JPH05236636A - Ratio differential relay - Google Patents

Ratio differential relay

Info

Publication number
JPH05236636A
JPH05236636A JP4072886A JP7288692A JPH05236636A JP H05236636 A JPH05236636 A JP H05236636A JP 4072886 A JP4072886 A JP 4072886A JP 7288692 A JP7288692 A JP 7288692A JP H05236636 A JPH05236636 A JP H05236636A
Authority
JP
Japan
Prior art keywords
current
ratio
relay
differential relay
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4072886A
Other languages
Japanese (ja)
Inventor
Kenji Iguchi
研二 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4072886A priority Critical patent/JPH05236636A/en
Publication of JPH05236636A publication Critical patent/JPH05236636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To realize a ratio differential relay having such broken line characteristics as the ratio is low in low differential current region while it is high in high differential current region. CONSTITUTION:The ratio differential relay employs the vector sum of flow-in current and flow-out current for a section to be protected as operating force while employs the scalar sum of the flow-in current and flow-out current as suppressing force, wherein a negative constant term is added to the term corresponding to the suppressing force in the operational formula so that the suppressing force is produced only in such region as the scalar sum is higher than the constant term.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発電機、変圧器、母
線、送電線等の電力機器を保護するための比率差動継電
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ratio differential relay for protecting electric power equipment such as generators, transformers, busbars and transmission lines.

【0002】[0002]

【従来の技術】発電機、変圧器、母線、送電線等の電力
機器を保護する継電器として、被保護区間に対する流入
電流及び流出電流の量を電流差動回路により検出し、そ
のベクトル和(差電流)の大きさが整定値以上であると
きに電流継電器に対する動作信号を出力する差動継電器
が従来から知られている。この差動継電器の代表的な動
作式は数式1のとおりであり、また、特性図は図4(斜
線部分は動作領域)に示すとおりである。なお、数式1
において、Id(=I1−I2)は差電流(I1:流入電
流,I2:流出電流)、K1は整定値であり、各電流
1,I2,Idはベクトル量である。
2. Description of the Related Art As a relay for protecting electric power equipment such as a generator, a transformer, a bus, and a transmission line, the amount of inflow current and outflow current with respect to a protected section is detected by a current differential circuit, and the vector sum (difference) is calculated. Conventionally, there is known a differential relay that outputs an operation signal to a current relay when the magnitude of (current) is a set value or more. A typical operation formula of this differential relay is as shown in Expression 1, and the characteristic diagram is as shown in FIG. 4 (hatched portion is an operation region). In addition, Formula 1
, I d (= I 1 −I 2 ) is a differential current (I 1 : inflow current, I 2 : outflow current), K 1 is a settling value, and each current I 1 , I 2 , I d is a vector quantity. Is.

【0003】[0003]

【数1】|Id|>K1 [Equation 1] | I d |> K 1

【0004】この差動継電器では、被保護区間の内部に
事故がなくても外部短絡事故等が発生した場合、被保護
区間両端の変流器の変流比不整合、変流比誤差、飽和現
象等に起因して差電流を生じ、これが継電器の誤動作を
引き起こすことがある。これらの差電流は流入電流、流
出電流が大きくなるにつれて大きくなることから、流入
電流、流出電流が大きい領域では差動継電器の整定値を
これらの電流値に比例させて大きくする方式が採られて
いる。
In this differential relay, when an external short-circuit accident or the like occurs even if there is no accident inside the protected section, the current ratio mismatch of the current transformers at both ends of the protected section, the current ratio error, and the saturation occur. Due to a phenomenon or the like, a difference current is generated, which may cause a malfunction of the relay. Since these difference currents increase as the inflow current and outflow current increase, in the area where the inflow current and outflow current are large, the method of increasing the set value of the differential relay in proportion to these current values is adopted. There is.

【0005】すなわち、この方式による継電器は、流入
電流、流出電流と整定値(差電流と通過電流)とが一定
の比率を有することから、比率差動継電器と呼ばれてい
る。比率差動継電器の代表的な動作式は数式2に、ま
た、特性図は図5に示すとおりである。なお、数式2に
おいて差電流Id(=I1−I2)は動作力に、また、抑
制係数K2とスカラー和(|I1|+|I2|)との積は
抑制力に相当する。
That is, the relay according to this system is called a ratio differential relay because the inflow current, the outflow current and the set value (difference current and passing current) have a constant ratio. A typical operation formula of the ratio differential relay is shown in Formula 2, and a characteristic diagram is shown in FIG. In Expression 2, the difference current I d (= I 1 −I 2 ) corresponds to the operating force, and the product of the suppression coefficient K 2 and the scalar sum (| I 1 | + | I 2 |) corresponds to the suppressing force. To do.

