JPS60180435A - Transformer protecting relay - Google Patents

Transformer protecting relay

Info

Publication number
JPS60180435A
JPS60180435A JP3554384A JP3554384A JPS60180435A JP S60180435 A JPS60180435 A JP S60180435A JP 3554384 A JP3554384 A JP 3554384A JP 3554384 A JP3554384 A JP 3554384A JP S60180435 A JPS60180435 A JP S60180435A
Authority
JP
Japan
Prior art keywords
transformer
current
voltage side
circuit
charging current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3554384A
Other languages
Japanese (ja)
Inventor
敏信 海老坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3554384A priority Critical patent/JPS60180435A/en
Publication of JPS60180435A publication Critical patent/JPS60180435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、電力系統に於て電圧変換の役割をする変圧
器の故障を検出する保護継電器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a protective relay that detects a failure in a transformer that performs the role of voltage conversion in a power system.

〔従来技術〕[Prior art]

第1図は保護対象とする変圧器7とその周辺構成を示し
、図中、1は高圧側母線、2は低圧側母線、3a 、3
bはしゃ断器、4aおよび4bは変圧器保護継電器5に
電流情報を提供する為の高圧側変流器CTおよび低圧側
変流器CT、1.および工、はそれぞれ変流器4a、4
bの一1次電流で、ここでは高圧側1次電流および低圧
側1次電流と称す。6は変圧器7と高圧側母線1の間を
接続する構内ケーブル、8a〜8nは低圧側母線2に接
続される負荷である。
Fig. 1 shows the transformer 7 to be protected and its peripheral configuration, in which 1 is the high voltage side bus bar, 2 is the low voltage side bus bar, 3a, 3
b is a breaker; 4a and 4b are a high voltage side current transformer CT and a low voltage side current transformer CT for providing current information to the transformer protection relay 5; 1. and 4 are current transformers 4a and 4, respectively.
b, which are referred to as the high-voltage side primary current and the low-voltage side primary current here. Reference numeral 6 indicates a local cable connecting between the transformer 7 and the high-voltage bus 1, and 8a to 8n are loads connected to the low-voltage bus 2.

一般に、変圧器保護継電器5は差動保護方式を採用し、
変圧器7の変成比、質流器4a、4bの 。
Generally, the transformer protection relay 5 adopts a differential protection method,
The transformation ratio of the transformer 7, and the transformer ratio of the flow conditioners 4a and 4b.

変流比で決められる値の電流入力を得、電流2量のベク
トル差を動作力、電流z量の絶対値の中、大きい方を抑
制力として利用している。
A current input having a value determined by the current transformation ratio is obtained, and the vector difference between the two current amounts is used as the operating force, and the larger of the absolute value of the current z amount is used as the restraining force.

今、簡単の為に、変成比、変流比を考慮せず、高圧側1
次電流工、と低圧側1次電流I2の大きさが同一値レベ
ルで扱えるものと仮定し、ベクトル図上に表現すると第
2図のようになる。第2図中、■1は高圧側母線1の電
圧ベクトルの方向を示す。
Now, for the sake of simplicity, we will not consider the transformation ratio and current transformation ratio, and the high pressure side 1
Assuming that the magnitude of the primary current I2 and the primary current I2 on the low voltage side can be treated at the same value level, it is expressed on a vector diagram as shown in FIG. 2. In FIG. 2, 1 indicates the direction of the voltage vector on the high-voltage bus 1.

第1図に於ける負荷8a〜8nの負荷電流の合計I2は
、一般に力率lに近す、多少遅れ位相の関係にあり、第
2図では高圧側母線1の電圧に対しθ1の角度遅れで表
わしている。一方、第1図に於ける構内ケーブル6のケ
ーブル区間に於ける充電々流は、変圧器7の容量が大き
い場合は問題にならないが、発電所の起動変圧器の様に
、容量的に小さい場合は故障検出感度に影響を与える。
The total load current I2 of the loads 8a to 8n in FIG. 1 is generally close to the power factor l and has a slightly delayed phase relationship, and in FIG. It is expressed as On the other hand, the charging current in the cable section of the premises cable 6 in Fig. 1 is not a problem if the capacity of the transformer 7 is large, but it is not a problem if the capacity is small, such as the starting transformer of a power plant. This will affect the fault detection sensitivity.

