent Document 1, in order to reliably detect a ground fault, it is necessary to select the detection sensitivity based on the neutral point resistor current (usually 60% to 80%). In a long-distance underground transmission line or the like, there is a problem that the charging current is larger than the neutral point resistor current and thus cannot be applied.

一方、特許文献2には、いくつかに分割した送電線の各区間毎に、その両端部に変流器を設置し、両変流器の出力の差電流を検出器にて検出するようにした発明が開示されている。
特許文献1記載の発明に係る前記問題を解決するために、特許文献2に記載された発明を利用するとすれば、図5に示すように、中性点抵抗111を介して接地された送電線100を複数区間(電流センサS1、S2によって挟まれた区間K1、電流センサS3、S4によって挟まれた区間K2)に分割し、各区間K1、K2毎に電流差動リレーRY1、RY2で事故検出を行うようにすることが考えられる。
On the other hand, in Patent Document 2, a current transformer is installed at each end of each section of the transmission line divided into several parts, and the difference current between the outputs of both current transformers is detected by the detector. Disclosed inventions are disclosed.
In order to solve the above-described problem relating to the invention described in Patent Document 1, if the invention described in Patent Document 2 is used, a transmission line grounded via a neutral point resistor 111 as shown in FIG. 100 is divided into a plurality of sections (section K1 sandwiched between current sensors S1 and S2, section K2 sandwiched between current sensors S3 and S4), and fault detection is performed with current differential relays RY1 and RY2 for each section K1 and K2. Can be considered.

即ち、図5において、電流差動リレーRY1は電流センサS1、S2が検出した電流の差をとり、前記差が所定値以上になると区間K1で事故が発生したと判定する。また、電流差動リレーRY2は電流センサS3、S4が検出した電流の差をとり、前記差が所定値以上になると区間K2で事故が発生したと判定する。これにより、どの区間で事故が発生したかを判定することができる。
しかしながら、図5記載の発明では、各区間K1、K2毎に各区間K1、K2の両端に電流センサS1、S2、S3、S4を配設しているため、各区間が連続せず、区間と区間の間事故を検出できない領域(盲点領域)NKが生じるという問題がある。
That is, in FIG. 5, the current differential relay RY1 takes the difference between the currents detected by the current sensors S1 and S2, and determines that an accident has occurred in the section K1 when the difference becomes equal to or greater than a predetermined value. The current differential relay RY2 takes the difference between the currents detected by the current sensors S3 and S4, and determines that an accident has occurred in the section K2 when the difference becomes equal to or greater than a predetermined value. Thereby, it can be determined in which section the accident occurred.
However, in the invention described in FIG. 5, since the current sensors S1, S2, S3, and S4 are arranged at both ends of each section K1, K2 for each section K1, K2, each section is not continuous. There is a problem that an area (blind spot area) NK in which an accident cannot be detected during a section is generated.

前記盲点領域を無くす方法として、図6に示すように、送電線100を複数区間(電流センサS1、S2によって挟まれた区間K3、電流センサS3、S4によって挟まれた区間K4)に分割し、各区間K3、K4の一部を重複させて境界領域DKを形成する方法が考えられる。
係る構成により、区間K3で事故が生じた場合は差動リレーRY1によって検出でき、区間K4で事故が生じた場合はRY2区間によって検出することが可能になり、図5のような盲点領域が生じることを防止できる。
As a method of eliminating the blind spot region, as shown in FIG. 6, the transmission line 100 is divided into a plurality of sections (section K3 sandwiched between current sensors S1 and S2, section K4 sandwiched between current sensors S3 and S4), A method of forming a boundary region DK by overlapping a part of each of the sections K3 and K4 is conceivable.
With such a configuration, when an accident occurs in the section K3, it can be detected by the differential relay RY1, and when an accident occurs in the section K4, it can be detected by the RY2 section, resulting in a blind spot region as shown in FIG. Can be prevented.

しかしながら、境界領域DKに事故が発生した場合、差動リレーRY1、RY2の両方が検出することになる。したがって、差動リレーRY1、RY2の両方によって事故が検出された場合、境界領域DKに事故が発生したことを判定するための回路の追加(又は人的な判断手段)が必要になるという問題がある。
このように回路を追加する場合でも、事故発生箇所が境界領域DKなのか、あるいは2区間に跨る同時事故なのかを判定することはできず、事故発生区間を特定できないという問題がある。
However, when an accident occurs in the boundary region DK, both the differential relays RY1 and RY2 are detected. Therefore, when an accident is detected by both of the differential relays RY1 and RY2, there is a problem that it is necessary to add a circuit (or human judgment means) for determining that the accident has occurred in the boundary region DK. is there.
Even when a circuit is added in this way, there is a problem that it is impossible to determine whether the accident occurrence location is the boundary area DK or the simultaneous accident over two sections, and the accident occurrence section cannot be specified.

また、非特許文献1に記載された発明では、区間外部の事故時に地中送電線の充電電流の流出によって生じる差動電流は零相電圧と逆位相になり、区間内部の事故時に生じる差動電流は零相電圧と同位相になることから、零相電圧と差動電流との位相判別要素が逆位相のときは電流差動リレーの動作を阻止するようにしている。
しかしながら、非特許文献1記載の発明では、零相電圧を装置内に取り込めない場合があり、事故区間を判定できない場合がある。
Further, in the invention described in Non-Patent Document 1, the differential current generated by the outflow of the charging current of the underground transmission line at the time of an accident outside the section is in reverse phase to the zero-phase voltage, and the differential generated at the time of the accident inside the section Since the current has the same phase as the zero-phase voltage, the operation of the current differential relay is prevented when the phase discrimination element between the zero-phase voltage and the differential current is in reverse phase.
However, in the invention described in Non-Patent Document 1, the zero-phase voltage may not be taken into the device, and the accident section may not be determined.

特開2000−321316号公報JP 2000-321316 A 特開平6−294837号公報JP-A-6-294837

「系統保護継電方式の標準的な考え方(デジタル編)」平成4年3月電気事業連合会工務部"Standard concept of system protection relay system (digital edition)" March 1992 Electric Works Federation, Engineering Department

本発明は、送電線の充電電流を小さくするために送電線を複数の区間に分割する場合、盲点領域や重複領域が生じることなく事故発生区間を正確に検出できるようにすることを課題としている。   An object of the present invention is to make it possible to accurately detect an accident occurrence section without generating a blind spot area or an overlapping area when the transmission line is divided into a plurality of sections in order to reduce the charging current of the transmission line. .

本発明によれば、送電線に沿って異なる位置に配設され前記送電線に流れる電流を検出し、前記検出した電流値に対応する検出信号を出力する複数の電流センサと、隣り合う2つの前記電流センサからの前記検出信号に基づいて当該2つの電流センサに挟まれた区間で事故が生じたか否かを判定する判定手段と、前記判定手段が事故発生と判定した区間の情報を出力する出力手段とを備え、両端の電流センサ以外の電流センサを、当該電流センサの両側の区間を形成するために兼用することにより、隣り合う2つの電流センサによって挟まれた区間が複数連続的に形成されて成ることを特徴とする送電線事故区間検出装置が提供される。   According to the present invention, a plurality of current sensors that are arranged at different positions along a power transmission line, detect a current flowing through the power transmission line, and output a detection signal corresponding to the detected current value; Based on the detection signal from the current sensor, a determination unit that determines whether or not an accident has occurred in a section between the two current sensors, and outputs information on a section in which the determination unit has determined that an accident has occurred. Output section, and a current sensor other than the current sensors at both ends is also used to form sections on both sides of the current sensor, thereby continuously forming a plurality of sections sandwiched between two adjacent current sensors A power transmission line accident section detecting device is provided.

本発明によれば、送電線の充電電流を小さくするために送電線を複数の区間に分割する場合、盲点領域や重複領域が生じることなく事故発生区間を正確に検出することができる。   According to the present invention, when the transmission line is divided into a plurality of sections in order to reduce the charging current of the transmission line, the accident occurrence section can be accurately detected without generating a blind spot area or an overlapping area.

