JP5221238B2 - Reactive power compensator ground fault detector - Google Patents

Reactive power compensator ground fault detector Download PDF

Info

Publication number
JP5221238B2
JP5221238B2 JP2008208650A JP2008208650A JP5221238B2 JP 5221238 B2 JP5221238 B2 JP 5221238B2 JP 2008208650 A JP2008208650 A JP 2008208650A JP 2008208650 A JP2008208650 A JP 2008208650A JP 5221238 B2 JP5221238 B2 JP 5221238B2
Authority
JP
Japan
Prior art keywords
phase
ground fault
voltage
value
fault detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008208650A
Other languages
Japanese (ja)
Other versions
JP2010044621A (en
Inventor
裕治 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008208650A priority Critical patent/JP5221238B2/en
Publication of JP2010044621A publication Critical patent/JP2010044621A/en
Application granted granted Critical
Publication of JP5221238B2 publication Critical patent/JP5221238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、交流電力系統を通流する交流電力の無効電力をサイリスタ制御リアクトル(Thyristor Controlled Reactor )を用いて補償する無効電力補償装置に係わり、特に、無効電力補償装置自体の配線等の構成部材の地絡を検出する無効電力補償装置の地絡検出装置に関する。   The present invention relates to a reactive power compensator that compensates reactive power of AC power flowing through an AC power system using a thyristor controlled reactor, and in particular, components such as wiring of the reactive power compensating device itself. The present invention relates to a ground fault detection device for a reactive power compensator that detects a ground fault.

一般に、交流電力系統を通流する交流電力の電圧波形に対する電流波形の位相差に起因する無効電力を補償するための無効電力補償装置として、種々の方式が実用化されているが、図12にサイリスタ制御リアクトル法を採用した無効電力補償装置を示す。   In general, as a reactive power compensator for compensating reactive power due to a phase difference of a current waveform with respect to a voltage waveform of AC power flowing through an AC power system, various methods have been put into practical use. A reactive power compensator adopting a thyristor controlled reactor method is shown.

U、V、Wの3相からなる三相交流電力系1aに対してΔ結線されたサイリスタ制御リアクトル2が接続されている。このサイリスタ制御リアクトル2においては、図示するように、一対のコイル3a、3bの中間に互いに逆極性に並列接続された一対のサイリスタ4が介挿された3つの直列回路がΔ結線されている。   A thyristor control reactor 2, which is Δ-connected, is connected to a three-phase AC power system 1 a composed of three phases of U, V, and W. In the thyristor control reactor 2, as shown in the figure, three series circuits in which a pair of thyristors 4 connected in parallel with opposite polarities are interposed between the pair of coils 3 a and 3 b are Δ-connected.

また、三相交流電力系1bの各相の電圧をPT(電圧検出器)5で測定してサイリスタ制御部7に送出する。又、三相交流電力系1bの各相の電流をCT(電流検出器)6で測定してサイリスタ制御部7に送出する。サイリスタ制御部7は検出された各相の電圧値と電流値とから必要とする無効電力を実現するためのサイリスタ4の点弧角を算出して、サイリスタ4を通電制御して無効電力を調整する。   Further, the voltage of each phase of the three-phase AC power system 1 b is measured by a PT (voltage detector) 5 and sent to the thyristor control unit 7. Further, the current of each phase of the three-phase AC power system 1 b is measured by a CT (current detector) 6 and sent to the thyristor controller 7. The thyristor control unit 7 calculates the firing angle of the thyristor 4 for realizing the necessary reactive power from the detected voltage value and current value of each phase, and adjusts the reactive power by controlling the thyristor 4 to be energized. To do.

また、三相交流電力系1aに零相電圧計8を設けて、得られた零相電圧が許容値を超えると、U、V、Wの3相のいずれか1相が地絡したと判定できる。   In addition, when the zero-phase voltmeter 8 is provided in the three-phase AC power system 1a and the obtained zero-phase voltage exceeds the allowable value, it is determined that one of the three phases U, V, and W is grounded. it can.

さらに、特許文献1においては、コイルとコンデンサとサイリスタが組込まれた静止形無効電力補償装置が提唱されている。   Further, Patent Document 1 proposes a static reactive power compensator in which a coil, a capacitor, and a thyristor are incorporated.

また、図13は、サイリスタ制御リアクトルを採用した他の無効電力補償装置の概略構成図である。この無効電力補償装置においては、U、V、Wの3相からなる三相交流電力系1bに対して遮断器9を介して、高インピーダンスの三相変圧器10の各一次巻線11a、11b、11cが接続されている。この三相変圧器10の各一次巻線11a、11b、11cに対応する各相独立した二次巻線12a、12b、12cには、それぞれ単相回路13a、13b、13cが接続されている。各単相回路13a、13b、13cの中間位置に、互いに逆極性に並列接続された一対のサイリスタ14a、14b、14cが介挿されている。   FIG. 13 is a schematic configuration diagram of another reactive power compensator that employs a thyristor control reactor. In this reactive power compensator, the primary windings 11a and 11b of the high-impedance three-phase transformer 10 are connected via a circuit breaker 9 to a three-phase AC power system 1b composed of three phases U, V, and W. 11c are connected. Single-phase circuits 13a, 13b, and 13c are connected to secondary windings 12a, 12b, and 12c that are independent of each phase corresponding to the primary windings 11a, 11b, and 11c of the three-phase transformer 10, respectively. A pair of thyristors 14a, 14b, and 14c connected in parallel with opposite polarities are inserted at intermediate positions of the single-phase circuits 13a, 13b, and 13c.

単相回路13aにおいてはu相とx相とで構成され、単相回路13bにおいてはv相とy相とで構成され、単相回路13cにおいてはw相とz相とで構成されている。   The single phase circuit 13a is composed of the u phase and the x phase, the single phase circuit 13b is composed of the v phase and the y phase, and the single phase circuit 13c is composed of the w phase and the z phase.

また、この三相変圧器10においては、各一次巻線11a、11b、11cと各二次巻線12a、12b、12cとの間には、静電シールド15が介挿され、各一次巻線11a、11b、11cに印加された電圧が各二次巻線12a、12b、12cに静電誘導により漏れることが抑制される。   Further, in the three-phase transformer 10, an electrostatic shield 15 is interposed between each primary winding 11a, 11b, 11c and each secondary winding 12a, 12b, 12c, and each primary winding. It is suppressed that the voltage applied to 11a, 11b, 11c leaks to each secondary winding 12a, 12b, 12c by electrostatic induction.

サイリスタ制御部7はPT5、CT6で検出された各相の電圧値と電流値とから必要とする無効電力を実現するための各サイリスタ14a、14b、14cの点弧角を算出して、この点弧角で各サイリスタ14a、14b、14cを通電制御して、無効電力を調整する。
特開平8―149694号公報
The thyristor control unit 7 calculates the firing angle of each thyristor 14a, 14b, 14c for realizing the necessary reactive power from the voltage value and current value of each phase detected by PT5, CT6. The thyristors 14a, 14b, and 14c are energized and controlled by the arc angle to adjust the reactive power.
JP-A-8-149694

しかしながら、図13に示すサイリスタ制御リアクトルを採用した無効電力補償装置においてもまだ改良すべき、次のような課題があった。   However, the reactive power compensator that employs the thyristor control reactor shown in FIG. 13 still has the following problems that should be improved.

すなわち、三相交流電力系1bの各相における地絡発生に起因する事故を抑制するために三相交流電力系1bに、図12に示す零相電圧(電流)検出器8を設けて、検出された零相電圧が許容値を超えると、U、V、Wの3相のいずれか1相が地絡したと判定している。   That is, in order to suppress an accident caused by the occurrence of a ground fault in each phase of the three-phase AC power system 1b, the zero-phase voltage (current) detector 8 shown in FIG. When the zero-phase voltage thus set exceeds the allowable value, it is determined that one of the three phases U, V, and W is grounded.

しかし、近年、上述した三相交流電力系1bの地絡検出以外にも、無効電力補償装置自体の配線等の各構成部材における地絡発生に起因して、当該無効電力補償装置の動作不良、故障が生じることを防止する目的で、無効電力補償装置における地絡を検出することが要求されている。   However, in recent years, in addition to the above-described ground fault detection of the three-phase AC power system 1b, the reactive power compensator malfunctions due to the occurrence of a ground fault in each component such as the wiring of the reactive power compensator itself, In order to prevent a failure from occurring, it is required to detect a ground fault in the reactive power compensator.

しかし、図13に示した無効電力補償装置においては、各単相回路の各相の地絡を検出する手法として、従来の3相回路の零相電圧を検出する方法が採用できない問題があった。以下、その理由を図14、図15を用いて説明する。   However, the reactive power compensator shown in FIG. 13 has a problem that the conventional method of detecting the zero-phase voltage of the three-phase circuit cannot be adopted as a method of detecting the ground fault of each phase of each single-phase circuit. . Hereinafter, the reason will be described with reference to FIGS.

図14に、図13に示す構成の無効電力補償装置における一つの単相回路13aにおけるu相の接地間の電圧Vuの波形(実線)と、x相の接地間の電圧Vxの波形(点線)とを、無効電力補償装置における動作条件毎に記載する。具体的には、
当該単相回路13aにおけるサイリスタ14aに対する通電制御として、
実施せず…(a)(b)、 点弧角100°…(c)(d) 点弧角150°…(e)(f)
の条件を示している。また、地絡の有無として、
u相、x相共に…地絡無し(a)(c)(e) x相のみ…地絡(b)(d)(f)
の条件を示している。さらに、三相変圧器10に対する課電圧の有無として、
課電圧…あり(a)〜(f) 課電圧…無し(g)(h)
の各条件を示している。
FIG. 14 shows a waveform of the voltage Vu between the u-phase grounds (solid line) and a waveform of the voltage Vx between the grounds of the x-phase (dotted line) in one single-phase circuit 13a in the reactive power compensator configured as shown in FIG. Are described for each operating condition in the reactive power compensator. In particular,
As energization control for the thyristor 14a in the single-phase circuit 13a,
Not implemented (a) (b), firing angle 100 ° (c) (d) firing angle 150 ° (e) (f)
The conditions are shown. Also, as the presence or absence of ground fault,
Both u phase and x phase ... No ground fault (a) (c) (e) Only x phase ... Ground fault (b) (d) (f)
The conditions are shown. Furthermore, as the presence / absence of a voltage applied to the three-phase transformer 10,
Applied voltage: Yes (a) to (f) Applied voltage: No (g) (h)
Each condition is shown.

また、図15の(i)(j)(k)(l)は、図14における(a)(c)(e)(g)の各条件下において、三相変圧器10の静電シールド15を除去した条件のu相の接地間の電圧Vuの波形(実線)と、x相の接地間の電圧Vxの波形(点線)とを示す。   Further, (i), (j), (k), and (l) in FIG. 15 are the electrostatic shields 15 of the three-phase transformer 10 under the conditions (a), (c), (e), and (g) in FIG. The waveform (solid line) of the voltage Vu between the grounds of the u phase under the condition in which is removed, and the waveform (dotted line) of the voltage Vx between the grounds of the x phase are shown.

