JP5697551B2 - Current differential protection relay - Google Patents
Current differential protection relay Download PDFInfo
- Publication number
- JP5697551B2 JP5697551B2 JP2011126603A JP2011126603A JP5697551B2 JP 5697551 B2 JP5697551 B2 JP 5697551B2 JP 2011126603 A JP2011126603 A JP 2011126603A JP 2011126603 A JP2011126603 A JP 2011126603A JP 5697551 B2 JP5697551 B2 JP 5697551B2
- Authority
- JP
- Japan
- Prior art keywords
- suppression amount
- phase
- induction
- current
- suppression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001629 suppression Effects 0.000 claims description 411
- 238000004364 calculation method Methods 0.000 claims description 203
- 230000006698 induction Effects 0.000 claims description 200
- 230000001681 protective effect Effects 0.000 claims description 4
- 230000016507 interphase Effects 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 description 22
- 230000007257 malfunction Effects 0.000 description 21
- 238000010586 diagram Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000009795 derivation Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/40—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current
- H02H3/407—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to ratio of voltage and current using induction relays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/04—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
- H02H7/045—Differential protection of transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/26—Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
本発明は、電力系統を保護する目的で設置される保護継電器に関し、特に母線および送電線を電流差動原理により保護する電流差動保護継電器に関するものである。 The present invention relates to a protective relay installed for the purpose of protecting a power system, and more particularly to a current differential protective relay that protects a bus and a power transmission line by a current differential principle.
従来の電流差動保護継電器は、電力系統の保護対象(送電線、或いは母線)にて検出された各端子電流を同一時刻、一定周期をもってサンプリングし、AD(アナログ・デジタル)変換後にこれらのサンプリングデータ(端子電流データ)を用いて保護対象区間の内外部事故を識別し、内部事故の場合には保護対象区間を電力系統より切り離すべく、当該保護区間に配設された遮断器(Circuit Breaker)に開放指令を出力する。電流差動保護の動作について説明をすると、各端子に配設された電流変流器(Current Transformer:CTと略称する)から得られる継電器入力電流I1、I2、・・・Inのベクトル和(サンプリングされた瞬時値データの和、即ち差電流Id=I1+I2+・・・+In)を実効値演算したものを動作量IDとし、前記各端子電流のスカラー和(各端子電流を実効値演算した後に加算した値)を抑制量IRとして、動作量IDと抑制量IRが予め設定される動作領域の判定式により内部事故か外部事故かの判定を行う。 A conventional current differential protection relay samples each terminal current detected in the power system protection target (transmission line or bus) at the same time and with a constant period, and samples these after AD (analog / digital) conversion Circuit breaker installed in the protection section to identify internal and external accidents in the protected section using data (terminal current data) and to disconnect the protected section from the power system in the event of an internal accident The release command is output to. The operation of the current differential protection will be described. The vector sum (sampling) of the relay input currents I1, I2,... In obtained from current transformers (abbreviated as CT) arranged at each terminal. The sum of the instantaneous value data, that is, the difference current Id = I1 + I2 +... + In, which is calculated as an effective value, is used as the operation amount ID, and the scalar sum of the terminal currents (the respective terminal currents are calculated after calculating the effective value) Value) is set as the suppression amount IR, and it is determined whether it is an internal accident or an external accident based on the determination formula of the operation region in which the operation amount ID and the suppression amount IR are preset.
一般的には、判定式は、次式に設定される。ただし、R1、R2、K1、K2は整定値である。
ID>R1*IR+K01 ---小電流域
ID>R2*IR+K02 ---大電流域
但し、R1<R2、K01>K02
これは、電流が比較的小さい領域では、抑制量を小さくして動作領域を広げ(高感度にし)、電流が大きい領域では、CTの(磁気)飽和などの影響による誤差分の影響を避けるため抑制量を大きくして動作領域を小さくするように(低感度に)している。
Generally, the determination formula is set to the following formula. However, R1, R2, K1, and K2 are settling values.
ID> R1 * IR + K01 --- small current range ID> R2 * IR + K02 --- high current range However, R1 <R2, K01> K02
This is because in a region where the current is relatively small, the amount of suppression is reduced to widen the operation region (high sensitivity), and in a region where the current is large, the effect of errors due to the influence of CT (magnetic) saturation is avoided. The amount of suppression is increased to reduce the operating area (low sensitivity).
さらに、外部事故発生時のCT(磁気)飽和は、事故電流が一端子のCTに集中するため、事故電流が比較的小さい領域でも発生する可能性がある。そのため、従来の電流差動保護継電器では、抑制量の一定期間過去からの最大値に応じて動作領域設定の最小感度を制御するなどの対策が行われている(例えば下記特許文献1)。
なお、上記判定式は、より簡単に、
ID>K01、かつ、ID>R*IR
のように設定される場合や、抑制量(IR)に各端子電流の実効値の中で最大値を使用する場合もある(例えば、下記非特許文献1)。
Furthermore, CT (magnetism) saturation at the occurrence of an external accident may occur even in a region where the accident current is relatively small because the accident current concentrates on one terminal CT. Therefore, in the conventional current differential protection relay, measures such as controlling the minimum sensitivity of the operation region setting according to the maximum value of the suppression amount from the past for a certain period of time are taken (for example, Patent Document 1 below).
In addition, the above judgment formula is more easily
ID> K01 and ID> R * IR
In some cases, the maximum value among the effective values of the terminal currents may be used as the suppression amount (IR) (for example, Non-Patent Document 1 below).
しかしながら、上記特許文献1に代表される従来の電流差動保護継電器は、以下のような課題があった。従来の電流差動保護継電器は、外部事故時にCTが磁気飽和により1次電流とは異なる2次電流を継電器に入力することによって生じる差電流(動作量)を、過去一定期間の抑制量の最大値により動作感度(動作領域)の設定を制御する対策を有している。ただし、CTの(磁気)飽和ではなく、CTの相間誘導がある場合、事故相ではない健全相CTにも各相CT間誘導によりCT2次に(CT1次にはない)電流が流れる可能性がある。事故相の差動保護継電要素は、外部事故電流によるCT飽和などの誤差電流による差電流(動作量)があった場合でも、大きな抑制量が期待できるため動作することはないが、CT誘導によって事故相電流が健全相の一端子のみに誘導された場合、健全相の差動保護継電要素では、その誘導電流があたかも動作量として認識される。簡単のため負荷電流がない場合を考えると、例えば、A相において外部事故が発生したとき、CT誘導を受けた健全相(例えばB相)のCT2次には電流が流れる。他の回線のB相CTがCT誘導を受けない場合には、それらCT誘導を受けないCT2次には電流がない状態となり、一端子のみに電流が流入した状態となる。その場合、CT誘導量=動作量=抑制量が成立して、そのCT誘導量が電流差動保護継電器の前記動作領域内にはいると誤動作するという問題点があった。 However, the conventional current differential protection relay represented by Patent Document 1 has the following problems. The conventional current differential protection relay uses the maximum difference in the amount of suppression for a certain period in the past when the CT is magnetically saturated and a secondary current different from the primary current is input to the relay due to magnetic saturation. There is a measure to control the setting of motion sensitivity (motion area) by value. However, when there is CT phase induction rather than CT (magnetic) saturation, there is a possibility that the current of CT secondary (not CT primary) may also flow in the healthy phase CT that is not the accident phase due to the induction between each phase CT. is there. Even if there is a difference current (operation amount) due to an error current such as CT saturation due to an external accident current, the differential protection relay element in the accident phase does not operate because a large suppression amount can be expected, but CT induction When the accident phase current is induced to only one terminal of the healthy phase, the induced current is recognized as an operation amount in the healthy phase differential protection relay element. Considering the case where there is no load current for simplicity, for example, when an external accident occurs in the A phase, a current flows through the CT2 of the healthy phase (for example, the B phase) that has received the CT induction. When the B-phase CT of another line does not receive the CT induction, there is no current in the CT secondary that does not receive the CT induction, and the current flows into only one terminal. In this case, there is a problem in that if CT induction amount = operation amount = suppression amount is established and the CT induction amount is within the operation region of the current differential protection relay, a malfunction occurs.