本発明の各実施の形態に係る送電線事故区間検出装置のブロック図である。It is a block diagram of the power transmission line accident section detection device concerning each embodiment of the present invention. 本発明の第1の実施の形態に係る送電線事故区間検出装置の説明図である。It is explanatory drawing of the power transmission line accident area detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る送電線事故区間検出装置の説明図である。It is explanatory drawing of the power transmission line accident area detection apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る送電線事故区間検出装置の説明図である。It is explanatory drawing of the power transmission line accident area detection apparatus which concerns on the 3rd Embodiment of this invention. 送電線事故区間検出装置の説明図である。It is explanatory drawing of a power transmission line accident area detection apparatus. 送電線事故区間検出装置の説明図である。It is explanatory drawing of a power transmission line accident area detection apparatus.

図1は、本発明の実施の形態に係る送電線事故区間検出装置のブロック図で、後述する各実施の形態に共通するブロック図である。
図1において、中性点抵抗111を介して接地された送電線100に沿って複数の光電流センサS1〜S5が配設されている。光電流センサS1〜S5は、ファラデー効果を利用して送電線100に流れる電流を検出するセンサである。
FIG. 1 is a block diagram of a power transmission line accident section detection device according to an embodiment of the present invention, and is a block diagram common to each embodiment described later.
In FIG. 1, a plurality of photocurrent sensors S <b> 1 to S <b> 5 are arranged along a power transmission line 100 grounded through a neutral point resistor 111. The photocurrent sensors S1 to S5 are sensors that detect a current flowing through the power transmission line 100 using the Faraday effect.

光電流センサS1〜S5は、各光電流センサS1〜S5が配設された位置の送電線100に流れる電流を検出し、光ケーブル110−1〜110−5を介して、検出した電流値に対応する光信号を検出信号として検出部102に出力する。図1には5個の光電流センサS1〜S5を配設した例を示しているが、複数個あればよく、送電線100の長さ等に応じて適宜増減することができる。   The photocurrent sensors S1 to S5 detect the current flowing through the power transmission line 100 at the position where the photocurrent sensors S1 to S5 are arranged, and correspond to the detected current values via the optical cables 110-1 to 110-5. The optical signal to be output is output to the detection unit 102 as a detection signal. Although FIG. 1 shows an example in which five photocurrent sensors S1 to S5 are arranged, a plurality of the photocurrent sensors S1 to S5 may be provided and can be appropriately increased or decreased according to the length of the power transmission line 100 or the like.

隣り合う2つの光電流センサ(S1とS2、S2とS3、S3とS4、S4とS5)に挟まれた領域は各々、送電線100の地絡事故発生地点を特定するための区間を構成している。
これらの電流センサのうち、送電線100に沿って配設された複数の電流センサS1〜S5のうち、両端の電流センサS1、S5以外の電流センサS2〜S4を、当該電流センサS2〜S4の両側の区間を形成するために兼用することにより、隣り合う2つの電流センサS1〜S5によって挟まれた区間が複数連続的に形成されている。
Each region sandwiched between two adjacent photocurrent sensors (S1 and S2, S2 and S3, S3 and S4, S4 and S5) constitutes a section for identifying the ground fault occurrence point of the transmission line 100. ing.
Among these current sensors, among the plurality of current sensors S1 to S5 arranged along the transmission line 100, current sensors S2 to S4 other than the current sensors S1 and S5 at both ends are connected to the current sensors S2 to S4. By combining the two sections to form the sections on both sides, a plurality of sections sandwiched between two adjacent current sensors S1 to S5 are continuously formed.

このように各区間は連続しており、前述したような盲点領域や重複領域は存在しないように構成されている。
光電流センサS1〜S5、光ケーブル110−1〜110−5及び検出部102は送電線事故区間検出装置101を構成している。
In this way, each section is continuous, and the blind spot area and the overlapping area as described above do not exist.
The photocurrent sensors S <b> 1 to S <b> 5, the optical cables 110-1 to 110-5, and the detection unit 102 constitute a transmission line accident section detection device 101.

検出部102は、光ケーブル110−1〜110−5を介して光電流センサS1〜S5からの検出信号を受信し前記検出信号に対応するレベルのアナログ電気信号(アナログ検出信号)に変換して出力する光電変換器103、光電変換器103から入力されたアナログ検出信号の中の隣り合う2つの光電流センサS1〜S5に対応するアナログ検出信号に基づいて事故発生区間を判定し、事故発生区間を表す出力リレー108の接点を閉状態に駆動するデジタル形電流差動リレー104、デジタル形電流差動リレー104によって事故発生区間に対応する出力リレー108が閉状態に駆動される出力リレー108、送電線事故区間検出装置101を構成する各電気的構成要素に駆動電力を供給する電源109を備えている。   The detection unit 102 receives the detection signals from the photocurrent sensors S1 to S5 via the optical cables 110-1 to 110-5, converts the detection signals into analog electric signals (analog detection signals) having a level corresponding to the detection signals, and outputs the analog electric signals. The accident occurrence section is determined based on the analog detection signals corresponding to the two adjacent photoelectric current sensors S1 to S5 among the analog detection signals input from the photoelectric converter 103 and the photoelectric converter 103. The digital current differential relay 104 that drives the contact of the output relay 108 to be closed, the output relay 108 that is driven to the closed state by the digital current differential relay 104, and the power transmission line A power source 109 is provided for supplying driving power to each electrical component constituting the accident section detecting apparatus 101.

デジタル形電流差動リレー104は、光電変換器103からのアナログ検出信号を増幅して出力するアナログ入力部105、アナログ入力部105からのアナログ検出信号をデジタル信号(デジタル検出信号)に変換して出力するアナログ/デジタル(A/D)変換器106、A/D変換器106から入力されたデジタル検出信号中の隣り合う2つの光電流センサS1〜S5に対応するデジタル検出信号に基づいて事故発生区間を判定し、事故発生区間に対応する出力リレー108の接点を閉状態に駆動する中央処理装置(CPU)107を備えている。   The digital current differential relay 104 amplifies the analog detection signal from the photoelectric converter 103 and outputs the analog detection signal, and converts the analog detection signal from the analog input unit 105 into a digital signal (digital detection signal). Accident occurs based on digital detection signals corresponding to two adjacent photocurrent sensors S1 to S5 in the digital detection signals input from analog / digital (A / D) converter 106 and A / D converter 106 to be output. A central processing unit (CPU) 107 that determines the section and drives the contact of the output relay 108 corresponding to the accident occurrence section to a closed state is provided.

光電変換器103及びアナログ入力回路105は、光電流センサS1〜S5に対応する数設けられ又、出力リレー108は区間に対応する数設けられている。A/D変換器106は、各アナログ入力部105から並列に入力されるアナログ検出信号を、時分割的にデジタル検出信号に変換して、CPU107へ直列的に出力する。CPU107は、図示しない記憶部に記憶されたプログラムを実行することにより、後述するような事故発生区間の判定処理等を行う。
ここで、光電流センサS1〜S5は電流検出手段を構成し、検出部102は検出手段を構成し、デジタル形電流差動リレー104は判定手段を構成している。また、光電変換器103は光電変換手段を構成し、CPU107は区間判定手段を構成し、出力リレー108は出力手段を構成している。
The photoelectric converter 103 and the analog input circuit 105 are provided in numbers corresponding to the photocurrent sensors S1 to S5, and the output relays 108 are provided in numbers corresponding to the sections. The A / D converter 106 converts analog detection signals input in parallel from the analog input units 105 into digital detection signals in a time division manner and outputs the digital detection signals to the CPU 107 in series. The CPU 107 executes a program stored in a storage unit (not shown) to perform an accident occurrence section determination process and the like as described later.
Here, the photocurrent sensors S1 to S5 constitute current detection means, the detection unit 102 constitutes detection means, and the digital current differential relay 104 constitutes determination means. The photoelectric converter 103 constitutes a photoelectric conversion means, the CPU 107 constitutes a section determination means, and the output relay 108 constitutes an output means.

図2は、本発明の第1の実施の形態に係る送電線事故区間検出装置の説明図で、図1と同一部分には同一符号を付している。
図2(a)〜(d)は使用する光電流センサ数を変えた場合の例(換言すれば送電線100を分割する区間数を変えた場合の例)であり、2〜5個の光電流センサS1〜S5を使用した場合の、光電流センサS1〜S5と電流差動リレーRY1〜RY4の接続関係を示している。
図2において、中性点抵抗111を介して接地された送電線100に沿って、複数の光電流センサS1〜S5が配設されている。隣り合う2つの光電流センサS1〜S5によって挟まれた領域が、送電線100の事故発生を判定する区間を構成している。
FIG. 2 is an explanatory diagram of the transmission line accident section detection device according to the first embodiment of the present invention, and the same reference numerals are given to the same parts as those in FIG.
2A to 2D are examples when the number of photocurrent sensors to be used is changed (in other words, when the number of sections for dividing the transmission line 100 is changed), and 2 to 5 light beams are used. A connection relationship between the photocurrent sensors S1 to S5 and the current differential relays RY1 to RY4 when the current sensors S1 to S5 are used is shown.
In FIG. 2, a plurality of photocurrent sensors S <b> 1 to S <b> 5 are arranged along a power transmission line 100 grounded via a neutral point resistor 111. A region sandwiched between two adjacent photocurrent sensors S <b> 1 to S <b> 5 constitutes a section for determining the occurrence of an accident in the power transmission line 100.