【0006】[0006]

【数2】|Id|>K2×(|I1|+|I2|)[Equation 2] | I d |> K 2 × (| I 1 | + | I 2 |)

【0007】この特性によれば、流入電流または流出電
流が大きく抑制力が大きい場合には、大きな差電流によ
る動作力が働かなくては継電器が動作しないことになる
から、外部短絡事故等により通過電流が大きくなっても
かなりの差電流が流れないと継電器は動作しない。従っ
て、変流比不整合や変流比誤差等による差電流では継電
器は誤動作しないことになる。この比率差動継電器で
は、図5から明らかなように比率が原点を通る直線とな
り、その傾きは流入電流または流出電流の大きさに関わ
らず一定となっている。
According to this characteristic, when the inflow current or the outflow current is large and the suppressing force is large, the relay will not operate unless the operating force due to the large difference current is exerted. Even if the current becomes large, the relay will not operate unless a significant difference current flows. Therefore, the relay does not malfunction due to the difference current due to the current ratio mismatch or the current ratio error. In this ratio differential relay, as is clear from FIG. 5, the ratio is a straight line passing through the origin, and its inclination is constant regardless of the magnitude of the inflow current or the outflow current.

【0008】なお、従来の比率差動継電器では、図4
(数式1)及び図5(数式2)の特性のANDをとるこ
とにより継電器の抑制力を強めて不動作領域を拡げるべ
く、図6に示すような特性を持たせて使用されてきた。
In the conventional ratio differential relay, as shown in FIG.
By using the AND of the characteristics of (Equation 1) and FIG. 5 (Equation 2), it has been used with the characteristics shown in FIG. 6 in order to increase the suppression force of the relay and expand the inoperative region.

【0009】[0009]

【発明が解決しようとする課題】ところが、前記差電流
の性質を調べてみると、流入電流、流出電流が定格値以
内である小電流領域では、差電流は、変流比誤差等に起
因するもので比率は小さいが、大電流領域になると変流
器の飽和による差電流が発生し、比率が大きくなるとい
う性質がある。従って、上記性質を考慮した場合、小電
流領域では比率が小さく、大電流領域では比率が大きく
なるような、図2の折線特性を持つ比率差動継電器を実
現することが要請される。
However, when the characteristics of the differential current are examined, the differential current is caused by the current ratio error in the small current region where the inflow current and the outflow current are within the rated values. Although the ratio is small, there is a property that in a large current region, a difference current is generated due to saturation of the current transformer, and the ratio becomes large. Therefore, in consideration of the above properties, it is required to realize a ratio differential relay having the broken line characteristic of FIG. 2 such that the ratio is small in the small current region and large in the large current region.

【0010】一方、前述のように、従来の比率差動継電
器は、数式1で表される感度要素及び数式2で表される
比率要素を組み合わせて図6に示す特性を実現してい
る。しかるに、これでは数式1及び数式2の二つの動作
式を必要とするため、ディジタルリレーにより実現する
場合にプログラムが複雑になって演算処理時間が長くな
るという問題があった。
On the other hand, as described above, the conventional ratio differential relay realizes the characteristic shown in FIG. 6 by combining the sensitivity element expressed by the mathematical expression 1 and the ratio element expressed by the mathematical expression 2. However, this requires two operation formulas, Formula 1 and Formula 2, so that there is a problem in that the program becomes complicated and the arithmetic processing time becomes long when it is realized by a digital relay.