上記の各相CT間の誘導については、基本的には発生しないように3相CTを配置すべきであるが、変電設備の小型化を図るために、3相一体型CTを採用するなどのケースでは、CT各相間の距離が近くなるために誘導が生じやすくなる場合がある。そのようなケースでは、最大外部事故電流による誘導量を想定してその誘導量では検出しないよう、電流差動保護継電器の動作感度を低下させる(小電流域のK01を最大外部事故電流時のCT誘導で発生する誘導電流以上に設定する)などの手段が講じられている。しかしながら、これは動作感度の低下をもたらし、微小事故電流に対しては検出ができない(事故を見逃す)という問題点があった。 Regarding the induction between the above-mentioned respective phase CTs, the three-phase CTs should be arranged so as not to occur basically. However, in order to reduce the size of the substation equipment, the three-phase integrated CT is adopted. In the case, induction may easily occur because the distance between the CT phases is close. In such a case, the operation sensitivity of the current differential protection relay is reduced so that the induced amount due to the maximum external accident current is assumed and the induced amount is not detected (K01 in the small current region is changed to the CT at the maximum external accident current. A measure such as setting to an induced current generated by induction) is taken. However, this brings about a problem that the operation sensitivity is lowered, and it is impossible to detect a minute accident current (missing an accident).
本発明は、上記に鑑みてなされたものであって、動作感度の低下を極力抑え、かつ、他相へのCT誘導が発生しても誤動作のない電流差動保護継電器を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a current differential protection relay that suppresses a decrease in operating sensitivity as much as possible and does not malfunction even if CT induction to another phase occurs. To do.
上述した課題を解決し、目的を達成するために、本発明は、電力系統の各相に設けられた複数の変流器からの相電流を用いて動作量と抑制量とを演算し、前記動作量と前記抑制量に基づいて電力系統の保護を行う電流差動保護継電器であって、自相の前記抑制量に、3相一体型の変流器の相間誘導によって自相の変流器の1次側に流れる電流に伴い他相の変流器の2次側に誘導される誘導電流の度合いを表し前記3相一体型を構成する複数の変流器の配置により定まる誘導比率と比率差動演算における動作特性の傾きとによって決まる一定比率を乗じて誘導抑制量を演算し、他相の電流差動保護継電器へ出力する誘導抑制量演算部と、他相の前記誘導抑制量演算部から出力された誘導抑制量と自相の前記抑制量とに基づいて、自相の比率差動演算に用いられる抑制量を演算する抑制量演算部と、を備えたことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention calculates an operation amount and a suppression amount using phase currents from a plurality of current transformers provided in each phase of the power system, A current differential protection relay that protects an electric power system based on an operation amount and the suppression amount, and the self-phase current transformer is connected to the suppression amount of the own phase by interphase induction of a three-phase integrated current transformer a plurality of induction ratio determined by the arrangement of the current transformer constitutes a table and the 3-phase integral degree of induction current induced in the secondary side of the other phases of the current transformer with the current flowing through the primary side of the The induction suppression amount is calculated by multiplying a fixed ratio determined by the slope of the operation characteristic in the ratio differential calculation, and output to the current differential protection relay of the other phase, and the induction suppression amount calculation of the other phase Based on the induction suppression amount output from the unit and the suppression amount of the own phase, the ratio differential of the own phase And a suppression amount calculation unit that calculates a suppression amount used for the calculation.
この発明によれば、他相の誘導抑制量演算回路から出力された誘導抑制量を用いて自相の比率差動演算を行うための抑制量を制御するようにしたので、動作感度の低下を極力抑え、かつ、他相へのCT誘導が発生しても誤動作しないという効果を奏する。 According to this invention, since the suppression amount for performing the ratio differential calculation of the own phase is controlled using the induction suppression amount output from the induction suppression amount calculation circuit of the other phase, the operation sensitivity is reduced. There is an effect that the operation is suppressed as much as possible and no malfunction occurs even if CT induction to another phase occurs.
以下に、本発明にかかる電流差動保護継電器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Embodiments of a current differential protection relay according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
図1は、本発明の実施の形態1〜4に共通する電流差動保護継電器(以下単に「継電器」と称する)1a、1b、1cを中心とする全体構成を示す図である。図1には、継電器1a、1b、1cの保護対象である3相母線の各相の母線30a、30b、30cが示され、例えば、母線30aはA相の母線、母線30bはB相の母線、母線30cはC相の母線である。
Embodiment 1 FIG.
FIG. 1 is a diagram showing an overall configuration centering on current differential protection relays (hereinafter simply referred to as “relays”) 1a, 1b, and 1c common to the first to fourth embodiments of the present invention. FIG. 1 shows
母線30aからの引き出し線31aには、遮断器34aおよびCT37aが設置されている。同様に、母線30aからの引き出し線32aには、遮断器35aおよびCT38aが設置され、母線30aからの引き出し線33aには、遮断器36aおよびCT39aが設置されている。これらのCT37a、38a、39aには、それぞれケーブル40a、41a、42aの一端が接続され、ケーブル40a、ケーブル41a、およびケーブル42aの他端が継電器1a内の入力変換器群(図示せず)に接続されている。
A
母線30bからの引き出し線31bには、遮断器34bおよびCT37bが設置されている。同様に、母線30bからの引き出し線32bには、遮断器35bおよびCT38bが設置され、母線30bからの引き出し線33bには、遮断器36bおよびCT39bが設置されている。これらのCT37b、38b、39bには、それぞれケーブル40b、41b、42bの一端が接続され、ケーブル40b、ケーブル41b、およびケーブル42bの他端が継電器1b内の入力変換器群(図示せず)に接続されている。
A
母線30cからの引き出し線31cには、遮断器34cおよびCT37cが設置されている。同様に、母線30cからの引き出し線32cには、遮断器35cおよびCT38cが設置され、母線30cからの引き出し線33cには、遮断器36cおよびCT39cが設置されている。これらのCT37c、38c、39cには、それぞれケーブル40c、41c、42cの一端が接続され、ケーブル40c、ケーブル41c、およびケーブル42cの他端が継電器1c内の入力変換器群(図示せず)に接続されている。
A
なお、図1には、説明を簡単化するため、各母線30a、30b、30cからの引き出し線の数を3本としている。実際にはn本(nは2以上の整数)の引き出し線が各母線に配設されているものとする。CTの個数も同様である。また、以下の説明では、特に説明する場合を除き、継電器1a、1b、1cは単に継電器1と称する。
In FIG. 1, the number of lead lines from each of the
図2は、本発明の実施の形態1にかかる電流差動保護継電器1の構成図であり、3相の内のある1相についての構成を示すものである。継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、抑制量補正演算回路(抑制量演算部)61と、CT誘導抑制量演算回路(誘導抑制量演算部)81と、動作判定回路7とを有して構成されている。
FIG. 2 is a configuration diagram of the current differential protection relay 1 according to the first exemplary embodiment of the present invention, and shows a configuration for one phase among the three phases. The relay 1 mainly includes a difference
電力系統の保護対象(送電線或いは母線など)に接続される各端子電流(相電流)は、図1に示される各CTを介して、CT1電流(I1)、CT2電流(I2)、・・・CTn電流(In)として継電器1に入力される。 Each terminal current (phase current) connected to an object to be protected in the power system (transmission line or bus) is passed through each CT shown in FIG. 1 as CT1 current (I1), CT2 current (I2),. -It inputs into the relay 1 as CTn electric current (In).