このように、各単相回路13a、13b、13cのu、x、v、y、w、zの各相の電圧Vu、Vx、Vv、Vy、Vw、Vzの電圧波形は、高インピーダンスの三相変圧器10が課電されていない状態もしくは受電中、サイリス14a、14b、14cが停止中もしくは運転中、さらに運転中には点弧角(100°、150°等)によっても異なる電圧波形となる。   As described above, the voltage waveforms of the voltages Vu, Vx, Vv, Vy, Vw, and Vz of the respective phases u, x, v, y, w, and z of the single-phase circuits 13a, 13b, and 13c are high impedance three. Different voltage waveforms depending on the firing angle (100 °, 150 °, etc.) when the phase transformer 10 is not charged or receiving power, while the siries 14a, 14b, 14c are stopped or operating Become.

また、図15に示すように、高インピーダンスの三相変圧器10における静電シールド15の有無によっても、各単相回路13a、13b、13cの各相u〜zの電圧Vu〜Vzの波形も大きく異なる。   Further, as shown in FIG. 15, depending on the presence or absence of the electrostatic shield 15 in the high-impedance three-phase transformer 10, the waveforms of the voltages Vu to Vz of the respective phases u to z of the single phase circuits 13a, 13b and 13c are also obtained. to differ greatly.

このように、無効電力補償装置における各動作状態(動作条件)に応じて、検査対象の各相の電圧の電圧波形が大きく変化する。この波形変化は地絡発生有無の波形変化より大きいので、従来の零相電圧測定手法においては、各相の地絡を検出できない。   As described above, the voltage waveform of the voltage of each phase to be inspected greatly changes according to each operation state (operation condition) in the reactive power compensator. Since this waveform change is larger than the waveform change with or without the occurrence of ground fault, the conventional zero-phase voltage measurement method cannot detect the ground fault of each phase.

本発明は、このような事情に鑑みてなされたものであり、三相変圧器の各二次巻線に接続された各単相回路の各相の電圧のピーク値に対して種々の比較演算を実施することによって、各単相回路の各相の地絡の発生を検出でき装置全体の信頼性を向上できる無効電力補償装置の地絡検出装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and various comparison operations are performed on the peak value of the voltage of each phase of each single-phase circuit connected to each secondary winding of the three-phase transformer. It is an object of the present invention to provide a ground fault detection device for a reactive power compensator that can detect the occurrence of a ground fault in each phase of each single-phase circuit and improve the reliability of the entire device.

本発明は、交流電力系統の各相間に三相変圧器の各一次巻線を接続してこの三相変圧器の各相独立した二次巻線の両端子間にサイリスタが介挿された単相回路を接続し、このサイリスタの点弧角を制御することによって交流電力系統の無効電力を補償する無効電力補償装置における各単相回路の各相の地絡を検出する無効電力補償装置の地絡検出装置である。   In the present invention, each primary winding of a three-phase transformer is connected between each phase of an AC power system, and a thyristor is inserted between both terminals of each phase independent secondary winding of this three-phase transformer. The reactive power compensator detects the ground fault of each phase of each single-phase circuit in the reactive power compensator that compensates the reactive power of the AC power system by connecting the phase circuit and controlling the firing angle of this thyristor. It is a fault detection device.

そして、上記課題を解消するために、請求項1の地絡検出装置においては、各単相回路の各相における対地電圧を測定する複数の電圧測定器と、無効電力の補償過程におけるサイリスタの点弧制御に起因して各単相回路の各相に現れる特殊な電圧波形を有する各電圧測定器で測定された各対地電圧のピーク電圧値に対して所定の比較演算処理を実施することにより各単相回路の各相に地絡が発生したことを検出する地絡検出部とを備えている。   And in order to eliminate the said subject, in the ground fault detection apparatus of Claim 1, the point of the thyristor in the compensation process of the several voltage measuring device which measures the ground voltage in each phase of each single phase circuit, and the reactive power compensation By performing a predetermined comparison calculation process on the peak voltage value of each ground voltage measured by each voltage measuring instrument having a special voltage waveform appearing in each phase of each single-phase circuit due to arc control. A ground fault detector for detecting that a ground fault has occurred in each phase of the single-phase circuit.

このように構成された無効電力補償装置の地絡検出装置においては、各単相回路の各相の周波数で定まる1周期(1波長)分の電圧波形は各条件に応じて大きく変化するが、ピーク電圧値は大きく変化しない。その結果、このピーク電圧値に対して、各種の比較演算処理を実施することにより各単相回路の各相の地絡発生を特定できる。   In the ground fault detection device of the reactive power compensator configured as described above, the voltage waveform for one period (one wavelength) determined by the frequency of each phase of each single-phase circuit varies greatly according to each condition. The peak voltage value does not change greatly. As a result, it is possible to specify the occurrence of a ground fault in each phase of each single-phase circuit by performing various comparison calculation processes on this peak voltage value.

また、請求項2は、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各電圧測定器で測定された対地電圧の交流電力の1周期の期間におけるピーク電圧値が予め定められた下限値以下で、かつ交流電力系統が課電状態時に、当該電圧測定器が設けられた単相回路の相の地絡検出を出力する。   According to a second aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator according to the present invention has a peak voltage value in a period of one cycle of the AC power of the ground voltage measured by each voltage measuring device in advance. When the AC power system is in a power-applied state and below a predetermined lower limit value, a ground fault detection of the phase of the single-phase circuit provided with the voltage measuring device is output.

このように構成された地絡検出装置においては、各相の電圧のピーク電圧値が下限値以下の場合は、該当相は地絡していると判断する。   In the ground fault detection apparatus configured as described above, when the peak voltage value of the voltage of each phase is equal to or lower than the lower limit value, it is determined that the corresponding phase is grounded.

また、請求項3においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各電圧測定器で測定された対地電圧の交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた下限値以下で、かつ交流電力系統が課電状態時に、当該電圧測定器が設けられた単相回路の相の地絡検出を出力する。   According to a third aspect of the present invention, the ground fault detector in the ground fault detector of the reactive power compensator of the present invention is a positive peak in a period of one cycle of the AC power of the ground voltage measured by each voltage measuring device. When the absolute value of the voltage value or the absolute value of the negative peak voltage value is equal to or lower than a predetermined lower limit value and the AC power system is in the power-applied state, the phase ground of the single-phase circuit in which the voltage measuring device is provided Outputs fault detection.

このような構成においては、請求項2における、地絡の判定を電圧波形における正側波形と、負側波形とを区別して地絡の判定処理を実施している。   In such a configuration, the ground fault determination process according to claim 2 is performed by distinguishing the positive side waveform and the negative side waveform in the voltage waveform from each other.

また、請求項4においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各単相回路の一方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間におけるピーク電圧値が予め定められた上限値以上のときに、同一単相回路の他方の相の地絡検出を出力する。   According to a fourth aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention is one of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit. When the peak voltage value in the period of the cycle is equal to or greater than a predetermined upper limit value, ground fault detection of the other phase of the same single-phase circuit is output.

このように構成された地絡検出装置においては、一つの単相回路の2つの相の一方相のピーク電圧値が上限値以上のとき、他方の相は地絡していると判断する。   In the ground fault detection apparatus configured as described above, when the peak voltage value of one phase of two phases of one single-phase circuit is equal to or higher than the upper limit value, it is determined that the other phase is grounded.

また、請求項5においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各単相回路の一方の相の電圧測定器で測定された前記交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた上限値以上のときに、同一単相回路の他方の相の地絡検出を出力する。   According to a fifth aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention has one cycle of the AC power measured by the voltage measuring device of one phase of each single-phase circuit. When the absolute value of the positive peak voltage value or the absolute value of the negative peak voltage value in the period is equal to or greater than a predetermined upper limit value, ground fault detection of the other phase of the same single-phase circuit is output.

このような構成においては、請求項4における、地絡の判定を電圧波形における正側波形と、負側波形とを区別して地絡の判定処理を実施している。   In such a configuration, the ground fault determination process according to claim 4 is performed by distinguishing the positive side waveform and the negative side waveform of the voltage waveform from each other.

また、請求項6においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各単相回路の一方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間におけるピーク電圧値が予め定められた上限値以上のときで、かつ、同一単相回路の他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値が予め定められた下限値以下のとき、他方の相の地絡検出を出力する。   According to a sixth aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention is one of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit. The peak in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of the other phase of the same single-phase circuit when the peak voltage value in the period is equal to or higher than a predetermined upper limit value When the voltage value is equal to or lower than a predetermined lower limit value, ground fault detection of the other phase is output.

このように構成された地絡検出装置においては、一つの単相回路の2つの相の一方相のピーク電圧値が上限値以上で、他方の相のピーク電圧値が下限値以下の場合は、この他方の相が地絡していると判断している。   In the ground fault detection apparatus configured as described above, when the peak voltage value of one phase of two phases of one single-phase circuit is equal to or higher than the upper limit value and the peak voltage value of the other phase is equal to or lower than the lower limit value, It is judged that this other phase has a ground fault.

また、請求項7においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、各単相回路の一方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた上限値以上のときで、かつ、同一単相回路の他方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた下限値以下のとき、他方の相の地絡検出を出力する。   According to a seventh aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention is one of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit. When the absolute value of the positive-side peak voltage value or the negative-side peak voltage value in the period of the cycle is greater than or equal to a predetermined upper limit, and the voltage measuring device of the other phase of the same single-phase circuit When the absolute value of the positive-side peak voltage value or the negative-side peak voltage value is less than or equal to a predetermined lower limit value during one cycle of the AC power of the measured ground voltage, the ground fault of the other phase Output detection.

このような構成においては、請求項6における、地絡の判定を電圧波形における正側波形と、負側波形とを区別して地絡の判定処理を実施している。   In such a configuration, the ground fault determination process according to claim 6 is performed by distinguishing the positive side waveform and the negative side waveform of the voltage waveform from each other.

また、請求項8においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、同一の単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値と他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値との偏差電圧値が予め定められた許容値以上のとき、前記単相回路のいずれか1相の地絡検出を出力する。   Further, in claim 8, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention is the AC power of the ground voltage measured by the voltage measuring device of one phase of the same single phase circuit. The deviation voltage value between the peak voltage value in one cycle period and the peak voltage value in one cycle period of the AC power of the ground voltage measured by the voltage measuring device of the other phase is greater than or equal to a predetermined allowable value. Output a ground fault detection of any one phase of the single-phase circuit.

このような構成においては、一つの単相回路を構成する二つの相の相互間の電圧偏差が許容値以上になると、いずれか一方が地絡していることになる。   In such a configuration, when the voltage deviation between the two phases constituting one single-phase circuit becomes equal to or greater than an allowable value, one of them is grounded.