例えば、図2(d)の例では、光電流センサS1、S2に挟まれた領域、光電流センサS2、S3に挟まれた領域、光電流センサS3、S4に挟まれた領域、光電流センサS4、S5に挟まれた領域が各々区間を構成している。これらの複数の光電流センサS1〜S5のうち、両端の電流センサS1、S5以外の電流センサS2〜S4を、当該電流センサS2〜S4の両側の区間を形成するために兼用することにより、隣り合う2つの電流センサS1〜s5によって挟まれた区間が複数連続的に形成されている。   For example, in the example of FIG. 2D, a region sandwiched between the photocurrent sensors S1 and S2, a region sandwiched between the photocurrent sensors S2 and S3, a region sandwiched between the photocurrent sensors S3 and S4, and the photocurrent sensor. Each region sandwiched between S4 and S5 constitutes a section. Among the plurality of photocurrent sensors S1 to S5, the current sensors S2 to S4 other than the current sensors S1 and S5 at both ends are combined to form sections on both sides of the current sensors S2 to S4. A plurality of sections sandwiched between two matching current sensors S1 to s5 are continuously formed.

隣り合う光電流センサS1、S2からの検出信号は電流差動リレーRY1の入力部に入力され、隣り合う光電流センサS2、S3からの検出信号は電流差動リレーRY2の入力部に入力され、隣り合う光電流センサS3、S4からの検出信号は電流差動リレーRY3の入力部に入力され、隣り合う光電流センサS4、S5からの検出信号は電流差動リレーRY4の入力部に入力される。   Detection signals from the adjacent photocurrent sensors S1 and S2 are input to the input portion of the current differential relay RY1, detection signals from the adjacent photocurrent sensors S2 and S3 are input to the input portion of the current differential relay RY2, Detection signals from adjacent photocurrent sensors S3 and S4 are input to the input portion of the current differential relay RY3, and detection signals from adjacent photocurrent sensors S4 and S5 are input to the input portion of the current differential relay RY4. .

各光電流センサS1〜S5は、送電線100に流れる電流が各区間に流入する方向に流れる場合又は各区間から流出する方向に流れる場合に正極性の電流として検出する。即ち、図2(d)に示すように、送電線100の電流が各光電流センサS1〜S5に対応付けて示した矢印方向に流れるとき正極性の電流として検出し、検出した電流値に対応する検出信号を出力し、前記矢印と逆方向に送電線100の電流が流れるとき負極性の電流として検出し、前記検出した電流値に対応する検出信号を出力する。   Each photocurrent sensor S1 to S5 detects a positive current when the current flowing through the transmission line 100 flows in the direction of flowing into each section or when flowing in the direction of flowing out of each section. That is, as shown in FIG. 2D, when the current of the transmission line 100 flows in the direction indicated by the arrow corresponding to each of the photocurrent sensors S1 to S5, it is detected as a positive current and corresponds to the detected current value. When the current of the transmission line 100 flows in the direction opposite to the arrow, the detection signal is detected as a negative current, and the detection signal corresponding to the detected current value is output.

光電流センサS1〜S5からの検出信号に基づいて、隣り合う2つの光電流センサ(S1とS2、S2とS3、S3とS4、S4とS5)によって挟まれた各区間に流入する電流を加算することによって得られる差動電流の大きさが所定条件を満たすとき、当該隣り合う電流センサS1〜S5に挟まれた区間に事故が発生したと判定する。   Based on the detection signals from the photocurrent sensors S1 to S5, the current flowing into each section sandwiched between two adjacent photocurrent sensors (S1 and S2, S2 and S3, S3 and S4, S4 and S5) is added. When the magnitude of the differential current obtained by doing so satisfies a predetermined condition, it is determined that an accident has occurred in a section between the adjacent current sensors S1 to S5.

より具体的には、電流差動リレーRY1〜RY4は、隣り合う2つの電流センサS1〜S5からの検出信号に基づいて送電線100を流れる電流を加算することによって得られる差動電流の大きさが所定値以上のときリレー接点が閉状態になり、これにより、前記隣り合う電流センサS1〜S5に挟まれた区間に事故が発生したと判定される。隣り合う2つの電流センサS1〜S5からの検出信号に基づいて送電線100を流れる電流を加算することによって得られる差動電流の大きさが所定値以上でないときは、電流差動リレーRY1〜RY4が動作せず、前記隣り合う電流センサS1〜S5に挟まれた区間に事故は発生していないと判定する。   More specifically, the current differential relays RY1 to RY4 are magnitudes of differential currents obtained by adding the currents flowing through the transmission line 100 based on detection signals from two adjacent current sensors S1 to S5. Is equal to or greater than a predetermined value, the relay contact is closed, so that it is determined that an accident has occurred in a section sandwiched between the adjacent current sensors S1 to S5. When the magnitude of the differential current obtained by adding the currents flowing through the transmission line 100 based on the detection signals from the two adjacent current sensors S1 to S5 is not greater than or equal to the predetermined value, the current differential relays RY1 to RY4 Does not operate and it is determined that no accident has occurred in the section between the adjacent current sensors S1 to S5.

送電線100の一端側Aに配設された第1番目の光電流センサS1の検出極性(一端側Aから他端側Bへ流れる電流(矢印方向)を正極性の電流と検出する。)を基準として、送電線100の他端側Bに行くに従って、偶数番目の光電流センサS2、S4の検出極性は逆極性、奇数番目の光電流センサS3、S5の検出極性は同極性としている。即ち、N番目の光電流センサの検出極性は、Nが偶数のときは第1番目の光電流センサS1と逆極性、Nが奇数のときは第1番目の光電流センサS1と同極性となるように配設している。   The detection polarity of the first photocurrent sensor S1 disposed on one end A of the power transmission line 100 (the current flowing from the one end A to the other end B (arrow direction) is detected as a positive current). As a reference, the detection polarities of the even-numbered photocurrent sensors S2 and S4 are reversed and the detection polarities of the odd-numbered photocurrent sensors S3 and S5 are the same polarity as going to the other end B of the power transmission line 100. That is, the detection polarity of the Nth photocurrent sensor is opposite to that of the first photocurrent sensor S1 when N is an even number, and the same polarity as that of the first photocurrent sensor S1 when N is an odd number. They are arranged as follows.

これにより、第N(Nは正の整数)番目の電流差動リレーNは、N番目の光電流センサNからの検出信号と(N+1)番目の光電流センサ(N+1)からの検出信号を各々そのままの極性で入力し、交流電気量の加算(ベクトル量の加算)により差動電流(N番目の光電流センサからの検出信号に対応する電流と(N+1)番目の光電流センサからの検出信号に対応する電流とを加算した電流)を検出するように構成されている。このようにして、次の4つの式(1)が得られる。   Thereby, the Nth (N is a positive integer) th current differential relay N receives the detection signal from the Nth photocurrent sensor N and the detection signal from the (N + 1) th photocurrent sensor (N + 1), respectively. Input with the same polarity, and add differential current (current corresponding to the detection signal from the Nth photocurrent sensor and detection signal from the (N + 1) th photocurrent sensor) by adding AC electric quantity (vector quantity addition) The current obtained by adding the current corresponding to) is detected. In this way, the following four equations (1) are obtained.

Id(1)=I(1)+I(2)
Id(2)=I(2)+I(3)
Id(3)=I(3)+I(4) ・・・・・(1)
Id(4)=I(4)+I(5)
但し、Id(N)は一端側Aから第N番目の区間の差動電流(ベクトル量)、I(N)は第N番目の光電流センサSNの検出電流(ベクトル量)、I(N+1)は第(N+1)番目の光電流センサS(N+1)の検出電流(ベクトル量)である。
Id (1) = I (1) + I (2)
Id (2) = I (2) + I (3)
Id (3) = I (3) + I (4) (1)
Id (4) = I (4) + I (5)
Where Id (N) is the differential current (vector quantity) in the Nth section from one end A, I (N) is the detected current (vector quantity) of the Nth photocurrent sensor SN, I (N + 1) Is the detected current (vector quantity) of the (N + 1) th photocurrent sensor S (N + 1).

