JPH0471322A - Distance relay - Google Patents

Distance relay

Info

Publication number
JPH0471322A
JPH0471322A JP17961590A JP17961590A JPH0471322A JP H0471322 A JPH0471322 A JP H0471322A JP 17961590 A JP17961590 A JP 17961590A JP 17961590 A JP17961590 A JP 17961590A JP H0471322 A JPH0471322 A JP H0471322A
Authority
JP
Japan
Prior art keywords
phase
circuit
distance
output
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17961590A
Other languages
Japanese (ja)
Inventor
Koji Igarashi
五十嵐 公二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17961590A priority Critical patent/JPH0471322A/en
Publication of JPH0471322A publication Critical patent/JPH0471322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly remove an accident in one or two phases by discriminating that output signals of a number-of-phases discriminator for discriminating operation of one or two phases, and a second stage distance discriminator of the number-of-phases discriminator and a distance relay are simultaneously satisfied, and breaking three phases. CONSTITUTION:When three phases are broken by a first stage distance discriminator of a distance relay mounted at an opponent end bus B side, the fault continues in an overcurrent detector 12 of a first phase, and the operation is hence held, but overcurrent detectors 13, 14 of second and third phases are interrupted. Here, an output of an inverter 18 for detecting the interruptions of three phases of the detectors 12-14 continues the interruption. Accordingly, the output of an inverter 20 for detecting one or two phase operations of the detectors 12-14 is altered from an interruption to an operation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電力系統から電気量を導入し設定される距離整
定範囲内の系統事故に動作する距離継電器に利用される
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention is applied to a distance relay that introduces electricity from a power system and operates in response to a system fault within a set distance setting range.

(従来の技術) 距離継電器は電力系統から電流量、電圧量の電気量を導
入し事故時の入力により事故点までの距離が距離整定値
の動作範囲内である場合、しゃ断器をトリップさせるも
のである。
(Prior art) A distance relay is a device that inputs electrical quantities such as current and voltage from the power system, and trips a circuit breaker when the distance to the fault point is within the operating range of the distance setting value based on the input at the time of a fault. It is.

たとえば、第6図の電力系統図に示すように距離継電器
lは発電機2側のA電気所の母線3Aから計器用変成器
4を介して電圧量を入力し、B電気所の母線3Bと接続
する保護対象の送電線5のA電気所側から計器用変成器
6を介して電流量を入力する。事故点Fが距離継電器1
の動作範囲である第1段距離整定内であれば、しゃ断器
7にトリップ信号を出力する。
For example, as shown in the power system diagram of Fig. 6, the distance relay l inputs the voltage from the bus 3A of the power station A on the generator 2 side through the instrument transformer 4, and connects it to the bus 3B of the power station B on the generator 2 side. The amount of current is input from the power station A side of the power transmission line 5 to be connected to be protected via the instrument transformer 6. Fault point F is distance relay 1
If the distance is within the first stage distance setting, which is the operating range of , a trip signal is output to the breaker 7.

距離継電器1の第1段距離整定範囲は、一般的に距離継
電器1の誤差、計器用変成器4および6の誤差、および
送電線5の定数誤差等を考慮して、電気所A、B間の8
0%程度の距離に比例したインピーダンス値に整定され
る。
Generally, the first stage distance setting range of the distance relay 1 is set between electrical stations A and B, taking into account the error of the distance relay 1, the error of the instrument transformers 4 and 6, the constant error of the power transmission line 5, etc. No. 8
The impedance value is set to be approximately 0% proportional to the distance.

距離継電器1の第2段距離整定範囲は、第1段距離整定
範囲を越える送電線A、B間の残りの20%の2区間の
事故の保護、電気所Bの母線3Bの母線保護継電器およ
び母線3Bに接続する距離継電器の不動作あるいはしゃ
断器不動作に対する後備保護として、−射的に第1段距
離整定範囲の1.5倍程度に整定され、第1段距離整定
範囲を越える第2段距離整定範囲内の事故に対しては限
時しゃ断が実施される。
The second stage distance setting range of the distance relay 1 is used to protect the remaining 20% of the two sections between transmission lines A and B that exceed the first stage distance setting range, and to protect the busbar protection relay for the busbar 3B of electric station B. As a back-up protection against the failure of the distance relay connected to the bus 3B or the failure of the circuit breaker, the distance relay is set to approximately 1.5 times the first stage distance setting range, and the second stage distance setting range exceeding the first stage distance setting range is set to 1.5 times the first stage distance setting range. In the event of an accident within the stage distance setting range, a timed cutoff will be implemented.