また、請求項9においては、上記発明の無効電力補償装置の地絡検出装置における地絡検出部は、同一の単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値と他方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間における負側のピーク電圧値の絶対値との偏差電圧値が予め定められた許容値以上のとき、又は、一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における負側のピーク電圧値の絶対値と他方の相の電圧測定器で測定された対地電圧の交流電力の1周期の期間における正側のピーク電圧値の絶対値との偏差電圧値が予め定められた許容値以上のとき、単相回路の他方の相の地絡検出を出力する。   In the ninth aspect of the present invention, the ground fault detection unit in the ground fault detection device of the reactive power compensator of the present invention is the AC power of the ground voltage measured by the voltage measuring device of one phase of the same single-phase circuit. Deviation between the absolute value of the positive peak voltage value in the period of one cycle and the absolute value of the negative peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of the other phase When the voltage value is equal to or greater than a predetermined allowable value, or the absolute value of the negative peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of one phase and the other When the deviation voltage value from the absolute value of the positive-side peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the phase voltage measuring device is equal to or greater than a predetermined allowable value, the other of the single-phase circuit Outputs the ground fault detection of the phase.

このような構成においては、請求項8における、地絡の判定を電圧波形における正側波形と、負側波形とを区別して地絡の判定処理を実施している。   In such a configuration, the ground fault determination process according to claim 8 is performed by distinguishing between the positive side waveform and the negative side waveform in the voltage waveform.

また、請求項10においては、上記発明の無効電力補償装置の地絡検出装置における各電圧測定器は、前記各単相回路の各相と接地間に介挿された単相変圧器の二次巻線の両端子間に接続された負担調整用抵抗の両端子間に接続されている。   Further, in claim 10, each voltage measuring device in the ground fault detection device of the reactive power compensator of the present invention is a secondary of a single-phase transformer inserted between each phase of each single-phase circuit and the ground. It is connected between both terminals of the load adjusting resistor connected between both terminals of the winding.

このように、負担調整用抵抗を設けることによって、単相変圧器の一次巻線から二次巻線への静電誘導による移行電圧の影響を抑制して、各相の電圧を平均化することにより、各相の地絡検出精度を向上できる。   In this way, by providing a resistance for adjusting the load, the influence of the transition voltage due to electrostatic induction from the primary winding to the secondary winding of the single-phase transformer is suppressed, and the voltage of each phase is averaged. Thus, the ground fault detection accuracy of each phase can be improved.

また、請求項11においては、上記発明の無効電力補償装置の地絡検出装置における各電圧測定器で測定された対地電圧に含まれる高調波成分を除去する複数の高調波除去フィルタを備えている。   In the eleventh aspect of the invention, a plurality of harmonic removal filters are provided for removing harmonic components contained in the ground voltage measured by each voltage measuring device in the ground fault detection device of the reactive power compensator of the present invention. .

このように、高調波除去フィルタでもって、電圧測定器で測定された対地電圧に含まれる、前述した無効電力補償装置の動作条件以外の雑音等の高調波成分が除去されるので、各相の地絡検出精度をより一層向上できる。   In this way, the harmonic removal filter removes harmonic components such as noise other than the operating conditions of the reactive power compensator described above, which are included in the ground voltage measured by the voltage measuring instrument. The ground fault detection accuracy can be further improved.

本発明においては、無効電力補償装置における各単相回路の各相の電圧の電圧波形が無効電力補償装置における種々の動作条件に応じて大幅に変更になったとしても、各単相回路の各相の地絡を確実に検出でき、無効電力補償装置の信頼性を大幅に向上できる。   In the present invention, even if the voltage waveform of the voltage of each phase of each single-phase circuit in the reactive power compensator is significantly changed according to various operating conditions in the reactive power compensator, each of the single-phase circuits The ground fault of the phase can be reliably detected, and the reliability of the reactive power compensator can be greatly improved.

以下、本発明の各実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図である。この実施形態の地絡検出装置は図13に示す無効電力補償装置に組込まれている。したがって、図1に示す無効電力補償装置自体は図13の無効電力補償装置と同一構成である。したがって、重複する部分に詳細説明を省略する。
(First embodiment)
FIG. 1 is a diagram showing an overall configuration of a reactive power compensator in which a ground fault detection device according to a first embodiment of the present invention is incorporated. The ground fault detection apparatus of this embodiment is incorporated in the reactive power compensator shown in FIG. Therefore, the reactive power compensator shown in FIG. 1 has the same configuration as the reactive power compensator shown in FIG. Therefore, detailed description of the overlapping parts is omitted.

この第1実施形態装置においては、三相交流電力系1に対して遮断器9を介して、三相変圧器10の各一次巻線11a、11b、11cが接続されている。この三相変圧器10の各一次巻線11a、11b、11cに対応する独立した各二次巻線12a、12b、12cには、それぞれ単相回路13a、13b、13cが接続されている。各単相回路13a、13b、13cの中間位置に互いに逆極性に並列接続された一対のサイリスタ14a、14b、14cが介挿されている。   In the first embodiment device, the primary windings 11a, 11b, and 11c of the three-phase transformer 10 are connected to the three-phase AC power system 1 via the circuit breaker 9. Single-phase circuits 13a, 13b, and 13c are connected to the independent secondary windings 12a, 12b, and 12c corresponding to the primary windings 11a, 11b, and 11c of the three-phase transformer 10, respectively. A pair of thyristors 14a, 14b, and 14c connected in parallel with opposite polarities are inserted at intermediate positions of the single-phase circuits 13a, 13b, and 13c.

単相回路13aにおいてはu相とx相とで構成され、単相回路13bにおいてはv相とy相とで構成され、単相回路13cにおいてはw相とz相とで構成されている。   The single phase circuit 13a is composed of the u phase and the x phase, the single phase circuit 13b is composed of the v phase and the y phase, and the single phase circuit 13c is composed of the w phase and the z phase.

また、この三相変圧器10においては、各一次巻線11a、11b、11cと各二次巻線12a、12b、12cとの間には、静電シールド15が介挿されている。   In the three-phase transformer 10, an electrostatic shield 15 is interposed between the primary windings 11a, 11b, and 11c and the secondary windings 12a, 12b, and 12c.

サイリスタ制御部7はPT(電圧計)5、CT(電流計)6で検出された各相の電圧値と電流値から必要とする無効電力を実現するための各サイリスタ14a、14b、14cの点弧角を算出して、この点弧角で各サイリスタ14a、14b、14cを通電制御して、無効電力を調整する。   The thyristor control unit 7 is connected to points of the thyristors 14a, 14b, and 14c for realizing the reactive power required from the voltage value and current value of each phase detected by the PT (voltmeter) 5 and the CT (ammeter) 6. An arc angle is calculated, and the thyristors 14a, 14b, and 14c are energized and controlled at this ignition angle to adjust reactive power.

したがって、各単相回路13a、13b、13cの各相u、x、v、y、w、zの接地間の電圧、Vu、Vx、Vv、Vy、Vw、Vzの電圧波形は、図14,図15に示すように、無効電力補償装置における種々の動作条件に応じて種々に変更する。   Therefore, the voltage between the grounds of each phase u, x, v, y, w, z of each single-phase circuit 13a, 13b, 13c, and the voltage waveform of Vu, Vx, Vv, Vy, Vw, Vz are shown in FIG. As shown in FIG. 15, various changes are made according to various operating conditions in the reactive power compensator.

次に、このような構成の無効電力補償装置に組込まれた地絡検出装置を説明する。各単相回路13a、13b、13cの各相u、x、v、y、w、zと接地間には、単相変圧器16が介挿されており、この各単相変圧器16の二次巻線に各u、x、v、y、w、zの接地間の各電圧Vu、Vx、Vv、Vy、Vw、Vzを測定する電圧測定器17が接続されている。各電圧測定器17で測定された6個の各電圧Vu、Vx、Vv、Vy、Vw、Vzは、例えば、地絡検出部18へ送出される。   Next, the ground fault detection apparatus incorporated in the reactive power compensator having such a configuration will be described. A single-phase transformer 16 is interposed between each phase u, x, v, y, w, z of each single-phase circuit 13a, 13b, 13c and the ground. A voltage measuring device 17 for measuring each voltage Vu, Vx, Vv, Vy, Vw, Vz between the grounds of u, x, v, y, w, z is connected to the next winding. The six voltages Vu, Vx, Vv, Vy, Vw, and Vz measured by each voltage measuring device 17 are sent to the ground fault detection unit 18, for example.

また、課電圧検出回路19は、PT(電圧計)5で電圧が検出されている場合は、三相変圧器10に電圧が課電されているので、地絡検出部18へハイレベルの課電状態信号aを送出する。さらに、課電圧検出回路19は、PT(電圧計)5で電圧が検出されない場合は、三相変圧器10に電圧が課電されていないので、地絡検出部18へローレベルの非課電状態を送出する。地絡検出部18は、各単相回路13a、13b、13cの各相u〜zに地絡を検出すると、各遮断器9へ遮断指令bを出力して、無効電力補償装置を三相交流電力系1から切離す。   Further, when the voltage is detected by the PT (voltmeter) 5, the applied voltage detection circuit 19 applies a high level voltage to the ground fault detector 18 because the voltage is applied to the three-phase transformer 10. An electric status signal a is sent out. Furthermore, if no voltage is detected by the PT (voltmeter) 5, the applied voltage detection circuit 19 is not applied with voltage to the three-phase transformer 10, and therefore the ground fault detection unit 18 is not charged with a low level. Send status. When the ground fault detection unit 18 detects a ground fault in each phase u to z of each single-phase circuit 13a, 13b, 13c, it outputs a cutoff command b to each circuit breaker 9, and makes the reactive power compensator three-phase AC. Disconnect from power system 1.

地絡検出部18においては、図2に示すように、各単相回路13a、13b、13cの各相u、x、v、y、w、z毎の合計6個の相地絡検出部20が組込まれている。各相地絡検出部20は同一構成であるので、u相の相地絡検出部20を例にして説明する。   In the ground fault detector 18, as shown in FIG. 2, a total of six phase ground fault detectors 20 for each phase u, x, v, y, w, z of each single-phase circuit 13a, 13b, 13c. Is incorporated. Since each phase ground fault detection unit 20 has the same configuration, the u phase phase ground fault detection unit 20 will be described as an example.

各単相回路13aのu相の電圧測定器17で測定されたu相の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vuは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、絶対値算出部21及び1サイクル保持部23でもって、三相交流電力系1の1サイクル分(50Hzの場合0.02秒)に相当する期間における電圧波形の片側振幅を示す絶対値|Vu|が算出される。   For example, the voltage Vu of the voltage waveform having the positive side component and the negative side component shown in FIG. 14 that changes with time of the u phase measured by the u phase voltage measuring device 17 of each single-phase circuit 13a is removed by harmonics. After the high-frequency noise component is removed by the filter 35, the absolute value calculation unit 21 and the one-cycle holding unit 23 correspond to a period corresponding to one cycle of the three-phase AC power system 1 (0.02 seconds at 50 Hz). The absolute value | Vu | indicating the one-sided amplitude of the voltage waveform is calculated.