隣り合う2つの電流センサSN、S(N+1)からの検出信号を加算することによって得られる差動電流の大きさ(換言すれば、隣り合う2つの電流センサSN、S(N+1)からの検出信号に対応する電流を加算することによって得られる差動電流の大きさ)が所定値以上のとき、前記隣り合う電流センサに挟まれた区間Nに事故が発生したと判定する。
尚、図2において電流差動リレーRY1〜RY4は判定手段を構成している。また、図2の例では、光電流センサS1〜S5が出力する検出信号を加算する際に極性を反転する必要がない。但し、光電流センサS1〜S5を設置する際に極性に注意する必要がある。
The magnitude of the differential current obtained by adding the detection signals from the two adjacent current sensors SN and S (N + 1) (in other words, the detection signal from the two adjacent current sensors SN and S (N + 1)) When the magnitude of the differential current obtained by adding the currents corresponding to (2) is equal to or greater than a predetermined value, it is determined that an accident has occurred in the section N sandwiched between the adjacent current sensors.
In FIG. 2, the current differential relays RY1 to RY4 constitute determination means. In the example of FIG. 2, it is not necessary to reverse the polarity when adding the detection signals output from the photocurrent sensors S1 to S5. However, it is necessary to pay attention to the polarity when installing the photocurrent sensors S1 to S5.

本発明の第1の実施の形態では、図1に示した構成により、図2に示した検出動作を行うようにしている。
以下、図1及び図2を用いて、本発明の第1の実施の形態に係る送電線事故区間検出装置の動作を説明する。
光電流センサS1〜S5は、送電線100に流れる電流を検出して光ケーブル110−1〜110−5を介して、送電線100に流れる電流に対応する光信号の検出信号を検出部102に出力する。
In the first embodiment of the present invention, the detection operation shown in FIG. 2 is performed by the configuration shown in FIG.
Hereinafter, the operation of the transmission line accident section detection device according to the first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
The photocurrent sensors S1 to S5 detect a current flowing through the power transmission line 100 and output a detection signal of an optical signal corresponding to the current flowing through the power transmission line 100 to the detection unit 102 via the optical cables 110-1 to 110-5. To do.

検出部102の光電変換器103は、各光電流センサS1〜S5からの検出信号を受信し、対応するレベルのアナログ電気信号に変換してデジタル形電流差動リレー104に入力する。アナログ入力部105は、光電変換器103からのアナログ形式の検出信号を増幅し、A/D変換器106が前記アナログ形式の検出信号をデジタル形式の検出信号に変換する。   The photoelectric converter 103 of the detection unit 102 receives the detection signals from the photocurrent sensors S <b> 1 to S <b> 5, converts them into analog electrical signals of corresponding levels, and inputs them to the digital current differential relay 104. The analog input unit 105 amplifies the analog detection signal from the photoelectric converter 103, and the A / D converter 106 converts the analog detection signal into a digital detection signal.

CPU107は、デジタル形式の検出信号を受信し、図2に関して説明したように、各々隣り合う2つの光電流センサS1〜S5の検出信号を加算し、加算することによって得られる差動電流の大きさが所定値以上か否かを判定する(換言すれば、隣り合う2つの電流センサSN、S(N+1)からの検出信号に対応する電流を加算することによって得られる差動電流の大きさが所定値以上か否かを判定する。)。
CPU107は、前記差動電流の大きさが所定値以上と判定すると、当該区間に事故が生じたと判定して、当該区間を表す出力リレー108を閉状態に駆動する。
これにより、図示しない表示装置に、閉状態に駆動された出力リレー108に対応する区間を表示する等の処理が行われる。
The CPU 107 receives the detection signal in the digital format, and adds the detection signals of the two adjacent photocurrent sensors S1 to S5, respectively, as described with reference to FIG. 2, and the magnitude of the differential current obtained by adding the detection signals. (In other words, the magnitude of the differential current obtained by adding the currents corresponding to the detection signals from the two adjacent current sensors SN and S (N + 1) is predetermined. Determine if it is greater than or equal to the value).
When the CPU 107 determines that the magnitude of the differential current is equal to or greater than a predetermined value, the CPU 107 determines that an accident has occurred in the section, and drives the output relay 108 representing the section to a closed state.
Thus, processing such as displaying a section corresponding to the output relay 108 driven in the closed state on a display device (not shown) is performed.

以上述べたように、本発明の第1の実施の形態によれば、送電線100に沿って異なる位置に配設され、送電線100に流れる電流を検出する複数の電流センサS1〜S5と、隣り合う2つの電流センサS1〜S5が検出した電流に基づいて当該2つの電流センサS1〜S5に挟まれた区間で事故が生じたか否かを判定する判定手段と、前記判定手段が事故発生と判定した区間の情報を出力する出力リレー108とを備え、両端の電流センサS1、S5以外の電流センサS2〜S4を、当該電流センサS2〜S4の両側の区間を形成するために兼用することにより、隣り合う2つの電流センサS1〜S5によって挟まれた区間が複数連続的に形成されて成ることを特徴とする送電線事故区間検出装置が提供される。   As described above, according to the first embodiment of the present invention, a plurality of current sensors S <b> 1 to S <b> 5 that are arranged at different positions along the transmission line 100 and detect the current flowing through the transmission line 100, Based on the current detected by two adjacent current sensors S1 to S5, determination means for determining whether or not an accident has occurred in a section sandwiched between the two current sensors S1 to S5; An output relay 108 that outputs information of the determined section, and by using the current sensors S2 to S4 other than the current sensors S1 and S5 at both ends to form sections on both sides of the current sensors S2 to S4 There is provided a transmission line accident section detecting device characterized in that a plurality of sections sandwiched between two adjacent current sensors S1 to S5 are continuously formed.

ここで、例えば前記判定手段は、隣り合う2つの電流センサS1〜S5からの検出信号に基づいて、前記隣り合う2つの電流センサS1〜S5に挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサS1〜S5に挟まれた区間に事故が発生したと判定するように構成している。   Here, for example, the determination unit adds a current flowing in a section between the two adjacent current sensors S1 to S5 based on detection signals from the two adjacent current sensors S1 to S5. When it is determined that the magnitude of the differential current obtained thereby satisfies a predetermined condition, it is determined that an accident has occurred in a section between the adjacent current sensors S1 to S5.

また例えば、複数の電流センサS1〜S5は、送電線100の一端側Aから順に複数配設されると共に、一端側Aから第1番目の電流センサS1の検出極性を基準として、一端側Aから偶数番目に配設された電流センサS2、S4の検出極性は逆極性、一端側Aから奇数番目に配設された電流センサS3、S5の検出極性は同極性とされて成り、前記判定手段は、隣り合う2つの電流センサS1〜S5からの検出信号に基づいて、前記隣り合う2つの電流センサS1〜S5に挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサS1〜S5に挟まれた区間に事故が発生したと判定するように構成している。
したがって、本第1の実施の形態に係る送電線事故区間検出装置によれば、送電線の充電電流を小さくするために送電線を複数の区間に分割する場合、盲点領域や重複領域が生じることなく事故発生区間を正確に検出ことが可能である。
また、少ない数の光電流センサS1〜S5によって構成することが可能になる。
Further, for example, a plurality of current sensors S1 to S5 are arranged in order from one end side A of the power transmission line 100, and from one end side A on the basis of the detection polarity of the first current sensor S1 from one end side A. The detection polarity of the current sensors S2 and S4 arranged at the even number is reverse polarity, and the detection polarity of the current sensors S3 and S5 arranged at the odd number from the one end A is the same polarity. Based on the detection signals from the two adjacent current sensors S1 to S5, the differential current obtained by adding the current flowing in the section between the two adjacent current sensors S1 to S5 is added. When it is determined that the size satisfies a predetermined condition, it is determined that an accident has occurred in a section between the adjacent current sensors S1 to S5.
Therefore, according to the transmission line accident section detection device according to the first embodiment, when the transmission line is divided into a plurality of sections in order to reduce the charging current of the transmission line, a blind spot region or an overlapping region is generated. It is possible to accurately detect the accident occurrence section.
Further, it can be configured by a small number of photocurrent sensors S1 to S5.

