WO2021049016A1 - Power conversion device - Google Patents

Power conversion device Download PDF

Info

Publication number
WO2021049016A1
WO2021049016A1 PCT/JP2019/036158 JP2019036158W WO2021049016A1 WO 2021049016 A1 WO2021049016 A1 WO 2021049016A1 JP 2019036158 W JP2019036158 W JP 2019036158W WO 2021049016 A1 WO2021049016 A1 WO 2021049016A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
output terminal
half bridge
output
terminal
Prior art date
Application number
PCT/JP2019/036158
Other languages
French (fr)
Japanese (ja)
Inventor
嗣大 宅野
拓志 地道
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/036158 priority Critical patent/WO2021049016A1/en
Priority to JP2020536821A priority patent/JP7043607B2/en
Publication of WO2021049016A1 publication Critical patent/WO2021049016A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device that converts three-phase AC power of a system in which one of the three-phase ACs is grounded into DC power.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a power conversion device that can easily detect a ground fault even when a ground fault occurs on the DC side of the power conversion device. ..
  • the power conversion device in the present invention is a first DC output terminal which is a positive terminal on the DC output side, a second DC output terminal which is a negative terminal on the DC output side, and a neutral terminal on the DC output side.
  • An AC / DC converter that has a third DC output terminal and converts three-phase AC power, which is a grounded phase with one phase grounded, into DC power and outputs it, and one end is connected to the first DC output terminal. The other end is connected to the first DC output terminal, one end is connected to the third DC output terminal, and the other end is connected to the second DC output terminal.
  • the third DC output terminal includes two capacitors and has the same potential as the ground phase.
  • the present invention it is possible to obtain a power conversion device that can easily detect a ground fault even when a ground fault occurs on the DC side of the power conversion device.
  • Embodiment 4 of this invention It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. This is an example of the voltage waveform of the chopper portion in the fifth embodiment of the present invention. This is an example of the voltage waveform of the chopper portion in the fifth embodiment of the present invention. It is a circuit diagram of the power conversion apparatus in Embodiment 5 of this invention. It is a figure which shows the hardware composition of the control part of the power conversion apparatus in Embodiment 5 of this invention.
  • FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment of the present invention.
  • the power conversion device 100 according to the first embodiment of the present invention includes an AC / DC conversion unit 1 that converts power between three-phase AC power and DC power, a capacitor 21 (first capacitor), and a capacitor 22 (second capacitor). Capacitor) and.
  • the power conversion device 100 is connected to the three-phase AC power supply 90 via a power receiving transformer 91.
  • a power receiving transformer 91 When the insulation between the windings of the power receiving transformer 91 is lost, the low voltage side and the high voltage side of the transformer winding come into contact with each other, and the low voltage side voltage is applied to the low voltage side terminal. One phase on the side is often grounded.
  • One phase of the three-phase alternating current connected to the power conversion device 100 according to the first embodiment of the present invention is also grounded. Since the power receiving transformer 91 is a well-known technique, detailed description thereof will be omitted. Further, in the drawings other than FIG. 1, the description of the power receiving transformer 91 is omitted.
  • the AC / DC conversion unit 1 converts the three-phase AC power from the three-phase AC power supply 90 obtained via the power receiving transformer 91 into DC power and outputs it.
  • One of the three phases connected from the power receiving transformer 91 to the AC / DC converter 1 is grounded (hereinafter referred to as a grounded phase).
  • the AC / DC converter 1 includes a DC output terminal 11 (first DC output terminal) which is a positive terminal of a DC output to which DC power is output, and a DC output terminal 12 (second DC output terminal) which is a negative terminal of the DC output. (DC output terminal) and a neutral terminal 13 (third DC output terminal) drawn from the DC neutral point.
  • the DC neutral point that is, the neutral terminal 13 is provided so as to have the same potential as the ground phase of the inputs of the three-phase AC power. That is, the neutral terminal 13 is connected to the ground phase.
  • the side where the three-phase AC power is input is defined as the first stage
  • the side where the three-phase AC power is converted into power and the DC power is output is defined as the second stage.
  • the capacitor 21 and the capacitor 22 are provided after the AC / DC conversion unit 1.
  • One end of the capacitor 21 is connected to the DC output terminal 11, and the other end is connected to the neutral terminal 13.
  • One end of the capacitor 22 is connected to the DC output terminal 12, and the other end is connected to the neutral terminal 13. That is, the capacitor 21 and the capacitor 22 are symmetrically connected to the neutral terminal 13 on the positive side of the DC output and the negative side of the DC output.
  • the operation of the AC / DC converter 1 is usually controlled so that the voltage of the capacitor 21 on the positive side of the DC output and the capacitor 22 on the negative side of the DC output are equal.
  • FIG. 2 is a schematic diagram showing a current path during normal operation of the power conversion device 100 according to the first embodiment of the present invention.
  • the solid line and the dotted line in FIG. 2 show the current flow.
  • the operation of the AC / DC converter 1 is controlled so that the voltages of the capacitor 21 and the capacitor 22 become equal.
  • the load 10 between the positive side of the DC output and the negative side of the DC output is balanced. That is, the voltages on the positive side and the negative side are equal, and the same amount of current is supplied to the loads on the positive side and the negative side.
  • the load 10 is integrally connected between the positive side of the DC output and the negative side of the DC output.
  • the dotted line in FIG. 2 shows the current supplied to the load 10 from the positive side of the DC output and the current supplied to the load 10 from the negative side of the DC output.
  • the line connecting the neutral point of the load 10 and the neutral terminal 13 (hereinafter referred to as a DC neutral line) is a load that flows from the positive side of the DC output to the positive side of the load 10 to the DC neutral line.
  • the current and the load current flowing from the DC neutral line to the negative side of the DC output flow. As described above, the load currents at this time are equal.
  • FIG. 3 is a schematic diagram showing a current path when a ground fault occurs on the positive side of the DC output in the subsequent stage of the AC / DC conversion unit 1 of the power conversion device 100 according to the first embodiment of the invention.
  • FIG. 4 is a schematic diagram showing a current path when a ground fault occurs on the negative side of the DC output in the subsequent stage of the AC / DC conversion unit 1 of the power conversion device 100 according to the first embodiment of the present invention.
  • the solid line in FIG. 3 shows the path of the ground fault current passing through the ground fault point P and the ground phase of the three-phase AC from the positive side of the DC output when a ground fault occurs on the positive side of the DC output and passing through the neutral DC point. Is. That is, a current returns from the ground fault point P to the neutral terminal 13 having the same potential as the ground phase via the ground.
  • the alternate long and short dash line in FIG. 3 is a load current path that passes from the neutral DC point to the negative side of the load 10 and passes through the negative side of the DC output when a ground fault occurs on the positive side of the DC output.
  • the solid line in FIG. 4 is the path of the ground fault current from the neutral DC point to the ground phase of the three-phase AC and from the ground fault point P to the negative side of the DC output.
  • the alternate long and short dash line in FIG. 4 is a load current path that passes from the positive side of the DC output to the positive side of the load 10 and passes through the DC neutral point.
  • the ground phase and the neutral terminal 13 can be connected to each other regardless of whether a ground fault occurs on the positive side or the negative side of the DC output.
  • the current that passes through flows. Further, the current flowing through the DC neutral wire is not canceled, and the current corresponding to the magnitude of the load 10 flows.
  • a ground fault can be detected by measuring each of these currents using, for example, current detection units 66, 67, 68 and the like.
  • the current detection units 66, 67, and 68 measure the current flowing through the wiring drawn out from the output terminals 11, 12, and 13 of the DC output of the AC / DC conversion unit 1.
  • the current detection units 66, 67, 68 can detect the current at the time of a ground fault.
  • the detection positions of the current detection units 66, 67, and 68 are examples, and may be provided so as to be able to detect the current in each current path at the time of the ground fault described above.
  • the ground fault can be determined according to the detected current value.
  • the ground fault can be easily detected by detecting the current flowing at the time of the ground fault on at least one of the AC side and the DC side of the power conversion device 100.
  • the above description is based on the case where the neutral point of the load 10 and the neutral terminal 13 are explicitly connected, but when the neutral point of the load 10 is grounded and is not connected to the neutral terminal 13. This is the same because the neutral point of the load 10 and the neutral terminal 13 have the same potential.
  • the DC neutral point has the same potential as the ground phase of the three-phase AC, so that when a ground fault occurs on the DC output side, the AC side of the power conversion device 100 Alternatively, a power conversion device that can easily detect a ground fault on the DC side can be obtained.
  • Embodiment 2 Conventionally, there is an example in which a rectifier for rectifying an AC voltage and a DC power conversion circuit are provided, the device has a plurality of output terminals, and a voltage suitable for the required voltage is supplied (for example, Japanese Patent Application Laid-Open No. 2012-95450 (FIG. 2). )).
  • a voltage suitable for the required voltage for example, Japanese Patent Application Laid-Open No. 2012-95450 (FIG. 2).
  • FIG. 2 Japanese Patent Application Laid-Open No. 2012-95450
  • FIG. 5 is a circuit diagram of the power conversion device according to the second embodiment of the present invention
  • FIG. 6 is a circuit diagram showing a modified example of the power conversion device according to the second embodiment of the present invention.
  • Those having the same reference numerals as those in FIG. 1 indicate the same or corresponding configurations, and the description thereof will be omitted.
  • the configuration on the rear stage side of the AC / DC conversion unit 1 is different from that of the first embodiment. Only the parts having different configurations and operations from those of the first embodiment will be described.
  • the chopper circuit 3 the DC filter reactor 41 (first DC filter reactor) and the DC filter reactor 42 (second DC filter reactor) are located behind the capacitor 21 and the capacitor 22.
  • the chopper circuit 3 has a first DC input terminal connected to the DC output terminal 11, a second DC input terminal connected to the DC output terminal 12, and a third connected to the neutral terminal 13 on the DC input side. Has a DC input terminal. Further, the chopper circuit 3 has a positive output terminal (fourth DC output terminal), a negative output terminal (fifth DC output terminal), and an output neutral terminal (fifth DC output terminal) that output DC power to the DC output side. It has a sixth DC output terminal). The chopper circuit 3 converts the DC power input from each input terminal into power and outputs it from each output terminal.
  • the chopper circuit 3 is a half bridge 301 (first half bridge) and a half bridge 302 that are symmetrically connected to the first DC input terminal side and the second DC input terminal side with respect to the third DC input terminal. Consists of (second half bridge).
  • the half bridge 301 is composed of a semiconductor switch 303 and a semiconductor switch 304 connected in series, and an output terminal of the half bridge 301 is pulled out from a connection point between the semiconductor switch 303 and the semiconductor switch 304. This output terminal is the output terminal on the positive side of the chopper circuit 3.
  • the half bridge 302 is composed of a semiconductor switch 305 and a semiconductor switch 306 connected in series like the half bridge 301. Then, the output terminal of the half bridge 302 is pulled out from the connection point between the semiconductor switch 305 and the semiconductor switch 306. This output terminal is an output terminal on the negative side of the chopper circuit 3.
  • the output terminal is pulled out from the connection point between the half bridge 301 and the half bridge 302.
  • This output terminal is an output neutral terminal of the chopper circuit 3.
  • This output neutral terminal is connected to the neutral terminal 13. That is, they are connected so as to have the same potential as the ground phase of three-phase alternating current.
  • One end of the DC filter reactor 41 is connected to an output terminal drawn from the half bridge 301. Further, one end of the DC filter reactor 42 is connected to an output terminal drawn from the half bridge 302.
  • One end of the DC filter capacitor 51 is connected to the rear stage of the DC filter reactor 41, and the other end is connected to the output neutral terminal.
  • One end of the DC filter capacitor 52 is connected to the rear stage of the DC filter reactor 42, and the other end is connected to the output neutral terminal.
  • Each output terminal of the power conversion device 101 drawn out after the DC filter capacitor 51 and the DC filter capacitor 52 is connected to, for example, a load (not shown) as in the first embodiment.
  • the output neutral terminal is connected to the neutral point of the load.
  • each semiconductor switch is controlled so that the DC output voltage on the positive side of the DC output and the DC output voltage on the negative side of the DC output are equal. This has the effect of being able to output a desired DC voltage regardless of the voltage on the AC side.
  • An example of modification of the power conversion device 101 shown in FIG. 6 further includes a chopper circuit 31, a DC filter reactor 43 and a DC filter reactor 44, a DC filter capacitor 53, and a DC filter capacitor 54.
  • the chopper circuit 31 has the same configuration as the chopper circuit 3 described above. That is, it is composed of a half bridge 311 and a half bridge 312 having the same configuration as the half bridge 301 and the half bridge 302. Each DC input terminal of the chopper circuit 3 and the chopper circuit 31 is connected in parallel.
  • the output terminal is pulled out from the connection point of each semiconductor switch constituting the half bridge 311. This output terminal is the output terminal on the positive side of the chopper circuit 31. Similarly, the output terminal is pulled out from the connection point of each semiconductor switch constituting the half bridge 312. This output terminal is an output terminal on the negative side of the chopper circuit 31.
  • the output terminal is pulled out from the connection point between the half bridge 311 and the half bridge 312.
  • This output terminal is an output neutral terminal of the chopper circuit 31.
  • This output neutral terminal is connected to the output neutral terminal of the chopper circuit 3. That is, they are connected so as to have the same potential as the ground phase of three-phase alternating current.
  • the DC filter reactor 43, the DC filter reactor 44, the DC filter capacitor 53, and the DC filter capacitor 54 are connected to the subsequent stage of the chopper circuit 31. These are connected to the chopper circuit 31 in the same arrangement as those in which the DC filter reactor 41 and the DC filter reactor 42, the DC filter capacitor 51 and the DC filter capacitor 52 are connected to the subsequent stage of the chopper circuit 3.
  • each chopper circuit 3 and 31 is controlled so as to have a different output voltage. This makes it possible to output different voltages by adding a chopper circuit. That is, it is possible to obtain DC outputs of a plurality of voltages at the same time.
  • the output neutral terminals drawn out after the DC filter capacitor 53 and the DC filter capacitor 54 are connected so as to have the same potential as the ground phase of the three-phase AC.
  • the reference potentials of the plurality of output voltages are DC neutral points.
  • the semiconductor switch is represented by the MOSFET symbol, the semiconductor element is not limited to the MOSFET, and may be another type of element such as a bipolar transistor, an IGBT, or a JFET. Even in this case, the above-mentioned effects are obtained.
  • FIG. 7 is a circuit diagram of the AC / DC converter 1 according to the third embodiment of the present invention.
  • FIG. 8 is a circuit diagram showing a modified example of the AC / DC converter 1 according to the third embodiment of the present invention. Only the parts having different configurations and operations from those of the first embodiment and the second embodiment will be described.
  • the AC / DC converter 1 is composed of a half bridge (third half bridge) composed of semiconductor switches 1001 and 1002, and semiconductor switches 1003 and 1004. It is composed of a full bridge using a half bridge (fourth half bridge). Further, an AC filter matching the harmonic regulation value on the system side is connected to the AC side of the full bridge. Regarding the configuration of the AC filter, the one composed of the capacitors 501 and 502 and the reactors 401 and 402 is shown in the figure, but since it is a well-known technique, detailed description thereof will be omitted.
  • the full bridge according to the third embodiment of the present invention is configured by connecting each half bridge in which one end is connected to the DC output terminal 11 and the other end is connected to the DC output terminal 12 in parallel.
  • the DC terminal on the positive side of the full bridge corresponds to the positive side of the DC output of the AC / DC converter 1. Further, the DC terminal on the negative side of the full bridge corresponds to the negative side of the DC output of the AC / DC conversion unit 1. Then, the DC neutral point is connected so as to have the same potential as the ground phase of the three-phase AC.
  • connection points of the semiconductor switches 1001 and 1002 are connected to one phase other than the ground phase of three-phase alternating current. Further, the connection points of the semiconductor switches 1003 and 1004 are connected to a ground phase of three-phase alternating current and a phase other than the one phase.
  • the AC / DC conversion unit 1 is an AC / DC conversion circuit composed of a full bridge using each semiconductor switch. As a result, even if the voltage on the AC side fluctuates, it is possible to control the DC link voltage so as to keep it constant. Further, by switching at a frequency sufficiently higher than the power supply frequency, the effect of suppressing low-order harmonics on the AC side is obtained.
  • FIG. 8 shows each of the above-mentioned full-bridge semiconductor switches configured by using each diode 1005, 1006, 1007, 1008.
  • An AC-DC conversion circuit in which a full bridge is configured by using each diode is cheaper than a circuit composed of each semiconductor switch and does not require a control system, so that it has an advantageous effect in terms of cost.
  • the AC-DC conversion circuit shown in FIG. 7 when it is desired to suppress harmonics, the AC-DC conversion circuit shown in FIG. 7 is selected, and when harmonics are acceptable, the AC-DC conversion circuit shown in FIG. 8 is selected.
  • the effects of the AC / DC conversion circuits described above in the third embodiment of the present invention are exhibited.
  • a power conversion device capable of easily detecting the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is obtained. It has an effect that can be achieved. In addition, it has the effect of obtaining a desired DC voltage.
