JP2013013170A - Differential protective relay device and saturation determination method for current transformer - Google Patents

Differential protective relay device and saturation determination method for current transformer Download PDF

Info

Publication number
JP2013013170A
JP2013013170A JP2011142510A JP2011142510A JP2013013170A JP 2013013170 A JP2013013170 A JP 2013013170A JP 2011142510 A JP2011142510 A JP 2011142510A JP 2011142510 A JP2011142510 A JP 2011142510A JP 2013013170 A JP2013013170 A JP 2013013170A
Authority
JP
Japan
Prior art keywords
current
relay device
current transformer
saturation
determination processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011142510A
Other languages
Japanese (ja)
Inventor
Masakazu Sato
雅一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011142510A priority Critical patent/JP2013013170A/en
Publication of JP2013013170A publication Critical patent/JP2013013170A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Transformers (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a differential protective relay device that eliminates the need for new construction, addition of facilities and so on by allowing the differential protective relay device itself from detecting a CT from getting saturated and preventing malfunction.SOLUTION: The differential protective relay device including an internal fault determination processing part which detects each terminal current to be applied to protection by a current transformer, and supplies an opening instruction signal for opening a breaker provided to each terminal to be applied to protection through differential operation of terminal currents includes: a CT saturation determination processing part which finds an exciting voltage and an induced voltage of the current transformer and compares them with each other to determine that the current transformer gets saturated; and an external fault determination processing part which detects a detected terminal current being a passing current to be applied to protection and determines an external fault. The opening instruction signal for opening the breaker which is generated by the internal fault determination processing part is stopped when the CT saturation determination processing part determines the saturation and the external fault determination processing part determines the external fault.

Description

本発明は差動保護継電装置及び変流器の飽和判定方法に係り、特に外部事故時の過大通過電流に対して誤動作することを阻止できる差動保護継電装置及び変流器の飽和判定方法に関する。   The present invention relates to a saturation determination method for a differential protection relay device and a current transformer, and more particularly, to determine the saturation of a differential protection relay device and a current transformer that can prevent malfunction due to excessive passing current at the time of an external accident. Regarding the method.

電力用保護継電装置の代表的な保護原理として、保護対象機器の区間内部の故障判定を比率差動原理により実現する差動保護継電装置がある。   As a typical protection principle of a power protection relay device, there is a differential protection relay device that realizes failure determination inside a section of a protection target device by a ratio differential principle.

本方式の差動保護継電装置は、主回路の保護対象機器に対して、電流検出用の変流器(以下単にCTと略称する)を挟み込むように配置し、保護対象区間の内部故障発生時に挟み込んだCTから得られる差電流を高速/高感度に検出して故障検出判定を実施し、保護動作する。   The differential protection relay device of this system is arranged so as to sandwich a current detection current transformer (hereinafter simply referred to as CT) with respect to the protection target device of the main circuit, and an internal failure occurs in the protection target section. The differential current obtained from the CT that is sometimes sandwiched is detected with high speed / high sensitivity, and a failure detection determination is performed to perform a protection operation.

本方式の適用にあたる制約事項として、電流検出部分であるCTの定格諸元を極力合わせる必要性がある。即ち、CTの定格定数はもとより、接続ケーブルのサイズ、ケーブルの距離、CTの二次負担に合理性を持たせる必要がある。仮に、これらの諸元に不一致があると、保護区間外部故障による過大通過電流に対して、複数のCTが異なる値の電流値を検出することになり、あたかも内部事故判定したと同じ状況になる。このため、CTの定格諸元の相違による検出誤差を極力発生させることのない事前の諸施策を施す必要性がある。   As a restriction for applying this method, it is necessary to match the rated specifications of the CT that is the current detection portion as much as possible. That is, not only the rated constant of CT but also the size of the connection cable, the distance of the cable, and the secondary burden of CT need to be rationalized. If there is a discrepancy between these specifications, multiple CTs will detect different current values for excessive passing current due to an external failure in the protection zone, and it will be the same situation as if an internal accident was determined. . For this reason, it is necessary to take various prior measures that do not generate detection errors as much as possible due to differences in the CT specification specifications.

即ち、主回路の故障時に発生する過大電流に対して、的確にCTの二次検出電流を得られるようにする事で、故障電流が過大となった場合においても、保護継電装置が誤出力しない配慮が必要となる。   In other words, by making it possible to accurately obtain the secondary detection current of CT with respect to the excessive current generated when the main circuit fails, the protective relay device will output an error even if the fault current becomes excessive. Don't worry about it.

特許文献1は、複数のCTの一部に飽和しやすいCTが存在すると差電流を生じ誤動作の原因となることから、飽和しやすいCTの端子に第2の検出器を追加設置し、その計測値の傾向を利用して誤動作を防止することを提案している。   In Patent Document 1, if a CT that is easily saturated exists in a part of a plurality of CTs, a difference current is generated and a malfunction occurs. Therefore, a second detector is additionally installed at the terminal of the CT that is easily saturated, and the measurement is performed. It proposes to prevent malfunction by using the tendency of values.

特開2005−341770号公報JP 2005-341770 A

特許文献1は、その適用に当り、複数のCTの一部に飽和しやすいCTが存在することが、事前判明していることを前提としている。   Patent Document 1 is premised on the fact that it is known in advance that there is a CT that is likely to be saturated in a part of a plurality of CTs.

しかるに近年では、設備の老朽化にともなうプラントの部分更新や新設プラント建設時でもコスト低減の目的から、1メーカーへの発注・建設によるフルターンキー方式が減少の傾向にある。これらのプラントでの保護継電システムでは、異メーカー製によるCTを組み合わせた保護継電システムを構築することが前提となってきている。即ち、これらの設備においては、保護対象機器に対して比率差動保護継電方式を採用する場合には、CT定格は合致していても、CTの励磁特性が大きく異なる場合がある。   However, in recent years, the full turnkey system by ordering / construction from one manufacturer has been on the decline for the purpose of cost reduction even at the time of partial renewal of plants due to aging equipment and construction of new plants. In the protective relay system in these plants, it has been assumed that a protective relay system combining CTs manufactured by different manufacturers is constructed. That is, in these facilities, when the ratio differential protection relay system is adopted for the device to be protected, even if the CT rating matches, the CT excitation characteristics may differ greatly.

係る条件の設備設置環境下では、複数のCTの一部に飽和しやすいCTが存在することを事前に把握することが困難であり、直ちに特許文献1の方式を実現することができない。仮に事前判明して、特許文献1の方式を実施する場合であっても、新たに第2の検出器を追加設置することに伴う、追加工事、コストアップが避けられない。   Under the equipment installation environment under such conditions, it is difficult to grasp in advance that there is a CT that is likely to be saturated in some of the plurality of CTs, and the method of Patent Document 1 cannot be realized immediately. Even if the method of Patent Document 1 is implemented in advance, additional work and cost increase associated with newly installing a second detector is inevitable.

