JPH05137235A - Digital ratio differential relay - Google Patents

Digital ratio differential relay

Info

Publication number
JPH05137235A
JPH05137235A JP3294282A JP29428291A JPH05137235A JP H05137235 A JPH05137235 A JP H05137235A JP 3294282 A JP3294282 A JP 3294282A JP 29428291 A JP29428291 A JP 29428291A JP H05137235 A JPH05137235 A JP H05137235A
Authority
JP
Japan
Prior art keywords
ratio
differential
amount
element region
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3294282A
Other languages
Japanese (ja)
Inventor
Sadahito Kashiwabara
貞仁 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3294282A priority Critical patent/JPH05137235A/en
Publication of JPH05137235A publication Critical patent/JPH05137235A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a digital ratio differential relay in which detection sensitivity is enhanced and probability of erroneous function is reduced over a wide range. CONSTITUTION:The digital ratio differential relay has a polyline ratio characteristics comprising a line of characteristic 1 corresponding to a simple differential element region for setting a tap value constant while taking account of analog part fixed component error and quantized error of the relay, a line of characteristic 2 corresponding to a first ratio differential element region for setting a suppression ratio while taking account of analog part proportional component error, and a line of characteristic 3 corresponding to a second ratio differential element region for setting a suppression ratio while taking account of full-scale over.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電力系統に設置され
る母線等の保護を行うディジタル比率差動継電装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digital ratio differential relay device for protecting a bus bar installed in a power system.

【0002】[0002]

【従来の技術】電力系統における母線保護等のように多
端子の差動保護を行う場合、最も問題とされているの
は、外部事故時の直流分を含む故障電流を検出する変流
器(以下CTと称す)の飽和対策である。そして、この
飽和対策として従来から種々の方式が検討、採用されて
きたが、このCTに代って空心変成器(以下LCと称
す)を採用するに至ってこの飽和による問題は解消され
た。即ち、LCは鉄心を使用していないのでその2次出
力が直線的に変化するからである。
2. Description of the Related Art When performing multi-terminal differential protection such as bus bar protection in a power system, the most serious problem is a current transformer (which detects a fault current including a DC component in the event of an external accident). (Hereinafter referred to as CT) as a countermeasure against saturation. Although various methods have been studied and adopted as countermeasures against this saturation, the problem due to this saturation has been solved by adopting an air-core transformer (hereinafter referred to as LC) instead of this CT. That is, since the LC does not use an iron core, its secondary output changes linearly.

【0003】図4は、例えば(株)オーム社昭和43年12
月発行“保護継電器とその回路”三上著に示された母線
保護装置の外部接続図で、電流検出に上記したLCを採
用したものである。図において、1は被保護設備として
の母線、2は母線変成器、3〜5は線路、6〜8は遮断
器、9〜11はLC(空心変成器)、12は不足電圧継電
器、13は母線保護継電器、14はアンドゲートである。
FIG. 4 shows, for example, 12th year of Showa 43 by Ohm Co., Ltd.
This is an external connection diagram of the busbar protection device shown in Mikami, "Protective relay and its circuit" issued by Mon, which uses the above-mentioned LC for current detection. In the figure, 1 is a busbar as equipment to be protected, 2 is a busbar transformer, 3-5 are lines, 6-8 are circuit breakers, 9-11 are LC (air core transformers), 12 is an undervoltage relay, and 13 is an undervoltage relay. Busbar protection relay, 14 is an AND gate.