  • the chopper circuit 3 when the chopper circuit 3 is connected to the rear stage side of the DC output of the AC / DC conversion unit 1, the AC input voltage fluctuation becomes the DC output by the control of the chopper circuit 3. It has the effect of suppressing the effect.
  • the AC filter shown in FIGS. 7 and 8 is an example, and other types of filters may be used. Further, any AC / DC conversion circuit connected so that the grounded phase of the three-phase AC and the DC neutral point have the same potential can be applied, and other circuit types may be used.
  • the semiconductor switch is represented by the MOSFET symbol
  • the semiconductor element is not limited to the MOSFET, and may be another type of element such as a bipolar transistor, an IGBT, or a JFET. Even in these cases, the above-mentioned effects are obtained.
  • Embodiment 4 As shown in the first to third embodiments of the present invention, in each power conversion device according to the embodiment of the present invention, when a ground fault occurs on the DC output side, the AC side or DC of the AC / DC conversion unit 1 It becomes easy to detect the ground fault on the side.
  • the ground fault current is a current of a magnitude that is not expected in normal operation, it may damage the power converter and the wiring of the path through which the ground fault current flows. Therefore, it is necessary to determine the presence or absence of a ground fault. Furthermore, after detecting the ground fault, it is necessary to appropriately cut off the ground fault current.
  • FIG. 9 is a circuit diagram of the power conversion device according to the fourth embodiment of the present invention. Those having the same reference numerals as those in FIGS. 1 to 8 indicate the same or corresponding configurations, and the description thereof will be omitted.
  • FIG. 9 to 16 have a ground fault determining means 60 for detecting at least one current on the AC side or the DC side of the AC / DC conversion unit 1 according to the embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of detecting a ground fault on the AC side of the power conversion device 102.
  • the ground fault determining means 60 in FIG. 9 has a current detecting unit 61 and a ground fault determining unit 70.
  • the current detection unit 61 is provided on the AC side of the AC / DC conversion unit 1. Specifically, it is provided between the place where the grounding phase is grounded and the AC / DC conversion unit 1. Then, the three-phase current during this period is measured collectively.
  • the ground fault determination unit 70 determines the presence or absence of a ground fault based on the detected current value detected by the current detection unit 61.
  • the AC side of the AC / DC converter 1 is in a three-phase equilibrium state or a state close to three-phase equilibrium during normal operation. At this time, the sum of the three-phase currents on the AC side is 0 or a very small value.
  • an imbalance occurs in the current of each phase. The occurrence of a ground fault can be detected by measuring the current imbalance of each phase. Therefore, the current detection unit 61 measures the current imbalance of each phase by measuring the zero-phase component of the three-phase alternating current.
  • the ground fault determination unit 70 determines that a ground fault has occurred when the zero-phase component detected by the current detection unit 61 exceeds a predetermined size. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
  • FIG. 10 is a hardware configuration diagram of the ground fault determination unit 70 of FIG.
  • the ground fault determination unit 70 includes a processor 33 and a storage unit 34.
  • the processor 33 performs the above-mentioned processing of the ground fault determination unit 70 by executing the program stored in the storage unit 34.
  • the storage unit 34 is composed of a memory in which parameters necessary for determination, a program describing the above processing, and the like are stored.
  • the processor 33 is composed of a processor logically configured in a hardware circuit such as a microcomputer (microcomputer), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array). Further, the plurality of processors 33 and the plurality of storage units 34 may cooperate to execute the above function. The same applies to the ground fault determination unit 70 described below.
  • the ground fault determining means 60 in FIG. 11 includes current detecting units 62, 63, 64 and a ground fault determining unit 70.
  • Each current detection unit 62, 63, 64 is provided between a place where the ground phase is grounded and the AC / DC conversion unit 1. Each current detection unit 62, 63, 64 detects currents of different phases.
  • the zero-phase component that is, the zero-phase current can be obtained by taking the sum of the measured values individually measured by each current detection unit 62, 63, 64.
  • the ground fault determination unit 70 states that a ground fault has occurred when the zero-phase current calculated from the current detection values detected by the current detection units 62, 63, 64 exceeds a predetermined magnitude. judge. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
  • the ground fault determining means 60 in FIG. 12 includes a current detecting unit 63 and a ground fault determining unit 70. This is the configuration in which the current detection units 62 and 64 are omitted from the configuration shown in FIG.
  • the current detection unit 63 is provided in the ground phase between the place where the ground phase is grounded and the AC / DC conversion unit 1. No current flows through the ground phase during normal operation, but when a ground fault occurs, a ground fault current flows. By measuring the current of the ground phase with the current detection unit 63, it is possible to detect the ground fault current.
  • the ground fault determination unit 70 determines that a ground fault has occurred when the current detection value detected by the current detection unit 63 exceeds a predetermined magnitude. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
  • the ground fault determining means 60 in FIG. 13 includes a current detecting unit 65 for detecting the current of the line grounding the grounding phase of the three-phase alternating current and a ground fault determining unit 70.
  • a line that is grounded to the grounding phase of three-phase AC does not allow current to flow during normal operation, but when a ground fault occurs, a ground fault current flows.
  • the current detection unit 65 measures the ground fault current flowing through the line that grounds the ground phase of the three-phase alternating current.
  • the ground fault determination unit 70 determines that a ground fault has occurred when the current detection value detected by the current detection unit 65 is larger than a predetermined value. This makes it possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
  • the ground fault determining means 60 in FIG. 14 includes current detecting units 66 and 67 and a ground fault determining unit 70.
  • the current detection unit 66 is provided after the capacitor 21, and detects the current flowing through the line on the positive side of the DC output of the AC / DC conversion unit 1.
  • the current detection unit 67 is provided after the capacitor 22, and detects the current flowing through the line on the negative side of the DC output of the AC / DC conversion unit 1.
  • the current detection unit 66 is provided after each DC filter reactor and each DC filter capacitor when each DC filter reactor and each DC capacitor are provided on the DC output side.
  • the current detection unit 67 is provided after each DC filter reactor and each DC filter capacitor when each DC filter reactor and each DC capacitor are provided on the DC output side.
  • the current value flowing through the line on the positive side of the DC output of the AC / DC converter 1 and the current value flowing through the line on the negative side of the DC output are the same during normal operation. That is, the current flowing through the DC neutral wire is 0 or a very small value.
  • the current values flowing in the lines on the positive side of the DC output and the lines on the negative side of the DC output are different, and the ground fault current flows in the neutral DC line.
  • the ground fault determination unit 70 utilizes the fact that the current values on the positive side and the negative side of the DC output are different when a ground fault occurs, and obtains each current detection value measured by the current detection unit 66 and the current detection unit 67. Can be used to determine ground faults.
  • a method of determining a ground fault for example, there is a method of using the difference between each current detection value.
  • the difference between each current detection value can be obtained, and a ground fault can be detected when this difference becomes large.
  • a reference value for the difference when a ground fault occurs is set in advance, and this reference value is compared with the detected difference value, and when the difference value becomes larger than the reference value, the ground value is set. Try to determine that it is entangled.
  • the difference value of each current detection value in the normal time may be used as a reference value, the difference value between this and each current detection value may be compared, and the determination may be made based on the increase from the reference value in the normal time.
  • Another determination method is to use the sum of the current detection values.
  • the added value becomes almost 0 at the time of normal operation and becomes a larger value than that at the time of a ground fault. That is, when the sum of the current detection values becomes larger than the predetermined reference value, it is determined that the ground fault has occurred.
  • the ground fault can be detected by comparing the value using each current detection value with a predetermined reference value.
  • the ground fault determining means 60 in FIG. 15 includes a current detecting unit 68 and a ground fault determining unit 70.
  • the current detection unit 68 is provided on the DC neutral wire and detects the current of the DC neutral wire.
  • a ground fault current flows through the DC neutral wire. That is, it is possible to detect a ground fault by using the current detection value of the DC neutral wire detected by the current detection unit 68.
  • the ground fault can be detected by comparing the current detection value of the current detection unit 68 with a predetermined reference value. Further, the ground fault can be detected by increasing the current detection value of the current detection unit 68.
  • the ground fault determining means 60 in FIG. 16 has a current detecting unit 69 and a ground fault determining unit 70.
  • the current detection unit 69 measures the positive side of the DC output and the negative side of the DC output of the AC / DC conversion unit 1 collectively, and is installed so as not to measure the current of the DC neutral wire.
  • the effect is that the ground fault can be detected on the AC side or the DC side of the AC / DC conversion unit 1.
  • the ground fault determination unit 70 may perform control to stop the operation of the power conversion device 102 so as to cut off the ground fault current when the ground fault is determined.
  • each power conversion device having a chopper circuit 3 or a chopper circuit 31 when a ground fault is detected in each power conversion device having a chopper circuit 3 or a chopper circuit 31, the ground fault current is cut off by stopping the switching of the semiconductor switch of each chopper circuit 3 or 31. It becomes possible. This has the effect of preventing damage to each power conversion device and route wiring due to ground fault current.
  • the power conversion device 102 having the ground fault determination means 60 may have a circuit breaker 80 as shown in FIG.
  • the circuit breaker 80 for example, an MCCB (Molded Case Circuit Breaker), an earth leakage breaker, or the like is used.
  • the ground fault is determined by each of the above-mentioned methods according to the current value detected by each current detection unit, and after detecting the ground fault, the ground fault current is cut off by turning off the circuit breaker 80. be able to.
  • the detection current value of the ground fault determining means 60 is used, and the effect of making it possible to cut off the ground fault current is achieved.
  • CT Current Transformer
  • MCCB Magnetoresistive Circuit
  • earth leakage breaker an MCCB or an earth leakage breaker
  • each current detection unit and the ground fault determination unit 70 are used as the circuit breaker 80. It may be built-in. In this case, the ground fault determination unit 70 outside the circuit breaker 80 may detect the ground fault by detecting the operation of the circuit breaker 80 with an auxiliary contact or the like.
  • the effect of facilitating the detection of the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is obtained. Further, by using the current measurement value of each current detection unit and the ground fault determination unit 70 or the circuit breaker 80, the effect of being able to cut off the ground fault current after detecting the ground fault is obtained. Further, it has an effect of preventing damage to each power conversion device and path wiring due to ground fault current.
  • each example in which each current detection unit is provided is shown in the fourth embodiment, it is sufficient that any of the current detection units of FIGS. 9 to 16 is provided on either the AC side or the DC side.
  • the current detection units shown in FIGS. 9 to 16 may be used in combination. Even in this case, the above-mentioned effect is obtained.
  • Embodiment 5 In the second embodiment of the present invention, the power conversion device 101 provided with the chopper circuit 3 has been described with reference to FIGS. 5 and 6. In the fifth embodiment of the present invention, the control of the switching timing of each half bridge of the chopper circuit 3 will be described.
  • FIG. 18 shows a voltage waveform when the switch timings of the half bridges of the chopper circuit according to the fifth embodiment of the present invention are the same.
  • FIG. 19 shows the voltage waveforms when the switch timings of the half bridges of the chopper circuit according to the fifth embodiment of the present invention are the same and different.
  • a common mode voltage is generated with the switching of a semiconductor switch.
  • This common mode voltage becomes a common mode current when it is applied to a stray capacitance between the converter and the reference potential.
  • the common mode current causes common mode noise, which is a noise component, and an increase in loss with respect to the current during normal operation. Therefore, it is desirable to suppress the generation of common mode voltage.
  • the half bridges 301 and 302 are symmetrically connected to the DC neutral wire on the positive side and the negative side of the DC output.
  • the generation of the common mode voltage can be suppressed by aligning the switching timing of the half bridge 301 on the positive side of the DC output and the switching timing of the half bridge 302 on the negative side of the DC output. ..
  • Each horizontal axis in the upper part of FIG. 18 indicates the time t.
  • the positive half-bridge output voltage shown in the upper part of FIG. 18 indicates the voltage applied to both ends of the DC filter capacitor 51 shown in FIG. 5 based on the DC neutral point potential.
  • the negative half-bridge output voltage shown in the upper part of FIG. 18 indicates the voltage applied to both ends of the DC filter capacitor 52 shown in FIG. 5 based on the DC neutral point potential.
  • the common mode voltage is the sum of the positive half bridge output voltage and the negative half bridge output voltage. That is, it is the sum of the voltage applied across the DC filter capacitor 51 and the voltage applied across the DC filter capacitor 52.
  • FIG. 18 shows each voltage when an LC filter composed of each DC filter capacitor 51, 52 and each DC filter reactor 41, 42 is provided.
  • the horizontal axis in the lower part of FIG. 18 indicates the time t.
  • the positive half-bridge output voltage and the negative half-bridge output voltage shown in the lower part of FIG. 18 are the respective voltages between the connection portion between the semiconductor switches constituting the half bridges 301 and 302 and the DC neutral line.
  • the common mode voltage in this case is also the sum of the positive half bridge output voltage and the negative half bridge output voltage.
  • the power converter is controlled so that the positive output voltage of the DC output and the negative output voltage of the DC output are equal. Further, the voltage applied to the capacitor 21 on the positive side and the voltage applied to the capacitor 22 on the negative side are also controlled to be equal to each other.
  • the magnitudes of the positive half-bridge output voltage and the negative half-bridge output voltage when the half bridges 301 and 302 are switched during normal operation are equal. Further, the positive side half bridge output voltage becomes a positive voltage with respect to the DC neutral point potential, and the negative side half bridge output voltage becomes a negative voltage with respect to the DC neutral point potential. Therefore, if the timing of switching between the positive half bridge and the negative half bridge is the same, the common mode voltage represented by the sum of the positive half bridge output voltage and the negative half bridge output voltage becomes 0.
  • a carrier signal having the same frequency and phase and reversed polarity is used, and the positive half bridge output voltage and the negative half bridge output voltage are used.
  • a method of generating a gate signal of a semiconductor switch by comparing carriers using each command value can be considered. Further, for one carrier signal, a method of generating a gate signal of each semiconductor switch by comparing carriers using the positive half bridge output voltage command value and the negative half bridge output voltage command value whose polarity is inverted, etc. Can be considered.
  • the common mode voltage can be suppressed, which has the effect of suppressing noise reduction and loss increase.
  • the ripple voltage of the DC output voltage when the switching timing is not aligned is suppressed compared to the ripple voltage of the DC output voltage when the switching timing is aligned.
  • Each horizontal axis in FIG. 19 indicates the time t. From the top of FIG. 19, the positive side half bridge output voltage, the negative side half bridge output voltage, and the output voltage which is the difference voltage between the positive side DC output voltage and the negative side DC output voltage are shown, respectively.
  • the solid line in FIG. 19 shows the output voltage values when the switch timings of the positive half bridge and the negative half bridge are the same.
  • the dotted line in FIG. 19 shows the output voltage values when the switch timings of the positive half bridge and the negative half bridge are different.
  • the DC voltage supplied to the load is the difference voltage between the DC output voltage on the positive side and the DC output voltage on the negative side. Therefore, it can be seen that the ripple of the DC voltage is maximized when the switching timings of the half bridges 301 and 302 are aligned and the timings at which the respective voltages reach their peaks are aligned.
  • the ripple voltage becomes large, the capacity of the DC filter capacitor required to suppress the voltage fluctuation of the DC output voltage to a desired value increases, which causes an increase in cost and size.
  • the switch timing can be shifted by shifting the phase of the carrier signal given to the positive half bridge and the phase of the carrier signal given to the negative half bridge. As described above, by controlling the switch timings to be different, the ripple voltage peak value of the DC output voltage can be suppressed.
  • FIG. 21 is a hardware configuration diagram of the control unit of FIG. 20.
  • the control unit 32 includes a processor 33 and a storage unit 34.
  • the processor 33 performs the processing of the control unit 32 described above by executing the program stored in the storage unit 34.
  • the storage unit 34 is composed of a memory in which parameters necessary for control, a program describing the above processing, and the like are stored.
  • the processor 33 is composed of a microcomputer (microcomputer), a DSP (Digital Signal Processor), an FPGA, and the like. Further, the plurality of processors 33 and the plurality of storage units 34 may cooperate to execute the above function.
  • a power conversion device capable of easily detecting the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is provided. It has an effect that can be obtained and detected. Further, by controlling the switching timing of the half bridge in the chopper circuit, it is possible to reduce noise and ripple.