従って一般に係るケースでは、保護対象機器の更新にあたり、電流検出部のCTも同時に更新してCT諸元を合わせる必要性があり、更新費用の増大、更新期間が長期化するという課題が内在している。   Therefore, in general cases, there is a need to update the CT of the current detection unit at the same time to match the CT specifications when updating the protection target device, and there are inherent problems that the update cost increases and the update period becomes longer. Yes.

また、適用した保護継電装置に関して、前述したCTの検出誤差を極力発生させることのない事前の諸施策を充分に対策することが出来ない場合もあり、実運用に入ってから、保護区間外での故障で発生する過大通過電流に対して、CTの誤差に起因する不要出力の可能性を内在している。   In addition, with regard to the applied protective relay device, there may be cases where it is not possible to adequately take measures in advance that do not cause the CT detection error described above as much as possible. The possibility of unnecessary output due to the CT error is inherent to the excessive passing current that occurs due to the failure in the above.

以上のことから本発明においては、保護継電装置自身がCTの飽和を検知して誤動作を阻止することで、新たな工事や設備の追加などを行わずともよい差動保護継電装置及び変流器の飽和判定方法を提供することを目的とする。   From the above, in the present invention, the protective relay device itself detects the saturation of the CT and prevents malfunction, so that the differential protective relay device and the converter that do not require any new construction or addition of equipment, etc. An object of the present invention is to provide a method for determining saturation of a fluency.

本発明においては上記課題の解決のために、保護適用対象の各端子電流を変流器により検出し、端子電流の差動演算により前記保護適用対象の各端子に備えられた遮断器を開放するための開放指令信号を与える内部故障判定処理部を備える差動保護継電装置において、変流器の励磁電圧と誘起電圧を求め、これらを比較することにより変流器の飽和を判定するCT飽和判定処理部と、検出した端子電流が保護適用対象の通過電流であることを検出して外部故障と判定する外部故障判定処理部を備え、CT飽和判定処理部が飽和判定し、かつ外部故障判定処理部が外部判定しているときに内部故障判定処理部による遮断器を開放するための開放指令信号を阻止する。   In the present invention, in order to solve the above problem, each terminal current to be protected is detected by a current transformer, and the circuit breaker provided at each terminal to be protected is opened by differential calculation of the terminal current. CT saturation determining current transformer saturation by obtaining excitation voltage and induced voltage of current transformer and comparing them in differential protection relay device having internal failure judgment processing unit for providing open command signal for A determination processing unit, and an external failure determination processing unit that detects that the detected terminal current is a passing current to be protected and determines an external failure, the CT saturation determination processing unit performs saturation determination, and external failure determination When the processing unit makes an external determination, an open command signal for opening the circuit breaker by the internal failure determination processing unit is blocked.

また、変流器の励磁電圧と誘起電圧を求めるためのCT定数とインピーダンスを差動保護継電装置の整定値として与える。   Further, the CT constant and impedance for obtaining the excitation voltage and the induced voltage of the current transformer are given as the set values of the differential protection relay device.

また、変流器の励磁電圧と誘起電圧を比較する場合に、検出した電流に直流成分が重畳されているときに飽和判定しやすくなるように補正する。   Further, when comparing the excitation voltage and the induced voltage of the current transformer, correction is made so that the saturation can be easily determined when a DC component is superimposed on the detected current.

また、検出した電流に直流成分が重畳されていることを、検出した電流の正負波形の非対称率から判断する。   Further, it is determined from the asymmetry rate of the positive / negative waveform of the detected current that a DC component is superimposed on the detected current.

また、外部故障判定処理部が外部判定しているときに、内部故障判定処理部による差動演算のための動作感度を低下させる。   In addition, when the external failure determination processing unit makes an external determination, the operation sensitivity for differential calculation by the internal failure determination processing unit is reduced.

また、変流器の励磁電圧を求めるためのCT定数として、CT定格負担とCT二次定格とCT過電流定数を使用し、励磁電圧をCT定格負担とCT過電流定数の積をCT二次定格で除した値として求める。   Also, as the CT constant for obtaining the excitation voltage of the current transformer, the CT rated load, the CT secondary rating and the CT overcurrent constant are used, and the product of the CT rated load and the CT overcurrent constant is used as the CT secondary load. Calculated as the value divided by the rating.

また、変流器の誘起電圧を求めるためのCT定数として、CT一次定格とCT二次定格を使用し、変流器で計測した一次電流とCT二次定格とインピーダンスの積をCT一次定格で除した値として求める。   The CT primary rating and CT secondary rating are used as the CT constants for determining the induced voltage of the current transformer, and the product of the primary current, CT secondary rating and impedance measured by the current transformer is the CT primary rating. Calculated as the divided value.

本発明においては上記課題の解決のために、電力系統の保護適用対象の端子電流を検出する変流器の飽和判定方法において、変流器の励磁電圧と誘起電圧を比較することにより変流器の飽和を判定するとともに、励磁電圧をCT定格負担とCT過電流定数の積をCT二次定格で除した値として求め、誘起電圧を変流器で計測した一次電流とCT二次定格と前記インピーダンスの積をCT一次定格で除した値として求める。   In the present invention, in order to solve the above-described problem, in a current transformer saturation determination method for detecting a terminal current to be applied to protection of a power system, the current transformer is compared by comparing the excitation voltage and the induced voltage of the current transformer. And determining the excitation voltage as a value obtained by dividing the product of the CT rated load and the CT overcurrent constant by the CT secondary rating, and the induced voltage measured by the current transformer, the primary current and the CT secondary rating Calculated as the product of the impedance divided by the CT primary rating.

また、変流器の励磁電圧と誘起電圧を比較する場合に、検出した電流に直流成分が重畳されているときに飽和判定しやすくなるように修正比較する。   In addition, when comparing the excitation voltage and the induced voltage of the current transformer, the correction comparison is performed so that the saturation determination can be easily performed when a DC component is superimposed on the detected current.

また、検出した電流に直流成分が重畳されていることを、検出した電流の正負波形の非対称率から判断する。   Further, it is determined from the asymmetry rate of the positive / negative waveform of the detected current that a DC component is superimposed on the detected current.

異なるCT特性を有している差動保護継電装置において、CTの諸元やCT二次インピーダンスが異なるケースでも、的確に内部故障を検出し、且つ保護区間外部故障時の不要動作を阻止する事が可能となる。   In a differential protection relay device with different CT characteristics, even when the CT specifications and CT secondary impedance are different, an internal failure is accurately detected and unnecessary operation at the time of an external failure in the protection zone is prevented. Things will be possible.

CT飽和判定処理部7の詳細構成を示す図。The figure which shows the detailed structure of the CT saturation determination process part. CTの等価回路と外部接続回路を示す図。The figure which shows the equivalent circuit and external connection circuit of CT. 本発明の差動保護継電装置の全体構成を示す図。The figure which shows the whole structure of the differential protection relay apparatus of this invention. 図3の各処理部5、6、7の動作態様について説明する図。The figure explaining the operation | movement aspect of each process part 5, 6, and 7 of FIG.