(発明が解決しようとする課題) ところで、前述した距離継電器1の第1段整定範囲を越
える送電線A、B間の残り20%の区間の事故について
も、高速で事故を除去できることが、安定した電力供給
を実施する上で望まれる。
(Problem to be Solved by the Invention) By the way, it is possible to eliminate accidents at high speed even in the remaining 20% section between transmission lines A and B that exceeds the first stage setting range of the distance relay 1 described above. This is desirable in order to provide a reliable power supply.

このための方法として、従来から良く知られたブロッキ
ング方式およびオーバリーチ方式の方向比較距離継電方
式あるいはアンダーリーチ方式の転送継電方式がある。
Methods for this purpose include the blocking method, the overreach method, the direction comparison distance relay method, and the underreach method, the transfer relay method.

しかし、上記した様に、いずれも相手側距離継電器の動
作情報を電力線搬送等の伝送手段を利用して受信する必
要があり、高価な伝送設備を必要とする欠点があった。
However, as described above, both require the use of transmission means such as power line carriers to receive the operation information of the distance relay on the other side, and have the drawback of requiring expensive transmission equipment.

よって、本発明は高価な伝送設備を使用すること無しに
、自端子だけの電流、電圧情報をもとに、3相電力系統
事故の大部分を占める1相あるいは2相事故に対して高
速で除去が可能な距離継電器を提供することを目的とす
る。
Therefore, the present invention can quickly detect one-phase or two-phase faults, which account for the majority of three-phase power system faults, based on the current and voltage information of the own terminal without using expensive transmission equipment. The purpose is to provide a distance relay that can be removed.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明の距離継電器は、第1段距離判定回路、第2段距
離判定回路、この第2段距離判定回路の出力信号を入力
する限時回路、および出力回路で構成される距離継電器
に、潮流の有無を検出する各相過電流検出回路、この過
電流検出回路の出力信号を入力し1相もしくは2相の過
電流検出回路が動作したことを判定する相数判定回路、
この相数判定回路および第2段距離判定回路の出力信号
がともに成立したことを判定する論理回路を付加したも
のであり、この論理回路の出力信号は出力回路に導入さ
れ、出力回路より3相しゃ断出力信号を発生する構成と
なっている。
(Means for Solving the Problems) The distance relay of the present invention includes a first stage distance determination circuit, a second stage distance determination circuit, a time limit circuit into which an output signal of the second stage distance determination circuit is input, and an output circuit. The overcurrent detection circuit for each phase detects the presence or absence of power flow in the distance relay configured, and the number of phases that inputs the output signal of this overcurrent detection circuit to determine whether the 1-phase or 2-phase overcurrent detection circuit has operated. judgment circuit,
A logic circuit is added that determines whether the output signals of this phase number determination circuit and the second stage distance determination circuit are both established.The output signal of this logic circuit is introduced into the output circuit, and the three-phase It is configured to generate a cutoff output signal.

(作用) 第1段距離判定回路は、事故点が第1段距離整定範囲内
であるとき動作出力を発生し、出力口路よりしゃ断器へ
3相トリップ信号を出力する。
(Function) The first-stage distance determination circuit generates an operational output when the fault point is within the first-stage distance setting range, and outputs a three-phase trip signal from the output path to the breaker.

第2段距離判定回路は事故点が第2段距離整定範囲内で
あるとき動作出力を発生し、次段の限時回路により相手
側母線の後備保護および相手側母線に接続する送電線保
護の後備保護として必要な限時動作遅延が行なわれた後
、出力回路よりしゃ断器へ3相トリップ出力信号を出力
する。
The second stage distance judgment circuit generates an operation output when the fault point is within the second stage distance setting range, and the next stage time limit circuit provides backup protection for the other bus and backup protection for the power transmission line connected to the other bus. After a time-limited operation delay necessary for protection is performed, a three-phase trip output signal is outputted from the output circuit to the circuit breaker.