Abstract

The present invention obtains a power conversion device in which a ground fault can be detected even when the ground fault occurs on the DC side of the power conversion device. The power conversion device is provided with: an AC/DC conversion unit having a first DC output terminal that is a positive side terminal on the DC output side, a second DC output terminal that is a negative side terminal on the DC output side, and a third DC output terminal that is a neutral terminal on the DC output side and converting three-phase AC power, one phase of which is a grounded phase, to DC power to output the DC power; a first capacitor having one end connected to the first DC output terminal and the other end connected to the third DC output terminal; and a second capacitor having one end connected to the third DC output terminal and the other end connected to the second DC output terminal. The third DC output terminal has the same potential as that of the grounded phase.

Description

電力変換装置Power converter
 この発明は、三相交流のうち一相が接地された系統の三相交流電力を直流電力に変換する電力変換装置に関するものである。 The present invention relates to a power conversion device that converts three-phase AC power of a system in which one of the three-phase ACs is grounded into DC power.
 従来、交流電力を直流電力に変換する種々の電力変換装置が提案されている。従来の電力変換装置として、整流用ダイオードを備えた整流用ブリッジ回路と整流用ダイオードの端子と接続されたコンデンサと直流電力を出力するための一対の出力端子を備えた例がある。また、この一対の出力端子と接続され、直流電力を降圧する降圧チョッパ回路を組み合わせた例がある。(例えば、特許文献1参照)。 Conventionally, various power conversion devices that convert AC power into DC power have been proposed. As a conventional power conversion device, there is an example in which a rectifying bridge circuit provided with a rectifying diode, a capacitor connected to a terminal of the rectifying diode, and a pair of output terminals for outputting DC power are provided. Further, there is an example in which a step-down chopper circuit that is connected to the pair of output terminals and steps down DC power is combined. (See, for example, Patent Document 1).
特開2011-30329公報(第4項~第7項、図1)Japanese Unexamined Patent Publication No. 2011-30329 (paragraphs 4 to 7, FIG. 1)
 特許文献1に記載の電力変換装置においては、電力変換装置の直流側の回路が地絡した場合、直流側に地絡電流が流れる経路が無いため、地絡を検出できないという課題があった。 In the power conversion device described in Patent Document 1, when the circuit on the DC side of the power conversion device has a ground fault, there is a problem that the ground fault cannot be detected because there is no path for the ground fault current to flow on the DC side.
 本発明は、上述の課題を解決するためになされたもので、電力変換装置の直流側で地絡した場合においても地絡を検出することが容易な電力変換装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a power conversion device that can easily detect a ground fault even when a ground fault occurs on the DC side of the power conversion device. ..
 本発明における電力変換装置は、直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、一端が前記第一の直流出力端子と接続され、他端が前記第三の直流出力端子と接続される第一のコンデンサと、一端が前記第三の直流出力端子と接続され、他端が前記第二の直流出力端子と接続される第二のコンデンサと、を備え、前記第三の直流出力端子は、前記接地相と同電位である。 The power conversion device in the present invention is a first DC output terminal which is a positive terminal on the DC output side, a second DC output terminal which is a negative terminal on the DC output side, and a neutral terminal on the DC output side. An AC / DC converter that has a third DC output terminal and converts three-phase AC power, which is a grounded phase with one phase grounded, into DC power and outputs it, and one end is connected to the first DC output terminal. The other end is connected to the first DC output terminal, one end is connected to the third DC output terminal, and the other end is connected to the second DC output terminal. The third DC output terminal includes two capacitors and has the same potential as the ground phase.
 この発明によれば、電力変換装置の直流側で地絡した場合においても地絡の検出が容易な電力変換装置を得ることができる。 According to the present invention, it is possible to obtain a power conversion device that can easily detect a ground fault even when a ground fault occurs on the DC side of the power conversion device.
本発明の実施の形態1における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における電力変換装置の通常時の電流経路を示す模式図である。It is a schematic diagram which shows the current path at the time of a normal time of the power conversion apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における電力変換装置の直流出力の正側で地絡が生じたときの電流経路を示す模式図である。It is a schematic diagram which shows the current path when the ground fault occurs on the positive side of the DC output of the power conversion apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における電力変換装置の直流出力の負側で地絡が生じたときの電流経路を示す模式図である。It is a schematic diagram which shows the current path when the ground fault occurs on the negative side of the DC output of the power conversion apparatus in Embodiment 1 of this invention. 本発明の実施の形態2における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における電力変換装置の変更例を示す回路図である。It is a circuit diagram which shows the modification example of the power conversion apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における交流直流変換部の回路図である。It is a circuit diagram of the AC / DC conversion part in Embodiment 3 of this invention. 本発明の実施の形態3における交流直流変換部の変更例を示す回路図である。It is a circuit diagram which shows the modification example of the AC / DC conversion part in Embodiment 3 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の地絡判定部のハードウエア構成図である。It is a hardware block diagram of the ground fault determination part of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態4における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 4 of this invention. 本発明の実施の形態5におけるチョッパ部の電圧波形の一例である。This is an example of the voltage waveform of the chopper portion in the fifth embodiment of the present invention. 本発明の実施の形態5におけるチョッパ部の電圧波形の一例である。This is an example of the voltage waveform of the chopper portion in the fifth embodiment of the present invention. 本発明の実施の形態5における電力変換装置の回路図である。It is a circuit diagram of the power conversion apparatus in Embodiment 5 of this invention. 本発明の実施の形態5における電力変換装置の制御部のハードウエア構成を示す図である。It is a figure which shows the hardware composition of the control part of the power conversion apparatus in Embodiment 5 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1における電力変換装置の回路図である。本発明の実施の形態1における電力変換装置100は、三相交流電力と直流電力との電力変換を行う交流直流変換部1と、コンデンサ21(第一のコンデンサ)と、コンデンサ22(第二のコンデンサ)と、で構成される。
Embodiment 1.
FIG. 1 is a circuit diagram of a power conversion device according to a first embodiment of the present invention. The power conversion device 100 according to the first embodiment of the present invention includes an AC / DC conversion unit 1 that converts power between three-phase AC power and DC power, a capacitor 21 (first capacitor), and a capacitor 22 (second capacitor). Capacitor) and.
 また、本発明の実施の形態1における電力変換装置100は、受電用変圧器91を介して三相交流電源90と接続されている。受電用変圧器91の巻線間の絶縁が失われた際に、変圧器巻線の低圧側と高圧側が接触し、低圧側端子に高圧側の電圧が印加されることを避けるために、低圧側の一相が接地されることが多い。 Further, the power conversion device 100 according to the first embodiment of the present invention is connected to the three-phase AC power supply 90 via a power receiving transformer 91. When the insulation between the windings of the power receiving transformer 91 is lost, the low voltage side and the high voltage side of the transformer winding come into contact with each other, and the low voltage side voltage is applied to the low voltage side terminal. One phase on the side is often grounded.
 本発明の実施の形態1における電力変換装置100に接続する三相交流についても、一相が接地されたものである。なお、受電用変圧器91については周知技術であるため、その詳細な説明は省略する。また、図1以外の図において、受電用変圧器91の記載は省略する。 One phase of the three-phase alternating current connected to the power conversion device 100 according to the first embodiment of the present invention is also grounded. Since the power receiving transformer 91 is a well-known technique, detailed description thereof will be omitted. Further, in the drawings other than FIG. 1, the description of the power receiving transformer 91 is omitted.
 交流直流変換部1は、受電用変圧器91を介して得られる三相交流電源90からの三相交流電力を直流電力に変換して出力する。受電用変圧器91から交流直流変換部1に接続される三相のうち一相は接地されている(以下、接地相とよぶ)。 The AC / DC conversion unit 1 converts the three-phase AC power from the three-phase AC power supply 90 obtained via the power receiving transformer 91 into DC power and outputs it. One of the three phases connected from the power receiving transformer 91 to the AC / DC converter 1 is grounded (hereinafter referred to as a grounded phase).
 交流直流変換部1は、直流電力が出力される直流出力の正側端子である直流出力端子11(第一の直流出力端子)と、直流出力の負側端子である直流出力端子12(第二の直流出力端子)と、直流中性点から引き出される中性端子13(第三の直流出力端子)と、の3端子を有する。 The AC / DC converter 1 includes a DC output terminal 11 (first DC output terminal) which is a positive terminal of a DC output to which DC power is output, and a DC output terminal 12 (second DC output terminal) which is a negative terminal of the DC output. (DC output terminal) and a neutral terminal 13 (third DC output terminal) drawn from the DC neutral point.
 直流中性点すなわち中性端子13は、三相交流電力の入力のうちの接地相と同電位になるように設けられる。すなわち、中性端子13は接地相と接続されている。 The DC neutral point, that is, the neutral terminal 13 is provided so as to have the same potential as the ground phase of the inputs of the three-phase AC power. That is, the neutral terminal 13 is connected to the ground phase.
 本発明の実施の形態1における電力変換装置100において、三相交流電力が入力される側を前段とし、三相交流電力が電力変換されて直流電力が出力される側を後段と定義する。 In the power conversion device 100 according to the first embodiment of the present invention, the side where the three-phase AC power is input is defined as the first stage, and the side where the three-phase AC power is converted into power and the DC power is output is defined as the second stage.
 このときコンデンサ21およびコンデンサ22は、交流直流変換部1の後段に設けられる。コンデンサ21は、一端が直流出力端子11と接続され、他端が中性端子13と接続される。コンデンサ22は、一端が直流出力端子12と接続され、他端は中性端子13と接続される。すなわち、コンデンサ21とコンデンサ22は、中性端子13に対して直流出力の正側と直流出力の負側とに対称に接続される。 At this time, the capacitor 21 and the capacitor 22 are provided after the AC / DC conversion unit 1. One end of the capacitor 21 is connected to the DC output terminal 11, and the other end is connected to the neutral terminal 13. One end of the capacitor 22 is connected to the DC output terminal 12, and the other end is connected to the neutral terminal 13. That is, the capacitor 21 and the capacitor 22 are symmetrically connected to the neutral terminal 13 on the positive side of the DC output and the negative side of the DC output.
 このように接続することで、急な電圧上昇や低下をすることなく、電力変動に対応することができる。したがって、直流電圧を安定化させる効果を奏する。 By connecting in this way, it is possible to respond to power fluctuations without sudden voltage rise or fall. Therefore, it has the effect of stabilizing the DC voltage.
 このような回路の場合、通常、交流直流変換部1は、直流出力の正側のコンデンサ21と直流出力の負側のコンデンサ22の電圧が等しくなるように動作が制御される。 In the case of such a circuit, the operation of the AC / DC converter 1 is usually controlled so that the voltage of the capacitor 21 on the positive side of the DC output and the capacitor 22 on the negative side of the DC output are equal.
 図2は、本発明の実施の形態1における電力変換装置100の通常動作時の電流経路を示す模式図である。図2における実線および点線は電流の流れを示している。上述のとおり、交流直流変換部1は、コンデンサ21とコンデンサ22との電圧が等しくなるように動作が制御されている。通常、直流出力の正側と直流出力の負側との間の負荷10はバランスを保っている。すなわち、正側と負側の電圧は等しく、正側と負側の負荷に同じ大きさの電流を供給している。ここで、負荷10は、直流出力の正側と直流出力の負側との間に一体接続されているものとする。 FIG. 2 is a schematic diagram showing a current path during normal operation of the power conversion device 100 according to the first embodiment of the present invention. The solid line and the dotted line in FIG. 2 show the current flow. As described above, the operation of the AC / DC converter 1 is controlled so that the voltages of the capacitor 21 and the capacitor 22 become equal. Normally, the load 10 between the positive side of the DC output and the negative side of the DC output is balanced. That is, the voltages on the positive side and the negative side are equal, and the same amount of current is supplied to the loads on the positive side and the negative side. Here, it is assumed that the load 10 is integrally connected between the positive side of the DC output and the negative side of the DC output.
 図2における点線は、直流出力の正側から負荷10に供給される電流と、直流出力の負側から負荷10に供給される電流を示している。このとき、負荷10の中性点と中性端子13とを結ぶ線路(以下、直流中性線とよぶ)は、直流出力の正側から負荷10の正側を通り直流中性線に流れる負荷電流と、直流中性線から直流出力の負側へと流れる負荷電流とが流れる。上述の通り、このときの各負荷電流は等しい。 The dotted line in FIG. 2 shows the current supplied to the load 10 from the positive side of the DC output and the current supplied to the load 10 from the negative side of the DC output. At this time, the line connecting the neutral point of the load 10 and the neutral terminal 13 (hereinafter referred to as a DC neutral line) is a load that flows from the positive side of the DC output to the positive side of the load 10 to the DC neutral line. The current and the load current flowing from the DC neutral line to the negative side of the DC output flow. As described above, the load currents at this time are equal.
 この結果、直流中性線において、直流出力の正側から負荷10の正側を通り直流中性線に流れる負荷電流と直流中性線から直流出力の負側へと流れる負荷電流とが打ち消しあい、電流はほとんど流れなくなる。すなわち、図2において実線で示したように、直流出力の正側から負荷10を通り、直流出力の負側へ戻る経路を通る負荷電流が流れる。 As a result, in the DC neutral wire, the load current flowing from the positive side of the DC output through the positive side of the load 10 to the DC neutral wire and the load current flowing from the DC neutral wire to the negative side of the DC output cancel each other out. , Almost no current flows. That is, as shown by the solid line in FIG. 2, the load current flows from the positive side of the DC output through the load 10 and through the path returning to the negative side of the DC output.
 図3は、発明の実施の形態1における電力変換装置100の交流直流変換部1後段の直流出力の正側で地絡が生じたときの電流経路を示す模式図である。図4は、本発明の実施の形態1における電力変換装置100の交流直流変換部1より後段の直流出力の負側で地絡が生じたときの電流経路を示す模式図である。 FIG. 3 is a schematic diagram showing a current path when a ground fault occurs on the positive side of the DC output in the subsequent stage of the AC / DC conversion unit 1 of the power conversion device 100 according to the first embodiment of the invention. FIG. 4 is a schematic diagram showing a current path when a ground fault occurs on the negative side of the DC output in the subsequent stage of the AC / DC conversion unit 1 of the power conversion device 100 according to the first embodiment of the present invention.
 例えば、交流直流変換部1後段の直流出力の正側で地絡が生じた場合を、図3を用いて説明する。図3における実線および一点鎖線は電流の流れを示している。 For example, a case where a ground fault occurs on the positive side of the DC output in the subsequent stage of the AC / DC converter 1 will be described with reference to FIG. The solid line and the alternate long and short dash line in FIG. 3 indicate the current flow.
 図3における実線は、直流出力の正側で地絡が生じた場合に直流出力の正側から地絡点Pおよび三相交流の接地相を通り、直流中性点を通る地絡電流の経路である。すなわち地絡点Pからアースを介して接地相と同電位とした中性端子13へ電流が還流する。 The solid line in FIG. 3 shows the path of the ground fault current passing through the ground fault point P and the ground phase of the three-phase AC from the positive side of the DC output when a ground fault occurs on the positive side of the DC output and passing through the neutral DC point. Is. That is, a current returns from the ground fault point P to the neutral terminal 13 having the same potential as the ground phase via the ground.
 また、図3における一点鎖線は、直流出力の正側で地絡が生じた場合に直流中性点から負荷10の負側を通り、直流出力の負側を通る負荷電流の経路である。 The alternate long and short dash line in FIG. 3 is a load current path that passes from the neutral DC point to the negative side of the load 10 and passes through the negative side of the DC output when a ground fault occurs on the positive side of the DC output.
 このように、直流出力の正側で地絡が生じた場合には、負荷10を経由する経路を流れる負荷電流と、直流中性点を経由する経路を流れる地絡電流とが生じる。 In this way, when a ground fault occurs on the positive side of the DC output, a load current flowing through the path passing through the load 10 and a ground fault current flowing through the path passing through the DC neutral point are generated.
 次に、交流直流変換部1より後段の直流出力の負側で地絡が生じた場合を、図4を用いて説明する。図4における実線および一点鎖線は電流の流れを示している。 Next, a case where a ground fault occurs on the negative side of the DC output in the subsequent stage from the AC / DC converter 1 will be described with reference to FIG. The solid line and the alternate long and short dash line in FIG. 4 show the current flow.
 図4における実線は、直流中性点から三相交流の接地相を通り、地絡点Pから直流出力の負側を通る地絡電流の経路である。また、図4における一点鎖線は、直流出力の正側から負荷10の正側を通り、直流中性点を通る負荷電流の経路である。 The solid line in FIG. 4 is the path of the ground fault current from the neutral DC point to the ground phase of the three-phase AC and from the ground fault point P to the negative side of the DC output. The alternate long and short dash line in FIG. 4 is a load current path that passes from the positive side of the DC output to the positive side of the load 10 and passes through the DC neutral point.
 このように、直流出力の負側で地絡が生じた場合にも、負荷10を経由する経路を流れる負荷電流と、直流中性点を経由する経路を流れる地絡電流とが生じる。 In this way, even when a ground fault occurs on the negative side of the DC output, a load current flowing through the path passing through the load 10 and a ground fault current flowing through the path passing through the DC neutral point are generated.
 したがって、接地相と中性端子13とを同電位とする構成とすることにより、直流出力の正側または負側で地絡が発生したいずれの場合においても、接地相と直流中性端子とを経由する電流が流れる。また、直流中性線を流れる電流は打ち消されることなく、負荷10の大きさに応じた電流が流れる。 Therefore, by configuring the ground phase and the neutral terminal 13 to have the same potential, the ground phase and the neutral terminal can be connected to each other regardless of whether a ground fault occurs on the positive side or the negative side of the DC output. The current that passes through flows. Further, the current flowing through the DC neutral wire is not canceled, and the current corresponding to the magnitude of the load 10 flows.
 いずれの場合も通常の運転時と比べ大きな電流が流れることになる。これらの各電流を例えば電流検出部66、67、68などを用いて計測することにより地絡を検出可能である。電流検出部66、67、68は交流直流変換部1の直流出力の各出力端子11、12、13が引き出された配線に流れる電流を測定する。これにより電流検出部66、67、68は地絡時の電流を検出することができる。なお、電流検出部66、67、68の検出位置は一例であり、上述した地絡時の各電流の経路の電流を検出できるように設けられていればよい。この検出された電流値に応じて地絡の判定をすることができる。 In either case, a larger current will flow than during normal operation. A ground fault can be detected by measuring each of these currents using, for example, current detection units 66, 67, 68 and the like. The current detection units 66, 67, and 68 measure the current flowing through the wiring drawn out from the output terminals 11, 12, and 13 of the DC output of the AC / DC conversion unit 1. As a result, the current detection units 66, 67, 68 can detect the current at the time of a ground fault. The detection positions of the current detection units 66, 67, and 68 are examples, and may be provided so as to be able to detect the current in each current path at the time of the ground fault described above. The ground fault can be determined according to the detected current value.