【0004】次に動作について説明する。先ず、母線1
に内部事故F1 が発生した場合を想定する。この場合、
各線路に流れる端子電流I1 ,I2 が事故点F1 に流
れ、各LC9の2次電流を合成して得られた差動電流I
D が母線保護継電器13に流入して動作する。図示は簡略
化しているが、母線保護継電器13ではLC9からの検出
量がディジタル量に変換され差動量と抑制量とが求めら
れて異常判別動作を行う。このとき、母線1事故により
不足電圧継電器12も動作し、不足電圧継電器12と母線保
護継電器13との両出力がオンとなるのでアンドゲート14
のAND条件が成立してトリップ指令を出力し、遮断器
6〜8が遮断動作を行う。
Next, the operation will be described. First, bus 1
Assume that an internal accident F 1 has occurred at. in this case,
The terminal currents I 1 and I 2 flowing in each line flow to the fault point F 1 and the differential current I obtained by combining the secondary currents of each LC 9
D flows into the busbar protective relay 13 and operates. Although illustration is simplified, the busbar protection relay 13 converts the detection amount from the LC 9 into a digital amount, obtains the differential amount and the suppression amount, and performs an abnormality determination operation. At this time, the undervoltage relay 12 also operates due to the bus 1 accident, and both outputs of the undervoltage relay 12 and the bus protection relay 13 are turned on.
The AND condition is satisfied and the trip command is output, and the circuit breakers 6 to 8 perform the circuit breaking operation.

【0005】次に外部事故F2 が発生した場合を想定す
る。この場合、端子電流I1 ,I2 は事故点F2 に流れ
るため、I3 =I1 +I2 、従って差動電流ID =0と
なり母線保護継電器13は動作しない。不足電圧継電器12
は上記と同様動作するが、母線保護継電器13が動作しな
いので、アンドゲート14のAND条件が成立せずトリッ
プ指令は出力されない。
Next, assume that an external accident F 2 occurs. In this case, since the terminal currents I 1 and I 2 flow to the fault point F 2 , I 3 = I 1 + I 2 , and therefore the differential current I D = 0, and the busbar protective relay 13 does not operate. Undervoltage relay 12
Operates in the same manner as described above, but since the busbar protective relay 13 does not operate, the AND condition of the AND gate 14 is not satisfied and the trip command is not output.

【0006】図5は母線保護継電器13の動作特性図であ
る。図において、Iemaxは最大誤差電流で、外部事故時
の(LC誤差+継電装置部の最大誤差)が相当する。そ
して、母線保護継電器13の検出感度、即ち差動電流動作
値IP は、IP =2Iemaxとして最大誤差電流に対して
2倍のマージンを確保している。
FIG. 5 is an operational characteristic diagram of the busbar protection relay 13. In the figure, I emax is the maximum error current, which corresponds to (LC error + maximum error of relay unit) at the time of an external accident. The detection sensitivity of the busbar protective relay 13, that is, the differential current operating value I P is set to I P = 2I emax to secure a double margin with respect to the maximum error current.

【0007】[0007]

【発明が解決しようとする課題】以上のように、電流検
出にLCを使用した従来の母線保護装置においては、C
Tの飽和現象が存在しないことからもっぱら単純差動方
式が採用されていた。この結果、最小故障電流を検出す
るのに十分な入力が得られず、確実な保護検出特性を得
るという点で問題があった。また、この傾向はディジタ
ル化に伴ない生じる誤差の増大で助長されることにな
る。更に、装置設置後の系統容量増大等がある場合に生
じ得るフルスケールオーバについては特に考慮されてお
らず、このため誤動作が発生するという問題点もあっ
た。
As described above, in the conventional busbar protection device using LC for current detection, C
Since there is no saturation phenomenon of T, the simple differential method has been mainly used. As a result, sufficient input cannot be obtained to detect the minimum fault current, and there is a problem in that a reliable protection detection characteristic is obtained. In addition, this tendency is promoted by an increase in error caused by digitization. Furthermore, full scale over that may occur when there is an increase in system capacity after installation of the device is not particularly taken into consideration, which causes a problem that a malfunction occurs.

【0008】この発明は以上のような問題点を解消する
ためになされたもので、検出感度が高くしかも誤動作が
少ないディジタル比率差動継電装置を得ることを目的と
する。
The present invention has been made to solve the above problems, and an object thereof is to obtain a digital ratio differential relay device having high detection sensitivity and less malfunction.