そして、この1サイクル分(50Hzの場合0.02秒)の時間をかけて算出されたu相の電圧Vuの絶対値|Vu|は、次のレベル検出部22で、この絶対値|Vu|が予め定められた下限値VK以下であるか否かを判定する。すなわち、測定された電圧Vuの交流電力の1周期の期間におけるピーク電圧値が予め定められた下限値VK以下であるかを判定することを示す。   Then, the absolute value | Vu | of the u-phase voltage Vu calculated over this one cycle (0.02 seconds at 50 Hz) is calculated by the next level detection unit 22 in the absolute value | Vu | Is less than or equal to a predetermined lower limit value VK. That is, it indicates that it is determined whether or not the peak voltage value in one period of AC power of the measured voltage Vu is equal to or lower than a predetermined lower limit value VK.

そして、その判定結果は、状態確認部24で、例えば5秒間継続して同一判定結果が出力されることを確認する。前述した、50Hzの場合は、ピーク電圧値が下限値VK以下であることを250回連続した場合に、ハイレベルのu相の地絡信号を次のアンドゲート25の一方の入力端子に印加する。なお、この状態確認部24は、雑音等にて、ピーク電圧値が下限値VK以下になる電圧波形が生じたとしても、誤って地絡発生を出力することを防止する。   And the determination result confirms that the same determination result is output by the state confirmation part 24 continuously for 5 seconds, for example. In the case of 50 Hz as described above, a high-level u-phase ground fault signal is applied to one input terminal of the next AND gate 25 when the peak voltage value is lower than the lower limit value VK for 250 consecutive times. . It should be noted that the state confirmation unit 24 prevents erroneous generation of a ground fault even if a voltage waveform having a peak voltage value equal to or lower than the lower limit value VK occurs due to noise or the like.

アンドゲート25の他方の入力端子には、課電圧検出回路19から課電状態信号aが印加されている。したがって、このアンドゲート25は、三相変圧器10に対する課電状態を示すハイレベルの課電状態信号aが印加されている条件下において、状態確認部24から入力されたハイレベルのu相の地絡信号cをこのu相の相地絡検出部20から出力する。u相の相地絡検出部20から出力されたハイレベルのu相の地絡信号cはオアゲート26を介して遮断出力部27へ入力する、遮断出力部27は、各遮断器9へ遮断指令bを出力して、無効電力補償装置を三相交流電力系1から切離す。   The applied voltage signal a is applied from the applied voltage detection circuit 19 to the other input terminal of the AND gate 25. Therefore, the AND gate 25 has a high-level u-phase input from the state confirmation unit 24 under the condition that a high-level applied state signal a indicating the applied state to the three-phase transformer 10 is applied. The ground fault signal c is output from the u-phase phase ground fault detector 20. The high-level u-phase ground fault signal c output from the u-phase phase ground fault detection unit 20 is input to the cutoff output unit 27 via the OR gate 26. The cutoff output unit 27 sends a cutoff command to each of the circuit breakers 9. b is output, and the reactive power compensator is disconnected from the three-phase AC power system 1.

なお、三相変圧器10に電圧が課電されていない状態においては図14(g)、(h)に示すように、電圧Vuは無条件に0であるので、誤って、ハイレベルのu相の地絡信号cが出力されることが防止される。   In the state where no voltage is applied to the three-phase transformer 10, the voltage Vu is unconditionally 0 as shown in FIGS. 14 (g) and 14 (h). The output of the phase ground fault signal c is prevented.

このように、u相の相地絡検出部20は、u相の電圧測定器17で測定された電圧Vuの交流電力の1周期の期間におけるピーク電圧値としての絶対値|Vu|が下限値VK以下で、かつ交流電力系統1が課電状態時に、当該電圧測定器17が設けられた単相回路13aのu相の地絡検出信号cを出力し、無効電力補償装置を三相交流電力系1から切離す。   In this way, the u-phase phase ground fault detection unit 20 has the absolute value | Vu | as the peak voltage value in the period of one cycle of the AC power of the voltage Vu measured by the u-phase voltage measuring device 17 as the lower limit value. When the AC power system 1 is in the applied state, the u-phase ground fault detection signal c of the single-phase circuit 13a provided with the voltage measuring device 17 is output and the reactive power compensator is set to the three-phase AC power. Disconnect from system 1.

図2の地絡検出部18内に組込まれたu相以外の、x、v、y、w、zの各相地絡検出部20もu相の相地絡検出部20と同様に、自己の相の地絡発生を検出する。   Each of the x, v, y, w, and z phase ground fault detection units 20 other than the u phase incorporated in the ground fault detection unit 18 of FIG. Detects the occurrence of a ground fault in the phase.

このように構成された第1実施形態の無効電力補償装置の地絡検出装置においては、各単相回路13a、13b、13cの各相の電圧波形は図14に示すように各条件に応じて大きく変化するが、ピーク電圧値としての絶対値|Vu|は大きく変化しない。したがって、各相の電圧のピーク電圧値が下限値VM以下の場合は、該当相は地絡していると判定できるので、各相の地絡を確実に検出できる。   In the ground fault detection device of the reactive power compensator of the first embodiment configured as described above, the voltage waveform of each phase of each single-phase circuit 13a, 13b, 13c is in accordance with each condition as shown in FIG. Although it varies greatly, the absolute value | Vu | as the peak voltage value does not vary greatly. Therefore, when the peak voltage value of the voltage of each phase is equal to or lower than the lower limit value VM, it can be determined that the corresponding phase is grounded, so that the ground fault of each phase can be reliably detected.

(第2実施形態)
図3は本発明の第2実施形態に係わる地絡検出装置の地絡検出部18内に組込まれたu相の相地絡検出部20aの概略構成図である。図2に示す第1実施形態のu相の相地絡検出部20と同一部分には、同一符号を付して、重複する部分の詳細説明を省略する。その他の構成は、第1実施形態と同じである。
(Second Embodiment)
FIG. 3 is a schematic configuration diagram of the u-phase phase ground fault detection unit 20a incorporated in the ground fault detection unit 18 of the ground fault detection device according to the second embodiment of the present invention. The same parts as those of the u-phase phase ground fault detection unit 20 of the first embodiment shown in FIG. 2 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted. Other configurations are the same as those of the first embodiment.

この第2実施形態においては、単相回路13aのu相の電圧測定器17で測定されたu相の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vuは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、正負分割部28にて、正側電圧Vupと負側電圧Vunとに分割される。   In the second embodiment, the voltage waveform having a positive-side component and a negative-side component shown in FIG. 14, for example, that changes with time of the u-phase measured by the u-phase voltage measuring device 17 of the single-phase circuit 13a. The voltage Vu is divided into a positive voltage Vup and a negative voltage Vun by the positive / negative divider 28 after the high frequency noise component is removed by the harmonic elimination filter 35.

そして、絶対値算出部21a、1サイクル保持部23a、レベル検出部22aで、正側電圧Vupの1サイクル分のピーク電圧値としての絶対値|Vup|が下限値VK以下であるか否かを判定する。また、絶対値算出部21b、1サイクル保持部23b、レベル検出部22bで、負側電圧Vunの1サイクル分のピーク電圧値としての絶対値|Vun|が下限値VK以下であるか否かを判定する。   Whether or not the absolute value | Vup | as the peak voltage value for one cycle of the positive side voltage Vup is equal to or lower than the lower limit value VK is determined by the absolute value calculation unit 21a, the one cycle holding unit 23a, and the level detection unit 22a. judge. Also, whether or not the absolute value | Vun | as the peak voltage value for one cycle of the negative voltage Vun is equal to or lower than the lower limit value VK in the absolute value calculation unit 21b, the one cycle holding unit 23b, and the level detection unit 22b. judge.

そして、正側電圧Vup、負側電圧Vunの各判定結果は、オアゲート29で論理和されて、次のアンドゲート25の一方の入力端子に印加される。このアンドゲート25の他方の入力端子には、課電圧検出回路19から課電状態信号aが印加されている。したがって、このアンドゲート25は、三相変圧器10に対する課電状態を示すハイレベルの課電状態信号aが印加されている条件下において、正側電圧Vupのピーク電圧値又は負側電圧Vunのピーク電圧値が下限値VK以下になると、ハイレベルのu相の地絡信号をこのu相の相地絡検出部20aから出力する。   The determination results of the positive side voltage Vup and the negative side voltage Vun are logically summed by the OR gate 29 and applied to one input terminal of the next AND gate 25. The applied voltage signal a is applied from the applied voltage detection circuit 19 to the other input terminal of the AND gate 25. Therefore, the AND gate 25 has the peak voltage value of the positive side voltage Vup or the negative side voltage Vun under the condition that the high level applied state signal a indicating the applied state to the three-phase transformer 10 is applied. When the peak voltage value becomes equal to or lower than the lower limit value VK, a high-level u-phase ground fault signal is output from the u-phase phase ground fault detection unit 20a.

これ以降の動作は、図2に示した第1実施形態のu相の相地絡検出部20と同じである。したがって、先に説明した第1実施形態の地絡検出装置とほぼ同じ作用効果を得ることができる。   The subsequent operation is the same as that of the u-phase phase ground fault detection unit 20 of the first embodiment shown in FIG. Therefore, substantially the same effect as the ground fault detection device of the first embodiment described above can be obtained.

さらに、この第2実施形態においては、各相の地絡判定を電圧波形における正側波形と、負側波形とを区別して実施しているので、より詳細に地絡要因を解明できる。   Furthermore, in the second embodiment, the ground fault determination of each phase is performed by distinguishing between the positive waveform and the negative waveform in the voltage waveform, so that the ground fault factor can be clarified in more detail.

(第3実施形態)
図4は本発明の第3実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図である。図1に示す第1実施形態と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Third embodiment)
FIG. 4 is a diagram showing an overall configuration of a reactive power compensator in which a ground fault detection device according to a third embodiment of the present invention is incorporated. The same parts as those in the first embodiment shown in FIG.

この第3実施形態の地絡検出装置においては、図1における課電圧検出回路19は設けられていない。   In the ground fault detection apparatus according to the third embodiment, the applied voltage detection circuit 19 in FIG. 1 is not provided.