【0011】本発明は上記要請ないし問題点に鑑みてな
されたもので、第1の発明の目的とするところは、流入
電流または流出電流の大きさに応じて最適の比率を持た
せることができるようにした比率差動継電器を提供する
ことにある。また、第2の発明の目的とするところは、
単一の動作式に感度要素及び比率要素を持たせ、プログ
ラムの簡略化及び演算処理時間の短縮化を可能にした比
率差動継電器を提供することにある。
The present invention has been made in view of the above-mentioned demands and problems, and an object of the first invention is to provide an optimum ratio according to the magnitude of inflow current or outflow current. The purpose is to provide such a ratio differential relay. The object of the second invention is
It is an object of the present invention to provide a ratio differential relay which has a sensitivity element and a ratio element in a single operation formula, which enables simplification of a program and reduction of an arithmetic processing time.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明は、被保護区間に対する流入電流と流出
電流とのベクトル和を動作力とし、流入電流と流出電流
とのスカラー和を抑制力とする比率差動継電器におい
て、前記抑制力に対応する項に負の定数項を追加してな
る動作式を有し、前記スカラー和が前記定数項よりも大
きい領域においてのみ抑制力を生じさせるようにしたも
のである。
In order to achieve the above object, a first aspect of the present invention uses a vector sum of an inflow current and an outflow current for a protected section as an operating force, and calculates a scalar sum of the inflow current and the outflow current. In the ratio differential relay that has the suppression force, it has an operation formula in which a negative constant term is added to the term corresponding to the suppression force, and the suppression force is generated only in the region where the scalar sum is larger than the constant term. It was made to let.

【0013】第2の発明は、被保護範囲に対する流入電
流と流出電流とのベクトル和を動作力とし、流入電流と
流出電流とのスカラー和を抑制力とする比率差動継電器
において、前記抑制力に対応する項に正の定数項を追加
して感度要素及び比率要素の双方を備えた動作式を有す
るものである。
A second aspect of the present invention is a ratio differential relay in which a vector sum of an inflow current and an outflow current with respect to a protected range is used as an operating force, and a scalar sum of an inflow current and an outflow current is used as an inhibiting force. In addition, a positive constant term is added to the term corresponding to, and an operation equation having both a sensitivity element and a ratio element is provided.

【0014】[0014]

【作用】第1の発明においては、抑制力に対応する項に
負の定数項を追加してなる動作式を有する比率差動継電
器の特性を、従来の差動継電器及び比率差動継電器の特
性と組み合わせることにより、流入電流、流出電流の小
電流域では比率が小さく、また、大電流域では比率が大
きい折線状の特性を実現することができる。
In the first aspect of the present invention, the characteristic of the ratio differential relay having an operation formula in which a negative constant term is added to the term corresponding to the suppression force is compared with the characteristics of the conventional differential relay and the ratio differential relay. By combining with, it is possible to realize a linear characteristic in which the ratio is small in the small current region of the inflow current and the outflow current and is large in the large current region.

【0015】第2の発明においては、抑制力に対応する
項に正の定数項を追加してなる動作式を有することによ
り、この動作式のみで従来の差動継電器の感度要素と比
率差動継電器の比率要素とが実現可能であり、ディジタ
ルリレーにおけるリレー演算を簡略化することができ
る。
According to the second aspect of the present invention, by having an operation formula in which a positive constant term is added to the term corresponding to the suppression force, the sensitivity element and the ratio differential of the conventional differential relay are obtained only by this operation formula. The ratio element of the relay can be realized, and the relay calculation in the digital relay can be simplified.

【0016】[0016]

【実施例】以下、図に沿って各発明の実施例を説明す
る。まず、第1の発明は、前述した図2の折線特性を実
現させるための比率差動継電器に関するものである。図
2の特性を考察すると、この特性は、新たに考えられた
図1に示す特性と前述した図4、図5の特性とのAND
領域であることから、図1の特性を動作式として求めれ
ばよい。すなわち、図1の特性は図5をI1,I2座標平
面上でX,Y方向にL1だけ移動したものであるから、
1=I1−L1,I2=I2−L1を前記数式2に代入すれ
ば次の数式3を得ることができる。
Embodiments of the present invention will be described below with reference to the drawings. First, the first invention relates to a ratio differential relay for realizing the above-mentioned broken line characteristic of FIG. Considering the characteristic of FIG. 2, this characteristic is an AND of the newly considered characteristic shown in FIG. 1 and the characteristic of FIG. 4 and FIG. 5 described above.
Since it is a region, the characteristic of FIG. 1 may be obtained as an operation formula. That is, the characteristic of FIG. 1 is obtained by moving FIG. 5 by L 1 in the X and Y directions on the I 1 and I 2 coordinate planes.
By substituting I 1 = I 1 -L 1 and I 2 = I 2 -L 1 into the equation 2, the following equation 3 can be obtained.