図2にCTの等価回路と外部接続回路を示す。この図で、CTの等価回路2は、電流源1と外部出力端子2a、2bの間のT型回路として表現できる。これは、T型回路の上辺に相当する部分にCTの一次巻線と二次巻線のインピーダンス(一次インピーダンスZpと巻線インピーダンスZs)の直列回路を配置し、T型回路の脚部に励磁巻線の励磁インピーダンスZoを配置した構成である。   FIG. 2 shows an CT equivalent circuit and an external connection circuit. In this figure, the CT equivalent circuit 2 can be expressed as a T-type circuit between the current source 1 and the external output terminals 2a and 2b. This is because a series circuit of the CT primary winding and secondary winding impedance (primary impedance Zp and winding impedance Zs) is arranged in the portion corresponding to the upper side of the T-type circuit, and excitation is applied to the legs of the T-type circuit. In this configuration, the excitation impedance Zo of the winding is arranged.

CTに保護継電装置を接続する場合には、外部出力端子2a、2b間にケーブルインピーダンスZlと保護継電器盤のインピーダンスZryの直列回路が外部接続回路として接続される。   When a protective relay device is connected to the CT, a series circuit of the cable impedance Zl and the impedance Zry of the protective relay panel is connected as an external connection circuit between the external output terminals 2a and 2b.

係るCTの等価回路において、一般的にCTの飽和現象とは、CT二次の励磁電圧Vs(励磁巻線の端子電圧)が飽和してそれ以上、励磁電圧Vsが変化しなくなるために、CT二次への電流が流れなくなる現象を示している。この励磁電圧自体はCTの基本特性で固有であり、CT製作過程で発生する固有値を含んでおり、励磁電圧が高いCTほど飽和しにくいものとなる。   In the CT equivalent circuit, the CT saturation phenomenon generally means that the CT secondary excitation voltage Vs (terminal voltage of the excitation winding) is saturated and the excitation voltage Vs does not change any more. This shows a phenomenon in which current to the secondary does not flow. This excitation voltage is inherent in the basic characteristics of CT and includes an eigenvalue generated in the CT manufacturing process. The higher the excitation voltage, the less likely it is to saturate.

CTの励磁電圧Vsは、CT定格負担(変流器の二次回路に接続された負荷)とCT二次定格(変流器二次回路の定格電圧、定格電流)とCT過電流定数(一次電流が定格一次電流よりも大きいときの性能を表す定数)を用いて(1)式で表現できることが知られている。   The CT excitation voltage Vs includes the CT rated load (load connected to the secondary circuit of the current transformer), the CT secondary rating (rated voltage and rated current of the current transformer secondary circuit), and the CT overcurrent constant (primary It is known that it can be expressed by equation (1) using a constant representing the performance when the current is larger than the rated primary current.

Figure 2013013170
また一般的に、CTにおいては一次インピーダンスZpが小さいことからこれを無視すると、CT定格負担及びCT過電流定数が大きくなる程、励磁電圧Vsが大きくなり、結果として一次側の大電流に対して飽和しにくくなる関係にある。
Figure 2013013170
In general, if the primary impedance Zp is small in CT and ignored, the excitation voltage Vs increases as the CT rated load and the CT overcurrent constant increase. It is in a relationship that becomes difficult to be saturated.

一方、電流に対するCTの誘起電圧VrはCT固有値のみならず保護継電装置、接続ケーブルを含む、保護継電システムを構成している総負担との大きさに関係しており、(2)式で表す事ができる。   On the other hand, the induced voltage Vr of the CT with respect to the current is related not only to the CT eigenvalue but also to the magnitude of the total burden constituting the protective relay system including the protective relay device and the connection cable. Can be represented by

Figure 2013013170
Figure 2013013170

さらに、(1)式の励磁電圧Vsと、(2)式の誘起電圧Vrの関係について検討する。故障発生時には直流分の電流が重畳する。直流分として、最大重畳の100%を考慮した場合、故障電流としては2倍の電流がCTに流入することを想定する。この条件の電流でCTが飽和しないための関係は、(1)式と(2)式から(3)式の関係が導出される。   Further, the relationship between the excitation voltage Vs in the expression (1) and the induced voltage Vr in the expression (2) will be examined. When a failure occurs, a direct current component is superimposed. Assuming that 100% of the maximum superimposition is taken into consideration as the direct current component, it is assumed that twice as the fault current flows into the CT. The relationship for preventing the CT from being saturated with the current under this condition is derived from the equations (1) and (2).

Figure 2013013170
Figure 2013013170

本発明では、(3)式の関係に着目して、常時、リアルタイムでCT固有の励磁電圧と、CT二次から検出される電流値の大きさから現在の電流値での励磁電圧ポイントを算出・比較することで、CTの飽和判定を実現するものである。   In the present invention, focusing on the relationship of equation (3), the excitation voltage point at the current value is always calculated from the excitation voltage unique to CT in real time and the magnitude of the current value detected from the CT secondary. -CT saturation determination is achieved by comparison.

より具体的に説明すると、(1)式の励磁電圧Vsを求めるために使用するCT定格負担とCT二次定格とCT過電流定数は、CTごとに定められ、CTの銘板などに記述されて予め知ることのできる値であり、ここではこれらをCT定数ということにする。また(2)式において、CTの誘起電圧Vrを求めるために使用するCT一次定格とCT二次定格と巻線インピーダンスZsと外部接続回路のインピーダンス(Zl、Zry)も予め知ることのできる値である。このうち、CT一次定格とCT二次定格もまたCT定数である。   More specifically, the CT rating burden, CT secondary rating, and CT overcurrent constant used to determine the excitation voltage Vs in equation (1) are determined for each CT and described on the nameplate of the CT. These are values that can be known in advance, and here they are referred to as CT constants. In equation (2), the CT primary rating, CT secondary rating, winding impedance Zs, and impedance (Zl, Zry) of the external connection circuit used for obtaining the induced voltage Vr of CT are values that can be known in advance. is there. Of these, the CT primary rating and the CT secondary rating are also CT constants.

なお、(1)(2)式において、CT定数以外には、巻線インピーダンスZsと外部接続回路のインピーダンス(Zl、Zry)があるが、これらは、保護継電装置を接続するときに計測すればよい。その他の数値はCT定数であり、これらは他のメーカーにおいて製造されたCTであっても、一般には公開された数値情報である。このことから、これらを整定値として扱い、保護継電装置を設置する時点でこれら数値を予め整定しておく。これにより、(1)式の励磁電圧VsをCT固有の値として扱うことができ、かつ(2)式の一次電流のみが未知の数値として残ることになる。   In addition, in Equations (1) and (2), there are the winding impedance Zs and the impedance (Zl, Zry) of the external connection circuit other than the CT constant, which are measured when connecting the protective relay device. That's fine. Other numerical values are CT constants, and these are publicly disclosed numerical information even if they are CTs manufactured by other manufacturers. Therefore, these values are treated as set values, and these values are set in advance at the time when the protective relay device is installed. As a result, the excitation voltage Vs in the equation (1) can be treated as a CT-specific value, and only the primary current in the equation (2) remains as an unknown value.