図3は、本発明の第2の実施の形態に係る送電線事故区間検出装置の説明図で、図1、図2と同一部分には同一符号を付している。
図3(a)〜(d)は使用する光電流センサ数を変えた場合の例であり、各々、2〜5個の光電流センサS1〜S5を使用した場合の、光電流センサS1〜S5と電流差動リレーRY1〜RY4の接続関係を示している。
FIG. 3 is an explanatory diagram of a power transmission line accident section detecting apparatus according to the second embodiment of the present invention, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.
FIGS. 3A to 3D show examples when the number of photocurrent sensors to be used is changed, and photocurrent sensors S1 to S5 when 2 to 5 photocurrent sensors S1 to S5 are used, respectively. And the connection relationship between the current differential relays RY1 to RY4.

図3において、中性点抵抗111を介して接地された送電線100に沿って、複数の光電流センサS1〜S5が配設されている。隣り合う2つの光電流センサS1〜S5によって挟まれた領域が、送電線100の事故発生地点を判定する区間を構成している。図3の例では、光電流センサS1〜S5が出力する検出信号を加算する際に極性を反転する必要があるが、光電流センサS1〜S5を設置する際に全て同極性で設置できるため、設置時に極性にあまり注意を払う必要がない。   In FIG. 3, a plurality of photocurrent sensors S <b> 1 to S <b> 5 are arranged along a power transmission line 100 grounded via a neutral point resistor 111. A region sandwiched between two adjacent photocurrent sensors S <b> 1 to S <b> 5 constitutes a section for determining an accident occurrence point of the transmission line 100. In the example of FIG. 3, it is necessary to reverse the polarity when adding the detection signals output from the photocurrent sensors S1 to S5, but when the photocurrent sensors S1 to S5 are installed, all can be installed with the same polarity. There is no need to pay much attention to polarity during installation.

例えば、図3(d)の例では、光電流センサS1、S2に挟まれた領域、光電流センサS2、S3に挟まれた領域、光電流センサS3、S4に挟まれた領域、光電流センサS4、S5に挟まれた領域が各々区間を構成している。
隣り合う光電流センサS1、S2からの検出信号のうち、光電流センサS1からの検出信号は電流差動リレーRY1の一方の入力部に直接入力され、光電流センサS2からの検出信号は極性反転回路301によって極性反転された後に電流差動リレーRY1の他方の入力部に入力される。
For example, in the example of FIG. 3D, a region sandwiched between the photocurrent sensors S1 and S2, a region sandwiched between the photocurrent sensors S2 and S3, a region sandwiched between the photocurrent sensors S3 and S4, and the photocurrent sensor. Each region sandwiched between S4 and S5 constitutes a section.
Of the detection signals from the adjacent photocurrent sensors S1 and S2, the detection signal from the photocurrent sensor S1 is directly input to one input portion of the current differential relay RY1, and the detection signal from the photocurrent sensor S2 is inverted in polarity. After the polarity is inverted by the circuit 301, the signal is input to the other input portion of the current differential relay RY1.

同様に、隣り合う光電流センサS2、S3からの検出信号のうち、光電流センサS2からの検出信号は電流差動リレーRY2の一方の入力部に直接入力され、光電流センサS3からの検出信号は極性反転回路302によって極性反転された後に電流差動リレーRY2の他方の入力部に入力される。
また、隣り合う光電流センサS3、S4からの検出信号のうち、光電流センサS3からの検出信号は電流差動リレーRY3の一方の入力部に直接入力され、光電流センサS4からの検出信号は極性反転回路303によって極性反転された後に電流差動リレーRY3の他方の入力部に入力される。
Similarly, of the detection signals from the adjacent photocurrent sensors S2 and S3, the detection signal from the photocurrent sensor S2 is directly input to one input portion of the current differential relay RY2, and the detection signal from the photocurrent sensor S3. Is inverted by the polarity inverting circuit 302 and then input to the other input portion of the current differential relay RY2.
Of the detection signals from the adjacent photocurrent sensors S3 and S4, the detection signal from the photocurrent sensor S3 is directly input to one input portion of the current differential relay RY3, and the detection signal from the photocurrent sensor S4 is The polarity is inverted by the polarity inverting circuit 303 and then input to the other input portion of the current differential relay RY3.

また、隣り合う光電流センサS4、S5からの検出信号のうち、光電流センサS4からの検出信号は電流差動リレーRY4の一方の入力部に直接入力され、光電流センサS5からの検出信号は極性反転回路304によって極性反転された後に電流差動リレーRY4の他方の入力部に入力される。
各光電流センサS1〜S5は電流を検出する極性が全て同一に構成されており、送電線100の電流が一端側Aから他端側B方向に流れときを正極性の電流として検出するように構成されている。即ち、各光電流センサS1〜S5は、各光電流センサS1〜S5に対応付けて示した矢印の方向に送電線100の電流が流れるとき、正極性の電流として検出し、前記矢印と逆方向に送電線100の電流が流れるとき、負極性の電流として検出する。
Of the detection signals from the adjacent photocurrent sensors S4 and S5, the detection signal from the photocurrent sensor S4 is directly input to one input portion of the current differential relay RY4, and the detection signal from the photocurrent sensor S5 is The polarity is inverted by the polarity inverting circuit 304 and then input to the other input portion of the current differential relay RY4.
Each of the photocurrent sensors S1 to S5 is configured to have the same polarity for detecting the current, and detects when the current of the transmission line 100 flows from the one end A to the other end B as a positive current. It is configured. That is, each of the photocurrent sensors S1 to S5 detects a positive current when the current of the transmission line 100 flows in the direction of the arrow shown in association with each of the photocurrent sensors S1 to S5, and reverses the direction of the arrow. When the current of the power transmission line 100 flows through, it is detected as a negative current.

第N番目の電流差動リレーNは、N番目の光電流センサNからの検出電流をそのまま入力し、(N+1)番目の光電流センサ(N+1)からの検出電流は極性反転回路によって極性を反転して入力し、4つの次式(2)で示すように、交流電気量の加算(ベクトル量の加算)により差動電流(N番目の光電流センサからの検出信号に対応する電流と(N+1)番目の光電流センサからの検出信号に対応する電流とを加算した電流)を検出する。   The Nth current differential relay N inputs the detection current from the Nth photocurrent sensor N as it is, and the detection current from the (N + 1) th photocurrent sensor (N + 1) is inverted in polarity by the polarity inversion circuit. As shown in the following four equations (2), the differential current (the current corresponding to the detection signal from the Nth photocurrent sensor) and (N + 1) are obtained by the addition of the AC electric quantity (the addition of the vector quantity). ) A current obtained by adding the current corresponding to the detection signal from the first photocurrent sensor.

Id(1)=I(1)+(−I(2))
Id(2)=I(2)+(−I(3))
Id(3)=I(3)+(−I(4)) ・・・・・(2)
Id(4)=I(4)+(−I(5))
Id (1) = I (1) + (− I (2))
Id (2) = I (2) + (− I (3))
Id (3) = I (3) + (− I (4)) (2)
Id (4) = I (4) + (− I (5))

但し、Id(N)は一端側Aから第N番目の区間の差動電流(ベクトル量)、I(N)は第N番目の光電流センサSNの検出電流(ベクトル量)、I(N+1)は第(N+1)番目の光電流センサS(N+1)の検出電流(ベクトル量)である。
隣り合う2つの電流センサSN、S(N+1)が検出した電流に対応する検出信号を加算することによって得られる差動電流の大きさが所定条件を満たすとき、例えば、隣り合う2つの電流センサSN、S(N+1)からの検出信号に対応する電流を加算することによって得られる差動電流の大きさが所定値以上のとき、前記隣り合う電流センサSN、S(N+1)に挟まれた区間Nに事故が発生したと判定する。
尚、図3において電流差動リレーRY1〜RY4、極性判定回路301〜304は判定手段を構成している。
Where Id (N) is the differential current (vector quantity) in the Nth section from one end A, I (N) is the detected current (vector quantity) of the Nth photocurrent sensor SN, I (N + 1) Is the detected current (vector quantity) of the (N + 1) th photocurrent sensor S (N + 1).
When the magnitude of the differential current obtained by adding the detection signals corresponding to the currents detected by the two adjacent current sensors SN and S (N + 1) satisfies a predetermined condition, for example, the two adjacent current sensors SN , The section N sandwiched between the adjacent current sensors SN and S (N + 1) when the magnitude of the differential current obtained by adding the currents corresponding to the detection signals from S (N + 1) is a predetermined value or more. It is determined that an accident occurred.
In FIG. 3, the current differential relays RY1 to RY4 and the polarity determination circuits 301 to 304 constitute determination means.