継電器1では、入力された各端子電流I1〜Inを全て同一時刻でサンプリングし、AD変換することでデジタルデータとして処理される。なお、図2では、継電器1内に取り込まれた各端子電流I1〜Inを継電器1内で扱う電流値に変換する機能(例えば入力電流変換部)や、端子電流I1〜Inを時刻同期させて出力する機能(例えば同期処理部)の図示を省略している。 In the relay 1, all the input terminal currents I1 to In are sampled at the same time and processed as digital data by AD conversion. In FIG. 2, a function of converting each terminal current I1 to In taken into the relay 1 into a current value handled in the relay 1 (for example, an input current conversion unit), and the terminal currents I1 to In are time-synchronized. Illustration of a function to output (for example, a synchronization processing unit) is omitted.
まず、差電流演算回路3では差動演算が実行される。具体的には、差電流演算回路3は、継電器1に入力される各端子電流I1〜Inの同時刻データを瞬時値ベースで加算する。加算されたデータは、実効値演算回路4に入力され、実効値演算回路4は、差電流Id=I1+I2+・・・+Inを実効値演算し、動作量IDとして動作判定回路7に送出する。
First, the differential
他方、継電器1に入力される各端子電流I1〜Inは、それぞれ実効値演算回路2−1〜2−nにも入力され、実効値演算回路2−1〜2−nは、実効値演算を実行する。各実効値演算回路2−1〜2−nで演算された実効値は、抑制量演算回路5に取り込まれる。抑制量演算回路5は、この各端子電流I1〜Inの実効値を加算することによって、自相の抑制量である抑制量IR1を演算する。
On the other hand, the terminal currents I1 to In input to the relay 1 are also input to the effective value calculation circuits 2-1 to 2-n, respectively, and the effective value calculation circuits 2-1 to 2-n perform the effective value calculation. Run. The effective values calculated by the effective value calculation circuits 2-1 to 2-n are taken into the suppression
CT誘導抑制量演算回路81は、抑制量演算回路5からの抑制量IR1に一定比率Pを乗じて他相の抑制量IRを制御する抑制量(CT誘導抑制量KH)を演算する。このCT誘導抑制量KHは、自相のCTの1次側に流れる電流に伴って他相のCT2次側に流れる誘導電流を用いて演算された他相の抑制量IR1を制御するための抑制量である。CT誘導抑制量演算回路81で演算されたCT誘導抑制量KHは、他の2相の継電器1へ送信され、他相の動作領域の制御(比率差動演算)に用いられる。
The CT induction suppression
一定比率Pは、CT誘導比率αおよび動作特性の傾きRによって決まる比率である。CT誘導比率αは、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される相電流Inの度合いを表す。換言すれば、事故電流で発生するCT誘導量が他相に影響を与える度合いである。このCT誘導比率αは、各CT37a〜39cの配置により定まる値である。
The constant ratio P is a ratio determined by the CT induction ratio α and the slope R of the operating characteristics. The CT induction ratio α represents the degree of the phase current In induced on the secondary side of the
一定比率Pは、以下のように求める。外部事故発生時に健全相へCT誘導が生じた場合、そのCT誘導が1つのCTにより生じるとすると、健全相の動作量IDは(1)式の通りである。なお「CT誘導が1つのCTにより生じる」とは、例えば、図1に示される引き出し線31aにおいて外部事後が発生した場合、CT37aの1次側に流れる電流に伴ってCT37bの2次側に誘導電流が流れるが、別の端子に配設されたCT(例えばCT38b)の2次側には誘導電流が流れていない状態である。
The constant ratio P is obtained as follows. When CT induction occurs in the healthy phase when an external accident occurs, if the CT induction is generated by one CT, the operation amount ID of the healthy phase is as shown in equation (1). Note that “CT induction is caused by one CT” means that, for example, when an external posterior occurs in the
このときに事故相の抑制量は、流入事故電流の2倍になる。すなわち、外部事故時には母線に流入する電流の合計電流を流入事故電流と称すると、流出事故電流は同じだけあるので、抑制量としては流入事故電流の2倍流れる。 At this time, the suppression amount of the accident phase is twice the inflow accident current. That is, if the total current flowing into the bus at the time of an external accident is referred to as an inflow accident current, the outflow accident current is the same, and therefore the amount of suppression flows twice as much as the inflow accident current.
最も誘導量が大きい状態は、1つのCTのみが誘導を受ける場合であるので、事故電流IFをそのCTに流れる電流と仮定すると、事故相の抑制量IR1=2IFとなる。 Since the state with the largest induction amount is a case where only one CT receives induction, if the accident current IF is assumed to be a current flowing through the CT, the accident phase suppression amount IR1 = 2IF.
一方、健全相の抑制量IR1は、負荷電流が増えると増加するため、最も動作し易いケース(最も厳しい条件)は、負荷電流が0(A)のときである。そして、負荷電流が0(A)のときにおける健全相の抑制量IRは、抑制量補正演算回路61(あるいは後述する抑制量補正演算回路62)によって(2)式の通りである。
On the other hand, since the healthy phase suppression amount IR1 increases as the load current increases, the most operable case (the most severe condition) is when the load current is 0 (A). The suppression amount IR of the healthy phase when the load current is 0 (A) is expressed by the expression (2) by the suppression amount correction calculation circuit 61 (or a suppression amount
すなわち、上述した事故相の抑制量(2IF)に一定比率Pを乗じた値が健全相の抑制量IRとなる。ここで、動作判定回路7の動作条件式を(3)式とする。 That is, a value obtained by multiplying the above-described accident phase suppression amount (2IF) by a certain ratio P is the healthy phase suppression amount IR. Here, the operation condition expression of the operation determination circuit 7 is represented by Expression (3).
(1)式で得られた健全相の動作量IDと(2)式で得られた健全相の抑制量IRとを(3)式に代入して、健全相の動作しない抑制量IRの条件を求めると、その条件は(4)式の通りである。 The condition of the suppression amount IR for which the healthy phase does not operate by substituting the healthy phase operation amount ID obtained by the equation (1) and the healthy phase suppression amount IR obtained by the equation (2) into the equation (3). Is obtained, the condition is as shown in equation (4).
