JPH09284989A - Protective relay, and method and protective relay system for estimating timing to zero residual magnetic flux - Google Patents

Protective relay, and method and protective relay system for estimating timing to zero residual magnetic flux

Info

Publication number
JPH09284989A
JPH09284989A JP8090763A JP9076396A JPH09284989A JP H09284989 A JPH09284989 A JP H09284989A JP 8090763 A JP8090763 A JP 8090763A JP 9076396 A JP9076396 A JP 9076396A JP H09284989 A JPH09284989 A JP H09284989A
Authority
JP
Japan
Prior art keywords
main transformer
zero
magnetic flux
voltage
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8090763A
Other languages
Japanese (ja)
Other versions
JP3456089B2 (en
Inventor
Yoshifumi Fukuya
善文 福屋
Koji Yutani
浩次 湯谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP09076396A priority Critical patent/JP3456089B2/en
Publication of JPH09284989A publication Critical patent/JPH09284989A/en
Application granted granted Critical
Publication of JP3456089B2 publication Critical patent/JP3456089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent malfunction by breaking a main transformer so that the residual magnetic flux of the iron core of the main transformer may be settled within a given zero range, when a protective relay outputs a trip signal and breaks the main transformer from a power system. SOLUTION: A protective relay has a system input means 1 which measures the primary voltage V1 and current 11 and the secondary voltage V2 and current 12 of a main transformer 1, and outputs output signals 11-14. This has a protective relay operating circuit 2 which detects the accident of a power system or inside a transformer with the data 11-14 of the system input means 1, and outputs trip signals 21. A forecasting circuit 5 forecasts the timing to zero the residual magnetic fluxes of the iron core of the main transformer with the data 11-14 of the system input means 1. A logical circuit 3 takes the AND of the trip signal 21 of the protective relay operating circuit 2 and a magnetic flux forecast signal 55 of the forecasting circuit 5, and outputs a trip signal 31. Therefore, the residual magnetic flux of the iron core of the main transformer is settled within the specified zero range.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は変圧器を保護する
保護継電器、残留磁束を零とするタイミングを予測する
方法および保護継電器システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protective relay for protecting a transformer, a method for predicting the timing of zero residual flux, and a protective relay system.

【0002】[0002]

【従来の技術】電力系統の主変圧器を保護する保護継電
器は、電力系統あるいは変圧器内部の事故を検出したと
き、トリップ指令を出力し、主変圧器の入力・出力段に
設置されている遮断器で事故電流を遮断する。図5は従
来技術および本発明において用いられる電力系統の主変
圧器を保護する保護継電器システムの要部構成図であ
る。図5において、1次側巻線w1,2次側巻線w2がY結
線され, 3次側巻線w3がΔ結線された三巻線変圧器(主
変圧器)TRが電力系統にそれぞれ遮断器S1,S2 を介して
接続されている。そして、この三巻線変圧器TRの1次側
および2次側の電圧, 電流は、電圧変成器PT1,PT2,変流
器CT1,CT2 を介して保護継電器RYに入力される。保護継
電器RYは、電力系統あるいは主変圧器TRの内部事故を検
出したとき、トリップ指令21を出力し、主変圧器TRの入
力・出力段に設置されている遮断器S1,S2 で事故電流を
遮断する。
2. Description of the Related Art A protective relay that protects a main transformer of a power system outputs a trip command when an accident in the power system or the inside of the transformer is detected, and is installed at an input / output stage of the main transformer. Break the fault current with the breaker. FIG. 5 is a configuration diagram of a main part of a protective relay system for protecting a main transformer of a power system used in the related art and the present invention. In FIG. 5, the three-winding transformer (main transformer) TR in which the primary winding w1 and the secondary winding w2 are Y-connected and the tertiary winding w3 is Δ-connected is cut off to the power system, respectively. It is connected via devices S1 and S2. Then, the voltage and current on the primary side and the secondary side of the three-winding transformer TR are input to the protective relay RY via the voltage transformers PT1 and PT2 and the current transformers CT1 and CT2. When the protective relay RY detects an internal fault in the power system or the main transformer TR, it outputs a trip command 21 and the breaker S1, S2 installed at the input / output stage of the main transformer TR detects the fault current. Cut off.

【0003】しかし、タイミング的に無作為に事故電流
を遮断したとき、一般的に変圧器の鉄心内部は偏磁され
残留磁束が残るため、事故復旧後電力系統を回復するた
め、遮断器を再投入するとき、主変圧器TRに大きな励磁
突入電流が流れる。この励磁突入電流は保護継電器RYで
異常電流として検出され、トリップ指令21を出力し、再
投入失敗を起こす可能性を有する。
However, when the accident current is interrupted at random timing, the inside of the iron core of the transformer is generally demagnetized and residual magnetic flux remains, so that the circuit breaker must be re-operated to recover the power system after the accident recovery. When turned on, a large exciting inrush current flows through the main transformer TR. This magnetizing inrush current is detected as an abnormal current by the protective relay RY, and there is a possibility that the trip command 21 is output and the reclosing failure occurs.