 すなわち、電力変換装置100の交流側および直流側の少なくとも一方において地絡時に流れる電流を検出することにより地絡を容易に検出することができる。なお、以上の説明は、負荷10の中性点と中性端子13を明示的に接続した場合に基づくが、負荷10の中性点が接地され、中性端子13と接続されていない場合においても、負荷10の中性点と中性端子13は同電位となるため同様である。 That is, the ground fault can be easily detected by detecting the current flowing at the time of the ground fault on at least one of the AC side and the DC side of the power conversion device 100. The above description is based on the case where the neutral point of the load 10 and the neutral terminal 13 are explicitly connected, but when the neutral point of the load 10 is grounded and is not connected to the neutral terminal 13. This is the same because the neutral point of the load 10 and the neutral terminal 13 have the same potential.
 このように、本発明の実施の形態1は、直流中性点を三相交流の接地相と同電位とする構成により、直流の出力側で地絡した場合において、電力変換装置100の交流側または直流側で地絡を検出することが容易な電力変換装置を得ることができる。 As described above, in the first embodiment of the present invention, the DC neutral point has the same potential as the ground phase of the three-phase AC, so that when a ground fault occurs on the DC output side, the AC side of the power conversion device 100 Alternatively, a power conversion device that can easily detect a ground fault on the DC side can be obtained.
実施の形態2.
 従来、交流電圧を整流する整流器と直流電力の変換回路とで構成され、複数の出力端子をもち、必要電圧に適した電圧を供給する例がある(例えば、特開2012-95450公報(図2))。しかしながら、このような例においても直流側の回路が地絡した場合、地絡電流が流れる経路が無いため、地絡検出できないという課題があり、さらには複数の電圧出力に対応する場合には構成要素が増加する課題もあった。これらの課題を解決するための形態を本発明の実施の形態2において説明する。
Embodiment 2.
Conventionally, there is an example in which a rectifier for rectifying an AC voltage and a DC power conversion circuit are provided, the device has a plurality of output terminals, and a voltage suitable for the required voltage is supplied (for example, Japanese Patent Application Laid-Open No. 2012-95450 (FIG. 2). )). However, even in such an example, when the circuit on the DC side has a ground fault, there is a problem that the ground fault cannot be detected because there is no path through which the ground fault current flows. There was also the issue of increasing the number of elements. A mode for solving these problems will be described in the second embodiment of the present invention.
 図5は、本発明の実施の形態2における電力変換装置の回路図、図6は本発明の実施の形態2における電力変換装置の変更例を示す回路図である。図1と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態1とは交流直流変換部1よりも後段側の構成が相違している。実施の形態1と構成および動作の異なる部分のみを説明する。 FIG. 5 is a circuit diagram of the power conversion device according to the second embodiment of the present invention, and FIG. 6 is a circuit diagram showing a modified example of the power conversion device according to the second embodiment of the present invention. Those having the same reference numerals as those in FIG. 1 indicate the same or corresponding configurations, and the description thereof will be omitted. The configuration on the rear stage side of the AC / DC conversion unit 1 is different from that of the first embodiment. Only the parts having different configurations and operations from those of the first embodiment will be described.
 実施の形態2の電力変換装置101は、コンデンサ21およびコンデンサ22よりも後段側にチョッパ回路3、直流フィルタリアクトル41(第一の直流フィルタリアクトル)および直流フィルタリアクトル42(第二の直流フィルタリアクトル)、直流フィルタコンデンサ51(第一の直流フィルタコンデンサ)および直流フィルタコンデンサ52(第二の直流フィルタコンデンサ)とを備えている。 In the power conversion device 101 of the second embodiment, the chopper circuit 3, the DC filter reactor 41 (first DC filter reactor) and the DC filter reactor 42 (second DC filter reactor) are located behind the capacitor 21 and the capacitor 22. , A DC filter capacitor 51 (first DC filter capacitor) and a DC filter capacitor 52 (second DC filter capacitor) are provided.
 チョッパ回路3は、その直流入力側に直流出力端子11と接続される第一の直流入力端子、直流出力端子12と接続される第二の直流入力端子および中性端子13と接続される第三の直流入力端子を有する。また、チョッパ回路3は、その直流出力側に直流電力を出力する正側の出力端子(第四の直流出力端子)と負側の出力端子(第五の直流出力端子)、出力中性端子(第六の直流出力端子)とを有する。チョッパ回路3は、各入力端子から入力される直流電力を電力変換して各出力端子から出力する。 The chopper circuit 3 has a first DC input terminal connected to the DC output terminal 11, a second DC input terminal connected to the DC output terminal 12, and a third connected to the neutral terminal 13 on the DC input side. Has a DC input terminal. Further, the chopper circuit 3 has a positive output terminal (fourth DC output terminal), a negative output terminal (fifth DC output terminal), and an output neutral terminal (fifth DC output terminal) that output DC power to the DC output side. It has a sixth DC output terminal). The chopper circuit 3 converts the DC power input from each input terminal into power and outputs it from each output terminal.
 チョッパ回路3は、第3の直流入力端子に対して、第1の直流入力端子側と第2の直流入力端子側に対称に接続されるハーフブリッジ301(第一のハーフブリッジ)およびハーフブリッジ302(第二のハーフブリッジ)で構成される。 The chopper circuit 3 is a half bridge 301 (first half bridge) and a half bridge 302 that are symmetrically connected to the first DC input terminal side and the second DC input terminal side with respect to the third DC input terminal. Consists of (second half bridge).
 ハーフブリッジ301は、直列接続された半導体スイッチ303および半導体スイッチ304により構成され、半導体スイッチ303と半導体スイッチ304との接続点からハーフブリッジ301の出力端子が引き出される。この出力端子は、チョッパ回路3の正側の出力端子である。 The half bridge 301 is composed of a semiconductor switch 303 and a semiconductor switch 304 connected in series, and an output terminal of the half bridge 301 is pulled out from a connection point between the semiconductor switch 303 and the semiconductor switch 304. This output terminal is the output terminal on the positive side of the chopper circuit 3.
 ハーフブリッジ302は、ハーフブリッジ301と同様に直列接続された半導体スイッチ305および半導体スイッチ306により構成される。そして、半導体スイッチ305と半導体スイッチ306との接続点からハーフブリッジ302の出力端子が引き出される。この出力端子は、チョッパ回路3の負側の出力端子である。 The half bridge 302 is composed of a semiconductor switch 305 and a semiconductor switch 306 connected in series like the half bridge 301. Then, the output terminal of the half bridge 302 is pulled out from the connection point between the semiconductor switch 305 and the semiconductor switch 306. This output terminal is an output terminal on the negative side of the chopper circuit 3.
 ハーフブリッジ301とハーフブリッジ302との接続点から出力端子が引き出される。この出力端子は、チョッパ回路3の出力中性端子である。この出力中性端子は中性端子13と接続されている。すなわち、三相交流の接地相と同電位となるように接続されている。 The output terminal is pulled out from the connection point between the half bridge 301 and the half bridge 302. This output terminal is an output neutral terminal of the chopper circuit 3. This output neutral terminal is connected to the neutral terminal 13. That is, they are connected so as to have the same potential as the ground phase of three-phase alternating current.
 直流フィルタリアクトル41は、一端がハーフブリッジ301から引き出された出力端子と接続される。また、直流フィルタリアクトル42は、一端がハーフブリッジ302から引き出された出力端子と接続される。 One end of the DC filter reactor 41 is connected to an output terminal drawn from the half bridge 301. Further, one end of the DC filter reactor 42 is connected to an output terminal drawn from the half bridge 302.
 直流フィルタコンデンサ51は、直流フィルタリアクトル41の後段に一端が接続され、他端が出力中性端子と接続される。直流フィルタコンデンサ52は、直流フィルタリアクトル42の後段に一端が接続され、他端が出力中性端子と接続される。 One end of the DC filter capacitor 51 is connected to the rear stage of the DC filter reactor 41, and the other end is connected to the output neutral terminal. One end of the DC filter capacitor 52 is connected to the rear stage of the DC filter reactor 42, and the other end is connected to the output neutral terminal.
 直流フィルタコンデンサ51および直流フィルタコンデンサ52よりも後段に引き出された電力変換装置101の各出力端子は、実施の形態1と同様に例えば負荷(図示なし)と接続される。各出力端子のうち出力中性端子は、負荷の中性点と接続される。 Each output terminal of the power conversion device 101 drawn out after the DC filter capacitor 51 and the DC filter capacitor 52 is connected to, for example, a load (not shown) as in the first embodiment. Of the output terminals, the output neutral terminal is connected to the neutral point of the load.
 このような構成において、チョッパ回路3では、直流出力の正側の直流出力電圧と直流出力の負側の直流出力電圧が等しくなるように各半導体スイッチが制御される。これにより、交流側の電圧に関わらず、所望の直流電圧が出力できるという効果を奏する。 In such a configuration, in the chopper circuit 3, each semiconductor switch is controlled so that the DC output voltage on the positive side of the DC output and the DC output voltage on the negative side of the DC output are equal. This has the effect of being able to output a desired DC voltage regardless of the voltage on the AC side.
 次に、図6を用いて本発明の実施の形態2における電力変換装置101の変更例を説明する。図1から図5と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。 Next, a modified example of the power conversion device 101 according to the second embodiment of the present invention will be described with reference to FIG. Those having the same reference numerals as those in FIGS. 1 to 5 indicate the same or corresponding configurations, and the description thereof will be omitted.
 図6に示す電力変換装置101の変更例は、さらにチョッパ回路31、直流フィルタリアクトル43および直流フィルタリアクトル44、直流フィルタコンデンサ53および直流フィルタコンデンサ54、を備える。 An example of modification of the power conversion device 101 shown in FIG. 6 further includes a chopper circuit 31, a DC filter reactor 43 and a DC filter reactor 44, a DC filter capacitor 53, and a DC filter capacitor 54.
 チョッパ回路31は、上述したチョッパ回路3と同様の構成である。すなわち、ハーフブリッジ301およびハーフブリッジ302と同様の構成であるハーフブリッジ311とハーフブリッジ312で構成される。チョッパ回路3とチョッパ回路31の各直流入力端子は並列に接続される。 The chopper circuit 31 has the same configuration as the chopper circuit 3 described above. That is, it is composed of a half bridge 311 and a half bridge 312 having the same configuration as the half bridge 301 and the half bridge 302. Each DC input terminal of the chopper circuit 3 and the chopper circuit 31 is connected in parallel.
 ハーフブリッジ311を構成する各半導体スイッチの接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の正側の出力端子である。同様に、ハーフブリッジ312を構成する各半導体スイッチの接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の負側の出力端子である。 The output terminal is pulled out from the connection point of each semiconductor switch constituting the half bridge 311. This output terminal is the output terminal on the positive side of the chopper circuit 31. Similarly, the output terminal is pulled out from the connection point of each semiconductor switch constituting the half bridge 312. This output terminal is an output terminal on the negative side of the chopper circuit 31.
 ハーフブリッジ311とハーフブリッジ312との接続点から出力端子が引き出される。この出力端子は、チョッパ回路31の出力中性端子である。この出力中性端子はチョッパ回路3の出力中性端子と接続されている。すなわち、三相交流の接地相と同電位となるように接続されている。 The output terminal is pulled out from the connection point between the half bridge 311 and the half bridge 312. This output terminal is an output neutral terminal of the chopper circuit 31. This output neutral terminal is connected to the output neutral terminal of the chopper circuit 3. That is, they are connected so as to have the same potential as the ground phase of three-phase alternating current.
 直流フィルタリアクトル43および直流フィルタリアクトル44、直流フィルタコンデンサ53および直流フィルタコンデンサ54は、チョッパ回路31の後段に接続される。これらは直流フィルタリアクトル41および直流フィルタリアクトル42、直流フィルタコンデンサ51および直流フィルタコンデンサ52がチョッパ回路3の後段に接続されたものと同様の配置でチョッパ回路31に接続される。 The DC filter reactor 43, the DC filter reactor 44, the DC filter capacitor 53, and the DC filter capacitor 54 are connected to the subsequent stage of the chopper circuit 31. These are connected to the chopper circuit 31 in the same arrangement as those in which the DC filter reactor 41 and the DC filter reactor 42, the DC filter capacitor 51 and the DC filter capacitor 52 are connected to the subsequent stage of the chopper circuit 3.
 また、各チョッパ回路3、31を異なる出力電圧になるように制御する。これによりチョッパ回路を追加することで異なる電圧を出力することが可能となる。すなわち、複数の電圧の直流出力を同時に得ることが可能となる。 Also, each chopper circuit 3 and 31 is controlled so as to have a different output voltage. This makes it possible to output different voltages by adding a chopper circuit. That is, it is possible to obtain DC outputs of a plurality of voltages at the same time.
 また、直流フィルタコンデンサ53および直流フィルタコンデンサ54よりも後段に引き出された出力中性端子は、三相交流の接地相と同電位になるように接続されている。この場合における複数の出力電圧の基準電位は直流中性点となる。 Further, the output neutral terminals drawn out after the DC filter capacitor 53 and the DC filter capacitor 54 are connected so as to have the same potential as the ground phase of the three-phase AC. In this case, the reference potentials of the plurality of output voltages are DC neutral points.
 したがって、実施の形態1と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡を検出することが容易な電力変換装置を得ることができる効果を奏する。さらに、基準電位のそろった所望の複数の直流電圧を得ることができる効果を奏する。 Therefore, in the case of a ground fault on the DC output side as in the first embodiment, there is an effect that a power conversion device capable of easily detecting the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 can be obtained. Play. Further, it has the effect of being able to obtain a plurality of desired DC voltages having a uniform reference potential.
 なお、本発明の実施の形態2では、チョッパ回路を2組接続したが、チョッパ回路は3組以上であってもよい。また、MOSFETの記号によって半導体スイッチを表現しているが、半導体素子としてMOSFETに限られるものではなく、バイポーラトランジスタ、IGBT、JFETなど他の種類の素子であっても良い。この場合においても、上述の各効果を奏する。 In the second embodiment of the present invention, two sets of chopper circuits are connected, but there may be three or more sets of chopper circuits. Further, although the semiconductor switch is represented by the MOSFET symbol, the semiconductor element is not limited to the MOSFET, and may be another type of element such as a bipolar transistor, an IGBT, or a JFET. Even in this case, the above-mentioned effects are obtained.
実施の形態3.
 図7は本発明の実施の形態3における交流直流変換部1の回路図である。図8は本発明の実施の形態3における交流直流変換部1の変更例を示す回路図である。実施の形態1および実施の形態2と構成および動作の異なる部分のみを説明する。
Embodiment 3.
FIG. 7 is a circuit diagram of the AC / DC converter 1 according to the third embodiment of the present invention. FIG. 8 is a circuit diagram showing a modified example of the AC / DC converter 1 according to the third embodiment of the present invention. Only the parts having different configurations and operations from those of the first embodiment and the second embodiment will be described.
 本発明の実施の形態3における交流直流変換部1は、図7に示すように、半導体スイッチ1001と1002で構成されるハーフブリッジ(第三のハーフブリッジ)と、半導体スイッチ1003と1004で構成されるハーフブリッジ(第四のハーフブリッジ)を用いたフルブリッジで構成される。また、フルブリッジの交流側には、系統側の高調波規制値に合わせた交流フィルタが接続される。なお、交流フィルタの構成については、各コンデンサ501、502および各リアクトル401、402で構成されるものを図示しているが周知技術であるためその詳細な説明を省略する。 As shown in FIG. 7, the AC / DC converter 1 according to the third embodiment of the present invention is composed of a half bridge (third half bridge) composed of semiconductor switches 1001 and 1002, and semiconductor switches 1003 and 1004. It is composed of a full bridge using a half bridge (fourth half bridge). Further, an AC filter matching the harmonic regulation value on the system side is connected to the AC side of the full bridge. Regarding the configuration of the AC filter, the one composed of the capacitors 501 and 502 and the reactors 401 and 402 is shown in the figure, but since it is a well-known technique, detailed description thereof will be omitted.
 本発明の実施の形態3におけるフルブリッジは一端が、直流出力端子11と接続され、他端が直流出力端子12と接続される各ハーフブリッジが並列に接続されて構成される。 The full bridge according to the third embodiment of the present invention is configured by connecting each half bridge in which one end is connected to the DC output terminal 11 and the other end is connected to the DC output terminal 12 in parallel.
 フルブリッジの正側の直流端子は、交流直流変換部1の直流出力の正側にあたる。また、フルブリッジの負側の直流端子は、交流直流変換部1の直流出力の負側にあたる。そして直流中性点が三相交流の接地相と同電位になるように接続される。 The DC terminal on the positive side of the full bridge corresponds to the positive side of the DC output of the AC / DC converter 1. Further, the DC terminal on the negative side of the full bridge corresponds to the negative side of the DC output of the AC / DC conversion unit 1. Then, the DC neutral point is connected so as to have the same potential as the ground phase of the three-phase AC.
 半導体スイッチ1001と1002の接続点は、三相交流の接地相以外の一相と接続される。また、半導体スイッチ1003と1004の接続点は三相交流の接地相および前記一相以外の相と接続される。 The connection points of the semiconductor switches 1001 and 1002 are connected to one phase other than the ground phase of three-phase alternating current. Further, the connection points of the semiconductor switches 1003 and 1004 are connected to a ground phase of three-phase alternating current and a phase other than the one phase.
 このように交流直流変換部1は、各半導体スイッチを用いたフルブリッジで構成される交流直流変換回路である。これにより、交流側が電圧変動した場合でも、直流リンク電圧を一定に保つように制御可能となる効果を奏する。また、電源周波数よりも充分高い周波数でスイッチングすることで、交流側の低次高調波を抑制する効果を奏する。 As described above, the AC / DC conversion unit 1 is an AC / DC conversion circuit composed of a full bridge using each semiconductor switch. As a result, even if the voltage on the AC side fluctuates, it is possible to control the DC link voltage so as to keep it constant. Further, by switching at a frequency sufficiently higher than the power supply frequency, the effect of suppressing low-order harmonics on the AC side is obtained.
 図8は、上述したフルブリッジの各半導体スイッチを、各ダイオード1005,1006,1007,1008を用いて構成したものである。各ダイオードを用いてフルブリッジを構成した交流直流変換回路は、各半導体スイッチで構成するよりも安価であることや、制御系が不要となるため、コスト面で有利な効果を奏する。 FIG. 8 shows each of the above-mentioned full-bridge semiconductor switches configured by using each diode 1005, 1006, 1007, 1008. An AC-DC conversion circuit in which a full bridge is configured by using each diode is cheaper than a circuit composed of each semiconductor switch and does not require a control system, so that it has an advantageous effect in terms of cost.
 すなわち、高調波を抑制したい場合においては、図7に示した交流直流変換回路を選択し、高調波を許容できる場合においては、図8に示した交流直流変換回路を選択する。これにより、本発明の実施の形態1および実施の形態2の効果に加え、本発明の実施の形態3において上述した各交流直流変換回路による効果を奏する。 That is, when it is desired to suppress harmonics, the AC-DC conversion circuit shown in FIG. 7 is selected, and when harmonics are acceptable, the AC-DC conversion circuit shown in FIG. 8 is selected. As a result, in addition to the effects of the first and second embodiments of the present invention, the effects of the AC / DC conversion circuits described above in the third embodiment of the present invention are exhibited.
 さらに、実施の形態1および実施の形態2と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出することが容易な電力変換装置を得ることができる効果を奏する。また、所望の直流電圧を得ることができる効果を奏する。 Further, in the case of a ground fault on the DC output side as in the first and second embodiments, a power conversion device capable of easily detecting the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is obtained. It has an effect that can be achieved. In addition, it has the effect of obtaining a desired DC voltage.