【0009】[0009]

【課題を解決するための手段】この発明に係るディジタ
ル比率差動継電装置は、被保護設備の入出電流を空心変
成器で検出し、比率特性を差動量−抑制量座標で折線状
となるようにしたものである。
SUMMARY OF THE INVENTION A digital ratio differential relay device according to the present invention detects an input / output current of a protected facility by an air-core transformer, and displays a ratio characteristic in a linear form in differential amount-suppressing amount coordinates. It was made to become.

【0010】また、上記比率特性を、装置のアナログ部
固定分誤差と量子化誤差とによる誤動作を回避するため
そのタップ値定数が設定された単純差動要素領域と、装
置のアナログ部比例分誤差による誤動作を回避するため
その抑制比率が設定された第1の比率差動要素領域と、
検出電流のフルスケールオーバを考慮してその抑制比率
が設定された第2の比率差動要素領域とを含むものとす
る。
Further, the ratio characteristic has a simple differential element region in which a tap value constant is set in order to avoid a malfunction due to a fixed component error and a quantization error of the device, and a proportional component error of the device analog part. A first ratio differential element region in which the suppression ratio is set to avoid malfunction due to
The second ratio differential element region in which the suppression ratio is set in consideration of full scale over of the detected current is included.

【0011】[0011]

【作用】空心変成器で検出された入出電流は、ディジタ
ル量に変換され差動量と抑制量が演算により求められ
る。そして、抑制量に対して差動量が、比率特性である
折線上の値を越えた場合は、被保護設備の内部異常と判
別する。
The input / output current detected by the air-core transformer is converted into a digital amount, and the differential amount and the suppression amount are calculated. Then, when the differential amount with respect to the suppression amount exceeds the value on the polygonal line which is the ratio characteristic, it is determined to be an internal abnormality of the protected equipment.

【0012】[0012]

【実施例】図1はこの発明の一実施例によるディジタル
比率差動継電装置を示す接続図である。図において、
1,2,6,7,9,10は従来のものと同一のものであ
る。15はLCからの信号を後段の処理に適した信号形態
に変換する入力変換器、16は信号の高周波成分等を除去
するフィルター、17はサンプルホールド回路、18は信号
の多重化を行うマルチプレクサ、19はアナログ信号をデ
ィジタル信号に変換するA/D変換器、20は後述する比
率差動継電器としての論理演算処理の制御を行うCP
U、21は後述する比率特性や関連する諸定数等を記憶す
るROM、22は演算処理過程でデータ等の一時記憶を行
うRAM、23は出力インターフェース回路である。
1 is a connection diagram showing a digital ratio differential relay device according to an embodiment of the present invention. In the figure,
1, 2, 6, 7, 9, 10 are the same as the conventional ones. Reference numeral 15 is an input converter for converting the signal from the LC into a signal form suitable for the subsequent processing, 16 is a filter for removing high frequency components of the signal, 17 is a sample hold circuit, 18 is a multiplexer for multiplexing the signal, Reference numeral 19 is an A / D converter that converts an analog signal into a digital signal, and 20 is a CP that controls logical operation processing as a ratio differential relay described later.
U and 21 are ROMs for storing ratio characteristics and related constants, which will be described later, 22 is a RAM for temporarily storing data and the like in the course of arithmetic processing, and 23 is an output interface circuit.

【0013】ここでは、比率特性は勿論、比率差動の動
作や比率差動動作出力と母線変成器2による不足電圧検
出動作出力との論理積判別もソフトウエア上で処理され
るが、この発明で特に注目している比率特性の設定内容
につき以下、図2により説明する。
Here, not only the ratio characteristic but also the ratio differential operation and the logical product discrimination between the ratio differential operation output and the undervoltage detection operation output by the bus transformer 2 are processed by software. The setting contents of the ratio characteristic, which is particularly noted in (2), will be described below with reference to FIG.