距離継電器の第1段整定範囲を越える送電線保護区間の
残り20%の区間の事故については以下に説明する構成
によって高速に事故を除去する。
Accidents in the remaining 20% of the transmission line protection section that exceed the first stage setting range of the distance relay are quickly eliminated by the configuration described below.

各相過電流検出回路は、3相電力系統から電流量を導入
し潮流の有無を検出する回路であり、電流値が所定の設
定値以上のとき出力を発生する。
Each phase overcurrent detection circuit is a circuit that introduces the amount of current from the three-phase power system and detects the presence or absence of power flow, and generates an output when the current value is equal to or higher than a predetermined set value.

この設定値は潮流の有無を検出できる値、すなわち保護
対象送電線の充電電流よりも大きい値に設定される。し
たがって各相過電流検出回路は、設定値以上の系統事故
電流もしくは常時の潮流状態で動作出力を発生し、充電
電流もしくは電流零の状態すなわち相手端もしくは自端
のしゃ断器が開路状態にあるときは動作出力を発生しな
い。言い換えれば、各相過電流検出回路の動作出方状態
により、相手端もしくは自端のしゃ断器の開閉状態を知
ることができる。この各相過電流検出回路の出力信号は
次段の相数判定回路に導入され、1相もしくは2相の過
電流検出回路が動作状態のとき動作出力を発生する。
This set value is set to a value that allows detection of the presence or absence of power current, that is, a value that is larger than the charging current of the power transmission line to be protected. Therefore, each phase overcurrent detection circuit generates an operating output when the system fault current exceeds the set value or when the power flow is constant, and when the charging current or current is zero, that is, when the breaker at the other end or the own end is in an open state. does not generate any operational output. In other words, depending on the operating state of each phase overcurrent detection circuit, the open/closed state of the breaker at the other end or the own end can be known. The output signal of each phase overcurrent detection circuit is introduced into a phase number determination circuit at the next stage, and an operation output is generated when the one-phase or two-phase overcurrent detection circuit is in an operating state.

論理回路は、この相数判定回路および第2段距離判定回
路の出力信号がともに成立したとき出方を発生する。
The logic circuit generates an output signal when both the output signals of the phase number determining circuit and the second stage distance determining circuit are established.

論理回路の動作出力と系統の事故点との関係を説明する
と次の通りである。
The relationship between the operational output of the logic circuit and the failure point of the system is explained as follows.

(υ 事故点が第1段距離整定範囲を越える相手側母線
までの残り20%区間内の事故については、まず相手側
端子に設置された距離継電器の第1段距離判定回路によ
って検出され、保護対象送電線の相手側端子に設置され
たしゃ断器の3相しゃ断が行なわれる。
(υ For accidents within the remaining 20% section to the other side's bus line where the fault point exceeds the first stage distance setting range, it is first detected by the first stage distance judgment circuit of the distance relay installed at the other side's terminal, and protection is applied. A three-phase breaker installed at the opposite terminal of the target power transmission line performs 3-phase cutoff.

自端子の距離継電器の第1段距離判定回路は、第1段距
離整定範囲外の事故であるので不動作、また第2段距離
判定回路は動作となる。事故が1相もしくは2相事故で
あれば相手側端子の3相しゃ断により2相もしくは1相
の送電線電流は充電電流値まで小さくなるので、対応す
る2相もしくは1相の過電流継電回路の動作出力は零と
なる。
The first stage distance determination circuit of the distance relay of its own terminal is inoperative because the accident is outside the first stage distance setting range, and the second stage distance determination circuit is activated. If the fault is a 1-phase or 2-phase fault, the 2-phase or 1-phase transmission line current will be reduced to the charging current value due to the 3-phase cutoff at the other terminal, so the corresponding 2-phase or 1-phase overcurrent relay circuit The operating output of becomes zero.