(4)式のαIFは、(1)式の健全相の動作量IDに相当する。また(4)式のαIF<R*P*2IFは、P>α/(2*R)となる。このとき、動作判定回路7の条件は成立せず、誤動作を避けることができる。すなわち、事故相にかかる継電器1にて演算された抑制量IR1に一定比率Pを乗じたCT誘導抑制量KHの値は、健全相にかかる継電器1にて演算される動作量IDよりも相対的に大きな値となる。なお、抑制量演算回路5の抑制量演算方式がスカラー和抑制方式の場合、動作特性の傾きR=0.3程度に設定されるため、P>1.67α(R=0.3時)となる。
ΑIF in the equation (4) corresponds to the operation amount ID of the healthy phase in the equation (1). In addition, αIF <R * P * 2IF in the equation (4) becomes P> α / (2 * R). At this time, the condition of the operation determination circuit 7 is not satisfied, and malfunction can be avoided. That is, the value of the CT induction suppression amount KH obtained by multiplying the suppression amount IR1 calculated in the relay 1 related to the accident phase by a certain ratio P is more relative to the operation amount ID calculated in the relay 1 related to the healthy phase. A large value. When the suppression amount calculation method of the suppression
事故相をA相、健全相をB、C相と見立てた場合、A相にかかる継電器1a内のCT誘導抑制量演算回路81は、自相の抑制量IR1に一定比率Pを乗算したCT誘導抑制量(KHA)を演算し、このCT誘導抑制量(KHA)は、B相にかかる継電器1bおよびC相にかかる継電器1cに送信される。
When the accident phase is assumed to be A phase and the healthy phase is assumed to be B and C phases, the CT induction suppression
次に、抑制量補正演算回路61に関して説明する。抑制量補正演算回路61は、自相の抑制量演算回路5から出力された抑制量IR1と、他相の継電器1で演算されたCT誘導抑制量KH(すなわち自相以外の2相のCT誘導抑制量演算回路81から出力されたCT誘導抑制量KH)とを取り込み、これらの抑制量(IR1、KH)の中で最大のものを抑制量IRとして算出する。事故相をB相、健全相をA相と見立てた場合、例えばA相にかかる継電器1a内の抑制量補正演算回路61には、自相の抑制量演算回路5から出力された抑制量IR1と、B相にかかる継電器1b内のCT誘導抑制量演算回路81から出力されたCT誘導抑制量(KHB)と、C相にかかる継電器1c内のCT誘導抑制量演算回路81から出力されたCT誘導抑制量(KHC)とが取り込まれる。そして、継電器1a内の抑制量補正演算回路61は、IR1、KHB、およびKHCの中で最大のもの(KHB)を抑制量IRとして算出する。
Next, the suppression amount
動作判定回路7は、実効値演算回路4からの動作量IDと、抑制量補正演算回路61からの抑制量IRとに基づいて、内部外部事故判定を実行する。事故相をB相、健全相をA、C相と見立てた場合、例えば、継電器1a内の動作判定回路7に取り込まれた抑制量IRは、B相の外部故障発生時に継電器1aで演算された動作量IDよりも相対的に大きな値となる。継電器1a内の動作判定回路7において、動作量IDに対する抑制量IRの比率が相対的に大きくなり、動作量IDと抑制量IRとによる軌跡が不動作領域に設定される。継電器1c内の動作判定回路7においても同様である。その結果、健全相にかかる継電器1a、1cは、B相の外部故障発生時におけるCT誘導による誤動作を回避することができる。
The operation determination circuit 7 performs an internal / external accident determination based on the operation amount ID from the effective
また、内部事故発生時の事故電流をIF、健全相の電流(負荷電流など)をILとすると、事故相の抑制量IR1≧IF、健全相の抑制量IR1=2ILとなり、誘導比率αを0.1未満とすると、P=1.67*0.1=0.167となる。この場合、健全相のKHは、KH=0.167*2IL=0.33ILとなり、事故電流IF>負荷電流ILと考えられるため、自相(事故相)抑制量(IR1)>他相抑制量(KH)となる。従って、他相抑制量(KH)の影響を受けて動作感度が低下する可能性は少ないと考えられるため、内部事故発生時の動作感度への影響を最小限にすることもできる。なお、抑制量IR1=2ILとなる理由は、健全相では、電流が貫通しているので母線への流入電流=流出電流=負荷電流となるためである。 If the accident current at the time of the occurrence of an internal accident is IF and the current of the healthy phase (load current, etc.) is IL, the accident phase suppression amount IR1 ≧ IF and the healthy phase suppression amount IR1 = 2IL, and the induction ratio α is 0. If it is less than 1, P = 1.67 * 0.1 = 0.167. In this case, the KH of the healthy phase is KH = 0.167 * 2IL = 0.33IL, and it is considered that the accident current IF> the load current IL. Therefore, the self phase (accident phase) suppression amount (IR1)> the other phase suppression amount. (KH). Therefore, since it is considered that there is little possibility that the operation sensitivity is lowered due to the influence of the other phase suppression amount (KH), the influence on the operation sensitivity when an internal accident occurs can be minimized. The reason why the suppression amount IR1 = 2IL is that the current passes through in the healthy phase, so that the inflow current to the bus line = the outflow current = the load current.
このように、実施の形態1にかかる継電器1は、自相の前記抑制量IR1に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率Pを乗じて誘導抑制量KHを演算すると共に、他相の継電器1へ出力するCT誘導抑制量演算回路81と、他相のCT誘導抑制量演算回路81から出力されたCT誘導抑制量KHと自相の抑制量IR1とに基づいて、自相の比率差動演算に用いられる抑制量IRを演算する抑制量補正演算回路61と、を備えるようにしたので、事故相からのCT誘導に起因する誘導電流を予想し、それに準じて抑制量IRを補正することによって健全相にかかる継電器1の誤動作を防止する。
As described above, the relay 1 according to the first embodiment induces the suppression amount IR1 of the own phase to the secondary side of the CT37a to 39c of the other phase with the current flowing to the primary side of the CT37a to 39c of the own phase. The induction suppression amount KH is calculated by multiplying the constant ratio P determined by the induction ratio α indicating the degree of induced current and the gradient R of the operating characteristic in the ratio differential calculation, and output to the relay 1 of the other phase Based on the suppression
次に動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、抑制量演算回路5に取り込まれ抑制量IR1が演算される。この抑制量IR1は、抑制量補正演算回路61およびCT誘導抑制量演算回路81に取り込まれ、CT誘導抑制量演算回路81では、この抑制量IR1と一定比率Pとに基づいてCT誘導抑制量KHが演算され、このCT誘導抑制量KHは他の2相へ送出される。健全相にかかる継電器1内の抑制量補正演算回路61では、自相の抑制量演算回路5からの抑制量IR1と、自相以外の2相からのCT誘導抑制量KHとの中から最大のものを抑制量IRとして算出する。その結果、図2の動作判定回路7に示される抑制量IRは、上昇する側に変更されるため、他相外部事故時のCT誘導による誤動作が回避される。
Next, the operation will be described. The effective values of the terminal currents I1 to In output from the effective value calculation circuits 2-1 to 2-n are taken into the suppression
以上に説明したように、実施の形態1にかかる継電器1は、CT誘導抑制量演算回路81が、自相の前記抑制量IR1に一定比率Pを乗じて誘導抑制量KHを演算し、抑制量補正演算回路61が、自相の抑制量IR1と他の2相のCT誘導抑制量演算回路81から伝達されたCT誘導抑制量KHとの中で最大のものを自相の比率差動演算に用いられる抑制量IRとして出力するようにしたので、内部事故時の動作感度の低下を極力抑え、かつ、他相へのCT誘導が発生しても誤動作を防止することができる。端子電流の計測手段として3相一括型CTが用いられている場合、事故相にかかるCTに大きな事故電流(例えば50KA)が流れることによって、健全相のCTが事故相のCTからの磁気誘導を受けて、健全相のCT2次側に誘導電流(例えばCT1次側換算で500〜600A)が流れる場合がある。その場合、流入と流出の差分が零にならず、差電流Idが生じることとなるため、CT誘導量=動作量=抑制量が成立する。すなわち、動作量IDと抑制量IRとの比率が等しくなるため、動作量IDと抑制量IRとによる軌跡が動作領域に設定され、その結果、健全相にかかる継電器1が誤動作する可能性がある。従来技術では、このようなCT誘導量を想定して、小電流域の最小感度設定値K01を、最大外部事故電流時のCT誘導で発生する誘導電流以上に設定するなどの措置を講じている場合もあるが、これは動作感度の低下をもたらすため、微小事故電流に対しては検出ができない場合がある。実施の形態1にかかる継電器1は、外部事故発生時には他相のCT誘導抑制量演算回路81から出力されたCT誘導抑制量KHを用いて比率差動演算を行うことができ、かつ、内部事故発生時には自相の抑制量演算回路5で演算された抑制量IR1を用いて比率差動演算を行うことができるため、従来技術のように最小感度設定値K01を設定しなくとも、CT誘導による誤動作を防止することができると共に、内部事故発生時の動作感度の低下を最小限に抑えることが可能である。
As described above, in the relay 1 according to the first embodiment, the CT induction suppression
実施の形態2.