【0014】図2は、折線状の比率特性を設定する論理
構成を示すもので、先ず、24は単純差動要素領域を規定
する演算式である。ここで、ID は差動量、K1 はタッ
プ値定数で、このK1 はフィルター16やA/D変換器19
等に使用されるアナログICのオフセットエラー分が該
当するアナログ部固定分誤差およびA/D変換器19の分
解能で決まる量子化誤差による誤動作を回避するためこ
れらの誤差分に所定の裕度をみて設定される。
FIG. 2 shows a logical configuration for setting a polygonal ratio characteristic. First, 24 is an arithmetic expression defining a simple differential element region. Here, I D is a differential amount, K 1 is a tap value constant, and this K 1 is the filter 16 and the A / D converter 19
In order to avoid a malfunction due to the analog part fixed component error corresponding to the offset error of the analog IC used for the etc. and the quantization error determined by the resolution of the A / D converter 19, the predetermined margin is checked for these error components. Is set.

【0015】次に25は第1の比率差動要素領域を規定す
る演算式である。ここで、ITは抑制量、η1 は折線の
勾配を決める第1の抑制比率で、このη1 はLC9、入
力変換器15、フィルター16等のゲイン・位相誤差分が該
当するアナログ部比例分誤差による誤動作を回避するた
め、ここでは、いわゆる50%流出内部事故を考慮してη
1 =0.5 と設定している。
Next, 25 is an arithmetic expression defining the first ratio differential element region. Here, I T is inhibiting amount, in eta 1 the first suppression ratio which determines the gradient of the polygonal line, the eta 1 is LC9, input transducers 15, analog section proportional gain and phase error of such filter 16 corresponds In order to avoid malfunction due to minute error, here
1 = 0.5 is set.

【0016】26は第2の比率差動要素領域を規定する演
算式を示す。ここで、η2 は折線の勾配を決める第2の
抑制比率、K2 は折線の始端位置を決める定数である。
これら定数は検出電流のフルスケールオーバを考慮して
設定される。即ち、発電所が増設される等して、系統容
量が継電装置設置時点から増大することが考えられる
が、この場合、設置時に予想されていた最大系統故障電
流を越える(フルスケールオーバ)故障電流が流れ、外
部事故であるにもかかわらず内部事故と誤認する可能性
があり、このような誤動作を防止するものである。具体
的には、η2 としては位相差限界90°以内の条件からη
2 =0.9 と設定する。また、K2 は2端電源以上の系統
で内部事故時の1端子最大電流が1/2IFMAX(最大系
統故障電流)以上となるよう設定する。例えば、IFMAX
=31.5kAの場合、始端位置を電流I2 で表示すると、I
2 >1/2IFMAX=15.75kA →I2 =20kAとなるようK
2 (ID −IT 座標で、ID 軸との交点座標が対応す
る)を設定する。
Reference numeral 26 represents an arithmetic expression defining the second ratio differential element region. Here, η 2 is a second suppression ratio that determines the slope of the polygonal line, and K 2 is a constant that determines the starting end position of the polygonal line.
These constants are set in consideration of full scale over of the detection current. That is, it is conceivable that the system capacity will increase from the time of installation of the relay device due to the addition of a power plant, etc. In this case, a failure that exceeds the maximum system failure current expected at the time of installation (full scale over) There is a possibility of mistakenly recognizing it as an internal accident despite the fact that an electric current flows and it is an external accident, and this kind of malfunction is prevented. Specifically, η 2 is set from the condition that the phase difference limit is within 90 °.
Set 2 = 0.9. Further, K 2 1 terminal maximum current during an internal fault in the above system 2 edge power is set to be 1 / 2I FMAX (maximum system fault current) or more. For example, I FMAX
= 31.5kA, if the starting position is displayed as current I 2 ,
2 > 1 / 2I FMAX = 15.75kA → I 2 = 20kA K
(In I D -I T coordinates, the intersection coordinates correspond to the I D axis) 2 Setting the.

【0017】24,25および26の演算結果はアンドゲート
27で論理積がとられ(26は反転結果を入力)その結果が
例えばトリップ指令として出力される。
The operation results of 24, 25 and 26 are AND gates.
A logical product is calculated at 27 (26 inputs the inverted result) and the result is output as a trip command, for example.