図3に、本発明の差動保護継電装置の全体構成を示す。まず、差動保護継電装置3は、保護適用対象4として例えば変圧器に適用され、その全ての端子(ここでは一次端子と二次端子の例で示す)に設けた変流器CT1、CT2から電流If1、If2を取り込む。なお、電流は交流3相の全ての相について検出されるが、ここでは単相のみを表記している。   FIG. 3 shows the overall configuration of the differential protection relay device of the present invention. First, the differential protection relay device 3 is applied to, for example, a transformer as a protection application target 4, and current transformers CT1 and CT2 provided at all terminals (shown here as examples of primary terminals and secondary terminals). Currents If1 and If2. In addition, although an electric current is detected about all the phases of alternating current three phases, only the single phase is described here.

差動保護継電装置3は、内部故障判定処理部5と外部故障判定処理6で構成される。内部故障判定処理部5は、その具体回路構成の図示を省略するが、例えば保護適用対象4に流入する方向の電流を正とし、流出する方向の電流を負とするベクトル演算を実行し、全ての変流器CT1、CT2から得られた電流のベクトル和が所定値以上となるときに内部事故判定して全ての端子の遮断器CB1、CB2を開放操作する。   The differential protection relay device 3 includes an internal failure determination processing unit 5 and an external failure determination processing 6. Although the illustration of the specific circuit configuration is omitted, the internal failure determination processing unit 5 executes, for example, a vector operation in which the current flowing in the protection application target 4 is positive and the current flowing out is negative. When the vector sum of currents obtained from the current transformers CT1 and CT2 exceeds a predetermined value, an internal fault is determined and the circuit breakers CB1 and CB2 of all terminals are opened.

外部故障判定処理部6は、例えば保護適用対象4に流入する方向の電流を正とし、流出する方向の電流を負とする電流入力を行い、流入した電流和と同じ値の流出電流和があることを確認して、外部事故判定し、遮断器CB1、CB2の開放を阻止する機能を果たす。具体的には外部故障判定処理部6の出力O2により、内部故障判定処理部5が与えた遮断器CB1、CB2の開放操作信号O1をアンド回路29により阻止する。   For example, the external failure determination processing unit 6 performs current input in which the current flowing in the protection application target 4 is positive and the current flowing out is negative, and there is an outflow current sum having the same value as the inflowing current sum. After confirming this, the external accident is judged and the function of preventing the circuit breakers CB1 and CB2 from being opened is achieved. Specifically, the open circuit operation signal O1 of the circuit breakers CB1 and CB2 given by the internal failure determination processing unit 5 is blocked by the AND circuit 29 based on the output O2 of the external failure determination processing unit 6.

外部故障判定処理部6における判断論理は、上記の考え方を利用した幾つかのものが知られているが、図3の例では位相差を利用する位相差処理部61と、瞬時値和を利用する瞬時値和処理部62を備え、その双方が外部判定しているときに、「外部故障」と最終判断する異方式二重化方式の例で説明する。   As the determination logic in the external failure determination processing unit 6, several types of logic using the above concept are known. In the example of FIG. 3, the phase difference processing unit 61 that uses the phase difference and the instantaneous value sum are used. An example of a different type duplex system that includes an instantaneous value sum processing unit 62 that performs external determination when both are externally determined will be described.

図3の位相差処理部61では、各CTの同一相の電流に対して基準位相からの位相差を検出し、各CTの出力の間の位相差を演算する。具体的には、高速サンプリングにより正波/負波の境界データにより基準点を求め、各々、正波/負波における与えられた規準位相からの差を算出する。求められた各相の基準位相は、全位相の合成処理を行う位相合成部により各々正波/負波毎に加算される。   The phase difference processing unit 61 in FIG. 3 detects the phase difference from the reference phase with respect to the same phase current of each CT, and calculates the phase difference between the outputs of each CT. Specifically, the reference point is obtained from the positive / negative wave boundary data by high-speed sampling, and the difference from the given reference phase in the positive / negative wave is calculated. The obtained reference phase of each phase is added for each positive wave / negative wave by a phase synthesis unit that performs synthesis processing of all phases.

保護対象における通常の通過電流では、正波/負波ともに位相差は各CTの位相誤差特性に準拠しており、定常時では位相差は0度近傍にある。ここでは、CT固有誤差を考慮して、合成位相が設定(Kθ)以内にある事を判定して、外部故障と判定する。   In the normal passing current in the protection target, the phase difference for both positive and negative waves conforms to the phase error characteristic of each CT, and the phase difference is in the vicinity of 0 degree in the steady state. Here, in consideration of the CT inherent error, it is determined that the combined phase is within the setting (Kθ), and it is determined as an external failure.

瞬時値和処理部62では、各CTの同一相において瞬時値和をとり、得られた結果を実効値処理する機能を具備している。瞬時値和処理部62では合成電流が保護対象における通常の通過電流では0近傍にあることから、CT固有誤差を考慮して合成電流が設定(KId)以内にある事を判定して、外部故障とする。   The instantaneous value sum processing unit 62 has a function of taking an instantaneous value sum in the same phase of each CT and performing effective value processing on the obtained result. The instantaneous value sum processing unit 62 determines that the combined current is within the setting (KId) in consideration of the CT inherent error because the combined current is close to 0 in the normal passing current in the protection target, and the external failure And

位相差処理部61及び瞬時値和処理部62での判定結果は、アンド回路21で判定され、位相差処理部61及び瞬時値和処理部62の処理結果が成立した場合には外部故障と判定し、フリップフロップ23をセットする。フリップフロップ23のリセット条件は、外部故障から内部故障に進展した場合に、高速に外部故障判定をリセットする必要性があるため、位相差処理部61及び瞬時値和処理部62の判定結果がともに不成立となった場合に、オア回路22の判定を持ってフリップフロップ23をリセットする。   The determination results of the phase difference processing unit 61 and the instantaneous value sum processing unit 62 are determined by the AND circuit 21, and when the processing results of the phase difference processing unit 61 and the instantaneous value sum processing unit 62 are satisfied, it is determined that an external failure has occurred. Then, the flip-flop 23 is set. Since the reset condition of the flip-flop 23 needs to reset the external failure determination at high speed when the external failure progresses to the internal failure, the determination results of the phase difference processing unit 61 and the instantaneous value sum processing unit 62 are both If not established, the flip-flop 23 is reset with the determination of the OR circuit 22.