本発明の第2の実施の形態では、図1に示した構成により、図3に示した検出動作を行うようにしている。
即ち、CPU107は、光電流センサS1〜S5からの検出信号を用いて、前記式(2)により、各区間での差動電流を算出する。前記差動電流の大きさが所定値以上の区間は事故が発生したと判定して、当該区間に対応する出力リレー108を閉状態に駆動する。CPU107は、前記差動電流の大きさが所定値以上の区間が無い場合は、事故が発生していないと判定する。
In the second embodiment of the present invention, the detection operation shown in FIG. 3 is performed by the configuration shown in FIG.
That is, the CPU 107 calculates the differential current in each section using the detection signals from the photocurrent sensors S1 to S5 according to the equation (2). In a section where the magnitude of the differential current is equal to or greater than a predetermined value, it is determined that an accident has occurred, and the output relay 108 corresponding to the section is driven to a closed state. If there is no section in which the magnitude of the differential current is equal to or greater than a predetermined value, the CPU 107 determines that no accident has occurred.

以上述べたように、本第2の実施の形態に係る送電線故障区間検出装置によれば、前記第1の実施の形態と同様に、送電線の充電電流を小さくするために送電線を複数の区間に分割する場合、盲点領域や重複領域が生じることなく事故発生区間を正確に検出ことが可能である。
また、本第2の実施の形態では、全ての電流センサS1〜S5の検出極性は同極性とされて成り、前記判定手段は、隣り合う2つの電流センサS1〜S5が検出した各区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすとき、前記隣り合う2つの電流センサS1〜S5に挟まれた区間に事故が発生したと判定するようにしている。
したがって、光電流センサS1〜S5が出力する検出信号を加算する際に極性を反転する必要があるが、光電流センサS1〜S5を設置する際に全て同極性で設置できるため、極性に対してあまり注意を払う必要がないため、設置が容易である。
As described above, according to the transmission line failure section detection device according to the second embodiment, a plurality of transmission lines are provided in order to reduce the charging current of the transmission line, as in the first embodiment. In this case, it is possible to accurately detect the accident occurrence section without generating a blind spot area or an overlapping area.
In the second embodiment, all the current sensors S1 to S5 have the same detection polarity, and the determination means flows into each section detected by two adjacent current sensors S1 to S5. When the magnitude of the differential current obtained by adding the current in the direction to satisfy the predetermined condition, it is determined that an accident has occurred in the section between the two adjacent current sensors S1 to S5. Yes.
Therefore, it is necessary to reverse the polarity when adding the detection signals output from the photocurrent sensors S1 to S5. However, since all of the photocurrent sensors S1 to S5 can be installed with the same polarity, Installation is easy because there is no need to pay much attention.

図4は、本発明の第3の実施の形態に係る送電線事故区間検出装置の説明図で、図1、図2と同一部分には同一符号を付している。
図4(a)〜(d)は使用する光電流センサ数を変えた場合の例であり、各々、2〜5個の光電流センサS1〜S5を使用した場合の、光電流センサS1〜S5と電流差動リレーRY1〜RY4の接続関係を示している。
FIG. 4 is an explanatory diagram of a power transmission line accident section detecting apparatus according to the third embodiment of the present invention, and the same parts as those in FIGS. 1 and 2 are denoted by the same reference numerals.
4A to 4D show examples when the number of photocurrent sensors to be used is changed, and photocurrent sensors S1 to S5 when 2 to 5 photocurrent sensors S1 to S5 are used, respectively. And the connection relationship between the current differential relays RY1 to RY4.

図4において、中性点抵抗111を介して接地された送電線100に沿って、複数の光電流センサS1〜S5が配設されている。隣り合う2つの光電流センサによって挟まれた領域が、送電線100の事故発生地点を判定する区間を構成している。図4の例では、光電流センサS1〜S5が出力する検出信号を加算する際に極性を反転する必要があるが、光電流センサS1〜S5を設置する際に第1番目の光電流センサS1以外は全て逆極性で設置できるため、設置時に極性に対する注意をあまり払う必要がない。   In FIG. 4, a plurality of photocurrent sensors S <b> 1 to S <b> 5 are arranged along a power transmission line 100 grounded via a neutral point resistor 111. A region sandwiched between two adjacent photocurrent sensors constitutes a section for determining an accident occurrence point of the transmission line 100. In the example of FIG. 4, it is necessary to reverse the polarity when adding the detection signals output from the photocurrent sensors S1 to S5. However, when the photocurrent sensors S1 to S5 are installed, the first photocurrent sensor S1 is used. Since all can be installed with reverse polarity, it is not necessary to pay much attention to the polarity during installation.

例えば、図4(d)の例では、光電流センサS1、S2に挟まれた領域、光電流センサS2、S3に挟まれた領域、光電流センサS3、S4に挟まれた領域、光電流センサS4、S5に挟まれた領域が各々区間を構成している。
隣り合う光電流センサS1、S2からの検出信号はともに、電流差動リレーRY1の一方の入力部、他方の入力部に各々直接入力される。
For example, in the example of FIG. 4D, a region sandwiched between the photocurrent sensors S1 and S2, a region sandwiched between the photocurrent sensors S2 and S3, a region sandwiched between the photocurrent sensors S3 and S4, and the photocurrent sensor. Each region sandwiched between S4 and S5 constitutes a section.
Both detection signals from the adjacent photocurrent sensors S1 and S2 are directly input to one input portion and the other input portion of the current differential relay RY1, respectively.

隣り合う光電流センサS2、S3からの検出信号のうち、光電流センサS2からの検出信号は極性反転回路401によって極性反転された後に電流差動リレーRY2の一方の入力部に入力され、光電流センサS3からの検出信号は電流差動リレーRY2の他方の入力部に直接入力される。
同様に、隣り合う光電流センサS3、S4からの検出信号のうち、光電流センサS3からの検出信号は極性反転回路402によって極性反転された後に電流差動リレーRY3の一方の入力部に入力され、光電流センサS4からの検出信号は電流差動リレーRY3の他方の入力部に直接入力される。
Of the detection signals from the adjacent photocurrent sensors S2 and S3, the detection signal from the photocurrent sensor S2 is inverted in polarity by the polarity inversion circuit 401, and then input to one input portion of the current differential relay RY2. The detection signal from the sensor S3 is directly input to the other input portion of the current differential relay RY2.
Similarly, of the detection signals from the adjacent photocurrent sensors S3 and S4, the detection signal from the photocurrent sensor S3 is inverted in polarity by the polarity inversion circuit 402 and then input to one input portion of the current differential relay RY3. The detection signal from the photocurrent sensor S4 is directly input to the other input portion of the current differential relay RY3.

また、隣り合う光電流センサS4、S5からの検出信号のうち、光電流センサS4からの検出信号は極性反転回路403によって極性反転された後に電流差動リレーRY4の一方の入力部に入力され、光電流センサS5からの検出信号は電流差動リレーRY4の他方の入力部に直接入力される。
このように、第N番目の光電流センサが検出した検出信号は(N−1)区間の電流差動リレー(N−1)にそのまま入力し、第N区間の電流差動リレーNには極性を反転して入力する。これにより、各区間の電流差動リレーRY1〜RY4の差動電流検出は、4つの次式(3)で示すように、全区間とも同一原理式で行うことが可能になる。
Of the detection signals from the adjacent photocurrent sensors S4 and S5, the detection signal from the photocurrent sensor S4 is input to one input portion of the current differential relay RY4 after the polarity is inverted by the polarity inversion circuit 403. The detection signal from the photocurrent sensor S5 is directly input to the other input portion of the current differential relay RY4.
Thus, the detection signal detected by the Nth photocurrent sensor is directly input to the current differential relay (N-1) in the (N-1) section, and the polarity is applied to the current differential relay N in the Nth section. Invert and input. Thereby, the differential current detection of the current differential relays RY1 to RY4 in each section can be performed by the same principle formula in all sections as shown by the following four equations (3).