【0018】図3は図2の論理構成から得られる比率特
性で、図に示すように、比率特性は、低域から高域にか
けて、順次、折線状となり、先ず、単純差動要素領域に
相当する特性−1の線分と、第1の比率差動要素領域に
相当する特性−2の線分と、第2の比率差動要素領域に
相当する特性−3の線分とで表現される。ここで、特性
−3の始端位置に相当する抑制量I2 は上述の通り20k
A、また、特性−2の始端位置に相当する抑制量I
1 は、特性−2の抑制比率η1 を0.5 としていることか
ら、I1 =2IP と設定している。
FIG. 3 is a ratio characteristic obtained from the logical configuration of FIG. 2. As shown in the figure, the ratio characteristic becomes a polygonal line sequentially from the low frequency region to the high frequency region, and first corresponds to a simple differential element region. And a line segment of characteristic-2 corresponding to the first ratio differential element region, and a line segment of characteristic-3 corresponding to the second ratio differential element region. .. Here, the suppression amount I 2 corresponding to the start position of the characteristic-3 is 20 k as described above.
A, and the suppression amount I corresponding to the start position of characteristic-2
1, the suppression ratio eta 1 characteristic -2 to consider it as the 0.5 is set as I 1 = 2I P.

【0019】比率差動継電装置としての基本的な動作は
従来と同様であるが、この実施例ではその比率特性を図
3で示す折線状の特性としたので、ディジタル化等に伴
う誤差による誤動作を防止しつつ比較的低電流範囲での
検出感度が大幅に増大し、フルスケールオーバ時の誤動
作も解消し得る。勿論、LCを採用しているので電流検
出における飽和特性もない。
The basic operation of the ratio differential relay device is the same as that of the conventional one, but in this embodiment, the ratio characteristic is the polygonal line characteristic shown in FIG. While preventing the malfunction, the detection sensitivity in the relatively low current range is significantly increased, and the malfunction at the time of full scale can be eliminated. Of course, since LC is used, there is no saturation characteristic in current detection.

【0020】なお、上記実施例では単母線保護のものに
ついて説明したが、保護対象としては単母線に限らず、
2重母線、1.5 CB母線、さらに変圧器等母線以外の機
器としてもよい。また、抑制比率η1 ,η2 、定数
1 ,K2 についても上記実施例での値に限られるもの
ではない。
In the above embodiment, the single busbar protection is explained, but the object to be protected is not limited to the single busbar.
Devices other than double buses, 1.5 CB buses, and transformers and other buses may be used. Further, the suppression ratios η 1 and η 2 and the constants K 1 and K 2 are not limited to the values in the above embodiment.

【0021】[0021]

【発明の効果】この発明は以上のように構成されている
ので、検出感度が向上するとともに、広い範囲で誤動作
の確率が低減し信頼性の高いディジタル比率差動継電装
置が得られる。
Since the present invention is configured as described above, it is possible to obtain a highly reliable digital ratio differential relay device with improved detection sensitivity and reduced probability of malfunction in a wide range.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例によるディジタル比率差動
継電装置を示す接続図である。
FIG. 1 is a connection diagram showing a digital ratio differential relay device according to an embodiment of the present invention.

【図2】図1の装置の比率特性を規定する論理構成を示
す図である。
FIG. 2 is a diagram showing a logical configuration that defines ratio characteristics of the device of FIG.

【図3】図2の論理構成によって得られる比率特性を示
す図である。
FIG. 3 is a diagram showing ratio characteristics obtained by the logical configuration of FIG.

【図4】従来の母線保護装置を示す接続図である。FIG. 4 is a connection diagram showing a conventional busbar protection device.

【図5】図4の装置の動作特性を示す図である。5 is a diagram showing operating characteristics of the device of FIG.