 また、本発明の実施の形態2で示すように、交流直流変換部1の直流出力の後段側にチョッパ回路3を接続した場合には、チョッパ回路3の制御によって交流入力電圧変動が直流出力に与える影響を抑制できる効果を奏する。 Further, as shown in the second embodiment of the present invention, when the chopper circuit 3 is connected to the rear stage side of the DC output of the AC / DC conversion unit 1, the AC input voltage fluctuation becomes the DC output by the control of the chopper circuit 3. It has the effect of suppressing the effect.
 なお、図7および図8に示した交流フィルタは一例であり、他の形式のフィルタを用いてもよい。また、三相交流の接地された相と、直流中性点が同電位になるように接続された交流直流変換回路であれば適用可能であり、他の回路形式であっても良い。 The AC filter shown in FIGS. 7 and 8 is an example, and other types of filters may be used. Further, any AC / DC conversion circuit connected so that the grounded phase of the three-phase AC and the DC neutral point have the same potential can be applied, and other circuit types may be used.
 また、MOSFETの記号によって半導体スイッチを表現しているが、半導体素子としてMOSFETに限られるものではなく、バイポーラトランジスタ、IGBT、JFETなど他の種類の素子であっても良い。これらの場合においても上述の各効果を奏する。 Although the semiconductor switch is represented by the MOSFET symbol, the semiconductor element is not limited to the MOSFET, and may be another type of element such as a bipolar transistor, an IGBT, or a JFET. Even in these cases, the above-mentioned effects are obtained.
実施の形態4.
 本発明の実施の形態1から実施の形態3で示したように、本発明の実施の形態における各電力変換装置では直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡を検出することが容易となる。
Embodiment 4.
As shown in the first to third embodiments of the present invention, in each power conversion device according to the embodiment of the present invention, when a ground fault occurs on the DC output side, the AC side or DC of the AC / DC conversion unit 1 It becomes easy to detect the ground fault on the side.
 地絡電流は、通常動作では想定されない大きさの電流であるため、電力変換装置や地絡電流が流れる経路の配線などに損傷を与えることがある。このため、地絡の有無を判断する必要がある。さらには、地絡を検出した後、適切に地絡電流を遮断する必要がある。 Since the ground fault current is a current of a magnitude that is not expected in normal operation, it may damage the power converter and the wiring of the path through which the ground fault current flows. Therefore, it is necessary to determine the presence or absence of a ground fault. Furthermore, after detecting the ground fault, it is necessary to appropriately cut off the ground fault current.
 本発明の実施の形態4においては、地絡の検出が可能な電力変換装置を説明する。図9は、本発明の実施の形態4における電力変換装置の回路図である。図1から図8と同じ符号をつけたものは、同一または対応する構成を示しており、その説明を省略する。 In the fourth embodiment of the present invention, a power conversion device capable of detecting a ground fault will be described. FIG. 9 is a circuit diagram of the power conversion device according to the fourth embodiment of the present invention. Those having the same reference numerals as those in FIGS. 1 to 8 indicate the same or corresponding configurations, and the description thereof will be omitted.
 図9を用いて地絡電流を検出する例を説明する。図9から図16は、本発明の実施の形態における交流直流変換部1の交流側または直流側の少なくともいずれかの電流を検出する地絡判定手段60を有している。 An example of detecting a ground fault current will be described with reference to FIG. 9 to 16 have a ground fault determining means 60 for detecting at least one current on the AC side or the DC side of the AC / DC conversion unit 1 according to the embodiment of the present invention.
 図9は電力変換装置102の交流側で地絡の検出を行う例を示す図である。図9における地絡判定手段60は、電流検出部61と地絡判定部70とを有する。 FIG. 9 is a diagram showing an example of detecting a ground fault on the AC side of the power conversion device 102. The ground fault determining means 60 in FIG. 9 has a current detecting unit 61 and a ground fault determining unit 70.
 電流検出部61は、交流直流変換部1の交流側に設けられる。具体的には、接地相が接地されている箇所と交流直流変換部1との間に設けられる。そして、この間の三相電流を一括して測定する。 The current detection unit 61 is provided on the AC side of the AC / DC conversion unit 1. Specifically, it is provided between the place where the grounding phase is grounded and the AC / DC conversion unit 1. Then, the three-phase current during this period is measured collectively.
 地絡判定部70は、電流検出部61で検出された検出電流値に基づいて地絡の有無を判定する。 The ground fault determination unit 70 determines the presence or absence of a ground fault based on the detected current value detected by the current detection unit 61.
 交流直流変換部1の交流側は、通常運転時に三相平衡状態もしくは三相平衡に近い状態にある。このとき交流側の三相電流の和は0もしくは非常に小さな値となる。一方で、地絡時には、各相の電流にアンバランスが発生する。地絡の発生は、その各相の電流のアンバランスを測定することで検知が可能となる。そこで電流検出部61は、三相交流電流の零相成分を測定することにより各相の電流のアンバランスを測定する。 The AC side of the AC / DC converter 1 is in a three-phase equilibrium state or a state close to three-phase equilibrium during normal operation. At this time, the sum of the three-phase currents on the AC side is 0 or a very small value. On the other hand, at the time of a ground fault, an imbalance occurs in the current of each phase. The occurrence of a ground fault can be detected by measuring the current imbalance of each phase. Therefore, the current detection unit 61 measures the current imbalance of each phase by measuring the zero-phase component of the three-phase alternating current.
 そして、地絡判定部70は、電流検出部61によって検出された零相成分が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。 Then, the ground fault determination unit 70 determines that a ground fault has occurred when the zero-phase component detected by the current detection unit 61 exceeds a predetermined size. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
 図10は、図9の地絡判定部70のハードウエア構成図である。図10において地絡判定部70はプロセッサ33と、記憶部34を有する。プロセッサ33は、記憶部34に記憶されたプログラムを実行することにより、上述の地絡判定部70の処理を行う。ここで、記憶部34は、判定に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリにより構成される。プロセッサ33は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)などのハードウエア回路に論理構成されたプロセッサにより構成される。また、複数のプロセッサ33および複数の記憶部34が連携して上記機能を実行してもよい。以下で説明する地絡判定部70についても同様である。 FIG. 10 is a hardware configuration diagram of the ground fault determination unit 70 of FIG. In FIG. 10, the ground fault determination unit 70 includes a processor 33 and a storage unit 34. The processor 33 performs the above-mentioned processing of the ground fault determination unit 70 by executing the program stored in the storage unit 34. Here, the storage unit 34 is composed of a memory in which parameters necessary for determination, a program describing the above processing, and the like are stored. The processor 33 is composed of a processor logically configured in a hardware circuit such as a microcomputer (microcomputer), a DSP (Digital Signal Processor), or an FPGA (Field Programmable Gate Array). Further, the plurality of processors 33 and the plurality of storage units 34 may cooperate to execute the above function. The same applies to the ground fault determination unit 70 described below.
 次に、図11に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。図11における地絡判定手段60は、各電流検出部62、63、64と地絡判定部70とを有する。 Next, an example of detecting a ground fault on the AC side of the power conversion device 102 shown in FIG. 11 will be described. The ground fault determining means 60 in FIG. 11 includes current detecting units 62, 63, 64 and a ground fault determining unit 70.
 各電流検出部62、63、64は、接地相が接地されている箇所と交流直流変換部1との間に設けられる。各電流検出部62、63、64はそれぞれ異なった相の電流を検出する。 Each current detection unit 62, 63, 64 is provided between a place where the ground phase is grounded and the AC / DC conversion unit 1. Each current detection unit 62, 63, 64 detects currents of different phases.
 各電流検出部62、63、64で個別に測定された測定値の総和をとることにより零相成分すなわち零相電流を求めることができる。 The zero-phase component, that is, the zero-phase current can be obtained by taking the sum of the measured values individually measured by each current detection unit 62, 63, 64.
 そして、地絡判定部70は、電流検出部62、63、64によって検出された電流検出値から算出された零相電流が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。 Then, the ground fault determination unit 70 states that a ground fault has occurred when the zero-phase current calculated from the current detection values detected by the current detection units 62, 63, 64 exceeds a predetermined magnitude. judge. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
 次に、図12に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。
図12における地絡判定手段60は、電流検出部63と地絡判定部70を有する。これは、図11に示す構成から、電流検出部62および64を省略したものである。
Next, an example of detecting a ground fault on the AC side of the power conversion device 102 shown in FIG. 12 will be described.
The ground fault determining means 60 in FIG. 12 includes a current detecting unit 63 and a ground fault determining unit 70. This is the configuration in which the current detection units 62 and 64 are omitted from the configuration shown in FIG.
 電流検出部63は、接地相が接地されている箇所と交流直流変換部1との間の接地相に設けられる。接地相には、通常運転時に電流は流れないが、地絡が発生すると、地絡電流が流れる。電流検出部63で接地相の電流を測定することにより、地絡電流の検出が可能となる。 The current detection unit 63 is provided in the ground phase between the place where the ground phase is grounded and the AC / DC conversion unit 1. No current flows through the ground phase during normal operation, but when a ground fault occurs, a ground fault current flows. By measuring the current of the ground phase with the current detection unit 63, it is possible to detect the ground fault current.
 そして、地絡判定部70は、電流検出部63によって検出された電流検出値が予め決められた大きさを超過した場合に、地絡が発生したと判定する。したがって、交流直流変換部1の交流側で地絡を検出することが可能となる。 Then, the ground fault determination unit 70 determines that a ground fault has occurred when the current detection value detected by the current detection unit 63 exceeds a predetermined magnitude. Therefore, it is possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
 次に、図13に示す、電力変換装置102の交流側で地絡の検出を行う例を説明する。図13における地絡判定手段60は、三相交流の接地相を接地している線路の電流を検出する電流検出部65と地絡判定部70とを有する。 Next, an example of detecting a ground fault on the AC side of the power conversion device 102 shown in FIG. 13 will be described. The ground fault determining means 60 in FIG. 13 includes a current detecting unit 65 for detecting the current of the line grounding the grounding phase of the three-phase alternating current and a ground fault determining unit 70.
 三相交流の接地相を接地している線路は、通常運転時に電流は流れないが、地絡が発生すると、地絡電流が流れる。電流検出部65は、この三相交流の接地相を接地する線路に流れる地絡電流を測定するものである。 A line that is grounded to the grounding phase of three-phase AC does not allow current to flow during normal operation, but when a ground fault occurs, a ground fault current flows. The current detection unit 65 measures the ground fault current flowing through the line that grounds the ground phase of the three-phase alternating current.
 そして、地絡判定部70は、電流検出部65によって検出された電流検出値が予め決められた値よりも大きい場合に地絡が発生したと判定する。これにより、交流直流変換部1の交流側で地絡を検出することが可能となる。 Then, the ground fault determination unit 70 determines that a ground fault has occurred when the current detection value detected by the current detection unit 65 is larger than a predetermined value. This makes it possible to detect a ground fault on the AC side of the AC / DC conversion unit 1.
 次に、図14に示す、電力変換装置102の直流側で地絡の検出を行う例を説明する。図14における地絡判定手段60は、電流検出部66、67と地絡判定部70を有する。 Next, an example of detecting a ground fault on the DC side of the power conversion device 102 shown in FIG. 14 will be described. The ground fault determining means 60 in FIG. 14 includes current detecting units 66 and 67 and a ground fault determining unit 70.
 具体的には、電流検出部66は、コンデンサ21の後段に設けられ、交流直流変換部1の直流出力の正側の線路に流れる電流を検出する。電流検出部67は、コンデンサ22の後段に設けられ、交流直流変換部1の直流出力の負側の線路に流れる電流を検出する。 Specifically, the current detection unit 66 is provided after the capacitor 21, and detects the current flowing through the line on the positive side of the DC output of the AC / DC conversion unit 1. The current detection unit 67 is provided after the capacitor 22, and detects the current flowing through the line on the negative side of the DC output of the AC / DC conversion unit 1.
 また、電流検出部66は、直流出力側に各直流フィルタリアクトルおよび各直流コンデンサが設けられている場合には、各直流フィルタリアクトルと各直流フィルタコンデンサの後段に設けられる。電流検出部67は、直流出力側に各直流フィルタリアクトルおよび各直流コンデンサが設けられている場合には、各直流フィルタリアクトルと各直流フィルタコンデンサの後段に設けられる。 Further, the current detection unit 66 is provided after each DC filter reactor and each DC filter capacitor when each DC filter reactor and each DC capacitor are provided on the DC output side. The current detection unit 67 is provided after each DC filter reactor and each DC filter capacitor when each DC filter reactor and each DC capacitor are provided on the DC output side.
 交流直流変換部1の直流出力の正側の線路に流れる電流値と直流出力の負側の線路に流れる電流値は、通常運転時は同等になる。すなわち、直流中性線に流れる電流は0もしくは非常に小さい値となる。一方で地絡が発生すると、直流出力の正側と直流出力の負側の線路に流れる電流値は異なり、直流中性線に地絡電流が流れる。 The current value flowing through the line on the positive side of the DC output of the AC / DC converter 1 and the current value flowing through the line on the negative side of the DC output are the same during normal operation. That is, the current flowing through the DC neutral wire is 0 or a very small value. On the other hand, when a ground fault occurs, the current values flowing in the lines on the positive side of the DC output and the lines on the negative side of the DC output are different, and the ground fault current flows in the neutral DC line.
 したがって、地絡判定部70は、地絡発生時に直流出力の正側と負側との電流値は異なることを利用し、電流検出部66および電流検出部67で測定された各電流検出値を用いて地絡を判定することができる。 Therefore, the ground fault determination unit 70 utilizes the fact that the current values on the positive side and the negative side of the DC output are different when a ground fault occurs, and obtains each current detection value measured by the current detection unit 66 and the current detection unit 67. Can be used to determine ground faults.
 地絡の判定方法として、例えば各電流検出値の差分を用いる方法がある。各電流検出値の差分を求め、この差分が大きくなったときに地絡を検出できる。具体的には、地絡が発生した際の差分の基準値を予め設けており、この基準値と検出した差分の値とを比較し、基準値よりも差分の値が大きくなったときに地絡したと判定するようにする。または、通常時の各電流検出値の差分の値を基準値とし、これと各電流検出値との差分の値を比較し、通常時の基準値からの増加に基づいて判定してもよい。 As a method of determining a ground fault, for example, there is a method of using the difference between each current detection value. The difference between each current detection value can be obtained, and a ground fault can be detected when this difference becomes large. Specifically, a reference value for the difference when a ground fault occurs is set in advance, and this reference value is compared with the detected difference value, and when the difference value becomes larger than the reference value, the ground value is set. Try to determine that it is entangled. Alternatively, the difference value of each current detection value in the normal time may be used as a reference value, the difference value between this and each current detection value may be compared, and the determination may be made based on the increase from the reference value in the normal time.
 また、別の判定方法として、各電流検出値を足し合わせた値を用いる方法がある。この場合は、通常運転時には足し合わせた値がほぼ0となり、地絡時はそれと比較して大きな値となることを利用する。すなわち、各電流検出値を足し合わせた値が、予め設けた基準値より大きくなったときに、地絡したと判定する。これらのように、各電流検出値を用いた値と予め決められた基準値との比較により地絡を検出することができる。 Another determination method is to use the sum of the current detection values. In this case, it is utilized that the added value becomes almost 0 at the time of normal operation and becomes a larger value than that at the time of a ground fault. That is, when the sum of the current detection values becomes larger than the predetermined reference value, it is determined that the ground fault has occurred. As described above, the ground fault can be detected by comparing the value using each current detection value with a predetermined reference value.
 次に、図15に示す電力変換装置102の直流側で地絡の検出を行う例を説明する。図15における地絡判定手段60は、電流検出部68と地絡判定部70を有する。電流検出部68は、直流中性線に設けられ、直流中性線の電流を検出する。 Next, an example of detecting a ground fault on the DC side of the power conversion device 102 shown in FIG. 15 will be described. The ground fault determining means 60 in FIG. 15 includes a current detecting unit 68 and a ground fault determining unit 70. The current detection unit 68 is provided on the DC neutral wire and detects the current of the DC neutral wire.
 本発明の実施の形態1でも説明したように、直流中性線には、通常運転時に電流がほとんど流れない。 As described in the first embodiment of the present invention, almost no current flows through the DC neutral wire during normal operation.
 一方で、地絡時には、直流中性線に地絡電流が流れる。すなわち、電流検出部68で検出された直流中性線の電流検出値を用いて地絡を検出することが可能となる。 On the other hand, at the time of a ground fault, a ground fault current flows through the DC neutral wire. That is, it is possible to detect a ground fault by using the current detection value of the DC neutral wire detected by the current detection unit 68.
 したがって、電流検出部68の電流検出値と予め決められた基準値との比較により地絡を検出することができる。また、電流検出部68の電流検出値の増加により地絡を検出することができる。 Therefore, the ground fault can be detected by comparing the current detection value of the current detection unit 68 with a predetermined reference value. Further, the ground fault can be detected by increasing the current detection value of the current detection unit 68.
 次に、図16に示す電力変換装置102の直流側で地絡の検出を行う例を説明する。図16における地絡判定手段60は、電流検出部69と地絡判定部70を有する。この電流検出部69は、交流直流変換部1の直流出力の正側と直流出力の負側を一括して測定するものであり、直流中性線の電流を測定しないように設置する。 Next, an example of detecting a ground fault on the DC side of the power conversion device 102 shown in FIG. 16 will be described. The ground fault determining means 60 in FIG. 16 has a current detecting unit 69 and a ground fault determining unit 70. The current detection unit 69 measures the positive side of the DC output and the negative side of the DC output of the AC / DC conversion unit 1 collectively, and is installed so as not to measure the current of the DC neutral wire.
 通常運転時に、直流電流を一括して検出すると、正側を流れる電流と負側を流れる電流が打ち消しあい、ほとんど電流は検出されない。一方で、地絡が発生すると、直流出力の正側の電流と直流出力の負側の電流が打ち消されないため、通常運転時と比較して大きな電流が流れる。これを利用することで地絡を検出することが可能となる。 During normal operation, if the direct current is detected all at once, the current flowing on the positive side and the current flowing on the negative side cancel each other out, and almost no current is detected. On the other hand, when a ground fault occurs, the current on the positive side of the DC output and the current on the negative side of the DC output are not canceled, so that a large current flows as compared with the normal operation. By using this, it becomes possible to detect a ground fault.
 すなわち、電流検出部69の電流検出値と予め決められた基準値との比較により地絡が発生したことを判定できる。 That is, it can be determined that a ground fault has occurred by comparing the current detection value of the current detection unit 69 with a predetermined reference value.
 したがって、各電力変換装置の直流側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が可能となる効果を奏する。 Therefore, when a ground fault occurs on the DC side of each power conversion device, the effect is that the ground fault can be detected on the AC side or the DC side of the AC / DC conversion unit 1.