Id(1)=I(1)+I(2)
Id(2)=(−I(2))+I(3)
Id(3)=(−I(3))+I(4) ・・・・・(3)
Id(4)=(−I(4))+I(5)
Id (1) = I (1) + I (2)
Id (2) = (− I (2)) + I (3)
Id (3) = (− I (3)) + I (4) (3)
Id (4) = (− I (4)) + I (5)

但し、Id(N)は一端側Aから第N番目の区間の差動電流(ベクトル量)、I(N)は第N番目の光電流センサSNの検出電流(ベクトル量)、I(N+1)は第(N+1)番目の光電流センサS(N+1)の検出電流(ベクトル量)である。
隣り合う2つの電流センサSN、S(N+1)が検出した電流を加算することによって得られる差動電流の大きさが所定条件を満たすとき(例えば差動電流の大きさが所定値以上のとき)、前記隣り合う電流センサに挟まれた区間Nに事故が発生したと判定する。
尚、図4において電流差動リレーRY1〜RY4、極性判定回路401〜403は判定手段を構成している。
Where Id (N) is the differential current (vector quantity) in the Nth section from one end A, I (N) is the detected current (vector quantity) of the Nth photocurrent sensor SN, I (N + 1) Is the detected current (vector quantity) of the (N + 1) th photocurrent sensor S (N + 1).
When the magnitude of the differential current obtained by adding the currents detected by the two adjacent current sensors SN and S (N + 1) satisfies a predetermined condition (for example, when the magnitude of the differential current is greater than or equal to a predetermined value) It is determined that an accident has occurred in the section N between the adjacent current sensors.
In FIG. 4, the current differential relays RY1 to RY4 and the polarity determination circuits 401 to 403 constitute determination means.

本発明の第3の実施の形態では、図1に示した構成により、図4に示した検出動作を行うようにしている。
即ち、CPU107は、光電流センサS1〜S5からの検出信号を用いて、前記式(3)により、各区間での差動電流(N番目の光電流センサからの検出信号に対応する電流と(N+1)番目の光電流センサからの検出信号に対応する電流とを加算した電流)を算出する。前記差動電流の大きさが所定値以上の区間は事故が発生したと判定して、当該区間に対応する出力リレー108を閉状態に駆動する。CPU107は、前記差動電流の大きさが所定値以上の区間が無い場合は、事故が発生していないと判定する。
In the third embodiment of the present invention, the detection operation shown in FIG. 4 is performed by the configuration shown in FIG.
In other words, the CPU 107 uses the detection signals from the photocurrent sensors S1 to S5 to calculate the differential current in each section (the current corresponding to the detection signal from the Nth photocurrent sensor ( N + 1) a current obtained by adding the current corresponding to the detection signal from the nth photocurrent sensor. In a section where the magnitude of the differential current is equal to or greater than a predetermined value, it is determined that an accident has occurred, and the output relay 108 corresponding to the section is driven to a closed state. If there is no section in which the magnitude of the differential current is equal to or greater than a predetermined value, the CPU 107 determines that no accident has occurred.

以上述べたように、本第3の実施の形態に係る送電線故障区間検出装置によれば、前記第1の実施の形態と同様に、送電線の充電電流を小さくするために送電線を複数の区間に分割する場合、盲点領域や重複領域が生じることなく事故発生区間を正確に検出ことが可能である。
また、複数の電流センサS1〜S5は、送電線100の一端側Aから順にN個配設されて成り、前記判定手段は、一端側Aから第1番目の電流センサS1の検出極性を基準として他の電流センサS2〜S5の検出極性を逆極性とし、前記隣り合う2つの電流センサS1〜S5が検出した区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定値以上のとき、当該区間に事故が発生したと判定することを特徴としている。
したがって、光電流センサS1〜S5が出力する信号を加算する際に極性を反転する必要があるが、光電流センサS1〜S5を設置する際に全て同極性で設置できるため、設置時に極性に対する注意をあまり払う必要がない等の効果を奏する。
As described above, according to the power transmission line failure section detecting device according to the third embodiment, a plurality of power transmission lines are provided in order to reduce the charging current of the power transmission line, as in the first embodiment. In this case, it is possible to accurately detect the accident occurrence section without generating a blind spot area or an overlapping area.
A plurality of current sensors S1 to S5 are arranged in order from one end side A of the power transmission line 100, and the determination means uses the detection polarity of the first current sensor S1 from one end side A as a reference. The detection polarity of the other current sensors S2 to S5 is reversed, and the magnitude of the differential current obtained by adding the current flowing in the section detected by the two adjacent current sensors S1 to S5 is predetermined. When the value is equal to or greater than the value, it is determined that an accident has occurred in the section.
Therefore, it is necessary to reverse the polarity when adding the signals output from the photocurrent sensors S1 to S5. However, since all of the photocurrent sensors S1 to S5 can be installed with the same polarity, attention to polarity during installation is required. There is an effect that it is not necessary to pay too much.

尚、前記各実施の形態において、送電線100は、架空送電線と地中送電線のいずれであってもよい。
また、本発明では電流センサとしては、前述した光電流センサの他、従来の巻線型変流器(CT)でも適用することが可能である。但し、巻線型CTの場合、電流センサの設置については、分割できるCTを使用するか、さもなくば送電線の接続点において送電線の周りに全体を設置する工事を要する。これに対して光電流センサの場合は、電流センサを送電線に巻き付けるだけなので任意の箇所において設置できたり、試験的に設置や測定を行い、その後撤去することも容易であり、保守の上からも又経済的にも大きな効果がある。
In each embodiment, the power transmission line 100 may be either an overhead power transmission line or an underground power transmission line.
In the present invention, the current sensor can be applied to a conventional current transformer (CT) in addition to the above-described photocurrent sensor. However, in the case of a wire-wound CT, the installation of the current sensor requires using a separable CT or otherwise installing the whole around the transmission line at the connection point of the transmission line. On the other hand, in the case of a photocurrent sensor, the current sensor is simply wrapped around the transmission line, so it can be installed at any location, or it can be installed and measured on a trial basis, and then removed easily. There is also a great economic effect.

架空送電線や地中送電線の事故区間検出に適用可能である。   It can be applied to the detection of accident sections of overhead transmission lines and underground transmission lines.

100・・・送電線
110−1〜110−5・・・光ケーブル
111・・・中性点抵抗
S1〜S5・・・光電流センサ
102・・・検出部
103・・・光電変換器
104・・・デジタル形電流差動リレー
105・・・アナログ入力部
106・・・アナログ/デジタル変換器
107・・・CPU
108・・・出力リレー
109・・・電源
301〜304、401〜403・・・極性反転回路
RY1〜RY4・・・電流差動リレー
DESCRIPTION OF SYMBOLS 100 ... Transmission line 110-1-110-5 ... Optical cable 111 ... Neutral point resistance S1-S5 ... Photocurrent sensor 102 ... Detection part 103 ... Photoelectric converter 104 ...・ Digital type differential current relay 105 ・ ・ ・ Analog input unit 106 ・ ・ ・ Analog / digital converter 107 ・ ・ ・ CPU
108... Output relay 109... Power supply 301 to 304, 401 to 403... Polarity inversion circuit RY1 to RY4.

Claims (6)