したがって次段の相数判定回路は1相もしくは2相の過
電流検出回路の動作と判定し、動作出力を発生する。次
段の論理回路では、相数判定回路と第2段距離判定回路
の出力信号がともに成立するので動作信号を発生し、次
段の出力回路より3相しゃ断出力を発生する。
Therefore, the phase number determination circuit in the next stage determines that the one-phase or two-phase overcurrent detection circuit is operating, and generates an operation output. In the next stage logic circuit, since the output signals of the phase number determination circuit and the second stage distance determination circuit are both established, an operation signal is generated, and a three-phase cutoff output is generated from the next stage output circuit.

事故が3相であれば、過電流検出回路の出力信号は3相
とも動作信号となるので、相数判定回路からは動作信号
を発生しない。この3和事故については、自端距離継電
器の第2段距離判定回路および次段の限時回路によって
通常の後備保護による事故除去が行なわれる。
If the fault occurs in three phases, the output signal of the overcurrent detection circuit becomes an operation signal for all three phases, so the phase number determination circuit does not generate an operation signal. Regarding this triple sum accident, the accident is removed by normal backup protection by the second stage distance determination circuit and the next stage time limit circuit of the self-end distance relay.

■ 事故点が相手側母線および相手側母線に接続する別
の送電線上で発生した場合は、相手側の母線保護もしく
は送電線保護により対応するしゃ断器にて3相しゃ断が
実施される。自端の過電流検出回路は、3相しゃ断前は
3相とも動作、3相しゃ断後は事故点の位置により3相
とも動作もしくは3相とも不動作となるので相数判定回
路からは動作信号を出力しない。
■ If the fault point occurs on the other side's bus or another power transmission line connected to the other side's bus, a three-phase cutoff will be performed at the corresponding breaker to protect the other side's bus or transmission line. The overcurrent detection circuit at its own end operates on all three phases before the three-phase cutoff, and after the three-phase cutoff, either all three phases operate or all three phases become inoperable depending on the position of the fault point, so the phase number determination circuit outputs an operating signal. is not output.

■ 事故点が自端距離継電器の第1段距離整定範囲内に
ある場合は、事故種類とは無関係に過電流検出回路の出
力は、3相しゃ断前は3相とも動作、3相しゃ断後は3
相とも不動作信号となるので、やはり相数判定回路から
は動作信号を出力しない。
■ If the fault point is within the first stage distance setting range of the self-end distance relay, regardless of the fault type, the output of the overcurrent detection circuit will operate for all three phases before the three-phase cutoff, and will operate after the three-phase cutoff. 3
Since both phases become non-operating signals, the phase number determining circuit does not output an operating signal.

(実施例) 本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の距離継電器1を示す構成図である。FIG. 1 is a configuration diagram showing a distance relay 1 of the present invention.

電力系統から導入された3相交流電圧、電流は計器用変
成器を介して距離継電器1に入力される。
Three-phase AC voltage and current introduced from the power system are input to the distance relay 1 via an instrument transformer.

8は第1段距離判定回路、9は第2段距離判定回路、1
0は第2段距離判定回路9の出力信号を入力し後備保護
として必要な所定の動作時間遅延を行なう限時回路であ
って、第1段距離判定回路8および限時回路10の出力
信号は論理和回路から成る出力回路11に導入され、出
力回路11よりしゃ断器3相引外し信号を出力する。1
2, 13. 14はそれぞれ第1相、第2相、第3相
電流を入力とし潮流で動作する過電流検出回路、15は
過電流検出回路12〜14の出力信号を入力し1相もし
くは2相の過電流検出回路が動作したことを判定する相
数判定回路である。相数判定回路15は、たとえば過電
流検出回路12〜14の3相出力信号が共に動作である
ことを検出する論理積回路16、過電流検出回路12〜
14の3相出力信号が共に不動作であることを検出する
論理和回路17および反転回路18、論理積回路16お
よび反転回路18の出力信号が共に動作であることを検
出する論理和回路19、論理和回路19の出力信号を入
力し反転論理を行なう反転回路20によって構成され、
過電流検出回路12〜14が1相もしくは2相動作のと
き反転回路20の出力信号は動作となる。
8 is a first stage distance determination circuit, 9 is a second stage distance determination circuit, 1
0 is a time limit circuit which inputs the output signal of the second stage distance judgment circuit 9 and delays the operation by a predetermined time required for backup protection, and the output signals of the first stage distance judgment circuit 8 and the time limit circuit 10 are logically summed. The signal is introduced into an output circuit 11 consisting of a circuit, and outputs a breaker three-phase tripping signal from the output circuit 11. 1
2, 13. 14 is an overcurrent detection circuit that inputs the 1st, 2nd, and 3rd phase currents and operates based on tidal current, and 15 inputs the output signals of the overcurrent detection circuits 12 to 14 to detect 1-phase or 2-phase overcurrent. This is a phase number determination circuit that determines whether the detection circuit has operated. The phase number determination circuit 15 includes, for example, an AND circuit 16 that detects that the three-phase output signals of the overcurrent detection circuits 12 to 14 are both in operation, and an overcurrent detection circuit 12 to
an OR circuit 17 and an inverting circuit 18 that detect that the three-phase output signals of 14 are both inactive; an OR circuit 19 that detects that both the output signals of the AND circuit 16 and the inverting circuit 18 are active; It is constituted by an inverting circuit 20 that inputs the output signal of the OR circuit 19 and performs inverted logic,
When the overcurrent detection circuits 12 to 14 are in one-phase or two-phase operation, the output signal of the inverting circuit 20 is in operation.

21は反転回路20の出力信号を入力し所定の時間動作
遅延を行なう限時動作回路であって,3相しや断時の各
相ごとのしゃ断時間の差、および過電流検出回路12〜
14の動作、復帰時間の各相ごとの差によって相数判定
回路15から一時的に動作信号を出力するのを防止する
目的で入れたものである。
Reference numeral 21 denotes a time-limited operation circuit which inputs the output signal of the inversion circuit 20 and delays the operation for a predetermined period of time, and detects the difference in the cut-off time for each phase when three phases are cut off, and the overcurrent detection circuits 12 to 21.
This is inserted for the purpose of preventing the phase number determination circuit 15 from temporarily outputting an operation signal due to the difference in the operation and recovery times of 14 for each phase.

22は第2段距離判定回路9および相数判定回路15の
出力信号がともに成立したとき動作信号を出力する論理
積回路であって、論理積回路22の出力信号は出力回路
11を介してしゃ断器3相引外し信号となる。
22 is an AND circuit that outputs an operation signal when the output signals of the second stage distance determination circuit 9 and the phase number determination circuit 15 are both established, and the output signal of the AND circuit 22 is cut off via the output circuit 11. This becomes a 3-phase tripping signal.

次に、上述した距離継電器において、系統事故が第1段
整定範囲を越える相手側母線までの残り20%区間内で
発生した場合の動作応答を第2図および第3図の出力波
形図を用いて説明する。本発明による距離継電器1は送
電線のA,B両端に設置されるが、第2図および第3図
の出力波形図は送電線のA端側に設置される距離継電器
を例にとって説明するための図である。第2図は第1相
にのみ事故が時刻t.で発生した場合についての応動を
表わし、第1段距離判定回路8は不動作、第2段距離判
定回路9は時刻t,において動作となるが、事故点が母
線B近傍であるため後備保護用の限時回路10の出力は
時刻t6まで不動作である。
Next, in the above-mentioned distance relay, we will use the output waveform diagrams in Figures 2 and 3 to calculate the operational response when a system fault occurs within the remaining 20% section from the first stage setting range to the other bus. I will explain. The distance relay 1 according to the present invention is installed at both ends A and B of the power transmission line, but the output waveform diagrams in FIGS. 2 and 3 are explained by taking as an example the distance relay installed at the A end of the power transmission line. This is a diagram. Figure 2 shows that the accident occurred only in the first phase at time t. The first stage distance determination circuit 8 is inactive and the second stage distance determination circuit 9 is activated at time t, but since the accident point is near bus line B, it is used for backup protection. The output of the time limit circuit 10 remains inactive until time t6.

相手端母線B側に設置した距離継電器の第1段距離判定
回路により時刻t2で3相しゃ断が実施されると、母線
A側に設置された距離継電器1の過電流検出回路12〜
14の出力信号は、第1相の過電流検出回路12につい
ては事故が継続しているので動作を保持するが、第2相
、第3相の過電流検出回路13.14については時刻t
3およびt4でそれぞれ動作から不動作となる。このと
き相数判定回路15において、過電流検出回路12〜1
4の3相共動作を検出する論理積回路16の出力は時刻
t3 において動作から不動作に変化し、また過電流検
出回路12〜14の3相共不動作を検出する反転回路1
8の出力は不動作を継続している。したがって、過電流
検出回路12〜14の1相もしくは2相動作を検出する
反転回路20の出力は時刻t4において不動作から動作
へと変化する。
When three-phase cutoff is performed at time t2 by the first stage distance determination circuit of the distance relay installed on the opposite end bus B side, the overcurrent detection circuits 12 to 1 of the distance relay 1 installed on the bus A side
14, the first phase overcurrent detection circuit 12 maintains its operation because the accident continues, but the second and third phase overcurrent detection circuits 13 and 14 keep operating at time t.
3 and t4, respectively, from operation to inoperation. At this time, in the phase number determination circuit 15, the overcurrent detection circuits 12 to 1
The output of the AND circuit 16 that detects the three-phase co-operation of the overcurrent detection circuits 12 to 14 changes from operating to non-operating at time t3, and the output of the inverting circuit 16 that detects the non-operation of the three phases of the overcurrent detection circuits 12 to 14 changes from operating to non-operating at time t3.
The output of No. 8 continues to be inactive. Therefore, the output of the inverting circuit 20 that detects one-phase or two-phase operation of the overcurrent detection circuits 12 to 14 changes from non-operation to operation at time t4.

3相しゃ断時の各相毎のしゃ断器開極時間の差、過電流
検出回路12〜14の各相毎の動作、復帰時間の差は、
限時動作回路21において吸収され、結局時刻t5にお
いて相数判定回路15の動作出力を限時回路21より発
生するので、このとき論理積回路22の出力信号は第2
段距離判定回路9および相数判定回路15の出力信号が
ともに成立するので動作となり、出力回路11よりしゃ
断器3相引外し信号を出力する。
The difference in the breaker opening time for each phase during three-phase cutoff, the operation for each phase of the overcurrent detection circuits 12 to 14, and the difference in recovery time are as follows:
The output signal of the AND circuit 22 is absorbed by the time limit operation circuit 21, and the operation output of the phase number determination circuit 15 is finally generated from the time limit circuit 21 at time t5.
Since the output signals of the stage distance determination circuit 9 and the phase number determination circuit 15 are both established, the circuit is activated, and the output circuit 11 outputs a breaker three-phase tripping signal.

第3図は、時刻t。に3相事故が発生した場合について
の同じく距離継電器1の応動を表わし、このとき相手側
端子にて時刻t2で3相しゃ断が実施された後でも自端
子では事故が継続しているため過電流検出回路12〜1
4は動作を継続し、相数判定回路15の出力信号は不動
作であり、論理積回路22の出力信号は第2段距離判定
回路9および相数判定回路15がともに成立することが
無いので、不動作である。時刻t6で後備保護用の限時
回路10の出力信号が動作となるので、この時点で出力
回路11よりしゃ断器3相引外し信号が出力され、事故
が除去される。
FIG. 3 shows time t. It also shows the response of distance relay 1 when a three-phase fault occurs at time t2, and even after three-phase cutoff is performed at time t2 at the other terminal, the fault continues at the own terminal, so overcurrent is generated. Detection circuit 12-1
4 continues to operate, the output signal of the phase number determination circuit 15 is inactive, and the output signal of the AND circuit 22 is determined because both the second stage distance determination circuit 9 and the phase number determination circuit 15 are not satisfied. , is inactive. At time t6, the output signal of the backup protection time limit circuit 10 is activated, and at this point, the output circuit 11 outputs the breaker three-phase tripping signal, eliminating the accident.

第4図は、時刻t。に3相事故が相手側母線B1]− 一12= で発生したときの母線A側の距離継電器1の応動を表わ
し、時刻t2で相手側端子にて3相しゃ断が実施された
ことにより、時刻t3〜t4で過電流検出回路12〜1
4の出力信号は3相とも動作から不動作へと変化する。
FIG. 4 shows time t. It shows the response of the distance relay 1 on the bus A side when a 3-phase fault occurs at the other side bus B1] - -12=, and as the 3-phase fault is implemented at the other side terminal at time t2, the time Overcurrent detection circuit 12-1 at t3-t4
The output signals of No. 4 change from active to inactive for all three phases.

この過電流検出回路12〜14の出力信号の各相毎の復
帰時刻の差によって一時的に相数判定回路15の内部で
反転回路20に出力を発生するが、次段の限時動作遅延
回路21にて、二の一時的な出力は吸収されるので相数
判定回路15の出力信号は不動作であり、距離継電器1
からは3相しゃ断信号を出力しない。以上の説明は1相
事故、2相事故についても同様に説明でき、この場合も
距離継電器1は不動作である。
Due to the difference in the return time for each phase of the output signals of the overcurrent detection circuits 12 to 14, an output is temporarily generated within the phase number determination circuit 15 to the inverting circuit 20. Since the second temporary output is absorbed, the output signal of the phase number determination circuit 15 is inactive, and the distance relay 1
does not output a 3-phase cutoff signal. The above explanation can be similarly applied to a 1-phase fault and a 2-phase fault, and the distance relay 1 is inoperative in this case as well.

第5図は、時刻t。に第1相内部事故が自端近傍の送電
線上で発生したときの母線A側の距離継電器1の応動を
表わし、この場合、第1段および第2段の距離判定回路
8,9がそれぞれ動作出力を発生し、第1段距離判定回
路8よりしゃ断器3相引外し信号が出力回路11を介し
て出力される。
FIG. 5 shows time t. shows the response of the distance relay 1 on the bus A side when a first phase internal fault occurs on the transmission line near its own end, and in this case, the distance judgment circuits 8 and 9 of the first stage and second stage operate respectively. A breaker three-phase tripping signal is output from the first stage distance determination circuit 8 via the output circuit 11.

しゃ断器3相引外しがなされた後、時刻t2で第1段お
よび第2段距離判定回路8,9、過電流検出回路12〜
14は復帰するが、相数判定回路15の出力信号は不動
作であり、時刻t2以降のしゃ断器例外し信号は出力さ
れない。
After the breaker three-phase is tripped, at time t2, the first stage and second stage distance determination circuits 8, 9, and overcurrent detection circuits 12-
14 is restored, but the output signal of the phase number determination circuit 15 is inactive, and no breaker exception signal is output after time t2.

以上説明したように、高価な伝送設備を使用せずに、自
端子だけの電流、電圧情報をもとに、3相電力系統事故
の大部分を占める1相あるいは2相事故を高速で除去で
きる。
As explained above, 1-phase or 2-phase faults, which account for the majority of 3-phase power system faults, can be eliminated at high speed based on the current and voltage information of the own terminal without using expensive transmission equipment. .