【0004】かかる励磁突入電流対策として、従来技術
の保護継電器RYでは、励磁突入電流が第2高調波成分が
大きいことを利用して保護継電器RYの誤動作防止対策を
実施している。図6はかかる誤動作防止対策の一例を示
すものである。図6において、保護継電器RYは、電力系
統あるいは主変圧器TRの内部事故を検出する比率差動継
電器87と、励磁突入電流検出要素86と、比率差動継電器
87の出力と励磁突入電流検出要素86の出力の否定出力と
の論理積を行う論理素子AND と、から構成される。
As a countermeasure against such an inrush current, in the protection relay RY of the prior art, the malfunction of the protective relay RY is prevented by utilizing the fact that the excitation inrush current has a large second harmonic component. FIG. 6 shows an example of such a malfunction prevention measure. In FIG. 6, the protective relay RY is a ratio differential relay 87 that detects an internal fault in the power system or the main transformer TR, an exciting inrush current detection element 86, and a ratio differential relay.
And an output of 87 and the negative output of the output of the exciting inrush current detection element 86.

【0005】かかる構成により、保護継電器RYは、遮断
器S1,S2 を再投入するときに流れる励磁突入電流によっ
て、比率差動継電器87からのトリップ指令21を励磁突入
電流検出要素86の励磁突入電流によって否定することに
より、保護継電器RYがトリップ指令21GA出力されること
を防止し、電力系統を再遮断するという誤動作を防止し
ている。
With this configuration, the protective relay RY sends the trip command 21 from the ratio differential relay 87 to the exciting inrush current of the exciting inrush current detecting element 86 by the exciting inrush current flowing when the circuit breakers S1 and S2 are closed again. By denying the above, the protection relay RY is prevented from outputting the trip command 21GA, and the malfunction of shutting off the power system again is prevented.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来技術の保
護継電器において、励磁突入電流検出要素は、各主変圧
器の容量、鉄心量あるいは鉄心の飽和磁束密度に対する
常用磁束密度レベルなどの違いによって、検出感度を調
整しなければならず、励磁突入電流検出要素の突入電流
レベルを種々検討する必要がある。
However, in the protective relay of the prior art, the exciting inrush current detecting element is caused by the difference in the capacity of each main transformer, the amount of iron core, or the normal magnetic flux density level with respect to the saturated magnetic flux density of the iron core. The detection sensitivity must be adjusted, and various inrush current levels of the excitation inrush current detection element must be examined.

【0007】本発明は上記の点にかんがみてなされたも
のであり、その目的は前記した課題を解決して、主変圧
器を再接続したときの励磁突入電流の大きさを予め定め
られた範囲内に留め、励磁突入電流検出要素の検出感度
を一定とし、保護継電器システムとして誤動作、誤不動
作を防止する保護継電器、残留磁束を零とするタイミン
グを予測する方法および保護継電器システムを提供する
ことにある。
The present invention has been made in view of the above points, and an object thereof is to solve the above-mentioned problems and to set the magnitude of the exciting inrush current when the main transformer is reconnected within a predetermined range. Provided are a protection relay that keeps the detection sensitivity of the inrush current detection element constant and prevents malfunction and malfunction as a protection relay system, a method of predicting the timing of zero residual flux, and a protection relay system. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明においては、主変圧器と、この主変圧器の1
次側および2次側に配備され電力系統との接続を行う遮
断器と、ともに電力系統の保護継電器システムを構成
し、電力系統あるいは変圧器内部の事故を検出したとき
遮断器へのトリップ指令を出力する保護継電器におい
て、主変圧器の1次側および2次側の電圧、電流を計測
する系統入力手段と、この系統入力手段からのデータに
より電力系統あるいは変圧器内部の事故を検出しトリッ
プ信号を出力する保護継電器演算回路と、系統入力手段
からのデータより主変圧器の鉄心の残留磁束を零とする
タイミングを予測する予測回路と、保護継電器演算回路
のトリップ信号と予測回路の磁束零予測信号との論理積
をとる論理回路と、を備えてなるものとする。
In order to achieve the above object, in the present invention, a main transformer and one of the main transformers are provided.
When a fault is detected in the power system or the transformer, a trip command is issued to the circuit breaker that is connected to the power system and is connected to the secondary side and the secondary side. In the protective relay that outputs, a system input means that measures the voltage and current on the primary and secondary sides of the main transformer, and a trip signal that detects an accident in the power system or the transformer based on the data from this system input means. Protective relay calculation circuit that outputs the output, a prediction circuit that predicts the timing to zero the residual magnetic flux of the iron core of the main transformer from the data from the system input means, a trip signal of the protection relay calculation circuit, and a prediction of the magnetic flux zero of the prediction circuit. And a logic circuit that performs a logical product with a signal.