この第3実施形態の地絡検出装置における地絡検出部18においては、図5に示すように、各単相回路13a、13b、13cの各相u、x、v、y、w、z毎の合計6個の相地絡検出部20bが組込まれている。但し、u相の相地絡検出部20bにはx相の電圧Vxが入力され、x相の相地絡検出部20bにはu相の電圧Vuが入力される。このようのに、各相地絡検出部20bには当該相が所属する単相回路に所属する他方の相の電圧が入力される。u相の相地絡検出部20bを例にして説明する。   In the ground fault detection unit 18 in the ground fault detection device of the third embodiment, as shown in FIG. 5, for each phase u, x, v, y, w, z of each single-phase circuit 13a, 13b, 13c. A total of six phase ground fault detectors 20b are incorporated. However, the x-phase voltage Vx is input to the u-phase phase ground fault detection unit 20b, and the u-phase voltage Vu is input to the x-phase phase ground fault detection unit 20b. Thus, the voltage of the other phase belonging to the single-phase circuit to which the phase belongs is input to each phase ground fault detection unit 20b. The u phase phase ground fault detection unit 20b will be described as an example.

の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vxは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、絶対値算出部21、1サイクル保持部23で1サイクル分のピーク電圧値としての絶対値|Vx|が求められる。そして、レベル検出部30でこの1サイクル分のピーク電圧値としての絶対値|Vx|が予め定められた上限値VM以上であるか否かを判定する。その判定結果を状態確認部24で5秒間に亘って継続することを確認する。   For example, the voltage Vx of the voltage waveform having the positive side component and the negative side component shown in FIG. 14 after the high frequency noise component is removed by the harmonic elimination filter 35, the absolute value calculating unit 21, The absolute value | Vx | as a peak voltage value for one cycle is obtained by the one-cycle holding unit 23. Then, the level detection unit 30 determines whether or not the absolute value | Vx | as the peak voltage value for one cycle is equal to or greater than a predetermined upper limit value VM. The state confirmation unit 24 confirms that the determination result is continued for 5 seconds.

すなわち、1サイクル分のピーク電圧値としての絶対値|Vx|が予め定められた上限値VM以上の場合は、図14(a)、(b)に示すように、同一単相回路13aに所属するu相が地絡していると見なせるので、このu相の地絡状態を5秒間継続することを確認ののち、ハイレベルのu相の地絡信号cをこのu相の相地絡検出部20bから出力する。   That is, when the absolute value | Vx | as the peak voltage value for one cycle is greater than or equal to a predetermined upper limit VM, it belongs to the same single-phase circuit 13a as shown in FIGS. Since it is assumed that the u phase is grounded, after confirming that the ground fault state of the u phase is continued for 5 seconds, the ground fault signal c of the high level u phase is detected. Output from the unit 20b.

これ以降の動作は、図2に示した第1実施形態のu相の相地絡検出部20と同じである。したがって、先に説明した第1実施形態の地絡検出装置とほぼ同じ作用効果を得ることができる。   The subsequent operation is the same as that of the u-phase phase ground fault detection unit 20 of the first embodiment shown in FIG. Therefore, substantially the same effect as the ground fault detection device of the first embodiment described above can be obtained.

同様に、単相回路13aのu相の電圧測定器17で測定されたu相の電圧Vuで同一単相回路13aのx相の地絡を検出することができる。   Similarly, the ground fault of the x phase of the same single phase circuit 13a can be detected by the u phase voltage Vu measured by the u phase voltage measuring device 17 of the single phase circuit 13a.

(第4実施形態)
図6は本発明の第4実施形態に係わる地絡検出装置の地絡検出部18内に組込まれたu相の相地絡検出部20cの概略構成図である。図5に示す第3実施形態のu相の相地絡検出部20bと同一部分には、同一符号を付して、重複する部分の詳細説明を省略する。その他の構成は、第1,3実施形態とほぼ同じである。
(Fourth embodiment)
FIG. 6 is a schematic configuration diagram of a u-phase phase ground fault detection unit 20c incorporated in the ground fault detection unit 18 of the ground fault detection device according to the fourth embodiment of the present invention. The same parts as those of the u-phase phase ground fault detection unit 20b of the third embodiment shown in FIG. 5 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted. Other configurations are substantially the same as those of the first and third embodiments.

この第4実施形態においては、単相回路13aのx相の電圧測定器17で測定されたx相の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vxは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、正負分割部28にて、正側電圧Vxpと負側電圧Vxnとに分割される。   In the fourth embodiment, a voltage waveform having a positive-side component and a negative-side component shown in FIG. 14, for example, that changes with time in the x-phase measured by the x-phase voltage measuring device 17 of the single-phase circuit 13a. The voltage Vx is divided into a positive voltage Vxp and a negative voltage Vxn by the positive / negative divider 28 after the high frequency noise component is removed by the harmonic elimination filter 35.

そして、絶対値算出部21a、1サイクル保持部23a、レベル検出部30aで、正側電圧Vxpの1サイクル分のピーク電圧値としての絶対値|Vxp|が上限値VM以上のであるかを判定する。   Then, the absolute value calculation unit 21a, the one cycle holding unit 23a, and the level detection unit 30a determine whether the absolute value | Vxp | as the peak voltage value for one cycle of the positive side voltage Vxp is equal to or higher than the upper limit value VM. .

同様に、絶対値算出部30b、1サイクル保持部23b、レベル検出部30bで、負側電圧Vxnの1サイクル分のピーク電圧値としての絶対値|Vxn|が上限値VM以上であるかを判定する。   Similarly, the absolute value calculation unit 30b, the one cycle holding unit 23b, and the level detection unit 30b determine whether the absolute value | Vxn | as the peak voltage value for one cycle of the negative side voltage Vxn is equal to or higher than the upper limit value VM. To do.

そして、正側電圧Vxp、負側電圧Vxnの各判定結果は、オアゲート29で論理和されて、次の状態確認部24で例えば5秒等の同一判定結果が継続したことを確認する。   Then, each determination result of the positive side voltage Vxp and the negative side voltage Vxn is logically ORed by the OR gate 29, and the next state check unit 24 confirms that the same determination result such as 5 seconds has continued.

すなわち、x相の電圧Vxの正側電圧Vxp又は負側電圧Vxnのいずれか一方のピーク電圧値としての絶対値|Vxp|、|Vxn|が上限値VM以上となると、他方のu相に地絡が発生したことを示すハイレベルのu相の地絡信号cがこのu相の相地絡検出部20cから出力される。   That is, when the absolute value | Vxp |, | Vxn | as the peak voltage value of either the positive side voltage Vxp or the negative side voltage Vxn of the x-phase voltage Vx is equal to or higher than the upper limit value VM, A high-level u-phase ground fault signal c indicating that a fault has occurred is output from the u-phase ground fault detector 20c.

これ以降の動作は、図2に示した第1実施形態のu相の相地絡検出部20と同じである。したがって、先に説明した第1実施形態の地絡検出装置とほぼ同じ作用効果を得ることができる。   The subsequent operation is the same as that of the u-phase phase ground fault detection unit 20 of the first embodiment shown in FIG. Therefore, substantially the same effect as the ground fault detection device of the first embodiment described above can be obtained.

(第5実施形態)
図7は本発明の第5実施形態に係わる地絡検出装置の地絡検出部18の概略構成図である。図5に示す第3実施形態のu相の相地絡検出部20bと同一部分には、同一符号を付して、重複する部分の詳細説明を省略する。その他の構成は、第1、3実施形態とほぼ同じである。
(Fifth embodiment)
FIG. 7 is a schematic configuration diagram of the ground fault detection unit 18 of the ground fault detection apparatus according to the fifth embodiment of the present invention. The same parts as those of the u-phase phase ground fault detection unit 20b of the third embodiment shown in FIG. 5 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted. Other configurations are substantially the same as those of the first and third embodiments.

この第5実施形態の地絡検出部18においては、各単相回路13a、13b、13cの各相u、x、v、y、w、z毎の合計6個の相地絡検出部20cが組込まれている。但し、u相の相地絡検出部20cにはx相の電圧Vxとu相の電圧Vuが入力され、x相の相地絡検出部20cにはu相の電圧Vuとx相の電圧Vxとが入力される。このようのに、各相地絡検出部20cには当該相が所属する単相回路に所属する2つの相の各電圧が入力される。u相の相地絡検出部20cを例にして説明する。   In the ground fault detector 18 of the fifth embodiment, a total of six phase ground fault detectors 20c for each phase u, x, v, y, w, z of each single-phase circuit 13a, 13b, 13c are provided. It is incorporated. However, the x-phase voltage Vx and the u-phase voltage Vu are input to the u-phase phase ground fault detection unit 20c, and the u-phase voltage Vu and the x-phase voltage Vx are input to the x-phase phase ground fault detection unit 20c. Are entered. Thus, each phase ground fault detector 20c receives the voltages of the two phases belonging to the single-phase circuit to which the phase belongs. The u-phase ground fault detector 20c will be described as an example.

単相回路13aのx相の電圧測定器17で測定されたx相の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vxは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、絶対値算出部21と1サイクル保持部23とで、1サイクル分のピーク電圧値としての絶対値|Vx|が求められ、レベル検出部30でこの1サイクル分のピーク電圧値としての絶対値|Vx|が予め定められた上限値VM以上であるかを判定する。   For example, the voltage Vx of the voltage waveform having the positive side component and the negative side component shown in FIG. 14 that changes with time measured by the x phase voltage measuring device 17 of the single phase circuit 13a is a harmonic elimination filter. After the high-frequency noise component is removed in 35, the absolute value calculation unit 21 and the 1-cycle holding unit 23 obtain an absolute value | Vx | as a peak voltage value for one cycle, and the level detection unit 30 It is determined whether the absolute value | Vx | as a peak voltage value for one cycle is equal to or greater than a predetermined upper limit VM.

また、単相回路13aのu相の電圧測定器17で測定されたu相の時間的に変化する例えば図14に示す正側成分と負側成分とを有する電圧波形の電圧Vuは、高調波除去フィルタ35で高周波の雑音成分が除去されたのち、絶対値算出部21と1サイクル保持部23で、1サイクル分のピーク電圧値としての絶対値|Vu|が求められ、レベル検出部22でこの1サイクル分のピーク電圧値としての絶対値|Vu|が予め定められた下限値VK以下であるかを判定する。   Further, for example, the voltage Vu of the voltage waveform having the positive side component and the negative side component shown in FIG. 14 which changes with time measured by the u-phase voltage measuring device 17 of the single-phase circuit 13a is a harmonic. After the high-frequency noise component is removed by the removal filter 35, the absolute value | Vu | as a peak voltage value for one cycle is obtained by the absolute value calculation unit 21 and the one-cycle holding unit 23, and the level detection unit 22 It is determined whether the absolute value | Vu | as the peak voltage value for one cycle is equal to or lower than a predetermined lower limit value VK.

x相のピーク電圧値が上限値VM以上であり、補しu相のピーク電圧値が下限値以下である場合に、アンドゲート31が成立して、ハイレベルのu相の地絡信号は状態確認部24へ送出される。この状態確認部24は例えば5秒間、ハイレベルのu相の地絡信号が継続することを確認したのち、このu相の相地絡検出部20cから、ハイレベルのu相の地絡信号cを出力する。   When the x-phase peak voltage value is equal to or higher than the upper limit value VM and the supplemental u-phase peak voltage value is equal to or lower than the lower limit value, the AND gate 31 is established, and the high-level u-phase ground fault signal is in the state It is sent to the confirmation unit 24. For example, after confirming that the high-level u-phase ground fault signal continues for 5 seconds, the state confirmation unit 24 detects a high-level u-phase ground fault signal c from the u-phase phase ground fault detection unit 20c. Is output.