〔発明の効果〕〔Effect of the invention〕

したがって本発明は3相しゃ断を行なっている送電線の
距離継電保護において、潮流の有無を検出する各相過電
流検出回路を設け、この各相過電流検出回路の1相もし
くは2相動作を判定し、この判定結果と第2段距離判定
回路の動作条件により3相しゃ断を実施するので、簡単
な構成で1相もしくは2相事故について高速に除去でき
る距離継電器を得ることができる。
Therefore, the present invention provides distance relay protection for power transmission lines that performs three-phase cutoff by providing an overcurrent detection circuit for each phase to detect the presence or absence of power flow, and controlling the one-phase or two-phase operation of each phase overcurrent detection circuit. Since the three-phase cutoff is performed based on the result of this judgment and the operating conditions of the second stage distance judgment circuit, it is possible to obtain a distance relay that can eliminate one-phase or two-phase faults at high speed with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の距離継電器を示す構成図、第2図乃至
第5図は実施例の距離継電器の出力波形図、第6図は距
離継電器が適用される電力系統図である。 1・・・距離継電器  8・・・第1段距離判定回路9
・・・第2段距離判定回路  10・・・限時回路11
・・・出力回路 12.1.3.14・・・過電流検出
回路15・・・相数判定回路  22・・・論理積回路
代理人 弁理士 則 近 憲 佑
FIG. 1 is a block diagram showing the distance relay of the present invention, FIGS. 2 to 5 are output waveform diagrams of the distance relay of the embodiment, and FIG. 6 is a power system diagram to which the distance relay is applied. 1... Distance relay 8... First stage distance determination circuit 9
...Second stage distance determination circuit 10...Time limit circuit 11
... Output circuit 12.1.3.14 ... Overcurrent detection circuit 15 ... Phase number judgment circuit 22 ... AND circuit Agent Patent attorney Noriyuki Chika

Claims (1)

【特許請求の範囲】[Claims] 3相交流電力系統の電圧、電流を用いて事故点が距離整
定範囲内であるか否かを判定し3相しや断を行なう距離
継電器において、潮流の有無を検出する各相過電流検出
回路と、この各相過電流検出回路の1相もしくは2相動
作を判定する相数判定回路と、この相数判定回路および
距離継電器の第2段距離判定回路の出力信号がともに成
立したことを判定し3相しや断を行なう論理回路とを具
備することを特徴とする距離継電器。
Overcurrent detection circuit for each phase that detects the presence or absence of power flow in a distance relay that uses the voltage and current of a three-phase AC power system to determine whether the fault point is within the distance setting range and disconnects or disconnects three phases. And, it is determined that the output signals of the phase number determination circuit that determines one-phase or two-phase operation of each phase overcurrent detection circuit, this phase number determination circuit, and the second stage distance determination circuit of the distance relay are both established. A distance relay characterized by comprising a logic circuit that connects and disconnects three phases.
JP17961590A 1990-07-09 1990-07-09 Distance relay Pending JPH0471322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17961590A JPH0471322A (en) 1990-07-09 1990-07-09 Distance relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17961590A JPH0471322A (en) 1990-07-09 1990-07-09 Distance relay

Publications (1)

Publication Number Publication Date
JPH0471322A true JPH0471322A (en) 1992-03-05

Family

ID=16068853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17961590A Pending JPH0471322A (en) 1990-07-09 1990-07-09 Distance relay

Country Status (1)

Country Link
JP (1) JPH0471322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075973A (en) * 2009-10-20 2014-04-24 Toshiba Corp Protective relay device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075973A (en) * 2009-10-20 2014-04-24 Toshiba Corp Protective relay device

Similar Documents

Publication Publication Date Title
US4528611A (en) Relay for pilot protection of electrical power lines
EP2331978B1 (en) Method and device for supervising secondary circuit of instrument transformer in power system
JPH02273024A (en) Directional comparison blocking relay
US6426856B1 (en) Method for monitoring a protective gear
JPH0471322A (en) Distance relay
JP2008160910A (en) Protective relay device
JP4006138B2 (en) Lock coordination control circuit and protective relay device
JP2799065B2 (en) Reclosing method of current differential protection relay
JPH0442726A (en) Ground fault indicator for distribution line
JPH0327716A (en) Method and apparatus for reclosing of transmission system
JP2898555B2 (en) Current differential protection relay
JPH0112510Y2 (en)
JPH06105451A (en) Line protection relay device
JPH0510516Y2 (en)
JPS6251053B2 (en)
JPS6285636A (en) Grounding protecting system
JP2001197656A (en) Relay for protecting current differential operation of power transmission line
JP3926971B2 (en) Digital protection relay device
JPH0125295B2 (en)
JP2592138B2 (en) Abnormality countermeasure circuit for loop system protection relay
JPH0124016B2 (en)
JPH0832127B2 (en) Protective relay
JPS6281926A (en) Protecting relaying device
JPH04236124A (en) Method for detecting small ground fault of high-voltage distribution line
JPS58106729A (en) Breaker non-operation remedy device