【0009】また、予測回路は、系統入力手段からのデ
ータと変圧器データとに基づき、主変圧器の1次側およ
び2次側の誘起電圧E1,E2 を演算し、この誘起電圧E1,E
2 の比率が予め定められた許容誤差範囲内で主変圧器の
1次巻線数および2次巻線数の比率と等しいとき、主変
圧器の1次側および2次側の電圧,電流は健全時電圧、
電流と見做し、誘起電圧E1,E2 の比率が1次、2次巻線
数の比率の許容誤差範囲外にあるとき、主変圧器の1次
側および2次側の電圧,電流は事故時電圧,電流と見做
し、保護継電器がトリップ指令を出力するとき、主変圧
器の1次側または2次側の電圧,電流が健全相の電圧,
電流であるとき、鉄心の残留磁束を零とするタイミング
時刻列は、誘起電圧E1,E2 が零となるタイミングから電
気角で90°遅れた時刻列を残留磁束零のタイミング時刻
列とし、事故相の残留磁束を零とするタイミング時刻列
は、他の相に健全相があれば上述の健全相から求めた残
留磁束零のタイミング時刻列から主変圧器の各相が構造
的に定まる電気角だけタイミング時刻列をずらし、事故
時電圧,電流でこのタイミング時刻列を補正して残留磁
束零のタイミング時刻列とし、全ての相が事故相のと
き、事故発生直前の健全時電圧,電流から得られる健全
時の残留磁束を零とするタイミング時刻を起点とし電力
系統周波数とから得られるタイミング時刻列を事故時電
圧、電流値で補正して残留磁束零のタイミング時刻列と
し、トリップ指令を出力する磁束零予測信号は、これら
の残留磁束零のタイミング時刻列から遮断器がトリップ
指令を受け開路するまでの遅延時間が電力系統周波数の
周期からのずれ時間だけ先行して出力するものとする。
Further, the prediction circuit calculates the induced voltages E1, E2 on the primary side and the secondary side of the main transformer based on the data from the system input means and the transformer data, and the induced voltages E1, E2 are calculated.
When the ratio of 2 is equal to the ratio of the number of primary windings and the number of secondary windings of the main transformer within the predetermined tolerance, the voltage and current on the primary and secondary sides of the main transformer are Healthy voltage,
Considered as current, when the ratio of induced voltage E1, E2 is outside the allowable error range of the ratio of primary and secondary windings, the voltage and current on the primary and secondary sides of the main transformer are When the protective relay outputs a trip command, the voltage and current on the primary side or the secondary side of the main transformer are regarded as voltage and current, and the voltage and current on the primary phase are
When the current is a current, the timing time series at which the residual magnetic flux of the iron core is zero is the time series at which the residual magnetic flux is zero, with the time series delayed by 90 electrical degrees from the timing at which the induced voltages E1 and E2 become zero. If there is a sound phase in the other phase, the timing time series for zero residual flux is only the electrical angle at which each phase of the main transformer is structurally determined from the timing time series of zero residual flux obtained from the above healthy phase. The timing time series is shifted, and this timing time series is corrected with the voltage and current at the time of accident to make a timing time series with zero residual magnetic flux, and when all phases are in the accident phase, obtained from the healthy voltage and current immediately before the accident occurs. Output the trip command by correcting the timing time series obtained from the power system frequency with the timing time when the residual magnetic flux is zero when the sound condition is correct as the timing time series with zero residual magnetic flux by correcting the voltage and current values at the time of the accident. The magnetic flux zero prediction signal to be output is output in advance of the delay time from the timing time series of these residual magnetic flux zero until the circuit breaker receives the trip command and opens the circuit, by a deviation time from the cycle of the power system frequency.

【0010】かかる構成により、保護継電器がトリップ
指令を出力し電力系統から主変圧器を遮断するとき、主
変圧器の鉄心の残留磁束が予め定められた零範囲内に収
まる様に遮断することができる。また、主変圧器と、こ
の主変圧器の1次側および2次側に配備され電力系統と
の接続を行う第1、第2の遮断器と、主変圧器の1次側
および2次側の電圧、電流を入力し,電力系統あるいは
変圧器内部の事故を検出したとき遮断器へのトリップ指
令を出力する保護継電器と、を備えてなる電力系統の保
護継電器システムにおいて、保護継電器システムは、ト
リップ指令で投入される第3の遮断器と、この第3の遮
断器を介して主変圧器に印加される低周波電源と、を備
え、保護継電器がトリップ指令を出力し電力系統から主
変圧器を遮断するとき、トリップ指令により、少なくと
も第1の遮断器で電力系統から主変圧器を遮断し、第3
の遮断器で主変圧器に低周波電源を印加し、主変圧器の
鉄心の残留磁束が予め定められた零範囲内に収まる様に
遮断するものとする。
With this configuration, when the protective relay outputs the trip command and shuts off the main transformer from the power system, it is possible to shut off the residual magnetic flux of the iron core of the main transformer so that the residual magnetic flux falls within a predetermined zero range. it can. Further, the main transformer, the first and second breakers arranged on the primary side and the secondary side of the main transformer for connecting to the power system, and the primary side and the secondary side of the main transformer. In the protective relay system of the electric power system, which includes the protective relay that inputs the voltage and current of, and outputs the trip command to the circuit breaker when an accident in the electric power system or the transformer is detected, the protective relay system is It is equipped with a third circuit breaker that is turned on by a trip command and a low-frequency power source that is applied to the main transformer through this third circuit breaker, and the protective relay outputs a trip command and the main transformer from the power system. When shutting off the transformer, the trip command shuts off the main transformer from the power system by at least the first breaker,
The circuit breaker shall apply a low-frequency power source to the main transformer and shut off the residual magnetic flux of the iron core of the main transformer so that it remains within a predetermined zero range.