実施の形態1にかかる継電器1は、外部事故発生時の事故電流IFに起因して健全相のCT2次側に誘導電流が流れる場合でも、事故相にかかる抑制量IR1に一定比率Pを乗じた結果(CT誘導抑制量KH)と健全相にかかる抑制量IR1と比較して、CT誘導抑制量KHが抑制量IR1よりも大きい場合、事故相のCT誘導抑制量KHを抑制量IRとして採用することによって、CT誘導による誤動作を防止するように構成されていた。実施の形態2にかかる継電器1は、他の2相のCT誘導抑制量KHの内の大きい方が自相の抑制量IR1よりも大きい場合、そのCT誘導抑制量KHを自相の抑制量IR1に加算した抑制量IRを採用することによって、CT誘導による誤動作を防止するように構成されている。自相の抑制量IR1にCT誘導抑制量KHを加算することで、CT誘導に対する比率マージンが得られ、より安定した動作が期待できる。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
In the relay 1 according to the first embodiment, even when an induced current flows on the CT secondary side of the healthy phase due to the accident current IF when an external accident occurs, the suppression amount IR1 applied to the accident phase is multiplied by a certain ratio P. When the CT induction suppression amount KH is larger than the suppression amount IR1 as compared with the result (CT induction suppression amount KH) and the suppression amount IR1 applied to the healthy phase, the accident phase CT induction suppression amount KH is adopted as the suppression amount IR. Therefore, it is configured to prevent malfunction due to CT induction. When the larger one of the other two-phase CT induction suppression amounts KH is larger than the self-phase suppression amount IR1, the relay 1 according to the second embodiment uses the CT induction suppression amount KH as the self-phase suppression amount IR1. By adopting the suppression amount IR added to the above, it is configured to prevent malfunction due to CT induction. By adding the CT induction suppression amount KH to the self-phase suppression amount IR1, a ratio margin for CT induction can be obtained, and a more stable operation can be expected. Hereinafter, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
図3は、本発明の実施の形態2にかかる電流差動保護継電器1の構成図であり、3相の内のある1相についての構成を示すものである。図3に示される継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、抑制量演算部63と、CT誘導抑制量演算回路81と、動作判定回路7とを有して構成されている。
FIG. 3 is a configuration diagram of the current differential protection relay 1 according to the second exemplary embodiment of the present invention, and shows a configuration for one phase among the three phases. The relay 1 shown in FIG. 3 mainly includes a difference
また、抑制量演算部63は、主たる構成として、最大値選択回路9、他相誘導抑制量設定回路10、および抑制量補正演算回路(抑制量演算部)62を有して構成されている。
The suppression
最大値選択回路9は、他の2相にかかる継電器1内のCT誘導抑制量演算回路81から伝達された2つのCT誘導抑制量KHの中で大きい方を選択し、選択したものを抑制量KHMとして出力する。
The maximum
他相誘導抑制量設定回路10は、最大値選択回路9からの抑制量KHMと、自相の抑制量演算回路5で演算された抑制量IR1とを比較し、IR1>KMHの場合にはKHM=0にする。一方、IR1<KHMの場合にはKHMをそのまま出力する。
The other-phase induction suppression
抑制量補正演算回路62は、抑制量演算回路5から出力された抑制量IR1と、他相誘導抑制量設定回路10からの抑制量KHMとを取り込み、抑制量演算回路5からの抑制量IR1に抑制量KHMを加算し、その加算結果を抑制量IRとして算出する。
The suppression amount
動作判定回路7は、実効値演算回路4からの動作量IDと、抑制量補正演算回路62からの抑制量IRとに基づいて、内部外部事故判定を実行する。
The operation determination circuit 7 executes internal / external accident determination based on the operation amount ID from the effective
このように、実施の形態2にかかる継電器1は、自相の前記抑制量IR1に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率Pを乗じて誘導抑制量KHを演算すると共に、他相の継電器1へ出力するCT誘導抑制量演算回路81と、他相の誘導抑制量演算回路81から出力されたCT誘導抑制量KHと自相の抑制量IR1とに基づいて、自相の比率差動演算に用いられる抑制量IRを演算する抑制量演算部63と、を備えるようにしたので、事故相からのCT誘導に起因する誘導電流を予想し、それに準じて抑制量IRを補正することによって健全相にかかる継電器1の誤動作を防止する。
As described above, the relay 1 according to the second embodiment induces the suppression amount IR1 of the own phase to the secondary side of the
次に動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、抑制量演算回路5に取り込まれ、抑制量IR1が演算される。この抑制量IR1は、抑制量補正演算回路62およびCT誘導抑制量演算回路81に取り込まれ、CT誘導抑制量演算回路81では、この抑制量IR1と一定比率Pとに基づいてCT誘導抑制量KHが演算され、このCT誘導抑制量KHが他の2相へ送信される。事故相をB相、健全相をA、C相と見立てた場合、例えば、継電器1a内の最大値選択回路9では、B相からのCT誘導抑制量(KHB)およびC相からのCT誘導抑制量(KHC)の中で大きい方(KHB)が選択される。選択された抑制量KHM(KHB)は、他相誘導抑制量設定回路10で抑制量IR1と比較され、抑制量KHMが抑制量IR1より大きいとき、抑制量補正演算回路62にはこの抑制量KHMが取り込まれる。抑制量補正演算回路62に取り込まれた抑制量KHMは、抑制量IR1に加算され、その加算結果である抑制量IRが動作判定回路7に取り込まれる。その結果、図3の動作判定回路7に示される抑制量IRは、上昇する側に変更され、他相外部事故時のCT誘導による誤動作が回避される。継電器1cの動作も同様である。
Next, the operation will be described. The effective values of the terminal currents I1 to In output from the effective value calculation circuits 2-1 to 2-n are taken into the suppression
また、内部事故発生時には、実施の形態1で記したように、他相誘導抑制量設定回路10において、自相抑制量(IR1)>他相抑制量(KHM)となるので、抑制量補正演算回路62において加算される抑制量は零である。従って、他相抑制量(KHM)の影響を受けて動作感度が低下する可能性は少ないと考えられるため、内部事故発生時の動作感度への影響を最小限にすることもできる。
Further, when an internal accident occurs, as described in the first embodiment, in the other-phase induction suppression
なお、実施の形態2にかかる抑制量演算部63には、他相誘導抑制量設定回路10が設けられているが、この構成に限定されるものではなく、他相誘導抑制量設定回路10を省略して、最大値選択回路9からの抑制量KHMを直接、抑制量補正演算回路62に入力するように構成してもよい。このように構成した場合でも、抑制量補正演算回路62において、抑制量KHMが抑制量IR1に加算されるため、CT誘導による誤動作を防止することができる。また、内部事故発生時には、最大値選択回路9からの抑制量KHMが抑制量IR1に加算されるものの、抑制量KHMは抑制量IR1よりも十分小さな値であるため、内部事故発生時の動作感度への影響は最小限に抑えられる。
The suppression
以上に説明したように、実施の形態2にかかる継電器1は、CT誘導抑制量演算回路81が、自相の前記抑制量IR1に一定比率Pを乗じて誘導抑制量KHを演算し、抑制量演算部63が、自相の抑制量IR1に、他の2相のCT誘導抑制量演算回路81から伝達された2つのCT誘導抑制量KHの内の大きい方を加算し、この加算後の抑制量IRを自相の比率差動演算に用いられる抑制量IRとして出力するようにしたので、事故相からのCT誘導抑制量KHが健全相の抑制量IR1に加算され、動作判定回路7に取り込まれ抑制量IRが大きな値となり、CT誘導に対する比率マージンを得ることができる。その結果、実施の形態1と同様の効果を得ることができると共に、より安定した保護動作が可能となる。
As described above, in the relay 1 according to the second embodiment, the CT induction suppression
実施の形態3.