このように、同一単相回路に所属する一方の相のピーク電圧値が低くて、他方の相のピーク電圧が高い場合は、ピーク電圧の低い方の相が地絡していると判断して、地絡を検出している。したがって、上述した各実施形態とほぼ同様の作用効果を奏することが可能である。   Thus, when the peak voltage value of one phase belonging to the same single-phase circuit is low and the peak voltage of the other phase is high, it is determined that the phase with the lower peak voltage is grounded. Detecting ground faults. Accordingly, it is possible to achieve substantially the same operational effects as the above-described embodiments.

(第6実施形態)
図8は本発明の第6実施形態に係わる地絡検出装置の地絡検出部18内に組込まれたu相の相地絡検出部20dの概略構成図である。図7に示す第5実施形態のu相の相地絡検出部20cと同一部分には、同一符号を付して、重複する部分の詳細説明を省略する。その他の構成は、第1、3実施形態とほぼ同じである。
(Sixth embodiment)
FIG. 8 is a schematic configuration diagram of a u-phase phase ground fault detection unit 20d incorporated in the ground fault detection unit 18 of the ground fault detection device according to the sixth embodiment of the present invention. The same parts as those of the u-phase phase ground fault detection unit 20c of the fifth embodiment shown in FIG. 7 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted. Other configurations are substantially the same as those of the first and third embodiments.

この第6実施形態においては、u相の相地絡検出部20dにおいて、x相の電圧測定器17で測定された時間的に変化する例えば図14に示す正側成分と負側成分を有するx相の電圧Vxは、高調波除去フィルタ35で雑音等の高調波成分が除去されたのち、正負分割部28で、正側電圧Vxpと負側電圧Vxnとに分割して、それぞれ、絶対値算出部21a、21b、1サイクル保持部23a、23bで正側電圧Vxp、負側電圧Vxnの1サイクル分のピーク電圧値|Vxp|、|Vxn|を算出する。そして、レベル検出部30a、30bでもって、ピーク電圧値|Vxp|、|Vxn|が上限値VK以上であるかを判定する。   In the sixth embodiment, in the u-phase phase ground fault detector 20d, the x component having the positive side component and the negative side component shown in FIG. The phase voltage Vx is divided into the positive side voltage Vxp and the negative side voltage Vxn by the positive / negative division unit 28 after the harmonic component such as noise is removed by the harmonic elimination filter 35, and the absolute value is calculated. The peak voltage values | Vxp | and | Vxn | for one cycle of the positive side voltage Vxp and the negative side voltage Vxn are calculated by the units 21a and 21b and the one cycle holding units 23a and 23b. Then, the level detection units 30a and 30b determine whether the peak voltage values | Vxp | and | Vxn | are equal to or higher than the upper limit value VK.

また、u相の電圧測定器17で測定された時間的に変化する例えば図14に示す相地絡検出部20dにおいて正側成分と負側成分を有するu相の電圧Vuは、高調波除去フィルタ35で雑音等の高調波成分が除去されたのち、正負分割部28で、正側電圧Vupと負側電圧Vunとに分割して、それぞれ、絶対値算出部21a、21b、1サイクル保持部23a、23bで正側電圧Vup、負側電圧Vunの1サイクル分のピーク電圧値|Vup|、|Vun|を算出する。そして、レベル検出部22a、22bでもって、ピーク電圧値|Vup|、|Vun|が下限値VK以下であるか否かを判定する。   Further, the u-phase voltage Vu having a positive side component and a negative side component in the phase ground fault detection unit 20d shown in FIG. After the harmonic components such as noise are removed in 35, the positive / negative divider 28 divides the positive voltage Vup and the negative voltage Vun into absolute value calculators 21a and 21b and a one-cycle holding unit 23a, respectively. , 23b, the peak voltage values | Vup |, | Vun | for one cycle of the positive side voltage Vup and the negative side voltage Vun are calculated. Then, the level detectors 22a and 22b determine whether or not the peak voltage values | Vup | and | Vun | are equal to or lower than the lower limit value VK.

そして、x相の正のピーク電圧値|Vxp|が上限値VK以上で、かつ、u相の負のピーク電圧値|Vun|が下限値VK以下の場合(アンドゲート31a)に、u相の地絡をオアゲート29を介して、状態確認部24へ送出する。   When the x-phase positive peak voltage value | Vxp | is not less than the upper limit value VK and the u-phase negative peak voltage value | Vun | is not more than the lower limit value VK (and gate 31a), The ground fault is sent to the state confirmation unit 24 via the OR gate 29.

また、x相の負のピーク電圧値|Vxn|が上限値VK以上で、かつ、u相の正のピーク電圧値|Vup|が下限値VK以下の場合(アンドゲート31b)においても、u相の地絡をオアゲート29を介して、状態確認部24へ送出する。   Even when the negative peak voltage value | Vxn | of the x phase is equal to or higher than the upper limit value VK and the positive peak voltage value | Vup | of the u phase is equal to or lower than the lower limit value VK (and gate 31b), the u phase Is sent to the state confirmation unit 24 via the OR gate 29.

状態確認部24は、上述した2条件の各u相の地絡判定が、例えば、5秒間以上継続することを確認すると、このu相地絡検出部20dから、u相の地絡検出信号cを出力する。   When the state confirmation unit 24 confirms that the above-described two-phase ground fault determination of the two conditions continues for, for example, 5 seconds or more, the u-phase ground fault detection unit 20d receives the u-phase ground fault detection signal c. Is output.

このように、同一単相回路に所属する一方の相のピーク電圧値が低くて、他方の相のピーク電圧が高い場合は、ピーク電圧の低い方の相が地絡していると判断して、地絡を検出している。したがって、上述した第5実施形態の地絡検出装置とほぼ同様の作用効果を奏することが可能である。   Thus, when the peak voltage value of one phase belonging to the same single-phase circuit is low and the peak voltage of the other phase is high, it is determined that the phase with the lower peak voltage is grounded. Detecting ground faults. Accordingly, it is possible to achieve substantially the same operational effects as the ground fault detection device of the fifth embodiment described above.

(第7実施形態)
図9は本発明の第7実施形態に係わる地絡検出装置の地絡検出部18の概略構成図である。その他の構成は第1、3実施形態とほぼ同じである。
(Seventh embodiment)
FIG. 9 is a schematic configuration diagram of the ground fault detection unit 18 of the ground fault detection device according to the seventh embodiment of the present invention. Other configurations are substantially the same as those of the first and third embodiments.

この第7実施形態の地絡検出部18内には、単相回路13aのu、x相の相地絡検出部20e、単相回路13bのv、y相の相地絡検出部20e、単相回路13cのw、z相の相地絡検出部20eが設けられている。   In the ground fault detection unit 18 of the seventh embodiment, the u and x phase ground fault detection units 20e of the single phase circuit 13a, the v and y phase phase ground fault detection units 20e of the single phase circuit 13b, A phase ground fault detector 20e for the w and z phases of the phase circuit 13c is provided.

単相回路13aのu,x相の相地絡検出部20eにおいて、各電圧測定器17で測定された各電圧Vu、Vxは、それぞれ、個別に、高調波除去フィルタ35で雑音等の高調波成分が除去されたのち、1サイクル保持部23、減算部32で、u相の電圧Vuのピーク電圧|Vu|とx相の電圧Vxのピーク電圧|Vx|との偏差電圧|Vd|を求める。   In the u- and x-phase phase ground fault detector 20e of the single-phase circuit 13a, the voltages Vu and Vx measured by the voltage measuring devices 17 are individually harmonics such as noise by the harmonic elimination filter 35. After the components are removed, the deviation voltage | Vd | between the peak voltage | Vu | of the u-phase voltage Vu and the peak voltage | Vx | .

そして、レベル検出部33で、偏差電圧|Vd|が許容値VD以上の場合は、u相,x相のいずれか一方の相に地絡が生じたと判定する。そして、ハイレベルのu、x相の地絡信号は状態確認部24へ送出される。この状態確認部24は例えば5秒間、ハイレベルのu、x相の地絡信号が継続することを確認したのち、このu、x相の相地絡検出部20eから、ハイレベルのu、x相の地絡信号cを出力する。   When the deviation voltage | Vd | is equal to or greater than the allowable value VD, the level detection unit 33 determines that a ground fault has occurred in either the u phase or the x phase. Then, the high-level u and x-phase ground fault signals are sent to the state confirmation unit 24. For example, after confirming that the high-level u and x-phase ground fault signals continue for 5 seconds, the state confirmation unit 24 receives the high-level u and x-phase from the u and x-phase ground fault detection unit 20e. The phase ground fault signal c is output.

このような構成の第7実施形態においては、同一単相回路に所属する一対の相の電圧の偏差が許容値以上になると、いずれか一方の相が地絡していると判断して、地絡を検出している。したがって、上述した各実施形態とほぼ同様の作用効果を奏することが可能である。   In the seventh embodiment having such a configuration, when the voltage deviation between a pair of phases belonging to the same single-phase circuit is greater than or equal to an allowable value, it is determined that one of the phases is grounded, A fault is detected. Accordingly, it is possible to achieve substantially the same operational effects as the above-described embodiments.

(第8実施形態)
図10は本発明の第8実施形態に係わる地絡検出装置の地絡検出部18内に組込まれたu相の相地絡検出部20fの概略構成図である。図9に示す第7実施形態のu、x相の相地絡検出部20eと同一部分には、同一符号を付して、重複する部分の詳細説明を省略する。その他の構成は、第1、3実施形態とほぼ同じである。
(Eighth embodiment)
FIG. 10 is a schematic configuration diagram of the u-phase phase ground fault detection unit 20f incorporated in the ground fault detection unit 18 of the ground fault detection device according to the eighth embodiment of the present invention. The same parts as those of the u- and x-phase phase ground fault detection unit 20e of the seventh embodiment shown in FIG. 9 are denoted by the same reference numerals, and detailed description of the overlapping parts is omitted. Other configurations are substantially the same as those of the first and third embodiments.