【0011】かかる構成により、主変圧器の鉄心の残留
磁束が予め定められた零の範囲内に収まる様に遮断され
るので、遮断器を再投入し、主変圧器を投入したときの
励磁突入電流の大きさを予め定められた範囲内に抑制
し、保護継電器システムとしての誤動作、誤不動作を防
止することができる。
With this configuration, the residual magnetic flux of the iron core of the main transformer is cut off so that the residual magnetic flux falls within a predetermined zero range. Therefore, the circuit breaker is reclosed and the magnetic field is rushed when the main transformer is closed. It is possible to suppress the magnitude of the current within a predetermined range and prevent malfunction and malfunction of the protective relay system.

【0012】[0012]

【発明の実施の形態】図1は本発明の一実施例としての
保護継電器のブロック図、図2は一実施例における残留
磁束を零とするタイミングを予測する方法を説明するブ
ロック図、図3は主変圧器の等価回路図、図4は本発明
による他の実施例としての保護継電器システムを説明す
るブロック図である。
1 is a block diagram of a protective relay as one embodiment of the present invention, FIG. 2 is a block diagram for explaining a method of predicting the timing of zero residual flux in one embodiment, and FIG. Is an equivalent circuit diagram of a main transformer, and FIG. 4 is a block diagram illustrating a protective relay system as another embodiment according to the present invention.

【0013】図5に図示される保護継電器システムは、
主変圧器TRと、この主変圧器TRの1次側および2次側に
配備され電力系統との接続を行う遮断器S1,S2 と、電力
系統あるいは変圧器TR内部の事故を検出したとき遮断器
S1,S2 へのトリップ指令を出力する保護継電器RYと、か
ら構成される。この保護継電器RYがトリップ指令を出力
し, 電力系統から主変圧器TRを遮断したとき、主変圧器
TRの鉄心の残留磁束が予め定められた零範囲内、例え
ば、鉄心の飽和磁束密度の数%以内、に収まる様に遮断
することにより、遮断器S1,S2 を再投入し主変圧器TRを
接続したとき、主変圧器TRに印加される電源電圧の極性
の如何に関わらず、鉄心を励磁する磁束密度が飽和磁束
密度レベルに到達しない様にすることができる。この結
果、主変圧器TRを再接続したときの励磁突入電流の大き
さを予め定められた範囲内に抑制し、保護継電器システ
ムとしての誤動作、誤不動作を防止することができる。
The protective relay system illustrated in FIG.
Main transformer TR, circuit breakers S1 and S2 arranged on the primary side and secondary side of this main transformer TR to connect to the power system, and shut off when an accident in the power system or transformer TR is detected. vessel
It consists of a protective relay RY that outputs a trip command to S1 and S2. When this protective relay RY outputs a trip command and shuts off the main transformer TR from the power system, the main transformer
By shutting off so that the residual magnetic flux of the TR core falls within a predetermined zero range, for example, within a few percent of the saturation magnetic flux density of the iron core, the circuit breakers S1 and S2 are reclosed and the main transformer TR is turned on. When connected, it is possible to prevent the magnetic flux density for exciting the iron core from reaching the saturation magnetic flux density level regardless of the polarity of the power supply voltage applied to the main transformer TR. As a result, when the main transformer TR is reconnected, the magnitude of the exciting inrush current can be suppressed within a predetermined range, and malfunctions and malfunctions of the protective relay system can be prevented.

【0014】今、主変圧器TRが例えば三相変圧器(以
下、三相の各相を区分するときはa,b,c の添え文字で示
す)で構成されているものとすると、保護継電器RYに入
力される主変圧器TRの1次側の電圧V1a,V1b,V1c,1次側
の電流I1a,I1b,I1c,2次側の電圧V2a,V2b,V2c,2次側の
電流I2a,I2b,I2cyより、鉄心の磁束φa,φb,φc を予測
し、磁束φa,φb,φc が各々零近傍となるタイミングで
三相を個別に遮断すればよい。
Now, assuming that the main transformer TR is composed of, for example, a three-phase transformer (hereinafter, shown by suffixes a, b, and c when distinguishing each phase of three phases), a protective relay. Primary side voltage V1a, V1b, V1c, primary side currents I1a, I1b, I1c, secondary side voltage V2a, V2b, V2c, secondary side current I2a, input to RY The magnetic fluxes φa, φb, φc of the iron core may be predicted from I2b, I2cy, and the three phases may be individually cut off at the timings when the magnetic fluxes φa, φb, φc are close to zero.