実施の形態1、2にかかる継電器1は、他相へ送信するCT誘導抑制量KHを、自相の前記抑制量IR1に一定比率Pを乗じて演算するように構成されていたが、実施の形態3にかかる継電器1は、他相へ送信するCT誘導抑制量KHを、各端子電流I1〜Inの実効値の最大値から求めるように構成されている。各端子電流I1〜Inの実効値の最大値からCT誘導抑制量KHを演算するようにしても、実施の形態1、2と同様の効果を得ることができる。以下、実施の形態1と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
The relay 1 according to the first and second embodiments is configured to calculate the CT induction suppression amount KH transmitted to the other phase by multiplying the suppression amount IR1 of the own phase by a certain ratio P. The relay 1 concerning the
図4は、本発明の実施の形態3にかかる電流差動保護継電器1の構成図であり、3相の内のある1相についての構成を示すものである。図4に示される継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、抑制量補正演算回路61と、誘導抑制量演算部83と、動作判定回路7とを有して構成されている。
FIG. 4 is a configuration diagram of the current differential protection relay 1 according to the third exemplary embodiment of the present invention, and shows a configuration for one phase among the three phases. The relay 1 shown in FIG. 4 mainly includes a difference
また、誘導抑制量演算部83は、主たる構成として、端子電流最大値演算回路11およびCT誘導抑制量演算回路82を有して構成されている。
The induction suppression
端子電流最大値演算回路11は、各端子電流I1〜Inの実効値の内、最大の端子電流(各端子電流I1〜Inの実効値の最大値IK)を選択してCT誘導抑制量演算回路82へ出力する。CT誘導抑制量演算回路82は、端子電流最大値演算回路11からの最大電流(IK)に一定比率P1を乗じてCT誘導抑制量KH)を演算し、その結果を他の2相の継電器1へ送信する。
The terminal current maximum
一定比率P1は、以下のように求める。外部事故発生時に健全相へCT誘導が生じた場合、そのCT誘導が1個のCTにより生じるとすると、健全相の動作量IDは(5)式の通りである。 The constant ratio P1 is obtained as follows. When CT induction occurs in the healthy phase when an external accident occurs, if the CT induction is generated by one CT, the operation amount ID of the healthy phase is as shown in Equation (5).
このときの事故相のCT誘導抑制量KHは、流入事故電流と同じである。CT誘導抑制量演算回路82には各端子の最大値が取り込まれるためである。すなわち、母線30a〜30cに流入する電流が1CTに入流したときに、流入事故電流=最大値電流となるためである。
The accident phase CT induction suppression amount KH at this time is the same as the inflow accident current. This is because the CT induction suppression
最も誘導量が大きい状態は、事故電流IFの流入端のCTのみが誘導を受けた場合であるので、事故電流IFをそのCTに流れる電流と仮定すると、事故相の抑制量IR1=IFとなる。 The state where the induction amount is the largest is when only the CT at the inflow end of the accident current IF is induced. Therefore, assuming that the accident current IF is a current flowing through the CT, the accident phase suppression amount IR1 = IF. .
一方、健全相の抑制量IR1は、負荷電流が増えると増加するため、最も動作し易いケース(最も厳しい条件)は、負荷電流が0(A)のときである。そして、負荷電流が0(A)のときにおける健全相の抑制量IRは、抑制量補正演算回路61によって(6)式の通りである。
On the other hand, since the healthy phase suppression amount IR1 increases as the load current increases, the most operable case (the most severe condition) is when the load current is 0 (A). Then, the suppression amount IR of the healthy phase when the load current is 0 (A) is expressed by the suppression amount
すなわち、上述した事故相の抑制量(IF)に一定比率P1を乗じた値が健全相の抑制量IRとなる。ここで、動作判定回路7の動作条件式を(7)式とする。 That is, a value obtained by multiplying the above-described accident phase suppression amount (IF) by a certain ratio P1 is the healthy phase suppression amount IR. Here, the operation condition expression of the operation determination circuit 7 is defined as expression (7).
(5)式で得られた健全相の動作量IDと(6)式で得られた健全相の抑制量IRとを(7)式に代入して、健全相の動作しない抑制量IRの条件を求めると、その条件は(8)式の通りである。 The condition of the suppression amount IR at which the healthy phase does not operate by substituting the healthy phase operation amount ID obtained by the equation (5) and the healthy phase suppression amount IR obtained by the equation (6) into the equation (7). Is obtained, the condition is as shown in equation (8).
(8)式のαIFは、(5)式の健全相の動作量IDに相当する。また(8)式のαIF<R*P1*IFは、P1>α/Rとなる。このとき、動作判定回路7の条件は成立せず、誤動作を避けることができる。すなわち、事故相にかかる継電器1にて演算された抑制量IR1に一定比率P1を乗じたCT誘導抑制量KHの値は、健全相にかかる継電器1にて演算される動作量IDよりも相対的に大きな値となる。なお、抑制量演算回路5の抑制量演算方式がスカラー和抑制方式の場合、動作特性の傾きR=0.3程度に設定されるため、P1>3.4α(R=0.3時)となる。
ΑIF in the equation (8) corresponds to the operation amount ID of the healthy phase in the equation (5). In addition, αIF <R * P1 * IF in the equation (8) becomes P1> α / R. At this time, the condition of the operation determination circuit 7 is not satisfied, and malfunction can be avoided. That is, the value of the CT induction suppression amount KH obtained by multiplying the suppression amount IR1 calculated in the relay 1 related to the accident phase by the constant ratio P1 is more relative to the operation amount ID calculated in the relay 1 related to the healthy phase. A large value. When the suppression amount calculation method of the suppression
次に、抑制量補正演算回路61に関して説明する。抑制量補正演算回路61は、自相の抑制量演算回路5から出力された抑制量IR1と、他相の継電器1で演算されたCT誘導抑制量KHとを取り込み、これらの抑制量(IR1、KH)の中で最大のものを抑制量IRとして算出する。
Next, the suppression amount
このように、実施の形態3にかかる継電器1は、自相の相電流Inの実効値の中で最大の実効値に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率P1を乗じて誘導抑制量KHを演算し、他相の継電器1へ出力する誘導抑制量演算部83と、他相の誘導抑制量演算部83から出力されたCT誘導抑制量KHと自相の抑制量IR1とに基づいて、自相の比率差動演算に用いられる抑制量IRを演算する抑制量補正演算回路61とを備えるようにしたので、事故相からのCT誘導に起因する誘導電流を予想し、それに準じて抑制量IRを補正することによって健全相にかかる継電器1の誤動作を防止する。
As described above, the relay 1 according to the third embodiment has the maximum effective value among the effective values of the phase current In of the own phase, and the current of the other phase accompanying the current flowing on the primary side of the
次に動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、抑制量演算回路5および端子電流最大値演算回路11に取り込まれる。抑制量演算回路5で演算された抑制量IR1は、抑制量補正演算回路61に取り込まれる。端子電流最大値演算回路11では、実効値の最大値IKが選択され、選択された実効値の最大値IKは、CT誘導抑制量演算回路82に入力される。CT誘導抑制量演算回路82に入力された実効値の最大値IKには一定比率P1を乗じられ、その結果であるCT誘導抑制量KHが他の2相の継電器1へ送信される。事故相をB相、健全相をA、C相と見立てた場合、例えば、継電器1a内の抑制量補正演算回路61では、自相の抑制量演算回路5からの抑制量IR1と、自相以外の2相からのCT誘導抑制量KHとの中から最大のものを抑制量IRとして算出する。その結果、図4の動作判定回路7に示される抑制量IRは、上昇する側に変更されるため、他相外部事故時のCT誘導による誤動作が回避される。
Next, the operation will be described. The effective values of the terminal currents I1 to In output from the effective value calculation circuits 2-1 to 2-n are taken into the suppression
以上に説明したように、実施の形態3にかかる継電器1は、誘導抑制量演算部83が、自相の相電流Inの実効値の中で最大の実効値に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率P1を乗じて誘導抑制量KHを演算し、抑制量補正演算回路61が、自相の抑制量IR1と他の2相の誘導抑制量演算部83から伝達されたCT誘導抑制量KHとの中で最大の誘導抑制量を、自相の比率差動演算に用いられる抑制量IRとして出力するように構成されているので、実施の形態1と同様の効果を得ることができる。
As described above, in the relay 1 according to the third embodiment, the induction suppression
実施の形態4.