第2図ではケーブル区間6に於ける充電々流をIcで辰
わし、低圧側1次軍流工、と充電電流Icの合成ベクト
ルが高圧側1次電流工、となる様に示している。つまり
充電電流Icが無ければ高圧側1次電流工、と低圧側1
次電流■2は等しく、変圧器保護継電器5の動作力にな
るベクトル差は零となるが、充電電流Icが存在すると
、この分だけベクトル差として残り、変圧器保護継電器
5の誤差々動大刀として入ってしまう。そこで、充電電
流Icの値が変圧器7の定格電流に対し、無視し得ない
程度のレベルで存在した場合、変圧器保護継電器5の検
出感度を鈍化させて対処するのが従来の対策法であった
In FIG. 2, the charging current in the cable section 6 is expressed as Ic, and the composite vector of the low voltage side primary current flow and the charging current Ic is shown as the high voltage side primary current flow. In other words, if there is no charging current Ic, the high voltage side primary current and the low voltage side 1
The next currents 2 are equal, and the vector difference that becomes the operating force of the transformer protective relay 5 is zero. However, if the charging current Ic exists, this amount remains as a vector difference, and the error of the transformer protective relay 5 is reduced. It enters as. Therefore, when the value of the charging current Ic exists at a level that cannot be ignored with respect to the rated current of the transformer 7, the conventional countermeasure is to reduce the detection sensitivity of the transformer protective relay 5. there were.

第8図は従来方法による変圧器保護継電器の内部回路ブ
ロック図で、第8図中、51.52は変成器、56は最
大絶対値導出回路、54はベクトル差動回路、55は最
大絶対値導出回路53からの抑制出力と、ベクトル差導
出回路54からの動作出力とを比較判定し、動作力の方
が大きければ動作出力56を出す為の比較器である。第
1図に於ける変流器4a 、4bから取9込んだ電流工
、。
FIG. 8 is an internal circuit block diagram of a conventional transformer protection relay. In FIG. 8, 51 and 52 are transformers, 56 is a maximum absolute value deriving circuit, 54 is a vector differential circuit, and 55 is a maximum absolute value This is a comparator for comparing and determining the suppression output from the deriving circuit 53 and the operational output from the vector difference deriving circuit 54, and outputting the operational output 56 if the operational force is greater. The electric current installed from the current transformers 4a and 4b in FIG.

工2は変成器51.52で適当な値に変換された後、最
大絶対値導出回路53では、電流I、、Lの中の大きい
方の絶対値を出力し、ベクトル差導出回路54では電流
I、、I、のベクトル差を出力し、両川力の大きさの比
較を比較器55が行う。上述した従来方式に於ける感度
の鈍化は、比較器55の調整で得られる事になる。
After converter 2 is converted into an appropriate value by transformers 51 and 52, maximum absolute value deriving circuit 53 outputs the larger absolute value of currents I, L, and vector difference deriving circuit 54 outputs the current A comparator 55 outputs the vector difference between I, , I, and compares the magnitude of the two river forces. The reduction in sensitivity in the conventional method described above can be achieved by adjusting the comparator 55.

従来の変圧器保護継電器は以上のように構成されている
ので、充電電流の値が変圧器の定格電流に対し、無視し
得ない程度のレベルで存在した場合、変圧器保護継電器
の検出感度を鈍化させなければならず、その結果、変圧
器の内部の1ターンレアー等の軽微な故障の検出が不能
になるという問題点があった。
Conventional transformer protective relays are configured as described above, so when the charging current value is at a level that cannot be ignored relative to the rated current of the transformer, the detection sensitivity of the transformer protective relay is reduced. As a result, there was a problem in that it became impossible to detect minor failures such as one-turn rare inside the transformer.

〔発明の概要〕[Summary of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、充電々流分を補償する事により、
感度を鈍化させる事なく、充電々流Icに対処した変圧
器保護継電器を提供することを目的としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by compensating for the charging current,
The purpose of the present invention is to provide a transformer protection relay that can cope with current Ic without decreasing sensitivity.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第8
図と同一部分は同一符号で示す第4図は、本発明による
変圧器保護継電器50の内部回路ブロック図で、第8図
に比し充電々流補償回路100と合成出力回路200と
が追加されている。充電々流補償回路100は、変成器
52の出力を受け、低圧側1次電流I、のベクトル位相
に対し第2図に示した角度02だけ位相を進めた一定量
を出力し得る回路であり、充電々流Icに見合った値を
出力する。合成出力回路200は変成器51からの出力
と、充電々流補償回路100からの出力を合成し、充電
々流を補償した純粋に高圧側1次電流工、分のみとした
出力を出す。
An embodiment of the present invention will be described below with reference to the drawings. 8th
4 is an internal circuit block diagram of a transformer protection relay 50 according to the present invention, in which a charging current compensation circuit 100 and a composite output circuit 200 are added compared to FIG. ing. The charging current compensation circuit 100 is a circuit that can receive the output of the transformer 52 and output a constant amount whose phase is advanced by an angle 02 shown in FIG. 2 with respect to the vector phase of the low voltage side primary current I. , outputs a value commensurate with the charging current Ic. The composite output circuit 200 combines the output from the transformer 51 and the output from the charging current compensation circuit 100, and outputs a purely high-voltage side primary current component that compensates for the charging current.

尚、高圧側母線1の電圧を導入し、この値に見合った形
で充電々流分を補償する方式であってもよく、上記実施
例と同様の効果を奏する。
It should be noted that a method may be adopted in which the voltage of the high-voltage side bus 1 is introduced and the charging current is compensated in a manner commensurate with this value, and the same effect as in the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、変圧器低圧側の電流
位相に対し一定の角度を進めた固定量を高圧側電流入力
に合成する事で、高圧側に存在するケーブル充電々流分
を補償するように構成したので、検出感度を鈍化させる
必要のない変圧器保護継電器が得られる効果がある。
As described above, according to the present invention, by combining a fixed amount advanced by a certain angle with respect to the current phase on the low-voltage side of the transformer into the high-voltage side current input, the cable charging current that exists on the high-voltage side can be reduced. Since the structure is configured to compensate, it is possible to obtain a transformer protection relay that does not require any reduction in detection sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は変圧器とその周辺の構成図、第2図は電流関係
ベクトル図、第8図は従来の変圧器保護継電器の内部回
路ブロック図、第4図はこの発明による変圧器保護継電
器の一実施例の内部回路ブロック図。 1・・・高圧側母線、2・・・低圧側母線、3a、6b
・・・しゃ断器、4a・・・高圧側変流器(CT)、4
b・・・低圧側変流器(CT)、5,50・・・変圧器
保護継電器、6・・・構内ケーブル、7・・・変圧器、
8a〜8n・・・負荷、51.52・・・変成器、56
・・・最大絶対値導出回路、54・・・ベクトル差導出
回路、55・・・比較器、56・・・動作出力、1DO
・・・充電々流補償直゛路、200・・・合成出力回路
。 なお、図中、同一符号は同一、又は相当部分を示す。 特許出願人 三菱電機株式会社 第1図 第2図
Fig. 1 is a block diagram of a transformer and its surroundings, Fig. 2 is a current relationship vector diagram, Fig. 8 is an internal circuit block diagram of a conventional transformer protection relay, and Fig. 4 is a diagram of a transformer protection relay according to the present invention. FIG. 3 is an internal circuit block diagram of an embodiment. 1...High voltage side bus bar, 2...Low pressure side bus bar, 3a, 6b
... Breaker, 4a ... High voltage side current transformer (CT), 4
b...Low voltage side current transformer (CT), 5,50...Transformer protection relay, 6...Internal cable, 7...Transformer,
8a-8n...Load, 51.52...Transformer, 56
... Maximum absolute value derivation circuit, 54 ... Vector difference derivation circuit, 55 ... Comparator, 56 ... Operation output, 1DO
...Charging current compensation direct circuit, 200...Synthetic output circuit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant Mitsubishi Electric Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 変圧器の高圧側ケーブル区間を保護範囲に含む変圧器保
護継電器において、前記変圧器の低圧側CT回路電流位
相を基準にして前記高圧側ケーブルの充電々流相尚の電
流を補償する光電々流補償回路と、この光電々流補償回
路からの出力および前記変圧器の高圧III CT回路
電流を合成する合成出力回路とを備えたことを特徴とす
る変圧器保護継電器。
In a transformer protection relay whose protection range includes a high-voltage side cable section of a transformer, a photocurrent compensates for a current in a charge-current phase of the high-voltage side cable with reference to a current phase of the low-voltage side CT circuit of the transformer. A transformer protection relay comprising: a compensation circuit; and a synthesis output circuit for synthesizing the output from the photocurrent compensation circuit and the high-voltage III CT circuit current of the transformer.
JP3554384A 1984-02-27 1984-02-27 Transformer protecting relay Pending JPS60180435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3554384A JPS60180435A (en) 1984-02-27 1984-02-27 Transformer protecting relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3554384A JPS60180435A (en) 1984-02-27 1984-02-27 Transformer protecting relay

Publications (1)

Publication Number Publication Date
JPS60180435A true JPS60180435A (en) 1985-09-14

Family

ID=12444639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3554384A Pending JPS60180435A (en) 1984-02-27 1984-02-27 Transformer protecting relay

Country Status (1)

Country Link
JP (1) JPS60180435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389020A (en) * 1986-10-02 1988-04-20 三菱電機株式会社 Protective relay of transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389020A (en) * 1986-10-02 1988-04-20 三菱電機株式会社 Protective relay of transformer
JPH0465613B2 (en) * 1986-10-02 1992-10-20 Mitsubishi Electric Corp

Similar Documents

Publication Publication Date Title
JPS60180435A (en) Transformer protecting relay
JPS648524B2 (en)
JP2773808B2 (en) Earthing transformer protection relay
JPH0619405B2 (en) Disconnection detection device for PT secondary circuit
SU1169072A1 (en) Device for short-circuit protection of three-phase reactor
JP2577424B2 (en) Current differential relay method
JPH0546775B2 (en)
SU922939A1 (en) Device for differential protection of multi-winding tranformer with voltage regulation under load
JPH0510515Y2 (en)
SU1198642A1 (en) Device for internal damage protection of capacitor bank with isolated neutral
JPS58139634A (en) Device for protecting branch reactor
SU1134983A1 (en) Device for protecting generator against single-phase short circuits
JPH05144367A (en) Ratio differential relay for protecting transformer
JPH04295221A (en) Protective relay system for electric station
JPH0210655B2 (en)
JPS6046725A (en) Differential protecting relaying device of transformer
JPS62104427A (en) Branching reactor
JPS6051413A (en) Distance relay
JPH0324127B2 (en)
JPS5947922A (en) Current transformer input transformation system for current differential relay
JPH05252645A (en) Protective relaying device for transmission line
JPH0465613B2 (en)
JPS63178732A (en) Reactive power compensator
JPH0667100B2 (en) Undervoltage relay with current compensation
JPS6295923A (en) Protective relay of transformer