【0015】[0015]

【実施例】【Example】

(実施例1)図1において、保護継電器RYは、主変圧器
TRの1次側の電圧V1、電流I1および2次側の電圧V2、電
流I2を計測し、出力信号(データ)11,12,13,14 を出力
する系統入力手段1と、この系統入力手段1からのデー
タ11,12,13,14 により電力系統あるいは変圧器TRの内部
の事故を検出しトリップ信号21を出力する保護継電器演
算回路2と、系統入力手段1からのデータ11,12,13,14
より主変圧器TRの鉄心の残留磁束を零とするタイミング
を予測する予測回路5と、保護継電器演算回路2のトリ
ップ信号21と予測回路5の磁束零予測信号55との論理積
をとりトリップ指令31を出力する論理回路3と、を備え
て構成される。
(Embodiment 1) In FIG. 1, a protective relay RY is a main transformer.
System input means 1 that measures the voltage V1, current I1 and voltage V2, current I2 on the primary side of TR and outputs output signals (data) 11, 12, 13, 14 and this system input means Data 11, 12, 13 from the protective relay arithmetic circuit 2 which detects an accident in the power system or the transformer TR from the data 11, 12, 13 and 14 and outputs a trip signal 21 ,14
Prediction circuit 5 that predicts the timing of zeroing the residual magnetic flux of the iron core of main transformer TR, trip signal 21 of protection relay arithmetic circuit 2 and magnetic flux zero prediction signal 55 of prediction circuit 5, and the trip command is obtained. And a logic circuit 3 for outputting 31.

【0016】保護継電器演算回路2は、従来技術で述べ
た様に、電力系統あるいは主変圧器TRの内部事故を検出
する比率差動継電器87の機能と、励磁突入電流検出要素
86の機能と、比率差動継電器87の機能出力と励磁突入電
流検出要素86の機能出力の否定出力との論理積を行う論
理素子AND と、を備えて構成される。ここで、機能で表
現した主旨は、比率差動継電器87や励磁突入電流検出要
素86が備える特性を系統入力手段1から得られるデータ
11,12,13,14 により、高速にサンプリング処理を行い、
ディジタル演算処理で求める回路を含めて表現したもの
である。
As described in the prior art, the protective relay arithmetic circuit 2 has the function of the ratio differential relay 87 for detecting an internal fault in the power system or the main transformer TR, and the exciting inrush current detecting element.
And a logic element AND for performing a logical product of the function output of the ratio differential relay 87 and the negative output of the function output of the exciting inrush current detection element 86. Here, the purpose expressed by the function is the data obtained from the system input means 1 regarding the characteristics of the ratio differential relay 87 and the excitation inrush current detection element 86.
Sampling processing is performed at high speed by 11,12,13,14,
This is a representation including a circuit obtained by digital arithmetic processing.

【0017】また、図示例では、予測回路5は、保護継
電器RYがトリップ指令31を出力し、遮断器が電力系統か
ら主変圧器TRを遮断するまでの時間遅れが遮断器遅れ時
間パラメータ51として設定できる様に構成されている。
かかる構成により、保護継電器演算回路2がトリップ指
令21を出力し, 電力系統から主変圧器TRを遮断すると
き、予測回路5が演算する磁束零予測信号55のタイミン
グでトリップ指令31を出力することにより、主変圧器TR
の鉄心の残留磁束が予め定められた零の範囲内に収まる
タイミングで遮断することができる。
Further, in the illustrated example, in the predicting circuit 5, the time delay until the protection relay RY outputs the trip command 31 and the breaker cuts off the main transformer TR from the power system is set as the breaker delay time parameter 51. It is configured so that it can be set.
With this configuration, when the protective relay arithmetic circuit 2 outputs the trip command 21 and shuts off the main transformer TR from the power system, the trip command 31 is output at the timing of the magnetic flux zero prediction signal 55 calculated by the prediction circuit 5. By the main transformer TR
The residual magnetic flux of the iron core can be cut off at a timing when the residual magnetic flux falls within a predetermined zero range.

【0018】以下、図2、図3を用いて、保護継電器RY
の予測回路5が主変圧器TRの鉄心の残留磁束を零とする
タイミングを予測する方法を説明する。図2において、
予測回路5は、系統入力手段1が計測する主変圧器TRの
1次側の電圧V1、電流I1および2次側の電圧V2、電流I2
のデータ11,12,13,14 と、図3に図示される変圧器デー
タ52(r1,x1,r2,x2,g0,b0) と、に基づき、主変圧器の1
次側および2次側の誘起電圧E1,E2 を演算する。
The protective relay RY will be described below with reference to FIGS.
A method of predicting the timing of making the residual magnetic flux of the iron core of the main transformer TR zero by the predicting circuit 5 of FIG. In FIG.
The prediction circuit 5 includes a voltage V1, a current I1 and a voltage V2, a current I2 on the primary side of the main transformer TR measured by the system input means 1.
Based on the data 11,12,13,14 of the main transformer and the transformer data 52 (r1, x1, r2, x2, g0, b0) shown in FIG.
Calculate the induced voltages E1 and E2 on the secondary and secondary sides.