実施の形態3にかかる継電器1は、他相へ送信するCT誘導抑制量KHを、各端子電流I1〜Inの実効値の最大値から求めると共に、実施の形態1の抑制量補正演算回路61によって抑制量IR1およびCT誘導抑制量KHの中で最大のものを抑制量IRとして算出するように構成されていたが、実施の形態4にかかる継電器1は、実施の形態3の誘導抑制量演算部83と実施の形態2の抑制量演算部63とを組み合わせることによって、実施の形態2、3と同等の効果を得ることができるように構成されている。以下、実施の形態2、3と同一部分には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。
The relay 1 according to the third embodiment obtains the CT induction suppression amount KH to be transmitted to the other phase from the maximum value of the effective values of the terminal currents I1 to In, and the suppression amount correction
図5は、本発明の実施の形態4にかかる電流差動保護継電器1の構成図であり、3相の内のある1相についての構成を示すものである。図5に示される継電器1は、主たる構成として、差電流演算回路3と、実効値演算回路4と、実効値演算回路2−1〜2−nと、抑制量演算回路5と、抑制量演算部63と、誘導抑制量演算部83と、動作判定回路7とを有して構成されている。
FIG. 5 is a configuration diagram of the current differential protection relay 1 according to the fourth exemplary embodiment of the present invention, and shows a configuration for one phase among the three phases. The relay 1 shown in FIG. 5 mainly includes a difference
また、抑制量演算部63は、最大値選択回路9、他相誘導抑制量設定回路10、および抑制量補正演算回路62を有して構成され、誘導抑制量演算部83は、端子電流最大値演算回路11およびCT誘導抑制量演算回路82を有して構成されている。
Further, the suppression
このように、実施の形態4にかかる継電器1は、自相の相電流Inの実効値の中で最大の実効値に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率P1を乗じて誘導抑制量KHを演算し、他相の継電器1へ出力する誘導抑制量演算部83と、他相の誘導抑制量演算部83から出力されたCT誘導抑制量KHと自相の抑制量IR1とに基づいて、自相の比率差動演算に用いられる抑制量IRを演算する抑制量補正演算回路63とを備えるようにしたので、事故相からのCT誘導に起因する誘導電流を予想し、それに準じて抑制量IRを補正することによって健全相にかかる継電器1の誤動作を防止する。
As described above, the relay 1 according to the fourth embodiment has the maximum effective value of the effective values of the phase current In of the own phase, and the current of the other phase accompanying the current flowing on the primary side of the
次に動作を説明する。各実効値演算回路2−1〜2−nから出力された各端子電流I1〜Inの実効値は、抑制量演算回路5および端子電流最大値演算回路11に取り込まれる。抑制量演算回路5で演算された抑制量IR1は、抑制量補正演算回路62に取り込まれる。端子電流最大値演算回路11では、実効値の最大値IKが選択され、選択された実効値の最大値IKは、CT誘導抑制量演算回路82に入力される。CT誘導抑制量演算回路82に入力された実効値の最大値IKには一定比率P1を乗じられ、その結果であるCT誘導抑制量KHが他の2相の継電器1へ送信される。事故相をB相、健全相をA、C相と見立てた場合、例えば、継電器1a内の最大値選択回路9では、B相からのCT誘導抑制量(KHB)およびC相からのCT誘導抑制量(KHC)の中で大きい方(KHB)が選択される。そして、最大値選択回路9で選択された抑制量KHM(KHB)は、他相誘導抑制量設定回路10で抑制量IR1と比較され、抑制量KHMが抑制量IR1より大きいとき、抑制量補正演算回路62にはこの抑制量KHMが取り込まれる。抑制量補正演算回路62に取り込まれた抑制量KHMは、抑制量IR1に加算され、その加算結果である抑制量IRが動作判定回路7に取り込まれる。その結果、図5の動作判定回路7に示される抑制量IRは、上昇する側に変更され、他相外部事故時のCT誘導による誤動作が回避される。継電器1cの動作も同様である。
Next, the operation will be described. The effective values of the terminal currents I1 to In output from the effective value calculation circuits 2-1 to 2-n are taken into the suppression
また、内部事故発生時には、実施の形態1で示したように、他相誘導抑制量設定回路10において、自相抑制量(IR1)>他相抑制量(KHM)となるので抑制量補正演算回路62において加算される抑制量KHM=0となる。従って、他相抑制量(KHM)の影響を受けて動作感度が低下する可能性は少ないと考えられるため、内部事故発生時の動作感度への影響を最小限にすることもできる。
Further, when an internal accident occurs, as shown in the first embodiment, in the other-phase induction suppression
なお、実施の形態4にかかる継電器1は、実施の形態2の抑制量演算部63と同様に、他相誘導抑制量設定回路10を省略して、最大値選択回路9からの抑制量KHMを直接、抑制量補正演算回路62に入力するように構成してもよい。
In addition, the relay 1 concerning
以上に説明したように、実施の形態4にかかる継電器1は、誘導抑制量演算部83が、自相の相電流Inの実効値の中で最大の実効値に、自相のCT37a〜39cの1次側に流れる電流に伴い他相のCT37a〜39cの2次側に誘導される誘導電流の度合いを表す誘導比率αと比率差動演算における動作特性の傾きRとによって決まる一定比率P1を乗じて誘導抑制量KHを演算し、抑制量演算部63が、自相の抑制量IR1に、他の2相の誘導抑制量演算部83から伝達された2つの誘導抑制量KHの内の大きい方を加算し、この加算後の抑制量を自相の比率差動演算に用いられる抑制量IRとして出力するようにしたので、実施の形態2と同様の効果を得ることができる。
As described above, in the relay 1 according to the fourth embodiment, the induction suppression
なお、実施の形態1〜4の説明では、各端子電流I1〜Inの実効値の和を用いて自相の抑制量IR1を演算したが、各端子電流I1〜Inの実効値の最大値を用いて自相の抑制量IR1を演算しても、同様の効果を得ることができる。また、実施の形態1〜4の説明では、この発明の用途として送電線、或いは母線を保護対象とする場合を例に説明したが、その他の電流差動保護を動作原理とする他の保護継電器にも適用できる。 In the description of the first to fourth embodiments, the suppression amount IR1 of the own phase is calculated using the sum of the effective values of the terminal currents I1 to In. However, the maximum effective value of the terminal currents I1 to In is calculated. The same effect can be obtained even if the suppression amount IR1 of the own phase is calculated by using it. In the description of the first to fourth embodiments, the application of the present invention has been described by taking as an example the case where a power transmission line or bus is a protection target, but other protection relays based on other current differential protection operating principles. It can also be applied to.
また、実施の形態1〜4に示した電流差動保護継電器は、本発明の内容の一例を示すものであり、更なる別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、一部を省略する等、変更して構成することも可能であることは無論である。 Moreover, the current differential protection relay shown in Embodiments 1 to 4 shows an example of the contents of the present invention, and can be combined with another known technique, and the gist of the present invention. Of course, it is possible to change and configure such as omitting a part without departing from the above.
以上のように、本発明は、母線および送電線を電流差動原理により保護する電流差動保護継電器に適用可能であり、特に、健全相へのCT誘導が発生しても誤動作しない発明として有用である。 As described above, the present invention can be applied to a current differential protection relay that protects a bus and a power transmission line by a current differential principle, and is particularly useful as an invention that does not malfunction even when CT induction to a healthy phase occurs. It is.