以上、考え方を説明した内部故障判定処理部5と外部故障判定処理部6で構成される差動保護継電装置3によれば、流入電流に対して内部故障判定処理部5が内部判定し、流出電流に対して外部故障判定処理部6が外部判定することにより、内外故障を正しく判別できるはずである。   As described above, according to the differential protection relay device 3 configured by the internal failure determination processing unit 5 and the external failure determination processing unit 6 that have explained the concept, the internal failure determination processing unit 5 internally determines the inflow current, The external failure determination processing unit 6 should externally determine the outflow current so that the internal / external failure can be correctly determined.

ところが、CTの検出する値にCT飽和などに起因する誤差を含む場合には、外部故障時の過大通過電流の検出誤差を内部故障判定処理部5が検出して遮断器の開放信号を与え、他方で外部故障判定処理部6は入力に誤差を含んでいても、通過電流であるために正しく外部検知しているので遮断器の開放阻止信号を与えることができない。この結果、外部故障にも拘わらず遮断器の開放が実行されてしまうことになる。   However, when the value detected by CT includes an error due to CT saturation or the like, the internal failure determination processing unit 5 detects an excessive passing current detection error at the time of an external failure and gives a circuit breaker open signal, On the other hand, even if the external failure determination processing unit 6 includes an error in the input, since it is a passing current, the external failure is correctly detected, and therefore it is not possible to give a circuit breaker open prevention signal. As a result, the circuit breaker is opened despite the external failure.

本発明のCT飽和判定処理部7は、CTの検出する値にCT飽和などに起因する誤差を含むことを検知し、内部故障判定処理部5による遮断器の開放を阻止する。図1にCT飽和判定処理部7の詳細構成を示す。   The CT saturation determination processing unit 7 of the present invention detects that the value detected by CT includes an error due to CT saturation or the like, and prevents the internal failure determination processing unit 5 from opening the circuit breaker. FIG. 1 shows a detailed configuration of the CT saturation determination processing unit 7.

図1において、CT飽和判定処理部7は、CTの相ごとに設置される。各相とも同一回路構成でよいので、図の例ではa相の回路構成を記載し、他の相の構成の記載を割愛している。   In FIG. 1, a CT saturation determination processing unit 7 is installed for each CT phase. Since each phase may have the same circuit configuration, the a-phase circuit configuration is described in the example of the drawing, and the description of the configuration of the other phases is omitted.

図1の飽和判定部73では(3)式を実行する。また、誘起電圧演算部71は(2)式を実行する。励磁電圧演算部72は(1)式を実行する。   The saturation determination unit 73 in FIG. 1 executes the expression (3). Moreover, the induced voltage calculating part 71 performs (2) Formula. The excitation voltage calculation unit 72 executes equation (1).

このうち、励磁電圧演算部72において(1)式を実行するためには、前述したように式中の全ての値が事前に知られているので、これらを整定値として予め入力しておく。つまり、励磁電圧演算部72では、CT定数(二次定格、定格負担、過電流定数)を整定値として取り込み、CT固有の定数として誘起電圧Vsを得る。   Among these, in order to execute the expression (1) in the excitation voltage calculation unit 72, since all the values in the expression are known in advance as described above, these are input in advance as settling values. That is, the excitation voltage calculation unit 72 takes in the CT constant (secondary rating, rated burden, overcurrent constant) as a set value, and obtains the induced voltage Vs as a constant unique to CT.

また、誘起電圧演算部71において(2)式を実行するには、前述したように式中の多くの値が事前に知られているので、これらを整定値として予め入力しておく。つまり、誘起電圧演算部71では、CT定数(一次定格、二次定格、巻線インピーダンス)及び、装置側負担(ケーブルインピーダンスZl、リレー盤負担Zry)を整定値として取り込んでおり、これらの定数と、現在のCT二次電流を用いて、(2)に式より誘起電圧Vrを演算する。   Further, in order to execute the expression (2) in the induced voltage calculation unit 71, as described above, since many values in the expression are known in advance, these are input in advance as settling values. That is, the induced voltage calculation unit 71 takes in the CT constants (primary rating, secondary rating, winding impedance) and the device side load (cable impedance Zl, relay panel load Zry) as settling values. The induced voltage Vr is calculated from the equation (2) using the current CT secondary current.

誘起電圧Vrを演算するにあたり、現在のCT二次電流を以下のようにして求める。CT二次の検出電流は、フィルタ部78に入力されて基本波成分を抽出する。このとき、フィルタ部78による検出電流の位相の遅れを生じるので、位相遅れ補償部79において、位相遅れを補償する。位相補償されたデータは、積分処理部70により積分されて、実効値が求められる。誘起電圧演算部71では、積分処理部70で実効値処理化された現在のCT二次電流に、整定値として入力された値を用いて(2)式を実行し、CTに誘起されている誘起電圧Vrを演算する。   In calculating the induced voltage Vr, the current CT secondary current is obtained as follows. The CT secondary detection current is input to the filter unit 78 to extract the fundamental wave component. At this time, a phase lag of the detected current is caused by the filter unit 78, so the phase lag compensation unit 79 compensates for the phase lag. The phase compensated data is integrated by the integration processing unit 70 to obtain an effective value. In the induced voltage calculation unit 71, the current CT secondary current subjected to the effective value processing in the integration processing unit 70 is subjected to the equation (2) using the value input as the settling value, and is induced in the CT. The induced voltage Vr is calculated.

最後に、最終的なCTの飽和判定は飽和判定部73により、励磁電圧演算部72、誘起電圧演算部71の出力を用いて(3)式により行うが、本発明では更に補正係数Kによる補正を考慮することでより高精度の判定とする。補正係数Kは、故障電流が直流成分を含み、正側の値と負側の値とで大きく相違することから、直流成分の含有割合を正負の非対象率の形で把握し、(3)式の演算に反映させたものである。   Finally, the final CT saturation determination is performed by the saturation determination unit 73 according to the expression (3) using the outputs of the excitation voltage calculation unit 72 and the induced voltage calculation unit 71. In the present invention, correction by the correction coefficient K is further performed. By taking into consideration, it is determined with higher accuracy. The correction coefficient K includes a direct current component, and the positive value and the negative value are significantly different. Therefore, the content ratio of the direct current component is grasped in the form of a positive / negative non-target rate, and (3) This is reflected in the calculation of the formula.

このために、まず非対称判定部76では、CT検出電流の非対称率を判定するためにCT二次電流の瞬時値から正波ピーク値と負波ピーク値を求め、その割合から非対称率を算定する。非対称率は、例えば直流成分を含まず、従って正波ピーク値と負波ピーク値の絶対値が同じであるときに0%、交流と同量の直流成分を含む場合に100%と計算する。   For this purpose, the asymmetry determination unit 76 first calculates the positive wave peak value and the negative wave peak value from the instantaneous value of the CT secondary current in order to determine the asymmetry rate of the CT detection current, and calculates the asymmetry rate from the ratio. . The asymmetry rate is calculated, for example, as 0% when the DC component is not included, and therefore when the absolute value of the positive wave peak value and the negative wave peak value are the same, and 100% when the DC component of the same amount as AC is included.