【0019】この誘起電圧E1,E2 の比率E1/E2 が、予め
定められた許容誤差範囲内で主変圧器TRの1次巻線w1お
よび2次巻線w2の巻線数の比率(w1/w2=巻線比a)と等
しいとき、主変圧器TRの内部事故の有無の観点から、主
変圧器TRの1次側および2次側の電圧V1,V2,電流I1,I2
は健全時電圧11,12,健全時電流13,14 とする。誘起電圧
E1,E2 の比率E1/E2 が1次、2次巻線数の比率(w1/w2)
の許容誤差範囲外にあるとき、主変圧器TRの内部に事故
が発生しているものとし、このときの主変圧器の1次側
および2次側の電圧V1,V2 、電流I1,I2 は事故時電圧4
1,42,事故時電流43,44 とする。
The ratio E1 / E2 of the induced voltages E1 and E2 is the ratio (w1 / w1) of the number of turns of the primary winding w1 and the secondary winding w2 of the main transformer TR within a predetermined allowable error range. When w2 is equal to the winding ratio a), the voltages V1, V2, currents I1, I2 on the primary and secondary sides of the main transformer TR are checked from the viewpoint of whether there is an internal fault in the main transformer TR.
Is the healthy voltage 11,12 and the healthy current 13,14. Induced voltage
E1 / E2 ratio E1 / E2 is the ratio of primary and secondary winding numbers (w1 / w2)
When it is out of the allowable error range of, it is assumed that an accident has occurred inside the main transformer TR, and the voltages V1, V2 and currents I1, I2 on the primary and secondary sides of the main transformer at this time are Voltage at accident 4
1,42, current at accident 43,44.

【0020】図3の(A) は主変圧器TRの一相分の等価回
路図を、図3の(B) は主変圧器TRの一相分のベクトル図
を示す。図3の(A) において、主変圧器TRの1次側電圧
をV1、1次側電流をI1とし、変圧器データとして1次側
インピーダンスを(r1+jx1)とすると、1次側誘起電圧E1
との間に (1)式のベクトル演算の関係がある。
3A shows an equivalent circuit diagram of one phase of the main transformer TR, and FIG. 3B shows a vector diagram of one phase of the main transformer TR. In (A) of Fig. 3, if the primary side voltage of the main transformer TR is V1, the primary side current is I1, and the primary side impedance is (r1 + jx1) as transformer data, the primary side induced voltage E1
There is a vector operation relation of (1) between and.

【0021】[0021]

【数1】E1=V1−(r1+jx1)×I1 ……(1) また、主変圧器TRの2次側電圧をV2、2次側電流をI2と
し、変圧器データとして2次側インピーダンスを(r2+jx
2)とすると、2次側誘起電圧E2との間に (2)式のベクト
ル演算の関係がある。
[Equation 1] E1 = V1− (r1 + jx1) × I1 (1) Also, the secondary side voltage of the main transformer TR is V2, the secondary side current is I2, and the secondary side impedance is transformer data. To (r2 + jx
2), there is a relation of the vector operation of the equation (2) with the secondary induced voltage E2.

【0022】[0022]

【数2】E2=V2+(r2+jx2)×I2 ……(2) そして、鉄心の励磁回路のアドミタンスをY(=g0+jb
0)とし、励磁電流をImとすると、1次側誘起電圧E1と
の間に (3)式のベクトル演算の関係がある。
[Equation 2] E2 = V2 + (r2 + jx2) × I2 (2) Then, the admittance of the excitation circuit of the iron core is Y (= g0 + jb
0) and the excitation current is Im, there is a relation of the vector operation of the equation (3) with the primary side induced voltage E1.

【0023】[0023]

【数3】E1=Im/(g0+jb0) ……(3) (1)式および (2)式のV1,I1,V2,I2 は系統入力手段1で
計測される電圧、電流のデータ11,12,13,14 であり、(r
1+jx1),(r2+jx2) は変圧器データ52(r1,x1,r2,x2) とし
て予め与えられるデータであるので、これらのデータに
基づいてベクトル演算を行うことにより、1次側誘起電
圧E1および2次側誘起電圧E2を求めることができる。
[Equation 3] E1 = Im / (g0 + jb0) (3) V1, I1, V2, and I2 in Eqs. (1) and (2) are voltage and current data 11 measured by the system input means 1. , 12,13,14 and (r
1 + jx1), (r2 + jx2) is the data given in advance as the transformer data 52 (r1, x1, r2, x2), so the primary side induction is performed by performing vector operation based on these data. The voltage E1 and the secondary side induced voltage E2 can be obtained.