 なお、図9から図16において、地絡判定部70は、地絡を判定したら地絡電流を遮断するように電力変換装置102の動作を停止するような制御を行ってもよい。 Note that, in FIGS. 9 to 16, the ground fault determination unit 70 may perform control to stop the operation of the power conversion device 102 so as to cut off the ground fault current when the ground fault is determined.
 例えば、チョッパ回路3やチョッパ回路31を有する各電力変換装置において地絡検出した際には、各チョッパ回路3、31の前記半導体スイッチのスイッチングを停止するようにすることで地絡電流を遮断することが可能となる。これにより地絡電流による各電力変換装置や経路の配線などへの損傷を防止することができる効果を奏する。 For example, when a ground fault is detected in each power conversion device having a chopper circuit 3 or a chopper circuit 31, the ground fault current is cut off by stopping the switching of the semiconductor switch of each chopper circuit 3 or 31. It becomes possible. This has the effect of preventing damage to each power conversion device and route wiring due to ground fault current.
 また、図9から図16で地絡判定手段60を有する電力変換装置102を説明したが、図17に示すように、電力変換装置102は遮断器80を有する構成としてもよい。遮断器80には、例えば、MCCB(Molded Case Circuit Breaker)や漏電遮断器などが用いられる。この場合、各電流検出部によって検出された電流値に応じて、上述した各方法によって地絡を判定し、地絡を検出した後、遮断器80をオフにすることで地絡電流を遮断することができる。 Further, although the power conversion device 102 having the ground fault determination means 60 has been described with reference to FIGS. 9 to 16, the power conversion device 102 may have a circuit breaker 80 as shown in FIG. As the circuit breaker 80, for example, an MCCB (Molded Case Circuit Breaker), an earth leakage breaker, or the like is used. In this case, the ground fault is determined by each of the above-mentioned methods according to the current value detected by each current detection unit, and after detecting the ground fault, the ground fault current is cut off by turning off the circuit breaker 80. be able to.
 すなわち、遮断器80と組み合わせることで地絡判定手段60の検出電流値を利用し、地絡電流を遮断することを可能とする効果を奏する。 That is, by combining with the circuit breaker 80, the detection current value of the ground fault determining means 60 is used, and the effect of making it possible to cut off the ground fault current is achieved.
 上述の各電流検出部は、例えば、CT(Current Transformer)を用いるが、例えば、遮断器80としてMCCBや漏電遮断器等を用いる場合、各電流検出部および地絡判定部70は遮断器80に内蔵していても良い。この場合、遮断器80外の地絡判定部70は、補助接点などによって遮断器80の動作を検出することで、地絡を検出しても良い。 For example, CT (Current Transformer) is used for each of the above-mentioned current detection units. For example, when an MCCB or an earth leakage breaker is used as the circuit breaker 80, each current detection unit and the ground fault determination unit 70 are used as the circuit breaker 80. It may be built-in. In this case, the ground fault determination unit 70 outside the circuit breaker 80 may detect the ground fault by detecting the operation of the circuit breaker 80 with an auxiliary contact or the like.
 したがって、本実施の形態によれば、直流側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が容易となる効果を奏する。また、各電流検出部の電流測定値と、地絡判定部70または遮断器80とを用いることにより、地絡を検出した後、地絡電流を遮断することができる効果を奏する。さらに、地絡電流による各電力変換装置や経路の配線などの損傷を防止することができる効果を奏する。 Therefore, according to the present embodiment, in the case of a ground fault on the DC side, the effect of facilitating the detection of the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is obtained. Further, by using the current measurement value of each current detection unit and the ground fault determination unit 70 or the circuit breaker 80, the effect of being able to cut off the ground fault current after detecting the ground fault is obtained. Further, it has an effect of preventing damage to each power conversion device and path wiring due to ground fault current.
 なお、本実施の形態4において、各電流検出部を設けた各例を示したが、交流側または直流側のいずれかに図9から図16のいずれかの電流検出部があればよく、図9から図16に示した各電流検出部は組み合わせて用いてもよい。この場合においても、上述した効果を奏する。 Although each example in which each current detection unit is provided is shown in the fourth embodiment, it is sufficient that any of the current detection units of FIGS. 9 to 16 is provided on either the AC side or the DC side. The current detection units shown in FIGS. 9 to 16 may be used in combination. Even in this case, the above-mentioned effect is obtained.
 また、電流検出部の電流検出値に基づいて地絡電流を遮断できるものであれば、上述した遮断器80以外でも適用可能である。 Further, as long as it can cut off the ground fault current based on the current detection value of the current detection unit, it can be applied to other than the above-mentioned circuit breaker 80.
実施の形態5.
 本発明の実施の形態2において、チョッパ回路3を備えた電力変換装置101について図5および図6を用いて説明した。本発明の実施の形態5においては、チョッパ回路3の各ハーフブリッジのスイッチングタイミングの制御について説明する。
Embodiment 5.
In the second embodiment of the present invention, the power conversion device 101 provided with the chopper circuit 3 has been described with reference to FIGS. 5 and 6. In the fifth embodiment of the present invention, the control of the switching timing of each half bridge of the chopper circuit 3 will be described.
 図18は、本発明の実施の形態5におけるチョッパ回路の各ハーフブリッジのスイッチタイミングが同一のときの電圧波形を示したものである。図19は、本発明の実施の形態5におけるチョッパ回路の各ハーフブリッジのスイッチタイミングが同一のときおよび異なるときの各電圧波形を示したものである。 FIG. 18 shows a voltage waveform when the switch timings of the half bridges of the chopper circuit according to the fifth embodiment of the present invention are the same. FIG. 19 shows the voltage waveforms when the switch timings of the half bridges of the chopper circuit according to the fifth embodiment of the present invention are the same and different.
 スイッチング型の変換器では、一般的に半導体スイッチのスイッチングに伴って、コモンモード電圧が発生することが知られている。このコモンモード電圧は、変換器と基準電位間の浮遊容量などに印加されることでコモンモード電流となる。コモンモード電流は、通常動作時の電流に対してノイズ成分であるコモンモードノイズや、損失増加の原因となる。このため、コモンモード電圧の発生を抑制することが望ましい。 In a switching type converter, it is generally known that a common mode voltage is generated with the switching of a semiconductor switch. This common mode voltage becomes a common mode current when it is applied to a stray capacitance between the converter and the reference potential. The common mode current causes common mode noise, which is a noise component, and an increase in loss with respect to the current during normal operation. Therefore, it is desirable to suppress the generation of common mode voltage.
 本発明の実施の形態におけるチョッパ回路3の回路は、直流中性線に対して、直流の出力正側と負側に対称に各ハーフブリッジ301、302が接続されている。このような回路形式においては、直流出力の正側のハーフブリッジ301のスイッチングタイミングと直流出力の負側のハーフブリッジ302のスイッチングタイミングとを揃えることにより、コモンモード電圧の発生を抑制することができる。 In the circuit of the chopper circuit 3 according to the embodiment of the present invention, the half bridges 301 and 302 are symmetrically connected to the DC neutral wire on the positive side and the negative side of the DC output. In such a circuit type, the generation of the common mode voltage can be suppressed by aligning the switching timing of the half bridge 301 on the positive side of the DC output and the switching timing of the half bridge 302 on the negative side of the DC output. ..
 図18を用いて詳細に説明する。図18上段の各横軸は時間tを示している。図18上段に示す正側ハーフブリッジ出力電圧は、直流中性点電位を基準に取った、図5に示した直流フィルタコンデンサ51の両端にかかる電圧を示している。また、図18上段に示す負側ハーフブリッジ出力電圧は、直流中性点電位を基準に取った、図5に示した直流フィルタコンデンサ52の両端にかかる電圧を示している。 This will be described in detail with reference to FIG. Each horizontal axis in the upper part of FIG. 18 indicates the time t. The positive half-bridge output voltage shown in the upper part of FIG. 18 indicates the voltage applied to both ends of the DC filter capacitor 51 shown in FIG. 5 based on the DC neutral point potential. The negative half-bridge output voltage shown in the upper part of FIG. 18 indicates the voltage applied to both ends of the DC filter capacitor 52 shown in FIG. 5 based on the DC neutral point potential.
 コモンモード電圧は正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の和である。すなわち、直流フィルタコンデンサ51の両端にかかる電圧と直流フィルタコンデンサ52の両端にかかる電圧との和である。 The common mode voltage is the sum of the positive half bridge output voltage and the negative half bridge output voltage. That is, it is the sum of the voltage applied across the DC filter capacitor 51 and the voltage applied across the DC filter capacitor 52.
 図18の上段は、各直流フィルタコンデンサ51、52と各直流フィルタリアクトル41、42によって構成されるLCフィルタが設けられている場合の各電圧を示している。 The upper part of FIG. 18 shows each voltage when an LC filter composed of each DC filter capacitor 51, 52 and each DC filter reactor 41, 42 is provided.
 一方、図18下段は、回路動作をよりわかりやすくするため、各直流フィルタリアクトル41、42と各直流フィルタコンデンサ51、52から構成されるLCフィルタを接続していない場合の正側ハーフブリッジ出力電圧、負側ハーフブリッジ出力電圧およびコモンモード電圧を示したものである。 On the other hand, in the lower part of FIG. 18, in order to make the circuit operation easier to understand, the positive half bridge output voltage when the LC filter composed of the DC filter reactors 41 and 42 and the DC filter capacitors 51 and 52 is not connected is not connected. , Negative half bridge output voltage and common mode voltage are shown.
 図18下段における横軸は時間tを示している。図18下段に示した正側ハーフブリッジ出力電圧および負側ハーフブリッジ出力電圧は、各ハーフブリッジ301、302を構成する各半導体スイッチ間の接続部と直流中性線間の各電圧である。この場合のコモンモード電圧も正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧との和である。 The horizontal axis in the lower part of FIG. 18 indicates the time t. The positive half-bridge output voltage and the negative half-bridge output voltage shown in the lower part of FIG. 18 are the respective voltages between the connection portion between the semiconductor switches constituting the half bridges 301 and 302 and the DC neutral line. The common mode voltage in this case is also the sum of the positive half bridge output voltage and the negative half bridge output voltage.
 上述したように、直流出力の正側出力電圧と直流出力の負側の出力電圧は等しくなるように電力変換装置は制御される。また、正側のコンデンサ21にかかる電圧と、負側のコンデンサ22にかかる電圧も同様に等しくなるように制御される。 As described above, the power converter is controlled so that the positive output voltage of the DC output and the negative output voltage of the DC output are equal. Further, the voltage applied to the capacitor 21 on the positive side and the voltage applied to the capacitor 22 on the negative side are also controlled to be equal to each other.
 したがって、通常動作時に各ハーフブリッジ301、302がスイッチングした時の正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の大きさは等しくなる。また、正側ハーフブリッジ出力電圧は、直流中性点電位に対して正の電圧になり、負側ハーフブリッジ出力電圧は直流中性点電位に対して負の電圧になる。このため、正側ハーフブリッジと負側ハーフブリッジがスイッチングするタイミングが揃っていれば、正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧の和で表されるコモンモード電圧は0となる。 Therefore, the magnitudes of the positive half-bridge output voltage and the negative half-bridge output voltage when the half bridges 301 and 302 are switched during normal operation are equal. Further, the positive side half bridge output voltage becomes a positive voltage with respect to the DC neutral point potential, and the negative side half bridge output voltage becomes a negative voltage with respect to the DC neutral point potential. Therefore, if the timing of switching between the positive half bridge and the negative half bridge is the same, the common mode voltage represented by the sum of the positive half bridge output voltage and the negative half bridge output voltage becomes 0.
 図18上段に示すように、LCフィルタを接続した場合においても、正側と負側でそれぞれ等しいインダクタンスの直流フィルタリアクトルと、それぞれ等しいキャパシタンスの直流フィルタコンデンサを用いることで、正側直流出力電圧のリプル電圧と負側直流出力電圧のリプル電圧が逆極性で等しい大きさとなる。したがって、コモンモード電圧は0となる。 As shown in the upper part of FIG. 18, even when an LC filter is connected, by using a DC filter reactor having the same inductance on the positive side and the negative side and a DC filter capacitor having the same capacitance, the DC output voltage on the positive side can be increased. The ripple voltage and the ripple voltage of the negative DC output voltage have opposite polarities and are equal in magnitude. Therefore, the common mode voltage becomes 0.
 正側ハーフブリッジと負側ハーフブリッジのスイッチングタイミングを揃えるためには、例えば、周波数と位相が揃い、極性が逆転したキャリア信号を使用し、正側ハーフブリッジ出力電圧と負側ハーフブリッジ出力電圧のそれぞれの指令値を用いてキャリア比較し、半導体スイッチのゲート信号を生成する方法が考えられる。また、1つのキャリア信号に対して、正側ハーフブリッジ出力電圧指令値と極性を反転させた負側ハーフブリッジ出力電圧指令値を用いてキャリア比較し、各半導体スイッチのゲート信号を生成する方法などが考えられる。 In order to align the switching timing of the positive half bridge and the negative half bridge, for example, a carrier signal having the same frequency and phase and reversed polarity is used, and the positive half bridge output voltage and the negative half bridge output voltage are used. A method of generating a gate signal of a semiconductor switch by comparing carriers using each command value can be considered. Further, for one carrier signal, a method of generating a gate signal of each semiconductor switch by comparing carriers using the positive half bridge output voltage command value and the negative half bridge output voltage command value whose polarity is inverted, etc. Can be considered.
 上述のように各ハーフブリッジ301、302の制御を行うことにより、コモンモード電圧を抑制することができ、ノイズの低減や損失増加を抑制することが可能となる効果を奏する。 By controlling each of the half bridges 301 and 302 as described above, the common mode voltage can be suppressed, which has the effect of suppressing noise reduction and loss increase.
 一方で、リプル電圧の観点から考えると、スイッチングタイミングを揃えた場合の直流出力電圧のリプル電圧に対して、スイッチングタイミングを揃えない場合の直流出力電圧のリプル電圧の方が抑制される。 On the other hand, from the viewpoint of the ripple voltage, the ripple voltage of the DC output voltage when the switching timing is not aligned is suppressed compared to the ripple voltage of the DC output voltage when the switching timing is aligned.
 図19を用いて詳細に説明する。図19の各横軸は時間tを示している。図19の上から順に正側ハーフブリッジ出力電圧、負側ハーフブリッジ出力電圧、正側直流出力電圧と負側直流出力電圧の差電圧である出力電圧をそれぞれ示している。 This will be described in detail with reference to FIG. Each horizontal axis in FIG. 19 indicates the time t. From the top of FIG. 19, the positive side half bridge output voltage, the negative side half bridge output voltage, and the output voltage which is the difference voltage between the positive side DC output voltage and the negative side DC output voltage are shown, respectively.
 図19中の実線は、正側ハーフブリッジと負側ハーフブリッジとのスイッチタイミングが同一のときの出力電圧値をそれぞれ示したものである。一方、図19中の点線は、正側ハーフブリッジと負側ハーフブリッジとのスイッチタイミングが異なる場合の出力電圧値をそれぞれ示したものである。 The solid line in FIG. 19 shows the output voltage values when the switch timings of the positive half bridge and the negative half bridge are the same. On the other hand, the dotted line in FIG. 19 shows the output voltage values when the switch timings of the positive half bridge and the negative half bridge are different.
 負荷に供給される直流電圧は、正側の直流出力電圧と負側の直流出力電圧の差電圧になる。このため、各ハーフブリッジ301、302のスイッチングタイミングが揃い、それぞれの電圧がピークに至るタイミングが揃うときに、直流電圧のリプルが最大になることがわかる。リプル電圧が大きくなると、直流出力電圧の電圧変動を所望の値に抑えるために必要な直流フィルタコンデンサの容量が増加し、コストやサイズ増加の要因となってしまう。 The DC voltage supplied to the load is the difference voltage between the DC output voltage on the positive side and the DC output voltage on the negative side. Therefore, it can be seen that the ripple of the DC voltage is maximized when the switching timings of the half bridges 301 and 302 are aligned and the timings at which the respective voltages reach their peaks are aligned. When the ripple voltage becomes large, the capacity of the DC filter capacitor required to suppress the voltage fluctuation of the DC output voltage to a desired value increases, which causes an increase in cost and size.
 一方で、スイッチングタイミングを揃えない場合、正側の直流出力電圧がピークに至るタイミングと負側の直流出力電圧がピークに至るタイミングがずれることが図19中からもわかる。これにより、直流出力電圧のリプル電圧ピーク値が抑制される。 On the other hand, it can be seen from FIG. 19 that when the switching timings are not aligned, the timing at which the DC output voltage on the positive side reaches the peak and the timing at which the DC output voltage on the negative side reaches the peak are different. As a result, the ripple voltage peak value of the DC output voltage is suppressed.
 スイッチタイミングをずらすことは、正側ハーフブリッジに与えるキャリア信号の位相と負側ハーフブリッジに与えるキャリア信号の位相をずらすことでできる。上述の通り、スイッチタイミングを異ならせる制御を行うことにより、直流出力電圧のリプル電圧ピーク値を抑制することが可能となる効果を奏する。 The switch timing can be shifted by shifting the phase of the carrier signal given to the positive half bridge and the phase of the carrier signal given to the negative half bridge. As described above, by controlling the switch timings to be different, the ripple voltage peak value of the DC output voltage can be suppressed.
 上述の制御は、例えば、図20に示すような制御部32によって実現される。図21は、図20の制御部のハードウエア構成図である。図21において、制御部32はプロセッサ33と、記憶部34を有する。プロセッサ33は、記憶部34に記憶されたプログラムを実行することにより、上述の制御部32の処理を行う。ここで、記憶部34は、制御に必要なパラメータ、上記の処理を記述したプログラムなどが記憶されたメモリにより構成される。プロセッサ33は、マイコン(マイクロコンピュータ)やDSP(Digital Signal Processor)、FPGAなどにより構成される。また、複数のプロセッサ33および複数の記憶部34が連携して上記機能を実行してもよい。 The above-mentioned control is realized by, for example, a control unit 32 as shown in FIG. FIG. 21 is a hardware configuration diagram of the control unit of FIG. 20. In FIG. 21, the control unit 32 includes a processor 33 and a storage unit 34. The processor 33 performs the processing of the control unit 32 described above by executing the program stored in the storage unit 34. Here, the storage unit 34 is composed of a memory in which parameters necessary for control, a program describing the above processing, and the like are stored. The processor 33 is composed of a microcomputer (microcomputer), a DSP (Digital Signal Processor), an FPGA, and the like. Further, the plurality of processors 33 and the plurality of storage units 34 may cooperate to execute the above function.
 以上のように、実施の形態1から実施の形態4と同様に直流出力側で地絡した場合において、交流直流変換部1の交流側または直流側で地絡の検出が容易な電力変換装置を得ることができる検出させることができる効果を奏する。また、チョッパ回路におけるハーフブリッジのスイッチングのタイミングを制御することにより、ノイズの低減やリプルの低減可能な効果を奏する。
As described above, in the case of a ground fault on the DC output side as in the first to fourth embodiments, a power conversion device capable of easily detecting the ground fault on the AC side or the DC side of the AC / DC conversion unit 1 is provided. It has an effect that can be obtained and detected. Further, by controlling the switching timing of the half bridge in the chopper circuit, it is possible to reduce noise and ripple.
1 交流直流変換部、21、22 コンデンサ、3、31 チョッパ回路、32 制御部、33 プロセッサ、34 記憶部、301、302、311、312 ハーフブリッジ、303、304、305、306、1001,1002、1003、1004 半導体スイッチ、10 負荷、11、12 直流出力端子、13 中性端子、41、42、43、44 直流フィルタリアクトル、401、402 リアクトル、51、52、53、54 直流フィルタコンデンサ、501、502 コンデンサ、60 地絡判定手段、61、62、63、64、65、66、67、68、69 電流検出部、70 地絡判定部、80 遮断器、90 三相交流電源、91 受電用変圧器、1005、1006、1007、1008 ダイオード 1 AC / DC converter, 21, 22 capacitors, 3, 31 chopper circuit, 32 control unit, 33 processor, 34 storage unit, 301, 302, 311, 312 half bridge, 303, 304, 305, 306, 1001, 1002, 1003, 1004 semiconductor switch, 10 load, 11, 12 DC output terminal, 13 neutral terminal, 41, 42, 43, 44 DC filter reactor, 401, 402 reactor, 51, 52, 53, 54 DC filter capacitor, 501, 502 capacitor, 60 ground fault determination means, 61, 62, 63, 64, 65, 66, 67, 68, 69 current detector, 70 ground fault determination unit, 80 breaker, 90 three-phase AC power supply, 91 power receiving transformer Vessel, 1005, 1006, 1007, 1008 diode