補正係数K選択テーブル77では、非対称判定部76の結果から飽和判定部73で適用する定数Kを選択する。非対称率が0%の場合にはK=0.5とし、非対称率が100%の場合にはK=1とする。この結果、交流のピーク値が同じであっても直流成分が含有されるほど、飽和と判定されやすい特性にできる。   In the correction coefficient K selection table 77, the constant K applied by the saturation determination unit 73 is selected from the result of the asymmetry determination unit 76. K = 0.5 when the asymmetry rate is 0%, and K = 1 when the asymmetry rate is 100%. As a result, even if the peak value of alternating current is the same, the more the direct current component is contained, the more easily it can be determined that it is saturated.

上記の飽和判定は、各相で実施し、最後にオア回路74では、当該端子のCTの各相の判断結果のうち、いずれかの相に飽和判定が出た場合には、飽和と判定する。また同様に、保護継電装置に電流を取り込んでいる他の端子の全CTに対して同様の処理を実施することで、構成されているシステムでのCT飽和現象を検出する機能を有する。   The above saturation determination is performed for each phase. Finally, the OR circuit 74 determines that the saturation is obtained when any of the determination results of each phase of the CT of the terminal is saturated. . Similarly, the same processing is performed on all CTs of other terminals that are taking current into the protective relay device, thereby having a function of detecting a CT saturation phenomenon in the configured system.

再度図3にもどり、本実施例での外部故障判定機能付き差動保護継電装置について説明する。まず、図3に示すように、図1のCT飽和判定処理部7の出力は、アンド回路28において、外部故障判定処理部6の出力との一致が取られる。CT飽和判定処理部7が飽和と判定し、かつ外部故障判定処理部6が外部故障と判定してそれぞれ出力し、その両判定結果が成立した場合には、アンド回路28により保護対象機器4の外部故障であると判断する。   Returning to FIG. 3 again, the differential protection relay device with an external failure determination function in this embodiment will be described. First, as shown in FIG. 3, the output of the CT saturation determination processing unit 7 in FIG. 1 is matched with the output of the external failure determination processing unit 6 in the AND circuit 28. When the CT saturation determination processing unit 7 determines that the output is saturated, and the external failure determination processing unit 6 determines that an external failure has occurred and outputs the result, and both determination results are satisfied, the AND circuit 28 causes the protection target device 4 to Judged as an external failure.

アンド回路28の出力O2はアンド回路29に与えられ、これにより内部故障判定処理部5の出力を判定期間中はロックする。なお、外部故障判定処理部6の単独の判定出力の場合には、外部故障によるCT誤差発生と判断し、この場合には適用している差動保護継電装置の検出感度を低下させる信号に適用する。   The output O2 of the AND circuit 28 is given to the AND circuit 29, whereby the output of the internal failure determination processing unit 5 is locked during the determination period. In the case of a single determination output from the external failure determination processing unit 6, it is determined that a CT error has occurred due to an external failure, and in this case, the signal is used to reduce the detection sensitivity of the differential protection relay device applied. Apply.

以上説明した図3の各部の処理部5、6、7を備えることによる動作態様について説明する。図4は、内部故障発生かつCT飽和なしの第1のケース、内部故障発生かつCT飽和ありの第2のケース、外部故障発生かつCT飽和なしの第3のケース、外部故障発生かつCT飽和ありの第4のケースのときの図3各部状態を示している。このケースごとに、図3の各部処理部5、6、7の動作態様について説明する。   An operation mode by providing the processing units 5, 6, and 7 of each unit of FIG. 3 described above will be described. FIG. 4 shows a first case where an internal failure occurs and no CT saturation, a second case where an internal failure occurs and CT saturation, a third case where an external failure occurs and CT saturation does not occur, an external failure occurs and CT saturation occurs Each part state of FIG. 3 in the fourth case is shown. The operation modes of the respective processing units 5, 6, and 7 in FIG. 3 will be described for each case.

まず内部故障発生のケースについて、各端子から電流が流入する内部故障では、内部故障判定処理部5が出力O1として「1」を与える。他方、外部故障判定処理部6は、外部判定していないので出力せず「0」である。従って、この状態で第2のケースのように、CT飽和判定処理部7が飽和と判定し「1」を出力したとしても、または第2のケースのように、CT飽和判定処理部7が非飽和と判定し「0」を出力したとしても、アンド回路28の出力O2が「0」である。従って、アンド回路29により内部故障判定処理部5の出力による遮断器開放指示が正しく出される。   First, in the case of an internal failure occurrence, in the case of an internal failure in which current flows from each terminal, the internal failure determination processing unit 5 gives “1” as the output O1. On the other hand, the external failure determination processing unit 6 does not output and is “0” because it is not externally determined. Therefore, in this state, even if the CT saturation determination processing unit 7 determines that the saturation is performed and outputs “1” as in the second case, or the CT saturation determination processing unit 7 is not in the state as in the second case. Even if it is determined to be saturated and “0” is output, the output O2 of the AND circuit 28 is “0”. Therefore, the AND circuit 29 correctly issues a breaker opening instruction based on the output of the internal failure determination processing unit 5.

次に、外部故障による通過電流の場合、第3のケースではCT非飽和であり、内部故障判定処理部5は、差電流を検出しておらず出力O1として「0」を与える。但し、第4のケースではCT飽和により、内部故障判定処理部5が差電流を検出し、出力O1として「1」を与えることがある。   Next, in the case of the passing current due to an external failure, the third case is CT non-saturated, and the internal failure determination processing unit 5 does not detect the difference current and gives “0” as the output O1. However, in the fourth case, due to CT saturation, the internal failure determination processing unit 5 may detect the difference current and give “1” as the output O1.

他方、外部故障判定処理部6は、CT飽和、CT非飽和に関わらず外部判定して「1」を出力する。これに対して、CT飽和判定処理部7はCT飽和のとき(ケース4)「1」を与え、CT非飽和のとき(ケース3)「0」を与えている。このため、アンド回路28の出力O2は、CT飽和のとき(ケース4)「1」を与え、CT非飽和のとき(ケース3)「0」を与えることになり、結果としてケース4での誤った内部出力判定結果(O1)が遮断器遮断信号として遮断器に与えられることを阻止できる。   On the other hand, the external failure determination processing unit 6 performs external determination regardless of CT saturation or CT non-saturation and outputs “1”. In contrast, the CT saturation determination processing unit 7 gives “1” when CT is saturated (case 4), and gives “0” when CT is not saturated (case 3). For this reason, the output O2 of the AND circuit 28 gives “1” when CT is saturated (case 4) and gives “0” when CT is not saturated (case 3). It is possible to prevent the internal output determination result (O1) from being supplied to the circuit breaker as a circuit breaker circuit breaker signal.