【0024】図3の(B) は、上記(1) 〜(3) 式のベクト
ル演算を図示したものである。図3の(B) において、原
点O に対して磁束φを下方に垂直なベクトルで示すと、
磁束φより90°位相が進んだ方向, 即ち水平方向, に1
次, 2次誘起電圧E1,E2 および磁化電流Icが流れる。図
示例では、負荷を抵抗負荷とすると、2次側の電圧V2と
電流I2とは同一ベクトル線上にあり、この電圧V2のベク
トルより2次側インピーダンス(r2+jx2)と2次側電流I2
のベクトル積を加算した点に2次誘起電圧E2がある。ま
た、1次側誘起電圧E1のベクトルより1次側インピーダ
ンス(r1+jx1)と1次側電流I1のベクトル積を加算した点
に1次側電圧V1がある。
FIG. 3B illustrates the vector operation of the above equations (1) to (3). In FIG. 3B, when the magnetic flux φ is shown by a vector perpendicular to the origin O,
1 in the direction 90 degrees ahead of the magnetic flux φ, that is, in the horizontal direction
Next, the secondary induced voltages E1 and E2 and the magnetizing current Ic flow. In the illustrated example, when the load is a resistive load, the secondary side voltage V2 and the current I2 are on the same vector line, and the secondary side impedance (r2 + jx2) and the secondary side current I2 are derived from the vector of this voltage V2.
The secondary induced voltage E2 is at the point where the vector product of is added. Further, the primary side voltage V1 is at a point where the vector product of the primary side impedance (r1 + jx1) and the primary side current I1 is added from the vector of the primary side induced voltage E1.

【0025】次に、保護継電器RYがトリップ指令31を出
力するときを説明する。鉄心の残留磁束を零とするタイ
ミング時刻列の予測方法は、前述の健全相の電圧11,12,
電流13,14 の有無により下記3通りの予測方法がある。
即ち、 (1) 主変圧器TRの1次側または2次側の電圧V1,V2,電流
I1,I2 が健全相の電圧11,12,電流13,14 であるとき、鉄
心の残留磁束を零とするタイミング時刻列t1,t2,…は、
予測回路5で演算された誘起電圧E1,E2 が零となるタイ
ミングt1',t2',…から電気角で90°遅れた時刻列が残留
磁束零のタイミング時刻列t1,t2,…になる。
Next, the case where the protective relay RY outputs the trip command 31 will be described. The method of predicting the timing time series to make the residual magnetic flux of the iron core zero is the voltage of the healthy phase 11, 12,
There are the following three prediction methods depending on the presence / absence of currents 13 and 14.
That is, (1) voltage V1, V2, current on the primary or secondary side of the main transformer TR
When I1, I2 are voltage 11,12 and current 13,14 of sound phase, the timing time series t1, t2, ...
The time series delayed by 90 ° in electrical angle from the timings t1 ′, t2 ′, ... At which the induced voltages E1, E2 calculated by the prediction circuit 5 become zero become the timing time series t1, t2 ,.

【0026】(2) 事故相(例えばb相)の残留磁束を零
とするタイミング時刻列t1b,t2b,…は、他の相に健全相
(例えばa相)があれば上記 (1)項の健全相から求めた
残留磁束零のタイミング時刻列t1a,t2a,…から主変圧器
TRの各相(a,b,c相) が構造的に定まる電気角(例えば三
相変圧器の場合、 120°または240 °) だけタイミング
時刻列をずらし、事故時電圧41,42,電流43,44 でこのタ
イミング時刻列t1b,t2b,…を補正して残留磁束零のタイ
ミング時刻列t1b',t2b',…とする。
(2) The timing time series t1b, t2b, ... When the residual magnetic flux of the accident phase (for example, the b phase) is set to zero, if there is a sound phase (for example, the a phase) in the other phase, the above (1) Main transformer from timing time series t1a, t2a, ...
The timing time series is shifted by an electrical angle (for example, 120 ° or 240 ° in the case of a three-phase transformer) in which each phase (a, b, c phase) of TR is structurally determined, and voltage 41, 42, current 43 , 44, the timing time series t1b, t2b, ... Are corrected to obtain the residual magnetic flux zero timing time series t1b ′, t2b ′ ,.

【0027】(3) 全ての相が事故相のとき、事故発生直
前の健全時電圧11,12,電流13,14 から得られる健全時の
残留磁束を零とするタイミング時刻列t0(例えば三相電
源系統の場合、t0a,t0b,t0c)を起点とし電力系統周波数
fに基づく周期分だけ時刻をシフトして得られるタイミ
ング時刻列を事故時電圧、電流で補正して残留磁束零の
タイミング時刻列t1",t2",…とする。
(3) When all phases are accident phases, a timing time series t0 (for example, three-phase) in which the sound residual magnetic flux obtained from the sound voltage 11 and current 12 and current 13 and 14 immediately before the accident is zero In the case of the power supply system, the timing time series obtained by shifting the time by the period based on the power system frequency f from t0a, t0b, t0c) is corrected by the fault voltage and current and the residual magnetic flux is zero. t1 ", t2", ...