【0017】[0017]

【数3】 |Id|>K2×(|I1|+|I2|−2L1[Equation 3] | I d |> K 2 × (| I 1 | + | I 2 | -2L 1 )

【0018】すなわち、数式2に対し、抑制力に対応す
る項に負の定数項(−2L1)を加えた特性を実現でき
れば、図1に示す特性を得ることができる。ここで、数
式3を変形して数式4を得る。
That is, if the characteristic obtained by adding the negative constant term (-2L 1 ) to the term corresponding to the suppression force is added to the expression 2, the characteristic shown in FIG. 1 can be obtained. Here, the formula 3 is modified to obtain the formula 4.

【0019】[0019]

【数4】 |I1−I2|>K2×(|I1|+|I2|−2L1[Equation 4] | I 1 −I 2 |> K 2 × (| I 1 | + | I 2 | −2L 1 )

【0020】いま、I1>I2>0のとき、 I1−I2>K2×(I1+I2−2L1) −(1+K2)I2>(K2−1)I1−2K21 であるから、次の数式5が得られる。Now, when I 1 > I 2 > 0, I 1 −I 2 > K 2 × (I 1 + I 2 −2L 1 ) − (1 + K 2 ) I 2 > (K 2 −1) I 1 − Since it is 2K 2 L 1 , the following formula 5 is obtained.

【0021】[0021]

【数5】 I2<(1−K2)×I1/(1+K2)+2K21/(1+K2## EQU5 ## I 2 <(1-K 2 ) × I 1 / (1 + K 2 ) + 2K 2 L 1 / (1 + K 2 )

【0022】また、I2>I1>0のとき、 I2−I1>K2×(I1+I2−2L1) (1−K2)×I2>(K2+1)I1−2K21 であるから、次の数式6が得られる。When I 2 > I 1 > 0, I 2 −I 1 > K 2 × (I 1 + I 2 −2L 1 ) (1−K 2 ) × I 2 > (K 2 +1) I 1 Since it is −2K 2 L 1 , the following formula 6 is obtained.

【0023】[0023]

【数6】 I2>(1+K2)×I1/(1−K2)−2K21/(1−K2## EQU6 ## I 2 > (1 + K 2 ) × I 1 / (1-K 2 ) -2K 2 L 1 / (1-K 2 ).

【0024】これらの数式5及び数式6により、継電器
の特性は図1のようになり、この特性と、周知の図4及
び図5の特性のAND領域を求めることにより、図2に
示す所望の特性を実現することができる。従って、流入
電流、流出電流の小電流域では比率が小さく、また、大
電流域では比率の大きい比率差動継電器を得ることが可
能になる。
From these equations 5 and 6, the characteristics of the relay are as shown in FIG. 1. By obtaining the AND area of this characteristic and the well-known characteristics of FIGS. 4 and 5, the desired characteristics shown in FIG. 2 are obtained. The characteristics can be realized. Therefore, it is possible to obtain a ratio differential relay having a small ratio in the small current region of the inflow current and the outflow current and a large ratio in the large current region.

【0025】次に、第2の発明の実施例を説明する。こ
の発明は、単一の動作式により感度要素及び比率要素を
持たせるようにしたものである。すなわち、図6の特性
から考察すると、図3に示すように比率が直線の特性で
も充分に同様の作用を果たすことができる。
Next, an embodiment of the second invention will be described. The present invention has a sensitivity element and a ratio element by a single operation formula. That is, considering the characteristics of FIG. 6, even if the characteristics are linear as shown in FIG. 3, the same effect can be sufficiently achieved.

【0026】図3の特性は、一点鎖線で示すように図5
の特性をI1,I2座標平面上でX,Y方向に−L2だけ
移動したものであるから、I1=I1+L2,I2=I2
2を前記数式2に代入すれば次の数式7を得ることが
できる。
The characteristic of FIG. 3 is shown in FIG.
Is moved by -L 2 in the X and Y directions on the I 1 and I 2 coordinate planes, so that I 1 = I 1 + L 2 and I 2 = I 2 +
By substituting L 2 into the equation 2, the following equation 7 can be obtained.

【0027】[0027]

【数7】 |Id|>K2×(|I1|+|I2|+2L2[Formula 7] | I d |> K 2 × (| I 1 | + | I 2 | + 2L 2 )

【0028】すなわち、数式2に対し、抑制力に対応す
る項に正の定数項2L2を加えた特性を実現できれば、
図3に示す特性を得ることができる。数式7を変形して
数式8を得る。
That is, if a characteristic obtained by adding a positive constant term 2L 2 to the term corresponding to the suppression force in the equation 2 is realized,
The characteristics shown in FIG. 3 can be obtained. Equation 8 is transformed to obtain Equation 8.