【符号の説明】[Explanation of symbols]

1 被保護設備としての母線 9、10 空心変成器(LC) 24 単純差動要素領域を規定する演算式 25 第1の比率差動要素領域を規定する演算式 26 第2の比率差動要素領域を規定する演算式 27 アンドゲート 1 Busbars as protected equipment 9 and 10 Air-core transformer (LC) 24 Calculation formula that defines simple differential element region 25 Calculation formula that defines first ratio differential element region 26 Second ratio differential element region 27 AND gate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年4月3日[Submission date] April 3, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】次に動作について説明する。先ず、母線1
に内部事故F1 が発生した場合を想定する。この場合、
各線路に流れる端子電流I1 ,I2 が事故点F1 に流
れ、各LC9,LC11の2次電流を合成して得られた
差動電流ID が母線保護継電器13に流入して動作する
のとき、母線1事故により不足電圧継電器12も動作
し、不足電圧継電器12と母線保護継電器13との両出力が
オンとなるのでアンドゲート14のAND条件が成立して
トリップ指令を出力し、遮断器6〜8が遮断動作を行
う。
Next, the operation will be described. First, bus 1
Assume that an internal accident F 1 has occurred at. in this case,
The terminal currents I 1 and I 2 flowing in each line flow to the fault point F 1 , and the differential current I D obtained by combining the secondary currents of each LC 9 and LC 11 flows into the busbar protective relay 13 to operate. ..
At this time, also operates under voltage relay 12 by bus 1 accident, the AND condition of the AND gate 14 is satisfied and outputs a trip command Since both the output of the undervoltage relay 12 and the bus protection relay 13 is turned on, The circuit breakers 6 to 8 perform the breaking operation.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】[0012]

【実施例】図1はこの発明の一実施例によるディジタル
比率差動継電装置を示す接続図である。図において、
1,2,6,7,9,10は従来のものと同一のものであ
る。15はLCからの信号を後段の処理に適した信号形態
に変換する入力変換器、16は信号の高周波成分等を除去
するフィルター、17はサンプルホールド回路、18は信号
の多重化を行うマルチプレクサ、19はアナログ信号をデ
ィジタル信号に変換するA/D変換器、20は後述する比
率差動継電器としての論理演算処理の制御を行うCP
U、21は後述する比率特性や関連する諸定数等を記憶す
るROM、22は演算処理過程でデータ等の一時記憶を行
うRAM、23は出力インターフェース回路である。
お、主リレー回路と故障検出回路とはフィルター16か
ら出力インタ ーフェース回路23まで完全に分離した形
で構成している。
1 is a connection diagram showing a digital ratio differential relay device according to an embodiment of the present invention. In the figure,
1, 2, 6, 7, 9, 10 are the same as the conventional ones. Reference numeral 15 is an input converter for converting the signal from the LC into a signal form suitable for the subsequent processing, 16 is a filter for removing high frequency components of the signal, 17 is a sample hold circuit, 18 is a multiplexer for multiplexing the signal, Reference numeral 19 is an A / D converter that converts an analog signal into a digital signal, and 20 is a CP that controls logical operation processing as a ratio differential relay described later.
U and 21 are ROMs for storing ratio characteristics and related constants, which will be described later, 22 is a RAM for temporarily storing data and the like in the course of arithmetic processing, and 23 is an output interface circuit. Na
Is the main relay circuit and the failure detection circuit a filter 16?
Form completely separate until et output interns face circuit 23
It consists of.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被保護設備の入出電流を検出し、それら
アナログ検出量をディジタル量に変換して差動量と抑制
量とを求め、予め設定された比率特性に従い異常判別動
作を行うディジタル比率差動継電装置において、 上記入出電流を空心変成器で検出し、上記比率特性を差
動量−抑制量座標で折線状となるようにしたことを特徴
とするディジタル比率差動継電装置。
1. A digital ratio for detecting an input / output current of protected equipment, converting the analog detection amount into a digital amount to obtain a differential amount and a suppression amount, and performing an abnormality determination operation according to a preset ratio characteristic. In a differential relay device, the above-mentioned input / output current is detected by an air-core transformer, and the above-mentioned ratio characteristic is made into a polygonal line in the differential amount-suppressing amount coordinate system. ..
【請求項2】 比率特性は、装置のアナログ部固定分誤
差と量子化誤差とによる誤動作を回避するためそのタッ
プ値定数が設定された単純差動要素領域と、装置のアナ
ログ部比例分誤差による誤動作を回避するためその抑制
比率が設定された第1の比率差動要素領域と、検出電流
のフルスケールオーバを考慮してその抑制比率が設定さ
れた第2の比率差動要素領域とを含むことを特徴とする
請求項1記載のディジタル比率差動継電装置。
2. The ratio characteristic depends on a simple differential element region in which a tap value constant is set in order to avoid malfunction due to a fixed component error and a quantization error of an analog part of the device and an analog part proportional component error of the device. A first ratio differential element region in which the suppression ratio is set to avoid malfunction is included, and a second ratio differential element region in which the suppression ratio is set in consideration of full scale over of the detected current. The digital ratio differential relay device according to claim 1, wherein:
JP3294282A 1991-11-11 1991-11-11 Digital ratio differential relay Pending JPH05137235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294282A JPH05137235A (en) 1991-11-11 1991-11-11 Digital ratio differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294282A JPH05137235A (en) 1991-11-11 1991-11-11 Digital ratio differential relay