以上詳細に述べたように、本発明では、CT二次電流の瞬時値を用いて非対称率を演算し、CT励磁電圧Vsと現状電流値での誘起電圧Vrをリアルタイムに処理する事で対象機器に流入する電流に対してCT飽和判定機能と、瞬時値合成による差電流検出と位相合成誤差判定による外部故障判定機能とを組み合わせた、比率差動保護を実現するものである。   As described above in detail, in the present invention, the asymmetry rate is calculated using the instantaneous value of the CT secondary current, and the CT excitation voltage Vs and the induced voltage Vr at the current current value are processed in real time. Ratio differential protection is realized by combining a CT saturation determination function, a difference current detection by instantaneous value synthesis, and an external failure determination function by phase synthesis error determination with respect to the current flowing into the current.

1:電流源
2:CT等価回路
2a、2b:外部出力端子
3:差動保護継電装置
4:保護適用対象
5:内部故障判定処理部
6:外部故障判定処理部
7:CT飽和判定処理部
21、28:アンド回路
22、74:オア回路
23:フリップフロップ
29:アンド回路
61:位相差処理部
62:瞬時値和処理部
70:積分処理部
71:誘起電圧演算部
72:励磁電圧演算部
73:飽和判定部
76:非対称判定部
77:補正係数K選択テーブル
78:フィルタ部
79:位相遅れ補償部
CT:変流器
CB:遮断器
Vs:励磁電圧
Vr:CTの誘起電圧
Zp:一次インピーダンス
Zs:巻線インピーダンス
Zo:励磁インピーダンス
Zl:ケーブルインピーダンス
Zry:リレー盤インピーダンス
1: Current source 2: CT equivalent circuit 2a, 2b: External output terminal 3: Differential protection relay device 4: Protection application target 5: Internal failure determination processing unit 6: External failure determination processing unit 7: CT saturation determination processing unit 21, 28: AND circuit 22, 74: OR circuit 23: flip-flop 29: AND circuit 61: phase difference processing unit 62: instantaneous value sum processing unit 70: integration processing unit 71: induced voltage calculation unit 72: excitation voltage calculation unit 73: Saturation determination unit 76: Asymmetry determination unit 77: Correction coefficient K selection table 78: Filter unit 79: Phase lag compensation unit CT: Current transformer CB: Circuit breaker Vs: Excitation voltage Vr: CT induced voltage Zp: Primary impedance Zs: Winding impedance Zo: Excitation impedance Zl: Cable impedance Zry: Relay panel impedance

Claims (10)

保護適用対象の各端子電流を変流器により検出し、端子電流の差動演算により前記保護適用対象の各端子に備えられた遮断器を開放するための開放指令信号を与える内部故障判定処理部を備える差動保護継電装置において、
前記変流器の励磁電圧と誘起電圧を求め、これらを比較することにより前記変流器の飽和を判定するCT飽和判定処理部と、前記検出した端子電流が前記保護適用対象の通過電流であることを検出して外部故障と判定する外部故障判定処理部を備え、CT飽和判定処理部が飽和判定し、かつ外部故障判定処理部が外部判定しているときに前記内部故障判定処理部による遮断器を開放するための開放指令信号を阻止することを特徴とする差動保護継電装置。
An internal failure determination processing unit that detects each terminal current to be protected by a current transformer and provides an open command signal for opening a circuit breaker provided to each terminal to be protected by differential calculation of the terminal current In the differential protection relay device comprising:
A CT saturation determination processing unit that determines an excitation voltage and an induced voltage of the current transformer and compares them to determine saturation of the current transformer, and the detected terminal current is a passing current of the protection application target. An external failure determination processing unit that detects the occurrence of an external failure and blocks the internal failure determination processing unit when the CT saturation determination processing unit makes a saturation determination and the external failure determination processing unit makes an external determination A differential protection relay device characterized in that an open command signal for opening the device is blocked.
請求項1に記載の差動保護継電装置において、
前記変流器の励磁電圧と誘起電圧を求めるためのCT定数とインピーダンスを差動保護継電装置の整定値として与えることを特徴とする差動保護継電装置。
The differential protection relay device according to claim 1,
A differential protection relay device, wherein a CT constant and an impedance for obtaining an excitation voltage and an induced voltage of the current transformer are given as a set value of the differential protection relay device.
請求項1または請求項2に記載の差動保護継電装置において、
前記変流器の励磁電圧と誘起電圧を比較する場合に、検出した電流に直流成分が重畳されているときに飽和判定しやすくなるように修正することを特徴とする差動保護継電装置。
In the differential protection relay device according to claim 1 or 2,
The differential protection relay device, wherein when comparing the excitation voltage and the induced voltage of the current transformer, correction is made so that saturation can be easily determined when a DC component is superimposed on the detected current.
請求項3に記載の差動保護継電装置において、
検出した電流に直流成分が重畳されていることを、検出した電流の正負波形の非対称率から判断することを特徴とする差動保護継電装置。
The differential protection relay device according to claim 3,
A differential protection relay device, wherein a DC component is superimposed on a detected current is determined from an asymmetry rate of a positive / negative waveform of the detected current.
請求項1に記載の差動保護継電装置において、
外部故障判定処理部が外部判定しているときに、前記内部故障判定処理部による差動演算のための動作感度を低下させることを特徴とする差動保護継電装置。
The differential protection relay device according to claim 1,
A differential protection relay device characterized in that, when an external failure determination processing unit makes an external determination, operation sensitivity for differential calculation by the internal failure determination processing unit is reduced.
請求項2に記載の差動保護継電装置において、
前記変流器の励磁電圧を求めるためのCT定数として、CT定格負担とCT二次定格とCT過電流定数を使用し、励磁電圧をCT定格負担とCT過電流定数の積をCT二次定格で除した値として求めることを特徴とする差動保護継電装置。
The differential protection relay device according to claim 2,
The CT rating load, CT secondary rating, and CT overcurrent constant are used as the CT constant for obtaining the excitation voltage of the current transformer, and the product of the CT rating load and the CT overcurrent constant is used as the CT secondary rating. A differential protection relay device characterized by being obtained as a value divided by.
請求項2または請求項6に記載の差動保護継電装置において、
前記変流器の誘起電圧を求めるためのCT定数として、CT一次定格とCT二次定格を使用し、誘起電圧を変流器で計測した一次電流とCT二次定格と前記インピーダンスの積をCT一次定格で除した値として求めることを特徴とする差動保護継電装置。
In the differential protection relay device according to claim 2 or 6,
CT primary rating and CT secondary rating are used as CT constants for obtaining the induced voltage of the current transformer, and the product of the primary current, CT secondary rating and impedance measured by the current transformer is used as the induced voltage. A differential protection relay device characterized by being obtained as a value divided by a primary rating.
電力系統の保護適用対象の端子電流を検出する変流器の飽和判定方法において、
前記変流器の励磁電圧と誘起電圧を比較することにより前記変流器の飽和を判定するとともに、前記励磁電圧をCT定格負担とCT過電流定数の積をCT二次定格で除した値として求め、前記誘起電圧を変流器で計測した一次電流とCT二次定格と前記インピーダンスの積をCT一次定格で除した値として求めることを特徴とする変流器の飽和判定方法。
In the method for determining the saturation of a current transformer that detects the terminal current of the power system protection application target,
Saturation of the current transformer is determined by comparing the excitation voltage and the induced voltage of the current transformer, and the product of the CT rated load and CT overcurrent constant is divided by the CT secondary rating. A method for determining saturation of a current transformer, characterized in that the induced voltage is obtained as a value obtained by dividing a product of a primary current measured by a current transformer, a CT secondary rating, and the impedance by a CT primary rating.
請求項8に記載の変流器の飽和判定方法において、
前記変流器の励磁電圧と誘起電圧を比較する場合に、検出した電流に直流成分が重畳されているときに飽和判定しやすくなるように補正比較することを特徴とする変流器の飽和判定方法。
The current transformer saturation determination method according to claim 8,
When comparing the exciting voltage and the induced voltage of the current transformer, the saturation judgment of the current transformer is performed so that the saturation judgment is facilitated when a DC component is superimposed on the detected current. Method.
請求項9に記載の変流器の飽和判定方法において、
検出した電流に直流成分が重畳されていることを、検出した電流の正負波形の非対称率から判断することを特徴とする変流器の飽和判定方法。
The current transformer saturation determination method according to claim 9,
A method for determining the saturation of a current transformer, comprising: determining that a DC component is superimposed on a detected current from an asymmetry rate of a positive / negative waveform of the detected current.
JP2011142510A 2011-06-28 2011-06-28 Differential protective relay device and saturation determination method for current transformer Pending JP2013013170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011142510A JP2013013170A (en) 2011-06-28 2011-06-28 Differential protective relay device and saturation determination method for current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011142510A JP2013013170A (en) 2011-06-28 2011-06-28 Differential protective relay device and saturation determination method for current transformer