【0029】[0029]

【数8】 |I1−I2|>K2×(|I1|+|I2|+2L2[Equation 8] | I 1 −I 2 |> K 2 × (| I 1 | + | I 2 | + 2L 2 )

【0030】いま、I1>I2>0のとき、 I1−I2>K2×(I1+I2+2L2) −(1+K2)I2>(K2−1)I1+2K22 であるから、次の数式9が得られる。When I 1 > I 2 > 0, I 1 −I 2 > K 2 × (I 1 + I 2 + 2L 2 ) − (1 + K 2 ) I 2 > (K 2 −1) I 1 + 2K 2 Since it is L 2 , the following formula 9 is obtained.

【0031】[0031]

【数9】 I2<(1−K2)×I1/(1+K2)−2K22/(1+K2## EQU9 ## I 2 <(1-K 2 ) × I 1 / (1 + K 2 ) -2K 2 L 2 / (1 + K 2 )

【0032】また、I2>I1>0のとき、 I2−I1>K2×(I1+I2+2L2) (1−K2)×I2>(K2+1)I1+2K22 であるから、次の数式10が得られる。When I 2 > I 1 > 0, I 2 −I 1 > K 2 × (I 1 + I 2 + 2L 2 ) (1−K 2 ) × I 2 > (K 2 +1) I 1 + 2K Since it is 2 L 2 , the following formula 10 is obtained.

【0033】[0033]

【数10】 I2>(1+K2)×I1/(1−K2)+2K22/(1−K2## EQU10 ## I 2 > (1 + K 2 ) × I 1 / (1-K 2 ) + 2K 2 L 2 / (1-K 2 ).

【0034】よって数式9及び数式10により、図3の
特性を実現することができる。このように、本実施例に
よれば、前記数式8にて示される単一の動作式により比
率継電器の感度要素及び比率差動継電器の比率要素を持
たせることができ、ディジタルリレーにおけるプログラ
ムの簡略化、演算処理時間の短縮に大きく寄与すること
ができる。
Therefore, the characteristics of FIG. 3 can be realized by the expressions 9 and 10. As described above, according to the present embodiment, the sensitivity element of the ratio relay and the ratio element of the ratio differential relay can be provided by the single operation formula represented by the above equation 8, and the program in the digital relay can be simplified. It is possible to greatly contribute to the reduction of the processing time and the calculation processing time.

【0035】[0035]

【発明の効果】以上のように第1の発明によれば、抑制
力に対応する項に負の定数項を追加してなる動作式を有
する比率差動継電器の特性を、従来の差動継電器及び比
率差動継電器の特性と組み合わせることにより、流入電
流、流出電流の小電流域では比率が小さく、また、大電
流域では比率が大きい折線状の特性を実現することがで
きる。従って、差電流の性質に応じた最適特性の比率差
動継電器を提供することができる。
As described above, according to the first aspect of the present invention, the characteristic of the ratio differential relay having the operation formula in which the negative constant term is added to the term corresponding to the suppression force is compared with the conventional differential relay. And by combining with the characteristics of the ratio differential relay, it is possible to realize a linear characteristic in which the ratio is small in the small current region of the inflow current and the outflow current and is large in the large current region. Therefore, it is possible to provide a ratio differential relay having optimum characteristics according to the characteristics of the difference current.

【0036】第2の発明によれば、抑制力に対応する項
に正の定数項を追加してなる動作式を有することによ
り、この動作式のみで従来の差動継電器の感度要素と比
率差動継電器の比率要素とを実現することができる。こ
のため、ディジタルリレーにおけるリレー演算を簡略化
することができ、プログラムの簡素化、演算処理時間の
短縮による応答性向上を図ることができる。
According to the second aspect of the present invention, by having an operation equation in which a positive constant term is added to the term corresponding to the suppression force, the sensitivity element of the conventional differential relay and the ratio difference are provided only by this operation equation. The ratio element of the relay can be realized. Therefore, the relay calculation in the digital relay can be simplified, the program can be simplified, and the responsiveness can be improved by shortening the calculation processing time.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の実施例を示す特性図である。FIG. 1 is a characteristic diagram showing an embodiment of the first invention.

【図2】第1の発明の実施例を用いた最終的な比率差動
継電器の特性図である。
FIG. 2 is a characteristic diagram of a final ratio differential relay using the embodiment of the first invention.