送電線に沿って異なる位置に配設され前記送電線に流れる電流を検出し、前記検出した電流値に対応する検出信号を出力する複数の電流センサと、
隣り合う2つの前記電流センサからの前記検出信号に基づいて当該2つの電流センサに挟まれた区間で事故が生じたか否かを判定する判定手段と、
前記判定手段が事故発生と判定した区間の情報を出力する出力手段とを備え、
両端の電流センサ以外の電流センサを、当該電流センサの両側の区間を形成するために兼用することにより、隣り合う2つの電流センサによって挟まれた区間が複数連続的に形成されて成ることを特徴とする送電線事故区間検出装置。
A plurality of current sensors that are arranged at different positions along the power transmission line to detect a current flowing through the power transmission line and output a detection signal corresponding to the detected current value;
Determining means for determining whether or not an accident has occurred in a section sandwiched between the two current sensors based on the detection signals from the two adjacent current sensors;
Output means for outputting information of the section determined by the determination means that the accident occurred,
A current sensor other than the current sensors at both ends is also used to form a section on both sides of the current sensor, whereby a plurality of sections sandwiched between two adjacent current sensors are formed continuously. A transmission line accident section detecting device.
前記判定手段は、隣り合う2つの電流センサからの検出信号に基づいて、前記隣り合う2つの電流センサに挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサに挟まれた区間に事故が発生したと判定することを特徴とする請求項1記載の送電線事故区間検出装置。   The determination means is a magnitude of a differential current obtained by adding a current in a direction flowing into a section sandwiched between the two adjacent current sensors based on a detection signal from the two adjacent current sensors. The transmission line accident section detection device according to claim 1, wherein when it is determined that a predetermined condition is satisfied, it is determined that an accident has occurred in a section sandwiched between the adjacent current sensors. 前記複数の電流センサは、前記送電線の一端側から順に複数配設されると共に、前記一端側から第1番目の電流センサの検出極性を基準として、前記一端側から偶数番目に配設された電流センサの検出極性は逆極性、前記一端側から奇数番目に配設された電流センサの検出極性は同極性とされて成り、
前記判定手段は、隣り合う2つの電流センサからの検出信号に基づいて、前記隣り合う2つの電流センサに挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサに挟まれた区間に事故が発生したと判定することを特徴とする請求項1又は2記載の送電線事故区間検出装置。
The plurality of current sensors are arranged in order from one end side of the power transmission line, and are arranged evenly from the one end side with reference to the detection polarity of the first current sensor from the one end side. The detection polarity of the current sensor is reverse polarity, and the detection polarity of the current sensor arranged oddly from the one end side is the same polarity,
The determination means is a magnitude of a differential current obtained by adding a current in a direction flowing into a section sandwiched between the two adjacent current sensors based on a detection signal from the two adjacent current sensors. The transmission line accident section detection device according to claim 1, wherein when it is determined that a predetermined condition is satisfied, it is determined that an accident has occurred in a section sandwiched between the adjacent current sensors.
全ての前記電流センサの検出極性は同極性とされて成り、
前記判定手段は、隣り合う2つの電流センサからの検出信号に基づいて、前記隣り合う2つの電流センサに挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサに挟まれた区間に事故が発生したと判定することを特徴とする請求項1又は2記載の送電線事故区間検出装置。
The detection polarity of all the current sensors is the same polarity,
The determination means is a magnitude of a differential current obtained by adding a current in a direction flowing into a section sandwiched between the two adjacent current sensors based on a detection signal from the two adjacent current sensors. The transmission line accident section detection device according to claim 1, wherein when it is determined that a predetermined condition is satisfied, it is determined that an accident has occurred in a section sandwiched between the adjacent current sensors.
前記複数の電流センサは、前記送電線の一端側から順に複数配設されると共に、前記一端側から第1番目の電流センサは、他の全ての電流センサの検出極性とは逆極性とされて成り、
前記判定手段は、隣り合う2つの電流センサからの検出信号に基づいて、前記隣り合う2つの電流センサに挟まれた区間に流入する方向の電流を加算することによって得られる差動電流の大きさが所定条件を満たすと判定した場合、当該隣り合う電流センサに挟まれた区間に事故が発生したと判定することを特徴とする請求項1又は2記載の送電線事故区間検出装置。
The plurality of current sensors are arranged in order from one end side of the power transmission line, and the first current sensor from the one end side has a polarity opposite to the detection polarity of all other current sensors. Consisting of
The determination means is a magnitude of a differential current obtained by adding a current in a direction flowing into a section sandwiched between the two adjacent current sensors based on a detection signal from the two adjacent current sensors. The transmission line accident section detection device according to claim 1, wherein when it is determined that a predetermined condition is satisfied, it is determined that an accident has occurred in a section sandwiched between the adjacent current sensors.
前記各電流センサは、検出した電流値に対応する光信号を前記検出信号として出力する光電流センサであり、
前記判定手段は、前記各光電流センサからの前記検出信号をアナログ電気信号に変換して出力する光電変換手段と、前記光電変換手段からのアナログ形式の検出信号をデジタル形式の検出信号に変換して出力するアナログ/デジタル変換手段と、前記アナログ/デジタル変換手段からのデジタル形式の検出信号に基づいて、事故が発生した区間を判定する区間判定手段とを備えて成り、
前記出力手段は、前記区間判定手段が事故発生と判定した区間の情報を出力することを特徴とする請求項1乃至5のいずれか一に記載の送電線事故区間検出装置。
Each of the current sensors is a photocurrent sensor that outputs an optical signal corresponding to a detected current value as the detection signal,
The determination means converts the detection signal from each of the photocurrent sensors into an analog electric signal and outputs it, and converts the analog detection signal from the photoelectric conversion means into a digital detection signal. And an analog / digital conversion means for outputting and a section determination means for determining a section where an accident has occurred based on a detection signal in a digital format from the analog / digital conversion means,
The transmission line accident section detection device according to any one of claims 1 to 5, wherein the output means outputs information of a section determined by the section determination means that an accident has occurred.
JP2010207419A 2010-09-16 2010-09-16 Power transmission line accident section detection device Pending JP2012065446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207419A JP2012065446A (en) 2010-09-16 2010-09-16 Power transmission line accident section detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207419A JP2012065446A (en) 2010-09-16 2010-09-16 Power transmission line accident section detection device

Publications (1)

Publication Number Publication Date
JP2012065446A true JP2012065446A (en) 2012-03-29

Family

ID=46060596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207419A Pending JP2012065446A (en) 2010-09-16 2010-09-16 Power transmission line accident section detection device

Country Status (1)

Country Link
JP (1) JP2012065446A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013053A1 (en) * 2014-07-22 2016-01-28 三菱電機株式会社 Dc power transmission system protection device, protection method, and dc power transmission system
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889032A (en) * 1981-11-19 1983-05-27 三菱電機株式会社 Bus protecting relay unit
JPH03251031A (en) * 1990-02-28 1991-11-08 Mitsubishi Electric Corp Fault zone detector
JP2002298725A (en) * 2001-03-28 2002-10-11 Yazaki Corp Leak sensing device
JP2006050696A (en) * 2004-08-02 2006-02-16 Takaoka Electric Mfg Co Ltd Underground line accident section judging device
JP2009005565A (en) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5889032A (en) * 1981-11-19 1983-05-27 三菱電機株式会社 Bus protecting relay unit
JPH03251031A (en) * 1990-02-28 1991-11-08 Mitsubishi Electric Corp Fault zone detector
JP2002298725A (en) * 2001-03-28 2002-10-11 Yazaki Corp Leak sensing device
JP2006050696A (en) * 2004-08-02 2006-02-16 Takaoka Electric Mfg Co Ltd Underground line accident section judging device
JP2009005565A (en) * 2007-06-25 2009-01-08 Mitsubishi Electric Corp Distribution line accident zone selecting and blocking device and distribution line accident zone selecting and blocking method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016013053A1 (en) * 2014-07-22 2016-01-28 三菱電機株式会社 Dc power transmission system protection device, protection method, and dc power transmission system
JP2021110661A (en) * 2020-01-10 2021-08-02 株式会社日立製作所 Ground fault point locating system and method therefor
JP7341070B2 (en) 2020-01-10 2023-09-08 株式会社日立製作所 Ground fault location system and method

Similar Documents

Publication Publication Date Title
RU2571629C1 (en) Method and device for assessment of angle of zero-phase-sequence voltage at single line-to-ground fault
EP3138171B1 (en) Transient protection for multi-terminal hvdc grid
EP3783376B1 (en) Electric motor diagnosing device
CA2295342A1 (en) Fault-detection for powerlines
JP6220209B2 (en) DC feeding protection control system
US20110248707A1 (en) Position Detector and Position Detection Method
JP4977481B2 (en) Insulation monitoring device
JP2012065446A (en) Power transmission line accident section detection device
EP2799892B1 (en) Breakdown detection device and detection method thereof
JP6920017B2 (en) Improvements in or related to power systems
JP4142608B2 (en) Tree contact monitoring device for distribution lines
CN104867387B (en) A kind of experimental teaching unit for being used to simulate the Principles of Relay Protection that rail hands over electric power system
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2014150658A (en) Protective relay device
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
US20190013760A1 (en) Direct-current sensor, alternating-current sensor, and inverter having the same
JP5991840B2 (en) Accident point locator
JP5241434B2 (en) Cable section accident detection device
JP2015059751A (en) Deterioration detecting method, and deterioration detecting apparatus, for water-cooled cables
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
KR101336860B1 (en) Detecting apparatus for fault location of power line
JP2018033282A (en) Bus bar monitoring device
JP5879079B2 (en) Solar power plant
JP2004053361A (en) System for detecting current
US20120056613A1 (en) Method and device for the detection of current asymmetries in three-phase circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140620