この第8実施形態においては、図10のu相の相地絡検出部20fにおいて、x相の電圧Vxを高調波除去フィルタ35で雑音等の高調波成分を除去したのち、正負分割部28で、正側電圧Vxpと負側電圧Vxnとに分割する。また、u相の電圧Vuを高調波除去フィルタ35で雑音等の高調波成分を除去したのち、正負分割部28で、正側電圧Vupと負側電圧Vunとに分割する。   In the eighth embodiment, in the u-phase phase ground fault detection unit 20f of FIG. 10, the harmonic component such as noise is removed from the x-phase voltage Vx by the harmonic removal filter 35, and then the positive / negative division unit 28 And divided into a positive side voltage Vxp and a negative side voltage Vxn. Further, after removing harmonic components such as noise from the u-phase voltage Vu by the harmonic elimination filter 35, the positive / negative division unit 28 divides the u-phase voltage Vu into the positive side voltage Vup and the negative side voltage Vun.

そして、それぞれ、絶対値算出部21a、21b、1サイクル保持部23a、23bでもって、正側電圧Vxp、Vup、負側電圧Vxn、Vunの1サイクル分のピーク電圧値|Vxp|、|Vxn|、|Vup|、|Vun|を求める。   Then, peak voltage values | Vxp | and | Vxn | for one cycle of the positive side voltages Vxp and Vup, the negative side voltage Vxn and Vun, respectively, with the absolute value calculation units 21a and 21b and the one cycle holding units 23a and 23b. , | Vup |, | Vun |

そして、減算部32a、32bにて、それぞれの偏差電圧|Vdp|=|Vxp|―|Vun|、偏差電圧|Vdn|=|Vxn|―|Vup|を求める。   Then, the subtraction units 32a and 32b obtain the respective deviation voltages | Vdp | = | Vxp | − | Vun | and deviation voltage | Vdn | = | Vxn | − | Vup |.

次に、各レベル検出器33a、33bにて、偏差電圧|Vdp|、|Vdn|がそれぞれ、許容値VD以上であるか否かを判断する。   Next, the level detectors 33a and 33b determine whether or not the deviation voltages | Vdp | and | Vdn | are each equal to or greater than the allowable value VD.

そして、x相の正側のピーク電圧値|Vxp|からu相の負側のピーク電圧|Vun|を差引いた偏差電圧|Vdp|が許容値VD以上である場合、及び、x相の負側のピーク電圧値|Vxn|からu相の正側のピーク電圧|Vup|を差引いた偏差電圧|Vdn|が許容値VD以上である場合(オアゲート29)においては、u相に地絡が生じたと判定する。   When the deviation voltage | Vdp | obtained by subtracting the u-phase negative peak voltage | Vun | from the x-phase positive peak voltage value | Vxp | is equal to or greater than the allowable value VD, and the x-phase negative side When the deviation voltage | Vdn | obtained by subtracting the peak voltage value | Vup | on the positive side of the u phase from the peak voltage value | Vxn | is equal to or greater than the allowable value VD (OR gate 29), a ground fault has occurred in the u phase. judge.

そして、ハイレベルのu相の地絡信号は状態確認部24へ送出される。この状態確認部24は例えば5秒間、ハイレベルのu相の地絡信号が継続することを確認したのち、このu相の相地絡検出部20fから、ハイレベルのu相の地絡信号cを出力する。   The high-level u-phase ground fault signal is sent to the state confirmation unit 24. For example, after confirming that the high-level u-phase ground fault signal continues for 5 seconds, the state confirmation unit 24 detects a high-level u-phase ground fault signal c from the u-phase phase ground fault detection unit 20f. Is output.

このような構成の第8実施形態においては、同一単相回路に所属する一対の相の電圧における互いに異なる極性(正、負)間の偏差が許容値以上になると、偏差における値が小さい方の相に地絡が発生したと判定している。したがって、上述した各実施形態とほぼ同様の作用効果を奏することが可能である。   In the eighth embodiment having such a configuration, when a deviation between different polarities (positive and negative) in a pair of phase voltages belonging to the same single-phase circuit is greater than or equal to an allowable value, the value of the deviation is smaller. It is determined that a ground fault has occurred in the phase. Accordingly, it is possible to achieve substantially the same operational effects as the above-described embodiments.

(第9実施形態)
図11は本発明の第9実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図である。図1に示す第1実施形態と同一部分には同一符号を付して重複する部分の詳細説明を省略する。
(Ninth embodiment)
FIG. 11 is a diagram showing an overall configuration of a reactive power compensator in which a ground fault detection device according to a ninth embodiment of the present invention is incorporated. The same parts as those in the first embodiment shown in FIG.

この第10実施形態の地絡検出装置においては、各単相回路13a、13b、13cにおける各相u、x、v、y、w、zと接地間に介挿された単相変圧器16の二次巻線の両端子間にそれぞれ負担調整用抵抗34が接続されている。   In the ground fault detection device of the tenth embodiment, the single-phase transformer 16 inserted between each phase u, x, v, y, w, z and the ground in each single-phase circuit 13a, 13b, 13c. A load adjusting resistor 34 is connected between both terminals of the secondary winding.

このように、負担調整用抵抗34を設けることによって、単相変圧器16の一次巻線から二次巻線への静電誘導による移行電圧の影響を抑制して、各相の電圧を平均化することにより、各相の地絡検出精度を向上できる。   In this way, by providing the load adjusting resistor 34, the influence of the transition voltage due to electrostatic induction from the primary winding to the secondary winding of the single-phase transformer 16 is suppressed, and the voltage of each phase is averaged. By doing so, the ground fault detection accuracy of each phase can be improved.

本発明の第1実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図The figure which shows the whole structure of the reactive power compensation apparatus with which the ground fault detection apparatus concerning 1st Embodiment of this invention was integrated. 同実施形態の地絡検出装置における地絡検出部の構成を示すブロック図The block diagram which shows the structure of the ground fault detection part in the ground fault detection apparatus of the embodiment 本発明の第2実施形態に係わる地絡検出装置に組込まれたu相の相地絡検出部The u-phase phase ground fault detection unit incorporated in the ground fault detection device according to the second embodiment of the present invention. 本発明の第3実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図The figure which shows the whole structure of the reactive power compensation apparatus with which the ground fault detection apparatus concerning 3rd Embodiment of this invention was integrated. 同実施形態の地絡検出装置における地絡検出部の構成を示すブロック図The block diagram which shows the structure of the ground fault detection part in the ground fault detection apparatus of the embodiment 本発明の第4実施形態に係わる地絡検出装置に組込まれたu相の相地絡検出部の構成を示すブロック図The block diagram which shows the structure of the phase ground fault detection part of u phase incorporated in the ground fault detection apparatus concerning 4th Embodiment of this invention. 本発明の第5実施形態に係わる地絡検出装置に組込まれた各相の相地絡検出部の構成を示すブロック図The block diagram which shows the structure of the phase ground fault detection part of each phase incorporated in the ground fault detection apparatus concerning 5th Embodiment of this invention. 本発明の第6実施形態に係わる地絡検出装置に組込まれたu相の相地絡検出部の構成を示すブロック図The block diagram which shows the structure of the phase ground fault detection part of u phase incorporated in the ground fault detection apparatus concerning 6th Embodiment of this invention. 本発明の第7実施形態に係わる地絡検出装置に組込まれた地絡検出部構成を示すブロック図The block diagram which shows the ground fault detection part structure incorporated in the ground fault detection apparatus concerning 7th Embodiment of this invention. 本発明の第8実施形態に係わる地絡検出装置に組込まれたu相の相地絡検出部の構成を示すブロック図The block diagram which shows the structure of the phase ground fault detection part of u phase incorporated in the ground fault detection apparatus concerning 8th Embodiment of this invention. 本発明の第9実施形態に係わる地絡検出装置が組込まれた無効電力補償装置の全体構成を示す図The figure which shows the whole structure of the reactive power compensation apparatus with which the ground fault detection apparatus concerning 9th Embodiment of this invention was integrated. 一般的な無効電力補償装置の構成図General reactive power compensator configuration diagram サイリスタ制御リアクトルを採用した無効電力補償装置の概略構成図Schematic configuration diagram of reactive power compensator using thyristor controlled reactor 同無効電力補償装置における各単相回路の各相の接地間電圧の波形を示す図The figure which shows the waveform of the voltage between the ground of each phase of each single phase circuit in the reactive power compensator 同じく各単相回路の各相の接地間電圧の波形を示す図The figure which similarly shows the waveform of the voltage between ground of each phase of each single phase circuit

符号の説明Explanation of symbols

1,1a、1b…三相交流電力系、5…PT、6…CT、7…サイリスタ制御部、9…遮断器、10…三相変圧器、13a,13b,13c…単相回路、14a,14b,14c…サイリスタ、15…静電シールド、16…単相変圧器、17…電圧測定器、18…地絡検出部、19…課電圧検出回路、20,20a,20b,20d,20e,20f…相地絡検出部、21,21a,21b…絶対値算出部、22,22a,22b、30,30a、30b,33,33a,33b…レベル検出部、23、23a,23b…1サイクル保持部、24…状態確認部、25,31…アンドゲート、26,29…オアゲート、27…遮断出力部、28…正負分割部、32,32a,32b…減算部、34…負荷調整用抵抗、35…高調波除去フィルタ   DESCRIPTION OF SYMBOLS 1, 1a, 1b ... Three-phase alternating current power system, 5 ... PT, 6 ... CT, 7 ... Thyristor control part, 9 ... Circuit breaker, 10 ... Three-phase transformer, 13a, 13b, 13c ... Single phase circuit, 14a, 14b, 14c ... Thyristor, 15 ... Electrostatic shield, 16 ... Single-phase transformer, 17 ... Voltage measuring device, 18 ... Ground fault detection unit, 19 ... Voltage detection circuit, 20, 20a, 20b, 20d, 20e, 20f ... Phase ground fault detection unit, 21, 21a, 21b ... Absolute value calculation unit, 22, 22a, 22b, 30, 30a, 30b, 33, 33a, 33b ... Level detection unit, 23, 23a, 23b ... 1 cycle holding unit , 24 ... Status confirmation section, 25, 31 ... AND gate, 26, 29 ... OR gate, 27 ... Cut-off output section, 28 ... Positive / negative division section, 32, 32a, 32b ... Subtraction section, 34 ... Load adjusting resistor, 35 ... Harmonic rejection filter

Claims (11)