【図3】第2の発明の実施例を示す特性図である。FIG. 3 is a characteristic diagram showing an embodiment of the second invention.

【図4】従来の差動継電器の特性図である。FIG. 4 is a characteristic diagram of a conventional differential relay.

【図5】従来の比率差動継電器の特性図である。FIG. 5 is a characteristic diagram of a conventional ratio differential relay.

【図6】図4及び図5の特性を組み合わせた特性図であ
る。
FIG. 6 is a characteristic diagram in which the characteristics of FIGS. 4 and 5 are combined.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被保護区間に対する流入電流と流出電流
とのベクトル和を動作力とし、流入電流と流出電流との
スカラー和を抑制力とする比率差動継電器において、 前記抑制力に対応する項に負の定数項を追加してなる動
作式を有し、前記スカラー和が前記定数項よりも大きい
領域においてのみ抑制力を生じさせるようにしたことを
特徴とする比率差動継電器。
1. A ratio differential relay in which a vector sum of an inflow current and an outflow current with respect to a protected section is used as an operating force and a scalar sum of an inflow current and an outflow current is an inhibiting force, which corresponds to the inhibiting force. And a negative constant term is added to the differential equation, and the suppressing force is generated only in a region where the scalar sum is larger than the constant term.
【請求項2】 被保護範囲に対する流入電流と流出電流
とのベクトル和を動作力とし、流入電流と流出電流との
スカラー和を抑制力とする比率差動継電器において、 前記抑制力に対応する項に正の定数項を追加して感度要
素及び比率要素の双方を備えた動作式を有することを特
徴とする比率差動継電器。
2. A ratio differential relay in which a vector sum of an inflow current and an outflow current with respect to a protected range is used as an operating force, and a scalar sum of an inflow current and an outflow current is used as an inhibiting force, which corresponds to the inhibiting force. A ratio differential relay, characterized in that it has an operation formula including both a sensitivity element and a ratio element by adding a positive constant term to
JP4072886A 1992-02-24 1992-02-24 Ratio differential relay Pending JPH05236636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4072886A JPH05236636A (en) 1992-02-24 1992-02-24 Ratio differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4072886A JPH05236636A (en) 1992-02-24 1992-02-24 Ratio differential relay

Publications (1)

Publication Number Publication Date
JPH05236636A true JPH05236636A (en) 1993-09-10

Family

ID=13502273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4072886A Pending JPH05236636A (en) 1992-02-24 1992-02-24 Ratio differential relay

Country Status (1)

Country Link
JP (1) JPH05236636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100949003B1 (en) * 2008-02-29 2010-03-23 미쓰비시덴키 가부시키가이샤 Current differential protection relay
KR100984828B1 (en) * 2006-02-28 2010-10-04 가부시끼가이샤 도시바 Current differential relay device, and its signal processing method, and transmission line protecting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100984828B1 (en) * 2006-02-28 2010-10-04 가부시끼가이샤 도시바 Current differential relay device, and its signal processing method, and transmission line protecting system
KR100949003B1 (en) * 2008-02-29 2010-03-23 미쓰비시덴키 가부시키가이샤 Current differential protection relay

Similar Documents

Publication Publication Date Title
US6356421B1 (en) System for power transformer differential protection
JP5068200B2 (en) Current differential protection relay
JP5441625B2 (en) Busbar protection device
JPH05236636A (en) Ratio differential relay
KR102115243B1 (en) Protection relay device
JP3269220B2 (en) Transformer protection relay
Rebizant et al. Fuzzy inference supported current differential protection for HV transmission lines
JP2003199240A (en) Digital protective relay
JP2577424B2 (en) Current differential relay method
JP2874316B2 (en) Distance relay
JP3558309B2 (en) Ratio differential relay
JP2008141896A (en) Protection relay
Peterson et al. The rectangularity law of transformers
US4370691A (en) Protection apparatus for electric power transmission systems
JPH067535B2 (en) Error compensation current transformer
JP2856826B2 (en) Differential relay
JPH0642765B2 (en) Ratio differential relay
SU758348A1 (en) Device for protecting electric power transmission line from earthing
JPH0522839A (en) Ratio differential relay system
JPH06292321A (en) Method of setting operating range of digital distance reray
JPH02174519A (en) Digital protective relay device
JPH02219419A (en) Ratio-differential relay
JPH023374B2 (en)
JPS60180435A (en) Transformer protecting relay
JPH0771373B2 (en) Busbar protector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010911