Claims (15)

  1. 直流出力側の正側端子である第一の直流出力端子、直流出力側の負側端子である第二の直流出力端子、および直流出力側の中性端子である第三の直流出力端子を有し、一相が接地された接地相である三相交流電力を直流電力に変換して出力する交流直流変換部と、
    一端が前記第一の直流出力端子と接続され、他端が前記第三の直流出力端子と接続される第一のコンデンサと、
    一端が前記第三の直流出力端子と接続され、他端が前記第二の直流出力端子と接続される第二のコンデンサと、
    を備え、
    前記第三の直流出力端子は、前記接地相と同電位である電力変換装置。
    It has a first DC output terminal that is a positive terminal on the DC output side, a second DC output terminal that is a negative terminal on the DC output side, and a third DC output terminal that is a neutral terminal on the DC output side. Then, the AC / DC converter that converts the three-phase AC power, which is the grounded phase in which one phase is grounded, into DC power and outputs it,
    A first capacitor whose one end is connected to the first DC output terminal and the other end is connected to the third DC output terminal.
    A second capacitor whose one end is connected to the third DC output terminal and the other end is connected to the second DC output terminal.
    With
    The third DC output terminal is a power conversion device having the same potential as the ground phase.
  2. 前記第一の直流出力端子と接続される第一の直流入力端子、前記第二の直流出力端子と接続される第二の直流入力端子、および前記第三の直流出力端子と接続される第三の直流入力端子を有し、正側端子である第四の直流出力端子、負側端子である第五の直流出力端子、および中性端子である第六の直流出力端子を有し、前記第一から第三の直流入力端子から入力された直流電力を電力変換して出力するチョッパ回路と、
    一端が前記第四の直流出力端子と接続される第一の直流フィルタリアクトルと、
    一端が前記第五の直流出力端子と接続される第二の直流フィルタリアクトルと、
    一端が前記第一の直流フィルタリアクトルの他端と接続され、他端が前記第六の直流出力端子に接続される第一の直流フィルタコンデンサと、
    一端が前記第六の直流出力端子と接続され、他端が前記第二の直流フィルタリアクトルの他端と接続される第二の直流フィルタコンデンサと、
    を備え、
    前記第六の直流出力端子は、前記接地相と同電位である請求項1に記載の電力変換装置。
    A first DC input terminal connected to the first DC output terminal, a second DC input terminal connected to the second DC output terminal, and a third connected to the third DC output terminal. It has a fourth DC output terminal which is a positive side terminal, a fifth DC output terminal which is a negative side terminal, and a sixth DC output terminal which is a neutral terminal. A chopper circuit that converts the DC power input from the first to third DC input terminals and outputs it.
    A first DC filter reactor whose one end is connected to the fourth DC output terminal,
    A second DC filter reactor whose one end is connected to the fifth DC output terminal,
    A first DC filter capacitor with one end connected to the other end of the first DC filter reactor and the other end connected to the sixth DC output terminal.
    A second DC filter capacitor, one end of which is connected to the sixth DC output terminal and the other end of which is connected to the other end of the second DC filter reactor.
    With
    The power conversion device according to claim 1, wherein the sixth DC output terminal has the same potential as the ground phase.
  3. 前記チョッパ回路は、
    複数の半導体スイッチを有し、一端が前記第一の直流入力端子と接続され、他端が前記第三の直流入力端子と接続される第一のハーフブリッジと、
    複数の半導体スイッチで構成され、一端が前記第三の直流入力端子と接続され、他端が前記第二の直流入力端子と接続される第二のハーフブリッジと、
    を有し、
    前記第四の直流出力端子は、前記第一のハーフブリッジを構成する前記複数の半導体スイッチの接続点から引き出され、
    前記第五の直流出力端子は、前記第二のハーフブリッジを構成する前記複数の半導体スイッチの接続点から引き出される請求項2に記載の電力変換装置。
    The chopper circuit
    A first half bridge having a plurality of semiconductor switches, one end of which is connected to the first DC input terminal and the other end of which is connected to the third DC input terminal.
    A second half bridge composed of a plurality of semiconductor switches, one end of which is connected to the third DC input terminal and the other end of which is connected to the second DC input terminal.
    Have,
    The fourth DC output terminal is drawn out from the connection points of the plurality of semiconductor switches constituting the first half bridge.
    The power conversion device according to claim 2, wherein the fifth DC output terminal is drawn from a connection point of the plurality of semiconductor switches constituting the second half bridge.
  4. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、前記第一のハーフブリッジと前記第二のハーフブリッジのスイッチタイミングが揃うように制御する請求項3に記載の電力変換装置。
    It has a control unit that controls the chopper circuit, and has a control unit.
    The power conversion device according to claim 3, wherein the control unit controls so that the switch timings of the first half bridge and the second half bridge are aligned.
  5. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、前記第一のハーフブリッジと前記第二のハーフブリッジのスイッチタイミングをずらして制御する請求項3に記載の電力変換装置。
    It has a control unit that controls the chopper circuit, and has a control unit.
    The power conversion device according to claim 3, wherein the control unit controls the first half bridge and the second half bridge by shifting the switch timing.
  6. 前記チョッパ回路を制御する制御部を有し、
    前記制御部は、地絡が発生したときに、前記チョッパ回路のスイッチングを停止する制御を行う、請求項3から請求項5のいずれか1項に記載の電力変換装置。
    It has a control unit that controls the chopper circuit, and has a control unit.
    The power conversion device according to any one of claims 3 to 5, wherein the control unit controls to stop switching of the chopper circuit when a ground fault occurs.
  7. 前記チョッパ回路と、前記第一および第二の直流フィルタリアクトルと、前記第一および第二の直流フィルタコンデンサと、をそれぞれ複数有し、複数の前記チョッパ回路の各直流入力端子は並列に接続され、
    複数の前記チョッパ回路の各第六の直流出力端子が互いに接続される請求項2から請求項6のいずれか1項に記載の電力変換装置。
    The chopper circuit, the first and second DC filter reactors, and the first and second DC filter capacitors are each provided, and the DC input terminals of the plurality of chopper circuits are connected in parallel. ,
    The power conversion device according to any one of claims 2 to 6, wherein the sixth DC output terminals of the plurality of chopper circuits are connected to each other.
  8. 前記交流直流変換部の直流側における地絡を検出する地絡判定手段を有し、
    前記地絡判定手段は、前記交流直流変換部の直流側または交流側の少なくともいずれか一方で電流を検出する電流検出部と、
    前記電流検出部で検出された検出電流値に基づいて地絡を判定する地絡判定部と、
    を有する請求項1から請求項7のいずれか1項に記載の電力変換装置。
    It has a ground fault determining means for detecting a ground fault on the DC side of the AC / DC conversion unit.
    The ground fault determining means includes a current detecting unit that detects a current on at least one of the DC side and the AC side of the AC / DC conversion unit.
    A ground fault determination unit that determines a ground fault based on the detected current value detected by the current detection unit, and a ground fault determination unit.
    The power conversion device according to any one of claims 1 to 7.
  9. 前記電流検出部は前記接地相を流れる電流または、接地相を接地している線路の電流の少なくとも一方を検出し、前記地絡判定部は、前記電流検出部により検出された前記検出電流値が予め定められた値を超過したときに地絡したと判定する前記請求項8に記載の電力変換装置。 The current detecting unit detects at least one of the current flowing through the grounding phase and the current of the line grounding the grounding phase, and the ground fault determining unit uses the detected current value detected by the current detecting unit. The power conversion device according to claim 8, wherein the ground fault is determined when the value exceeds a predetermined value.
  10. 前記電流検出部は前記交流直流変換部の交流側の電流を検出し、前記地絡判定部は前記電流検出部で検出された前記検出電流値から求めた交流電流の零相成分が予め定められた値を超過した場合に地絡したと判定する請求項8に記載の電力変換装置。 The current detection unit detects the current on the AC side of the AC / DC conversion unit, and the ground fault determination unit determines in advance the zero-phase component of the AC current obtained from the detected current value detected by the current detection unit. The power conversion device according to claim 8, wherein the ground fault is determined when the value exceeds the value.
  11. 前記電流検出部は前記交流直流変換部の直流側の電流を検出し、前記地絡判定部は前記電流検出部で検出された前記検出電流値と予め定められた値とを比較して地絡したと判定する請求項8に記載の電力変換装置。 The current detection unit detects the current on the DC side of the AC / DC conversion unit, and the ground fault determination unit compares the detected current value detected by the current detection unit with a predetermined value and causes a ground fault. The power conversion device according to claim 8, wherein the power conversion device is determined to have been used.
  12. 前記交流直流変換部の交流側に遮断器を備え、地絡が発生したときに前記遮断器を遮断する請求項8から請求項11のいずれか1項に記載の電力変換装置。 The power conversion device according to any one of claims 8 to 11, wherein a circuit breaker is provided on the AC side of the AC / DC conversion unit to shut off the circuit breaker when a ground fault occurs.
  13. 前記交流直流変換部は、
    前記第三の直流出力端子が前記接地相と接続され、
    2つの半導体素子を直列接続した半導体素子で構成された第三のハーフブリッジと、
    2つの半導体素子を直列接続した半導体素子で構成された第四のハーフブリッジを有し、
    前記第三のハーフブリッジの正側端子と前記第四のハーフブリッジの正側端子が前記第一の直流出力端子と接続され、
    前記第三のハーフブリッジの負側端子と前記第四のハーフブリッジの負側端子が前記第二の直流出力端子と接続され、
    前記第三のハーフブリッジを構成する各半導体素子の接続点が、前記接地相以外の一相と接続され、
    前記第四のハーフブリッジを構成する各半導体素子の接続点が、前記接地相および前記一相と異なる相と接続された請求項1から請求項12のいずれか1項に記載の電力変換装置。
    The AC / DC converter
    The third DC output terminal is connected to the ground phase,
    A third half bridge composed of semiconductor elements in which two semiconductor elements are connected in series, and
    It has a fourth half bridge composed of semiconductor elements in which two semiconductor elements are connected in series.
    The positive terminal of the third half bridge and the positive terminal of the fourth half bridge are connected to the first DC output terminal.
    The negative terminal of the third half bridge and the negative terminal of the fourth half bridge are connected to the second DC output terminal.
    The connection point of each semiconductor element constituting the third half bridge is connected to one phase other than the ground phase.
    The power conversion device according to any one of claims 1 to 12, wherein the connection point of each semiconductor element constituting the fourth half bridge is connected to the ground phase and a phase different from the one phase.
  14. 前記第三のハーフブリッジおよび前記第四のハーフブリッジは、それぞれ2つの半導体スイッチが直列接続されている請求項13に記載の電力変換装置。 The power conversion device according to claim 13, wherein the third half bridge and the fourth half bridge are each connected in series with two semiconductor switches.
  15. 前記第三のハーフブリッジおよび前記第四のハーフブリッジは、それぞれ2つのダイオードが直列接続されている請求項13に記載の電力変換装置。 The power conversion device according to claim 13, wherein the third half bridge and the fourth half bridge are each connected in series with two diodes.
PCT/JP2019/036158 2019-09-13 2019-09-13 Power conversion device WO2021049016A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/036158 WO2021049016A1 (en) 2019-09-13 2019-09-13 Power conversion device
JP2020536821A JP7043607B2 (en) 2019-09-13 2019-09-13 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036158 WO2021049016A1 (en) 2019-09-13 2019-09-13 Power conversion device