Publications (1)

Publication Number Publication Date
JP2013013170A true JP2013013170A (en) 2013-01-17

Family

ID=47686554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011142510A Pending JP2013013170A (en) 2011-06-28 2011-06-28 Differential protective relay device and saturation determination method for current transformer

Country Status (1)

Country Link
JP (1) JP2013013170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037731A (en) * 2013-11-19 2014-09-10 国家电网公司 Large-power rectification transformer set differential protection method
CN104198875A (en) * 2014-08-20 2014-12-10 天津二十冶建设有限公司 Inspection method for transformer differential protection wiring
CN104215875A (en) * 2014-09-25 2014-12-17 国家电网公司 Monitor method of high power rectifier transformer unit rectifying valve breakdowns
CN109768526A (en) * 2019-03-13 2019-05-17 南京南瑞继保电气有限公司 A kind of method and apparatus being mutually saturated based on current distribution factor identification non-faulting
CN117638804A (en) * 2023-11-08 2024-03-01 广东工业大学 Differential protection method and system for primary side overcurrent faults of train traction transformer
KR20240060927A (en) * 2022-10-31 2024-05-08 주식회사 비츠로이엠 Malfunction prevention method for current transformer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101924A (en) * 1988-10-07 1990-04-13 Meidensha Corp Protective relay
US6442010B1 (en) * 2000-04-03 2002-08-27 General Electric Company Differential protective relay for electrical buses with improved immunity to saturation of current transformers
JP2003296390A (en) * 2002-03-29 2003-10-17 Toshiba Corp Device for supporting design of electric circuit
JP2004015930A (en) * 2002-06-07 2004-01-15 Toshiba Corp Differential relay device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101924A (en) * 1988-10-07 1990-04-13 Meidensha Corp Protective relay
US6442010B1 (en) * 2000-04-03 2002-08-27 General Electric Company Differential protective relay for electrical buses with improved immunity to saturation of current transformers
JP2003296390A (en) * 2002-03-29 2003-10-17 Toshiba Corp Device for supporting design of electric circuit
JP2004015930A (en) * 2002-06-07 2004-01-15 Toshiba Corp Differential relay device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037731A (en) * 2013-11-19 2014-09-10 国家电网公司 Large-power rectification transformer set differential protection method
CN104198875A (en) * 2014-08-20 2014-12-10 天津二十冶建设有限公司 Inspection method for transformer differential protection wiring
CN104215875A (en) * 2014-09-25 2014-12-17 国家电网公司 Monitor method of high power rectifier transformer unit rectifying valve breakdowns
CN109768526A (en) * 2019-03-13 2019-05-17 南京南瑞继保电气有限公司 A kind of method and apparatus being mutually saturated based on current distribution factor identification non-faulting
KR20240060927A (en) * 2022-10-31 2024-05-08 주식회사 비츠로이엠 Malfunction prevention method for current transformer
KR102666279B1 (en) * 2022-10-31 2024-05-16 주식회사 비츠로이엠 Malfunction prevention method for current transformer
CN117638804A (en) * 2023-11-08 2024-03-01 广东工业大学 Differential protection method and system for primary side overcurrent faults of train traction transformer

Similar Documents

Publication Publication Date Title
JP6976258B2 (en) Systems and methods for detecting inter-turn failures in transformer windings
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
JP6799068B2 (en) Systems and methods for detecting turn-to-turn failures of windings
US8553379B2 (en) Transformer differential protection
Alencar et al. A method to identify inrush currents in power transformers protection based on the differential current gradient
JP2013013170A (en) Differential protective relay device and saturation determination method for current transformer
US20130155553A1 (en) Magnetizing inrush current suppression apparatus
US9343895B2 (en) Protection relay for sensitive earth fault protection
JP2018526617A (en) Method and system for phase loss detection in power transformers
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
US10707677B2 (en) Differential protection method and differential protection device for a transformer
WO2020144734A1 (en) Arc/ground fault detection device
JP5221238B2 (en) Reactive power compensator ground fault detector
JP6362569B2 (en) Distance relay device and power line protection method
JP4406143B2 (en) Protective relay device for DC transmission system
JP7250230B1 (en) Transformer protection relay and transformer protection method
JP6907167B2 (en) High-voltage insulation monitoring device and high-voltage insulation monitoring method
RU2824750C1 (en) Method of differential relay protection, including for transient modes accompanied by saturation of measuring current transformers (versions)
Venikar et al. Symmetrical components based advanced scheme for detection of incipient inter-turn fault in transformer
KR20030028670A (en) Relaying method for protecting transformer using voltage-current trends
US11923676B2 (en) Method for identifying element failure in capacitor banks
CN112753147B (en) Low-voltage circuit breaker and fault arc identification unit
CN112557957B (en) PT disconnection judging method, device and system for magnetic control type controllable shunt reactor
KR20230151599A (en) Current ratio differential relay and operating method thereof
US8743520B2 (en) Method and device for protecting an autotransformer for an aircraft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140924