交流電力系統の各相間に三相変圧器の各一次巻線を接続してこの三相変圧器の各相独立した二次巻線の両端子間にサイリスタが介挿された単相回路を接続し、このサイリスタの点弧角を制御することによって前記交流電力系統の無効電力を補償する無効電力補償装置における前記各単相回路の各相の地絡を検出する無効電力補償装置の地絡検出装置であって、
前記各単相回路の各相における対地電圧を測定する複数の電圧測定器と、
前記無効電力の補償過程における前記サイリスタの点弧制御に起因して前記各単相回路の各相に現れる特殊な電圧波形を有する前記各電圧測定器で測定された各対地電圧のピーク電圧値に対して所定の比較演算処理を実施することにより前記各単相回路の各相に地絡が発生したことを検出する地絡検出部と
を備えたことを特徴とする無効電力補償装置の地絡検出装置。
Connect each primary winding of the three-phase transformer between each phase of the AC power system, and connect a single-phase circuit with a thyristor inserted between both terminals of the independent secondary winding of this three-phase transformer. And detecting a ground fault in the reactive power compensator for detecting a ground fault in each phase of each single-phase circuit in the reactive power compensator for compensating the reactive power in the AC power system by controlling the firing angle of the thyristor. A device,
A plurality of voltage measuring devices for measuring a ground voltage in each phase of each single-phase circuit;
Due to the ignition control of the thyristor in the reactive power compensation process, the peak voltage value of each ground voltage measured by each voltage measuring device having a special voltage waveform appearing in each phase of each single-phase circuit. A ground fault detection unit for detecting that a ground fault has occurred in each phase of each single-phase circuit by performing a predetermined comparison operation process on the ground fault of the reactive power compensator, Detection device.
前記地絡検出部は、
前記各電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値が予め定められた下限値以下で、かつ前記交流電力系統が課電状態時に、当該電圧測定器が設けられた単相回路の相の地絡検出を出力すること
を特徴とする請求項1記載の無効電力補償装置の地絡検出装置。
The ground fault detector is
When the peak voltage value of one period of the AC power of the ground voltage measured by each voltage measuring instrument is equal to or lower than a predetermined lower limit value and the AC power system is in a power-applied state, the voltage measuring instrument is The ground fault detection device for a reactive power compensator according to claim 1, wherein the ground fault detection of the phase of the provided single phase circuit is output.
前記各電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた下限値以下で、かつ前記交流電力系統が課電状態時に、当該電圧測定器が設けられた単相回路の相の地絡検出を出力すること
を特徴とする請求項2記載の無効電力補償装置の地絡検出装置。
The absolute value of the positive peak voltage value or the absolute value of the negative peak voltage value in the period of one cycle of the AC power of the ground voltage measured by each of the voltage measuring devices is below a predetermined lower limit value, 3. A ground fault detection device for a reactive power compensator according to claim 2, wherein when the AC power system is in a power-applied state, ground fault detection of a phase of a single-phase circuit provided with the voltage measuring device is output. .
前記地絡検出部は、
前記各単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値が予め定められた上限値以上のときに、同一単相回路の他方の相の地絡検出を出力すること
を特徴とする請求項1記載の無効電力補償装置の地絡検出装置。
The ground fault detector is
When the peak voltage value in one period of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit is equal to or higher than a predetermined upper limit value, the other of the same single-phase circuit The ground fault detection device of the reactive power compensator according to claim 1, wherein the ground fault detection of the phase is output.
前記各単相回路の一方の相の電圧測定器で測定された前記交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた上限値以上のときに、同一単相回路の他方の相の地絡検出を出力すること
を特徴とする請求項4記載の無効電力補償装置の地絡検出装置。
The absolute value of the positive-side peak voltage value or the absolute value of the negative-side peak voltage value in a period of one cycle of the AC power measured by the voltage measuring device of one phase of each single-phase circuit is predetermined. 5. The ground fault detection device for a reactive power compensator according to claim 4, wherein the ground fault detection of the other phase of the same single-phase circuit is output when the upper limit value is exceeded.
前記地絡検出部は、
前記各単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値が予め定められた上限値以上のときで、かつ、同一単相回路の他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値が予め定められた下限値以下のとき、前記他方の相の地絡検出を出力すること
を特徴とする請求項1記載の無効電力補償装置の地絡検出装置。
The ground fault detector is
When the peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit is equal to or greater than a predetermined upper limit value, and the same single-phase circuit When the peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of the other phase of the other phase is equal to or lower than a predetermined lower limit value, the ground fault detection of the other phase is output The ground fault detection apparatus of the reactive power compensator according to claim 1.
前記各単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた上限値以上のときで、かつ、同一単相回路の他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値又は負側のピーク電圧値の絶対値が予め定められた下限値以下のとき、前記他方の相の地絡検出を出力すること
を特徴とする請求項6記載の無効電力補償装置の地絡検出装置。
The absolute value of the positive-side peak voltage value or the negative-side peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of one phase of each single-phase circuit is previously determined. The absolute value of the positive peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of the other phase of the same single-phase circuit when the value is equal to or more than a predetermined upper limit value or 7. The ground fault detection device for a reactive power compensator according to claim 6, wherein when the absolute value of the negative peak voltage value is equal to or less than a predetermined lower limit value, ground fault detection of the other phase is output. .
前記地絡検出部は、
同一の単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値と他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間におけるピーク電圧値との偏差電圧値が予め定められた許容値以上のとき、前記単相回路のいずれか1相の地絡検出を出力すること
を特徴とする請求項1記載の無効電力補償装置の地絡検出装置。
The ground fault detector is
The AC voltage of the ground voltage measured by the voltage measuring device of the other phase and the peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of one phase of the same single phase circuit The ground fault detection of any one phase of the said single phase circuit is output when the deviation voltage value with respect to the peak voltage value in the period of 1 cycle is more than a predetermined tolerance. Fault detection device for reactive power compensator.
前記地絡検出部は、
同一の単相回路の一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値と他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における負側のピーク電圧値の絶対値との偏差電圧値が予め定められた許容値以上のとき、
又は、前記一方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における負側のピーク電圧値の絶対値と他方の相の電圧測定器で測定された対地電圧の前記交流電力の1周期の期間における正側のピーク電圧値の絶対値との偏差電圧値が予め定められた許容値以上のとき、
前記単相回路の他方の相の地絡検出を出力すること
を特徴とする請求項1記載の無効電力補償装置の地絡検出装置。
The ground fault detector is
The absolute value of the positive peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of one phase of the same single-phase circuit and the voltage measuring device of the other phase When the deviation voltage value with respect to the absolute value of the negative peak voltage value in the period of one cycle of the AC power of the ground voltage is equal to or greater than a predetermined allowable value,
Or, the absolute value of the negative peak voltage value in the period of one cycle of the AC power of the ground voltage measured by the voltage measuring device of the one phase and the ground voltage measured by the voltage measuring device of the other phase When the deviation voltage value with respect to the absolute value of the positive peak voltage value in the period of one cycle of the AC power is equal to or greater than a predetermined allowable value,
The ground fault detection device for a reactive power compensator according to claim 1, wherein ground fault detection of the other phase of the single phase circuit is output.
前記各電圧測定器は、前記各単相回路の各相と接地間に介挿された単相変圧器の二次巻線の両端子間に接続された負担調整用抵抗の両端子間に接続されていることを特徴とする請求項1から9のいずれか1項記載の無効電力補償装置の地絡検出装置。   Each voltage measuring instrument is connected between both terminals of a load adjusting resistor connected between both terminals of a secondary winding of a single phase transformer inserted between each phase of each single phase circuit and ground. The ground fault detection device for a reactive power compensator according to any one of claims 1 to 9, wherein the ground fault detection device is used. 前記各電圧測定器で測定された対地電圧に含まれる高調波成分を除去する複数の高調波除去フィルタを備えたことを特徴とする請求項1から10のいずれか1項記載の無効電力補償装置の地絡検出装置。   11. The reactive power compensator according to claim 1, further comprising a plurality of harmonic removal filters that remove harmonic components contained in the ground voltage measured by each of the voltage measuring devices. Ground fault detection device.
JP2008208650A 2008-08-13 2008-08-13 Reactive power compensator ground fault detector Active JP5221238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208650A JP5221238B2 (en) 2008-08-13 2008-08-13 Reactive power compensator ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208650A JP5221238B2 (en) 2008-08-13 2008-08-13 Reactive power compensator ground fault detector

Publications (2)

Publication Number Publication Date
JP2010044621A JP2010044621A (en) 2010-02-25
JP5221238B2 true JP5221238B2 (en) 2013-06-26

Family

ID=42015947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208650A Active JP5221238B2 (en) 2008-08-13 2008-08-13 Reactive power compensator ground fault detector

Country Status (1)

Country Link
JP (1) JP5221238B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740785B2 (en) * 2011-03-28 2015-07-01 日新電機株式会社 Static reactive power compensator
KR101717367B1 (en) 2015-08-19 2017-03-16 엘에스산전 주식회사 Static var compensator apparatus and operating method thereof
CN116706839B (en) * 2023-06-08 2024-02-06 深圳瑞能电气设备有限公司 Microcomputer electric power resonance diagnosis eliminating device and eliminating method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348127A (en) * 1986-08-12 1988-02-29 株式会社東芝 Power regulator
JPH04325829A (en) * 1991-04-24 1992-11-16 Toshiba Corp Static reactive power compensator
JPH0670446A (en) * 1992-08-10 1994-03-11 Toshiba Corp Digital relay for selective grounded phase
JP2001197668A (en) * 2000-01-11 2001-07-19 Toshiba Corp Tandem compensation apparatus for power system

Also Published As

Publication number Publication date
JP2010044621A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
EP2482411B1 (en) Drive Failure Protection
US7425778B2 (en) Apparatus and method for compensating secondary currents used in differential protection to correct for a phase shift introduced between high voltage and low voltage transformer windings
JP6799068B2 (en) Systems and methods for detecting turn-to-turn failures of windings
JP5989136B2 (en) Method and apparatus for protecting a power transformer from large electromagnetic fluctuations
RU2613360C2 (en) Determining direction of ground short circuit for distributing networks of medium or high voltage
JP2009115754A (en) Device and method for measuring leakage current in electric equipment
CA2940499C (en) System and method for starting a variable frequency drive with reduced arc flash risk
JP2008164375A (en) Device and method for measuring leakage current in electric apparatus
KR20170097398A (en) Method for controlling three phase equivalent voltage of multilevel inverter
JP2007295694A (en) Noise filter for alternating-current power supply
JP5221238B2 (en) Reactive power compensator ground fault detector
KR102274269B1 (en) Detecting shorted diodes
JP6895921B2 (en) Power converter and abnormality detection method
JP6559907B1 (en) Power conversion device and constant acquisition method
JP2019013124A (en) High voltage insulation monitoring apparatus and high pressure insulation monitoring method
Wei et al. Identifying ground fault location in high resistance grounded systems for adjustable speed drive at low speed
KR100637619B1 (en) Method and apparatus for protecting shunt capacitor banks based on voltage difference
WO2021049016A1 (en) Power conversion device
JP3199940B2 (en) Transformer protection relay device
JP2021004855A (en) Ground fault detection method and device
RU2714532C1 (en) Differential method of detecting coil short circuits in a three-phase transformer
US20220376601A1 (en) Current measuring circuit for a converter, converter circuit and converter
US11735908B2 (en) Dependable open-phase detection in electric power delivery systems with inverter-based resources
CN114114088B (en) Nuclear power auxiliary transformer high-voltage side open-phase discrimination method and device
Ahmadzadeh-Shooshtari et al. A method to detect DC bias in transformers using differential current waveforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5221238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3