Publications (1)

Publication Number Publication Date
WO2021049016A1 true WO2021049016A1 (en) 2021-03-18

Family

ID=74866331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036158 WO2021049016A1 (en) 2019-09-13 2019-09-13 Power conversion device

Country Status (2)

Country Link
JP (1) JP7043607B2 (en)
WO (1) WO2021049016A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002147T5 (en) 2020-04-03 2023-03-02 Vladimir Borisovich Chernyshev METHOD AND DEVICE FOR TREATMENT OF ACUTE LUNG INSUFFICIENCY

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515171A (en) * 1991-06-27 1993-01-22 Isao Takahashi Cvcf power supply
JP2004015939A (en) * 2002-06-10 2004-01-15 Meidensha Corp Charging device for capacitor
JP2011196729A (en) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The Leak detection device and method for dc circuit
JP2012019647A (en) * 2010-07-09 2012-01-26 Fuji Electric Co Ltd Power supply device
JP2012170176A (en) * 2011-02-10 2012-09-06 Fuji Electric Co Ltd Electric power conversion device
JP2016197821A (en) * 2015-04-03 2016-11-24 シャープ株式会社 Gate drive circuit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10063161B2 (en) 2016-10-18 2018-08-28 Abb Schweiz Ag Active neutral point clamped converter control system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515171A (en) * 1991-06-27 1993-01-22 Isao Takahashi Cvcf power supply
JP2004015939A (en) * 2002-06-10 2004-01-15 Meidensha Corp Charging device for capacitor
JP2011196729A (en) * 2010-03-18 2011-10-06 Kansai Electric Power Co Inc:The Leak detection device and method for dc circuit
JP2012019647A (en) * 2010-07-09 2012-01-26 Fuji Electric Co Ltd Power supply device
JP2012170176A (en) * 2011-02-10 2012-09-06 Fuji Electric Co Ltd Electric power conversion device
JP2016197821A (en) * 2015-04-03 2016-11-24 シャープ株式会社 Gate drive circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021002147T5 (en) 2020-04-03 2023-03-02 Vladimir Borisovich Chernyshev METHOD AND DEVICE FOR TREATMENT OF ACUTE LUNG INSUFFICIENCY

Also Published As

Publication number Publication date
JP7043607B2 (en) 2022-03-29
JPWO2021049016A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP6062132B1 (en) Power converter and power system
US8508957B2 (en) Power conversion device for converting DC power to AC power
US9923483B2 (en) Method for operating an inverter and inverter comprising a switch between a center point of a DC link and a connection for a neutral conductor of an AC grid
US8902621B2 (en) Power supply device for use with selectable AC power supply voltage
US20120275202A1 (en) Series multiplex power conversion apparatus
EP3285388B1 (en) Electric power conversion device
JP5939411B2 (en) Power converter
KR101862615B1 (en) Voltage source converter including hybrid active filter
CA2687696A1 (en) Dynamic voltage sag correction
EP3093976B1 (en) Electric power conversion system
US11909305B2 (en) AC-to-DC power converter which removed a common mode component form the output current
JP2010239736A (en) Power conversion apparatus
JP6861917B1 (en) Power converter
KR20140087450A (en) Converter having decrease function of fault current
WO2022167388A1 (en) Interleaved power converter
JP7043607B2 (en) Power converter
EP3595157B1 (en) Power conversion device
US11722069B2 (en) Power conversion system
KR20230019957A (en) power unit
KR102036578B1 (en) Apparatus for detecting output phase open in inverter
JPH11174105A (en) Fault detecting apparatus for ac filter circuit
JP2011196810A (en) Leak detection system and method for dc circuit
JP2023069246A (en) Power supply device
JP4309709B2 (en) Power converter
JPH11341684A (en) Voltage sensing type active filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020536821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945171

Country of ref document: EP

Kind code of ref document: A1