Publications (1)

Publication Number Publication Date
JPH05137235A true JPH05137235A (en) 1993-06-01

Family

ID=17805689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294282A Pending JPH05137235A (en) 1991-11-11 1991-11-11 Digital ratio differential relay

Country Status (1)

Country Link
JP (1) JPH05137235A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207335A (en) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp Current differential guard relay
CN106936111A (en) * 2017-04-05 2017-07-07 南京国电南自维美德自动化有限公司 Hyperbolic system dynamic characteristic differential protecting method based on flex point tracking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124153A (en) * 1976-04-12 1977-10-18 Mitsubishi Electric Corp Ratio differential relay
JPH01170318A (en) * 1987-12-23 1989-07-05 Hitachi Ltd Ratio differential relay

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52124153A (en) * 1976-04-12 1977-10-18 Mitsubishi Electric Corp Ratio differential relay
JPH01170318A (en) * 1987-12-23 1989-07-05 Hitachi Ltd Ratio differential relay

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207335A (en) * 2008-02-29 2009-09-10 Mitsubishi Electric Corp Current differential guard relay
CN106936111A (en) * 2017-04-05 2017-07-07 南京国电南自维美德自动化有限公司 Hyperbolic system dynamic characteristic differential protecting method based on flex point tracking

Similar Documents

Publication Publication Date Title
US6356421B1 (en) System for power transformer differential protection
US7906970B2 (en) Current differential protection relays
EP3560054B1 (en) A method for detecting inrush and ct saturation and an intelligent electronic device therefor
JP2608701B2 (en) Inspection circuit for protective device
US10714924B2 (en) Ground fault overvoltage relay device
EP1873883A1 (en) Distance protection relay and method
JPH11308756A (en) System protection relay device
JPH05137235A (en) Digital ratio differential relay
JP3829614B2 (en) Digital type protective relay device
JPH0132736B2 (en)
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP5578888B2 (en) Current differential relay
JP2003092825A (en) Ground fault protective relay
JP3011420B2 (en) Digital bus protection relay
JP2581061B2 (en) Power system protection device
JP3019607B2 (en) Overcurrent relay
JP2866767B2 (en) AC feeder circuit failure selection relay for railways
JP5072085B2 (en) Device for detecting resistance ground fault current
JP3259556B2 (en) Accident point location device
JPH0746751A (en) Ground-to-line fault distance relay
JPH0799901B2 (en) Protective relay
JP2002101549A (en) Ground directional relay
JPH0715863A (en) Transformer protective relay device
JPH0583844A (en) Distance relay unit
JP3975647B2 (en) Analog input circuit monitoring method