1、1a、1b、1c 電流差動保護継電器
2−1、2−2、2−n、4 実効値演算回路
3 差電流演算回路
5 抑制量演算回路
7 動作判定回路
9 最大値選択回路
10 他相誘導抑制量設定回路
11 端子電流最大値演算回路
30a、30b、30c 母線
31a、31b、31c、32a、32b、32c、33a、33b、33c 引き出し線
34a、34b、34c、35a、35b、35c、36a、36b、36c 遮断器
37a、37b、37c、38a、38b、38c、39a、39b、39c CT(変流器)
40a、40b、40c、41a、41b、41c、42a、42b、42c ケーブル
61、62 抑制量補正演算回路(抑制量演算部)
63 抑制量演算部
81、82 CT誘導抑制量演算回路(誘導抑制量演算部)
83 誘導抑制量演算部
α CT誘導比率(誘導比率)
I1〜In 端子電流(相電流)
Id 差電流
ID 動作量
IF 事故電流
IK 各端子電流の実効値の最大値
IR、IR1、KHM 抑制量
KH CT誘導抑制量(誘導抑制量)
K01 小電流域の最小感度設定値(動作感度)
P、P1 一定比率
R 動作特性の傾き
1, 1a, 1b, 1c Current differential protection relays 2-1 2-2, 2-
40a, 40b, 40c, 41a, 41b, 41c, 42a, 42b,
63 Suppression
83 Induction suppression amount calculation part α CT induction ratio (induction ratio)
I1 to In terminal current (phase current)
Id Differential current ID Operating amount IF Accident current IK Maximum effective value of each terminal current IR, IR1, KHM Suppression amount KH CT induction suppression amount (induction suppression amount)
K01 Minimum sensitivity setting value for small current range (operation sensitivity)
P, P1 constant ratio R slope of operating characteristics
Claims (6)
自相の前記抑制量に、3相一体型の変流器の相間誘導によって自相の変流器の1次側に流れる電流に伴い他相の変流器の2次側に誘導される誘導電流の度合いを表し前記3相一体型を構成する複数の変流器の配置により定まる誘導比率と比率差動演算における動作特性の傾きとによって決まる一定比率を乗じて誘導抑制量を演算し、他相の電流差動保護継電器へ出力する誘導抑制量演算部と、
他相の前記誘導抑制量演算部から出力された誘導抑制量と自相の前記抑制量とに基づいて、自相の比率差動演算に用いられる抑制量を演算する抑制量演算部と、
を備えたことを特徴とする電流差動保護継電器。 A current differential that calculates an operation amount and a suppression amount using phase currents from a plurality of current transformers provided in each phase of the power system, and protects the power system based on the operation amount and the suppression amount A protective relay,
Induction amount induced in the secondary side of the current transformer of the other phase due to the current flowing in the primary side of the current transformer of the own phase due to the interphase induction of the three-phase current transformer calculating a plurality of induction inhibiting amount by multiplying the constant ratio determined by the slope of the operating characteristic in the induction ratio and the ratio differential operation defined by the arrangement of the current transformer which constitutes the Table above 3-phase integral degree of current, Induction suppression amount calculation unit that outputs to the current differential protection relay of the other phase;
Based on the induction suppression amount output from the induction suppression amount calculation unit of the other phase and the suppression amount of the own phase, a suppression amount calculation unit that calculates the suppression amount used for the ratio differential calculation of the own phase;
A current differential protection relay comprising:
自相の相電流の実効値の中で最大の実効値に、3相一体型の変流器の相間誘導によって自相の変流器の1次側に流れる電流に伴い他相の変流器の2次側に誘導される誘導電流の度合いを表し前記3相一体型を構成する複数の変流器の配置により定まる誘導比率と比率差動演算における動作特性の傾きとによって決まる一定比率を乗じて誘導抑制量を演算し、他相の電流差動保護継電器へ出力する誘導抑制量演算部と、
他相の前記誘導抑制量演算部から出力された誘導抑制量と自相の前記抑制量とに基づいて、自相の比率差動演算に用いられる抑制量を演算する抑制量演算部と、
を備えたことを特徴とする電流差動保護継電器。 A current differential that calculates an operation amount and a suppression amount using phase currents from a plurality of current transformers provided in each phase of the power system, and protects the power system based on the operation amount and the suppression amount A protective relay,
The maximum effective value of the phase current of the self-phase current transformer, the current transformer of the other phase with the current flowing to the primary side of the current transformer of the self-phase due to the interphase induction of the three-phase current transformer of the constant ratio determined by the slope of the operating characteristics of a plurality of determined by the arrangement of the current transformer induction ratio and the ratio differential operation constituting the Table above 3-phase integral degree of induced currents induced in the secondary side An induction suppression amount calculation unit that multiplies to calculate the induction suppression amount and outputs to the current differential protection relay of the other phase;
Based on the induction suppression amount output from the induction suppression amount calculation unit of the other phase and the suppression amount of the own phase, a suppression amount calculation unit that calculates the suppression amount used for the ratio differential calculation of the own phase;
A current differential protection relay comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011126603A JP5697551B2 (en) | 2011-06-06 | 2011-06-06 | Current differential protection relay |
KR1020110124870A KR101303551B1 (en) | 2011-06-06 | 2011-11-28 | Current differential protective relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011126603A JP5697551B2 (en) | 2011-06-06 | 2011-06-06 | Current differential protection relay |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012253977A JP2012253977A (en) | 2012-12-20 |
JP5697551B2 true JP5697551B2 (en) | 2015-04-08 |
Family
ID=47526216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011126603A Active JP5697551B2 (en) | 2011-06-06 | 2011-06-06 | Current differential protection relay |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5697551B2 (en) |
KR (1) | KR101303551B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102380874B1 (en) * | 2015-04-14 | 2022-03-31 | 삼성전자주식회사 | Malfunction prevention system of bus protective relay |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119619A (en) * | 1981-01-14 | 1982-07-26 | Tokyo Electric Power Co | Reverse phase overcurrent relay |
JP2565870B2 (en) * | 1986-06-11 | 1996-12-18 | 株式会社東芝 | Differential relay |
KR0141823B1 (en) * | 1992-12-15 | 1998-08-17 | 김회수 | Rush and overexciting protecting method of differential relay |
KR100568968B1 (en) * | 2004-05-10 | 2006-04-07 | 명지대학교 산학협력단 | Compensated current differential relaying method and system for protecting transformer |
JP5068200B2 (en) * | 2008-02-29 | 2012-11-07 | 三菱電機株式会社 | Current differential protection relay |
JP5441625B2 (en) * | 2009-11-06 | 2014-03-12 | 三菱電機株式会社 | Busbar protection device |
-
2011
- 2011-06-06 JP JP2011126603A patent/JP5697551B2/en active Active
- 2011-11-28 KR KR1020110124870A patent/KR101303551B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR20120135464A (en) | 2012-12-14 |
JP2012253977A (en) | 2012-12-20 |
KR101303551B1 (en) | 2013-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7319576B2 (en) | Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system | |
US8462475B2 (en) | Multi-terminal power line protection relay system | |
JP2019004661A (en) | Bus protection device | |
JP2009207335A (en) | Current differential guard relay | |
JP5697551B2 (en) | Current differential protection relay | |
KR102057201B1 (en) | Out of order discrimination apparatus and protective relay apparatus | |
JP5441625B2 (en) | Busbar protection device | |
JP2013013170A (en) | Differential protective relay device and saturation determination method for current transformer | |
KR101986036B1 (en) | Protection relay device | |
JP6887906B2 (en) | Zero-phase current differential relay | |
JP5645578B2 (en) | Current differential protection relay | |
JP5063282B2 (en) | Transformer protection relay | |
JP2009198442A (en) | Voltage abnormality detection device and voltage protection relay device | |
JP4352267B2 (en) | Digital protection relay system for generator main circuit | |
JP7412308B2 (en) | protection system | |
JP2015216783A (en) | Bus bar protective relay device | |
JP6193672B2 (en) | Three-phase phase loss protection device and three-phase phase loss protection method | |
JP6362569B2 (en) | Distance relay device and power line protection method | |
CN102204050A (en) | Differential protection method and differential protection device | |
JP2016010223A (en) | Current differential relay device | |
JP2013059147A (en) | Power conversion device | |
JP2011062007A (en) | Transformer protection system and device for the same | |
JP2011130536A (en) | Three-phase overcurrent protective relay | |
JP2005261157A (en) | Current detecting device for three-phase main circuit | |
JP2017079543A (en) | Bus bar protection relay device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140106 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140922 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5697551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |