JPH05252645A - Protective relaying device for transmission line - Google Patents

Protective relaying device for transmission line

Info

Publication number
JPH05252645A
JPH05252645A JP4048327A JP4832792A JPH05252645A JP H05252645 A JPH05252645 A JP H05252645A JP 4048327 A JP4048327 A JP 4048327A JP 4832792 A JP4832792 A JP 4832792A JP H05252645 A JPH05252645 A JP H05252645A
Authority
JP
Japan
Prior art keywords
output
sensitivity
relay element
current differential
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4048327A
Other languages
Japanese (ja)
Inventor
Yoji Watabe
洋司 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4048327A priority Critical patent/JPH05252645A/en
Publication of JPH05252645A publication Critical patent/JPH05252645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To improve the protective performance of the title device upon normal time by a method wherein an intercepting command is outputted when the output of a high-sensitivity type current differential element is removed and the output of a low-sensitivity type current differential element as well as the output of a failure detecting element are established for a given period of time under a condition that the condition of generation of an excitation rush current for a transformer for a branch load substation is established. CONSTITUTION:A high-sensitivity type current differential element 4 is locked and the locking is continued until a time limit reset timer 3 is reset when either one of a breaker throwing command detecting element 1 or a system voltage increase detecting element 2 is outputted. The intercepting output for a breaker is outputted by the OR of the output and a low-sensitivity type current differential relay element 5 as well as the AND of the output and a failure detecting element 6. In this case, protection during the generating period of transformer exciting rush current is effected by the low-sensitivity type current differential element 5. According to this method, high-sensitivity protection can be effected without spoiling any protecting performance upon a normal time even in a system wherein branch load terminals which are not equipped with the relaying devices are existing in a protecting division.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力系統の送電線保護装
置に係り、特に保護区間内に継電装置を設置しない端子
が存在する場合の電流差動継電方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line protection device for a power system, and more particularly to a current differential relay system when there is a terminal in which a relay device is not installed in the protection section.

【0002】[0002]

【従来の技術】従来の技術について図7を用いて説明す
る。8,9は継電器設置端子、10,11は保護区間内にあ
る需要家,配変等の分岐負荷変電所であって、端子10,
11には継電器が設置されていないものとする。このよう
に継電器を設置しない端子が存在する系統はその端子で
2回線併用運用をしないことや事故電流の供給源にはな
らないこと、あるいはシステムの経済性等を考え合わせ
て構成されており、特に低位系では比較的よくみかけら
れるケ―スである。端子10,11にはそれぞれ受電用変圧
器12,13がある。端子8,9には送電線の電流を測定す
るための計器用変流器14a,14bが、また系統の電圧を
測定するための計器用変圧器15a,15bがそれぞれに設
置されている。端子8に設置された継電装置には前記14
a,15aが、端子9に設置された継電装置には前記14
b,15bが供給され、それぞれの継電装置にて内部事故
と判定した場合にはそれぞれのしゃ断器17a,17bにし
ゃ断指令を出力する。17c,17dはそれぞれ端子10,11
のしゃ断器である。なお図7は一例を示すものであり、
端子数,端子10,11に設置される変圧器台数等について
は本質的な差異はない。また継電装置16a,16bは互い
に伝送系を介して相手端の電流情報等を知ることができ
るものである。図8は継電装置16a,16bの主な構成要
素と保護シ―ケンスの概要を示したものである。主検出
継電器要素18は電流差動方式(比率差動方式とも云
う。)とし、故障検出継電器要素としては主検出継電器
要素とは原理が異なった方式で、代表的な不足電圧継電
方式とする。要素18と19の出力の論理積にてしゃ断指令
が出力される。図7においては計器用変圧器は母線に接
続されているが、これは送電線のしゃ断器よりも外側
(相手端側)に接続されていてもよい。主検出要素であ
る電流差動要素18は、図7において端子8より流入する
電流をI11,端子9より流出する電流をI12とすると一
般に次の動作式で表わされ、図9の特性図に示される。
図9にてハッチング部分が動作領域を示している。 I12≦K1 11−K2 …(1) または I11≦K1 12−K2 …(2)
2. Description of the Related Art A conventional technique will be described with reference to FIG. 8 and 9 are relay installation terminals, 10 and 11 are customers in the protection section, branch load substations such as distribution substations, and terminals 10 and
It is assumed that 11 has no relay installed. In this way, a system that has a terminal without a relay is configured in consideration of the fact that it does not operate in combination with two lines at that terminal, it does not serve as a source of fault current, and the economy of the system is taken into consideration. It is a relatively common case in low-order systems. Terminals 10 and 11 have power receiving transformers 12 and 13, respectively. At the terminals 8 and 9, current transformers 14a and 14b for measuring the current of the transmission line and transformers 15a and 15b for measuring the voltage of the system are respectively installed. The relay installed at terminal 8 has the above 14
a, 15a are the above 14 in the relay device installed in the terminal 9.
b and 15b are supplied, and when it is judged that each relay device has an internal accident, a break command is output to each breaker 17a and 17b. 17c and 17d are terminals 10 and 11, respectively
It is a circuit breaker. Note that FIG. 7 shows an example,
There is no substantial difference in the number of terminals and the number of transformers installed in terminals 10 and 11. Further, the relay devices 16a, 16b can mutually know the current information of the other end through the transmission system. FIG. 8 shows an outline of main constituent elements and protection sequences of the relay devices 16a and 16b. The main detection relay element 18 is a current differential method (also referred to as a ratio differential method), and the failure detection relay element has a principle different from that of the main detection relay element, and is a typical undervoltage relay method. .. A cutoff command is output by the logical product of the outputs of elements 18 and 19. In FIG. 7, the instrument transformer is connected to the bus bar, but it may be connected to the outside (the other end side) of the power line breaker. The current differential element 18, which is the main detection element, is generally expressed by the following operation equation, where I 11 is the current flowing in from the terminal 8 and I 12 is the current flowing out from the terminal 9 in FIG. As shown in the figure.
In FIG. 9, the hatched portion indicates the operation area. I 12 ≤K 1 I 11 -K 2 (1) or I 11 ≤K 1 I 12 -K 2 (2)

【0003】(1),(2)は電流差動要素18の感度が
2 /K1 であることを表わしている。また図9に示す
特性図上では感度は縦軸,横軸との交点であり、通過電
流が大きくなるほど感度が鈍くなる、いわゆる比率特性
を呈している。図7のように継電装置を設置しない端子
が存在する系統では感度K2 /K1 の決定にあたっては
次の点を考慮する必要がある。 (i)常時、端子10,11より流出する電流(端子10,11
の潮流和)で誤動作しない整定とする。 (ii)端子10,11の変圧器2次側事故で誤動作しない整
定とする。 (iii)端子10,11の変圧器で生じる励磁突入電流で誤動
作しない整定とする。
(1) and (2) indicate that the sensitivity of the current differential element 18 is K 2 / K 1 . Further, in the characteristic diagram shown in FIG. 9, the sensitivity is the intersection of the vertical axis and the horizontal axis, and exhibits a so-called ratio characteristic in which the sensitivity decreases as the passing current increases. In the system having terminals without relay devices as shown in FIG. 7, it is necessary to consider the following points when determining the sensitivity K 2 / K 1 . (I) Current that always flows out from terminals 10 and 11 (terminals 10 and 11
Settle down that does not malfunction due to the sum of the currents. (Ii) Set the terminals 10 and 11 so that they will not malfunction due to a transformer secondary side accident. (Iii) Set the value so that it does not malfunction due to the excitation inrush current generated in the transformers at terminals 10 and 11.

【0004】変圧器12,13の容量は1変電所ト―タルで
通常大きくしても数十MVA程度であること、変圧器イ
ンピ―ダンスは自己容量ベ―スで5〜10%程度であり2
次側事故ではかなり事故電流が減少すること、励磁突入
電流は波高値で変圧器容量の最大10倍近くまで達する傾
向があることから上記(iii)を考慮することが最悪条件
となる場合がほとんどである。上記(iii)を満足するに
当たっては次の3点を考慮する必要がある。第一は端子
10または11でしゃ断器17cまたは17dを投入する場合に
発生する励磁突入電流であり、この2つのしゃ断器を同
時に投入することはまず考えられないため、通常は何れ
か大きい方を考慮する。たとえば系統電圧をKV,変圧
器容量をMVA(3相),励磁突入電流の波高値が変圧
器容量の最大n倍程度発生すると仮定すると となる。この励磁突入電流は、しゃ断器投入位相が電圧
0の際が最大であり、波形が半波整流波形に似た形とな
ることはよく知られている。このような条件で電流差動
要素18の感度を決めるに当たっては継電器が通常、基本
波(商用周波)応動形であることから(3)式の (半波整流波形に含有される基本波分の割合)に適当な
マ―ジンをかけた値としている。端子10,11側でのしゃ
断器投入に関しては端子8,9では予測,検出が一般に
は困難であるため、ここで得られた感度値 は第一の問題点のために常に低下させておかねばならな
い値といえる。
The capacity of the transformers 12 and 13 is about several tens of MVA even if it is generally large in one substation total, and the transformer impedance is about 5 to 10% in self capacity basis. Two
In the secondary accident, the fault current decreases considerably, and the magnetizing inrush current tends to reach up to 10 times the transformer capacity at the peak value.Therefore, considering (iii) above is the worst case in most cases. Is. In order to satisfy the above (iii), it is necessary to consider the following three points. First is the terminal
This is an exciting inrush current that occurs when the circuit breaker 17c or 17d is turned on at 10 or 11, and it is unlikely that the two circuit breakers will be turned on at the same time, so the larger one is usually considered. For example, assuming that the system voltage is KV, the transformer capacity is MVA (three phases), and the peak value of the exciting inrush current is about n times the transformer capacity at maximum. Becomes It is well known that this exciting inrush current is maximum when the breaker closing phase is 0 and the waveform is similar to a half-wave rectified waveform. In determining the sensitivity of the current differential element 18 under such conditions, the relay is usually a fundamental wave (commercial frequency) responsive type, so The value is obtained by multiplying (the ratio of the fundamental wave component contained in the half-wave rectified waveform) by an appropriate margin. Since it is generally difficult to predict and detect the breakers at terminals 10 and 11 at terminals 8 and 9, the sensitivity values obtained here are obtained. Can be said to be a value that must always be lowered due to the first problem.

【0005】第二はしゃ断器17c,17dが閉のまま継電
器設置端子(一般には背後電源あり)のしゃ断器17aま
たは17bが投入される場合の励磁突入電流であり、この
場合には保護区間内に存在するすべての変圧器(図7に
おける12,13)の励磁突入電流が総和となってしゃ断器
投入端子より流入することとなり、相当大きな値の電流
となる。つまりこの場合に低下させるべき電流差動要素
の感度は一般に で与えられる。
The second is the exciting inrush current when the breaker 17a or 17b of the relay installation terminal (generally with a back-up power source) is closed while the breakers 17c and 17d are closed. Exciting inrush currents of all the transformers (12 and 13 in FIG. 7) existing in the above state flow into the circuit breaker closing terminal as a sum, resulting in a considerably large current. So in this case the sensitivity of the current differential element to be reduced is generally Given in.

【0006】第三は図10に示すように保護区間内のしゃ
断器17a,17b,17c,17dは投入された状態で端子8
の背後至近端F点で短絡があり、系統電圧が一旦低下し
た後、事故除去により系統電圧が回復した際に発生する
励磁突入電流である。この場合には系統の事故除去が電
圧のプラスあるいはマイナスのピ―ク付近の点でなされ
るため励磁突入電流は(4)式より多少小さくなると考
えられるが、最悪値として(4)式と同等の電流が発生
すると考えて問題ない。
Thirdly, as shown in FIG. 10, the breaker 17a, 17b, 17c, 17d in the protection section is in a closed state and the terminal 8 is turned on.
Is an inrush current generated when the system voltage is once reduced and the system voltage is once recovered, and then the system voltage is recovered by fault elimination. In this case, since the system fault is removed at a point near the plus or minus peak of the voltage, the magnetizing inrush current is considered to be slightly smaller than in equation (4), but the worst value is equivalent to equation (4). There is no problem in thinking that the current will occur.

【0007】以上より従来は最悪条件として(4)式で
与えられる電流差動要素の感度とすることによりあらゆ
る場合にも誤動作に至らないような対策としていた。つ
まり図9におけるK2 /K1 を(4)式で与えられる値
以上とすることにより、図8の電流差動要素18が保護区
間内分岐負荷変電所の変圧器励磁突入電流で誤動作しな
いよう対策をしていた。
As described above, conventionally, the worst condition is to set the sensitivity of the current differential element as given by the equation (4) to prevent malfunction in any case. That is, by setting K 2 / K 1 in FIG. 9 to the value given by the equation (4) or more, the current differential element 18 in FIG. 8 does not malfunction due to the transformer inrush current of the branch load substation in the protection section. I was taking measures.

【0008】[0008]

【発明が解決しようとする課題】一般に変圧器励磁突入
電流は変圧器容量の10倍近くもの波高値が発生し、さら
に複数台の変圧器で一斉に発生することから(4)式の
値はかなり大きくなり、結果的に従来の方法では保護区
間内部事故に対する保護性能を定常的に著しく低下させ
ていることにつながっているという問題点がある。(た
とえば内部事故検出に対する感度不足といった問題点が
ある。)
In general, a transformer exciting inrush current has a peak value of about 10 times the transformer capacity, and moreover, it occurs simultaneously in a plurality of transformers. Therefore, the value of the equation (4) is However, there is a problem in that, as a result, the conventional method leads to the steady reduction in the protection performance against accidents inside the protection section. (For example, there is a problem of insufficient sensitivity for detecting internal accidents.)

【0009】本発明は前記問題点に鑑み、保護区間内の
分岐負荷変電所変圧器で励磁突入電流が発生する状態に
おいては電流差動要素の感度は前記(4)式を満足する
よう低感度とし、これ以外の状態においては高感度とす
ることにより、平常時の保護性能の向上を図ることを目
的とする。なお、高感度とは前記(3)式を満足する感
度であることを意味する。
In view of the above-mentioned problems, the present invention has a low sensitivity so that the sensitivity of the current differential element satisfies the above expression (4) when the inrush current is generated in the branch load substation transformer in the protection section. In other states, the sensitivity is set high to improve the protection performance in normal times. The high sensitivity means that the sensitivity satisfies the expression (3).

【0010】[0010]

【課題を解決するための手段】本発明は上記課題を解決
するため継電器設置端子に新たに設ける機能構成であ
り、分岐負荷変電所変圧器に対して励磁突入電流が発生
する条件を検出する手段で、この出力が得られる場合は
高感度形の電流差動要素の出力をロックするためのもの
である。
SUMMARY OF THE INVENTION The present invention has a functional configuration newly provided in a relay installation terminal in order to solve the above-mentioned problems, and is means for detecting a condition under which an inrush current of excitation occurs in a branch load substation transformer. When this output is obtained, it is for locking the output of the high-sensitivity type current differential element.

【0011】[0011]

【作用】上述のとおり、分岐負荷変電所変圧器に対して
励磁突入電流が発生する条件が成立したとき、高感度形
の電流差動要素の出力を阻止し、一定時間低感度形の電
流差動要素の出力と故障検出要素との出力がともに成立
したときしゃ断指令を出力するものである。
As described above, when the conditions for generating the inrush current for the branch load substation transformer are satisfied, the output of the high-sensitivity type current differential element is blocked and the low-sensitivity type current difference is maintained for a certain period of time. When the output of the moving element and the output of the failure detecting element are both established, the interruption command is output.

【0012】[0012]

【実施例】本発明の第1の実施例を図1乃至図4を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS.

【0013】図1において、1は自端のしゃ断器(図7
における17aあるいは17b)の投入指令を検出するため
の要素であり、2は自端系統電圧(図7における計器用
変圧器15aあるいは15bの出力)の上昇を検出する要素
である。具体的には1は図2に示すようにしゃ断器投入
回路に挿入する素子で、電流が流れたことを検出するも
のであればよく補助リレ―,サイリスタ等の静止形素子
等がある。2は図3に示すように事故回復時の電圧上昇
を検出するためTα[ms]間に系統電圧のβ%の回復が
あることを検出する要素で系統現象と協調が図れるよう
Tαを決める必要があるが一般には10〜20ms程度であれ
ばよい。またβは電流差動要素(高感度形)が不要応動
しない電圧回復レベルとしておくよう協調を図ればよ
い。
In FIG. 1, reference numeral 1 is a circuit breaker at its own end (see FIG. 7).
17a or 17b) in FIG. 7, and 2 is an element for detecting a rise in the self-system voltage (output of the instrument transformer 15a or 15b in FIG. 7). Specifically, reference numeral 1 denotes an element to be inserted in the circuit breaker closing circuit as shown in FIG. 2, which may be a static element such as an auxiliary relay or thyristor as long as it can detect the flow of current. As shown in Fig. 3, 2 is an element to detect that there is a recovery of β% of the system voltage within Tα [ms] in order to detect the voltage rise at the time of accident recovery, and it is necessary to determine Tα so as to coordinate with the system phenomenon. However, in general, it may be about 10 to 20 ms. Further, β should be coordinated so that the current differential element (high-sensitivity type) is set to a voltage recovery level at which unnecessary response does not occur.

【0014】また3は限時復帰形タイマで励磁突入電流
の減衰時間と協調を図るものである。なお、各継電設置
端子における電圧上昇検出の出力は必ず一致しておく必
要があるため、伝送デ―タに含入させておき、何れかの
端子で電圧上昇検出をした場合にはその他の端子も上昇
検出したよう制御する。
Reference numeral 3 is a time-limit reset type timer for coordinating with the decay time of the exciting inrush current. Note that the output of voltage rise detection at each relay installation terminal must always match, so if it is included in the transmission data and the voltage rise is detected at any terminal, other The terminal is also controlled as if rising was detected.

【0015】図4に本実施例を用いた保護シ―ケンスを
示す。図4において4は分岐負荷端変圧器投入時の励磁
突入電流に対して動作しない感度とした高感度形差動要
素であり、5は継電器設置端子(図7,8,9の端子)
でしゃ断器を投入する場合の分岐負荷端変圧器の励磁突
入電流の総和で動作しない感度とした低感度形電流差動
要素である。しゃ断器投入指令検出要素1及び系統電圧
上昇検出要素2の何れかが出力される場合、高感度形電
流差動要素4のロックを行ない、限時復帰タイマ3が復
帰するまでロック継続する。この出力と低感度形電流差
動継電器要素5の論理和と故障検出要素6との論理積に
よりしゃ断器へのしゃ断出力が出される。つまり変圧器
励磁突入電流発生期間の保護は低感度形電流差動要素5
により行なわれる。なお7は限時動作形のタイマで系統
電圧上昇検出要素2の動作時間よりも高感度形電流差動
要素出力が早く出ないよう協調を図るためのタイマで現
実には10ms程度のもので保護性能を著しく低下させるも
のではない。
FIG. 4 shows a protection sequence using this embodiment. In FIG. 4, 4 is a high-sensitivity type differential element with a sensitivity that does not operate with respect to the exciting inrush current when the branch load end transformer is turned on, and 5 is a relay installation terminal (terminals in FIGS. 7, 8 and 9)
This is a low-sensitivity current differential element with a sensitivity that does not operate with the sum of the inrush currents of the branch load end transformer when the circuit breaker is turned on. When either the breaker closing command detection element 1 or the system voltage rise detection element 2 is output, the high-sensitivity current differential element 4 is locked, and the lock is continued until the time-limit reset timer 3 is reset. This output, the logical sum of the low-sensitivity type current differential relay element 5 and the logical product of the failure detection element 6 give a breaking output to the breaker. In other words, the protection during the transformer inrush current generation period is the low sensitivity type current differential element 5
Performed by. Reference numeral 7 is a timer of a time-delayed operation type, which is a timer for coordinating so that the high-sensitivity type current differential element output does not come out earlier than the operation time of the system voltage rise detection element 2, and actually has a protection performance of about 10 ms. Does not significantly reduce

【0016】つまり、継電器設置端子にてしゃ断器投入
を検出する要素と、系統の電圧上昇を検出する要素を設
け、何れかが動作する場合には一定時間電流差動要素を
低感度とし、何れも動作しない場合(通常時)には電流
差動要素を高感度とできる。
That is, an element for detecting the breaker closing and an element for detecting the voltage rise of the system are provided at the relay installation terminal, and when either of them operates, the current differential element has a low sensitivity for a certain period of time. If it does not work (normal time), the current differential element can have high sensitivity.

【0017】次に、第2の実施例を図5および図6を参
照して説明する。図5において、1は自端のしゃ断器
(図7における17aあるいは17b)の投入指令を検出す
る要素であり、20は高感度形電流差動継電器要素であ
り、6は故障検出継電器要素である。要素20のインヒビ
ット出力と要素6の出力の論理積により外部事故と判断
し、引続いて起こる事故除去後の電圧回復による変圧器
励磁突入電流に備えるものとする。
Next, a second embodiment will be described with reference to FIGS. 5 and 6. In FIG. 5, reference numeral 1 is an element for detecting a closing command of the breaker at its own end (17a or 17b in FIG. 7), 20 is a high-sensitivity type current differential relay element, and 6 is a failure detection relay element. .. An external accident is judged by the logical product of the inhibit output of the element 20 and the output of the element 6, and the transformer inrush current is prepared for the subsequent voltage recovery after the accident is removed.

【0018】また、第1の実施例と同様、3は限時復帰
形タイマで励磁突入電流の減衰時間と協調を図るもので
ある。なお、各継電器設置端子における外部事故検出の
出力は必ず一致しておく必要があるため、伝送デ―タに
含入させておき、何れかの端子で外部事故検出した場合
にはその他の端子も外部事故検出したように制御する。
Further, as in the first embodiment, 3 is a time-reset timer for coordinating with the decay time of the exciting inrush current. Since the output of the external accident detection at each relay installation terminal must be the same, it must be included in the transmission data, and if an external accident is detected at any of the terminals, the other terminals will also be included. Control as if an external accident was detected.

【0019】図6に本実施例を用いた保護シ―ケンスを
示す。図6において、20は分岐負荷端変圧器投入時の励
磁突入電流に対して動作しない感度とした高感度形電流
差動継電器要素であり、5は継電器設置端子(図7、
8,9の端子)でしゃ断器を投入する場合の分岐負荷端
変圧器の励磁突入電流の総和で動作しない感度とした低
感度形電流差動要素である。しゃ断器投入指令検出要素
1及び図5に示すロジックの最終出力の何れかが出力さ
れる場合、高感度形電流差動要素20のロックを行ない、
限時復帰形式タイマ3が復帰するまでロック継続する。
さらにこの出力および低感度形電流差動継電器要素5の
論理和と、故障検出継電器要素6との論理積によりしゃ
断器へのしゃ断出力が出される。
FIG. 6 shows a protection sequence using this embodiment. In FIG. 6, 20 is a high-sensitivity type current differential relay element with a sensitivity that does not operate with respect to the excitation inrush current when the branch load end transformer is turned on, and 5 is a relay installation terminal (FIG. 7,
It is a low-sensitivity current differential element with a sensitivity that does not operate with the sum of the inrush currents of the branch load end transformer when the breaker is turned on at terminals 8 and 9. When any of the circuit breaker closing command detection element 1 and the final output of the logic shown in FIG. 5 is output, the high-sensitivity current differential element 20 is locked,
Time limit recovery type Lock continues until the timer 3 recovers.
Further, a logical sum of this output, the low-sensitivity type current differential relay element 5 and the logical product of the failure detection relay element 6 provides a breaking output to the breaker.

【0020】つまり、継電器設置端子にてしゃ断器投入
を検出する要素と、電流差動継電器要素不動作条件およ
び故障検出継電器要素動作条件の論理積出力条件との論
理和の条件で一定時間の間は電流差動要素の検出感度を
低下させ、通常の状態では高感度(通常感度)とでき
る。
That is, for a certain period of time, the logical sum of the element for detecting the closing of the breaker at the relay installation terminal and the logical product output condition of the current differential relay element non-operation condition and the failure detection relay element operation condition Reduces the detection sensitivity of the current differential element, and can achieve high sensitivity (normal sensitivity) under normal conditions.

【0021】[0021]

【発明の効果】以上、本発明によれば、分岐負荷変電所
変圧器に対して励磁突入電流が発生する条件を検出した
とき高感度形の電流差動要素の出力を一定時間ロックす
るので、保護区間内部に継電装置が設置されない分岐負
荷端子が存在する系統においても常時の保護性能を損な
うことなく高感度保護を行なうことが可能となる。
As described above, according to the present invention, the output of the high-sensitivity type current differential element is locked for a certain period of time when a condition in which an exciting inrush current is generated in a branch load substation transformer is detected. Even in a system where there is a branch load terminal in which a relay device is not installed inside the protection section, high sensitivity protection can be performed without impairing the constant protection performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の論理ブロック構成図。FIG. 1 is a logical block configuration diagram of a first embodiment of the present invention.

【図2】本発明のしゃ断器投入指令検出要素を示す回路
構成図。
FIG. 2 is a circuit configuration diagram showing a circuit breaker closing command detection element of the present invention.

【図3】事故除去前後の電力系統の電圧波形図。FIG. 3 is a voltage waveform diagram of the power system before and after the accident is removed.

【図4】第1の実施例を適用する保護シ―ケンス図。FIG. 4 is a protection sequence diagram to which the first embodiment is applied.

【図5】本発明の第2の実施例の論理ブロック構成図。FIG. 5 is a logical block configuration diagram of a second embodiment of the present invention.

【図6】第2の実施例を適用する保護シ―ケンス図。FIG. 6 is a protection sequence diagram to which the second embodiment is applied.

【図7】分岐負荷端子を有する電力系統図。FIG. 7 is an electric power system diagram having a branch load terminal.

【図8】従来の継電装置の保護シ―ケンス図。FIG. 8 is a protection sequence diagram of a conventional relay device.

【図9】電流差動要素の動作特性図。FIG. 9 is an operating characteristic diagram of a current differential element.

【図10】分岐負荷端子を有する電力系統図。FIG. 10 is a power system diagram having a branch load terminal.

【符号の説明】[Explanation of symbols]

1…しゃ断器投入指令検出要素、2…系統電圧上昇検出
要素、3…限時復帰形タイマ、4,20…高感度形電流差
動要素、5…低感度形電流差動要素、6…故障検出要
素、7…限時動作形式タイマ。
1 ... Breaker closing command detection element, 2 ... System voltage rise detection element, 3 ... Time-reset timer, 4, 20 ... High sensitivity type current differential element, 5 ... Low sensitivity type current differential element, 6 ... Failure detection Element, 7 ... Timed operation type timer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多端子送電系統の各端子の電流情報が所
定の関係が整定した動作条件を満たすとき動作する電流
差動継電器要素と、この電流差動継電器要素とは異なる
原理による故障検出継電器要素と、前記送電系統の分岐
負荷変電所変圧器に励磁突入電流が発生する条件を検出
する検出手段と、この検出手段で条件成立したとき一定
時間前記電流差動継電器要素の出力を阻止し、前記電流
差動継電器要素より低感度に整定された第2の電流差動
継電器要素の出力と前記故障検出継電器要素の出力の論
理積出力をしゃ断指令とする論理積手段を具備すること
を特徴とする送電線保護継電装置。
1. A current differential relay element that operates when current information of each terminal of a multi-terminal transmission system satisfies an operating condition in which a predetermined relationship is settled, and a fault detection relay based on a principle different from this current differential relay element. An element, a detection means for detecting a condition under which an exciting inrush current is generated in a branch load substation transformer of the power transmission system, and when the condition is satisfied by this detection means, the output of the current differential relay element is blocked for a certain period of time, And a logical product means for setting a logical product output of the output of the second differential current relay element settled to a sensitivity lower than that of the differential current relay element and the output of the failure detection relay element as a cutoff command. Transmission line protection relay device.
【請求項2】 多端子送電系統の各端子での電流情報が
所定の関係を満足することを検出する高感度に整定され
た高感度形電流差動継電器要素および低感度に整定され
た低感度形電流差動継電器要素と、前記電流差動継電器
要素とは異なる原理による故障検出継電器要素と、自端
しゃ断器の投入指令検出あるいは自端系統電圧の上昇検
出のいずれかの条件が成立したとき一定時間前記高感度
形電流差動継電器要素の出力を阻止する阻止手段と、こ
の阻止手段の出力及び前記低感度形電流差動継電器要素
の出力の論理和を出力する論理和手段と、この論理和手
段の出力及び前記故障検出継電器要素の出力とがともに
成立したときしゃ断指令を出力する論理積手段とを具備
することを特徴とする送電線保護継電装置。
2. A high-sensitivity type current differential relay element which is set to high sensitivity for detecting that current information at each terminal of a multi-terminal transmission system satisfies a predetermined relationship, and low sensitivity which is set to low sensitivity. Type current differential relay element, a fault detection relay element based on a principle different from that of the current differential relay element, and a condition for either detection of the closing command of the self-end circuit breaker or detection of a rise in the self-end system voltage. Blocking means for blocking the output of the high-sensitivity type current differential relay element for a fixed time, logical OR means for outputting the logical sum of the output of this blocking means and the output of the low-sensitivity type current differential relay element, and this logic A transmission line protection relay device, comprising: a logical product means that outputs a cutoff command when both the output of the summing means and the output of the failure detection relay element are satisfied.
【請求項3】 多端子送電系統の各端子での電流情報が
所定の関係を満足することを検出する高感度に整定され
た高感度形電流差動継電器要素および低感度に整定され
た低感度形電流差動継電器要素と、前記電流差動継電器
要素とは異なる原理による故障検出継電器要素と、自端
しゃ断器の投入指令検出あるいは前記高感度形電流差動
継電器要素不動作でかつ前記故障検出継電器要素動作の
いずれかの条件が成立したとき一定時間前記高感度形電
流差動継電器要素の出力を阻止する阻止手段と、この阻
止手段の出力及び前記低感度形電流差動継電器要素の出
力の論理和を出力する論理和手段と、この論理和手段の
出力及び前記故障検出継電器要素の出力とがともに成立
したときしゃ断指令を出力する論理積手段とを具備する
ことを特徴とする送電線保護継電装置。
3. A high-sensitivity type current differential relay element which is set to high sensitivity for detecting that current information at each terminal of a multi-terminal transmission system satisfies a predetermined relationship, and low sensitivity which is set to low sensitivity. Type current differential relay element, failure detection based on a principle different from that of the current differential relay element, relay element, detection of closing command of self-end circuit breaker or high sensitivity type current differential relay element A blocking means for blocking the output of the high-sensitivity current differential relay element for a certain period of time when any condition of the relay element operation is satisfied, and an output of the blocking means and an output of the low-sensitivity current differential relay element. And a logical sum means for outputting a logical sum, and a logical product means for outputting a cutoff command when both the output of the logical sum means and the output of the failure detection relay element are established. Electric wire protection relay device.
JP4048327A 1992-03-05 1992-03-05 Protective relaying device for transmission line Pending JPH05252645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048327A JPH05252645A (en) 1992-03-05 1992-03-05 Protective relaying device for transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048327A JPH05252645A (en) 1992-03-05 1992-03-05 Protective relaying device for transmission line

Publications (1)

Publication Number Publication Date
JPH05252645A true JPH05252645A (en) 1993-09-28

Family

ID=12800325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048327A Pending JPH05252645A (en) 1992-03-05 1992-03-05 Protective relaying device for transmission line

Country Status (1)

Country Link
JP (1) JPH05252645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072135A (en) * 2009-09-25 2011-04-07 Toshiba Corp Current differential protective relay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072135A (en) * 2009-09-25 2011-04-07 Toshiba Corp Current differential protective relay device

Similar Documents

Publication Publication Date Title
US5892645A (en) Protection system for power receiving station
US4477855A (en) Protecting system for transmission lines
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
US5103365A (en) Downed conductor automatic detecting device
US6829544B1 (en) Line current differential protective relaying method and relay for in-zone tapped transformers
Andow et al. Microprocessor-based busbar protection relay
EP0169313B1 (en) Transformer protective relay
JPH05252645A (en) Protective relaying device for transmission line
JP3101736B2 (en) Distribution line protection device
JP3199940B2 (en) Transformer protection relay device
JPH07177743A (en) Controller for ac-dc converter
JPS622886Y2 (en)
JPH09284989A (en) Protective relay, and method and protective relay system for estimating timing to zero residual magnetic flux
JP2799065B2 (en) Reclosing method of current differential protection relay
JPS6242448B2 (en)
JPS605727A (en) Defect current breaking system
JP2003209925A (en) System for preventing zero-point transition current interrupting accident and method therefor
JPH0638690B2 (en) Ground fault relay
JPS6321420B2 (en)
Goody Overcoming problems associated with impedance measurement in pole slipping protection for Dinorwig
JPS62110432A (en) Protective relay
JPS6070919A (en) Overcurrent relay
JPH0583844A (en) Distance relay unit
JPH023371B2 (en)
JPH0471322A (en) Distance relay