【0028】トリップ指令31を出力する磁束零予測信号
55は、これらの残留磁束零のタイミング時刻列((1)のと
きt1,t2,…,(2)のときt1b',t2b',…,(3)のときt1",t2",
…)から, 遮断器S1,S2 がトリップ指令31を受け開路す
るまでの遅延時間Δt が電力系統周波数fに基づく周期
からのずれ時間分だけ先行して出力することにより、主
変圧器TRの鉄心の残留磁束が予め定められた零範囲内に
収まる様に遮断することができる。
Magnetic flux zero prediction signal for outputting trip command 31
55 is a timing time series of these residual magnetic flux zeros (t1, t2, ..., (2), t1b ', t2b', ..., (3), t1 ", t2",
...), the delay time Δt until the circuit breakers S1 and S2 receive the trip command 31 to open the circuit is output in advance by the time difference from the cycle based on the power system frequency f, so that the core of the main transformer TR is output. Can be cut off so that the residual magnetic flux of is within a predetermined zero range.

【0029】尚、上記説明では、例えば (1)の場合を例
にとると、残留磁束零のタイミング時刻列は、予測回路
5で演算された誘起電圧E1,E2 が零となるタイミングt
1',t2',…から電気角で90°遅れた時刻列が残留磁束零
のタイミング時刻列t1,t2,…になるとしたが、誘起電圧
E1,E2 のピーク値となるタイミング時刻列t1,t2,…を求
め、このタイミングを残留磁束零のタイミング時刻列t
1,t2,…としてもよい。
In the above description, taking the case of (1) as an example, the timing time series of zero residual flux is the timing t at which the induced voltages E1 and E2 calculated by the prediction circuit 5 become zero.
The time series delayed by 90 ° in electrical angle from 1 ', t2', ... is the time series t1, t2, ... with zero residual flux, but the induced voltage
The timing time series t1, t2, ... Which is the peak value of E1, E2 is obtained, and this timing is used as the timing time series t for zero residual flux.
It may be 1, t2, ...

【0030】(実施例2)次に、図4により他の実施例
としての保護継電器システムを説明する。実施例2で
は、実施例1と異なり、電力系統から主変圧器を遮断す
るとき、主変圧器の鉄心の残留磁束零を予測することな
く遮断し、遮断後低周波の電源を印加することにより、
鉄心の残留磁束が予め定められた零範囲内に収めるもの
である。
(Second Embodiment) Next, a protective relay system as another embodiment will be described with reference to FIG. In the second embodiment, unlike the first embodiment, when the main transformer is cut off from the power system, the residual magnetic flux zero of the iron core of the main transformer is cut off without prediction, and a low-frequency power source is applied after the cutoff. ,
The residual magnetic flux of the iron core falls within a predetermined zero range.

【0031】図4において、本発明の保護継電器システ
ムは、主変圧器TRと、この主変圧器TRの1次側および2
次側に配備され電力系統との接続を行う第1、第2の遮
断器S1,S2 と、主変圧器TRの1次側および2次側の電圧
V1,V2,電流I1,I2 を入力し,電力系統あるいは変圧器内
部の事故を検出したとき遮断器S1,S2 へのトリップ指令
21を出力する保護継電器RYと、トリップ指令で投入され
る第3の遮断器S3と、この第3の遮断器S3を介して主変
圧器TRに印加される低周波電源V3と、を備えて構成され
る。
In FIG. 4, the protective relay system of the present invention comprises a main transformer TR, a primary side of the main transformer TR and a secondary transformer.
Voltages on the primary and secondary sides of the main transformer TR and the first and second circuit breakers S1 and S2 that are provided on the secondary side and connected to the power system.
When V1, V2 and currents I1 and I2 are input and an accident in the power system or transformer is detected, a trip command to breakers S1 and S2 is issued.
It includes a protective relay RY that outputs 21, a third circuit breaker S3 that is turned on by a trip command, and a low-frequency power supply V3 that is applied to the main transformer TR via the third circuit breaker S3. Composed.

【0032】かかる構成において、保護継電器RYがトリ
ップ指令21を出力し, 電力系統から主変圧器TRを遮断し
たとき、トリップ指令21により、少なくとも、第1の遮
断器S1で電力系統から主変圧器TRを遮断し、第3の遮断
器S3で主変圧器TRに低周波電源V3を印加し、主変圧器TR
の鉄心の残留磁束が予め定められた零範囲内に収まる様
に遮断するものである。
In such a configuration, when the protective relay RY outputs the trip command 21 and shuts off the main transformer TR from the power system, the trip command 21 causes at least the first circuit breaker S1 to disconnect the main transformer TR from the power system. The TR is cut off, the low frequency power supply V3 is applied to the main transformer TR by the third breaker S3, and the main transformer TR
The residual magnetic flux of the iron core is cut off so that the residual magnetic flux falls within a predetermined zero range.

【0033】この結果、主変圧器TRを遮断したとき、鉄
心の残留磁束を零近傍にすることができるので、遮断器
S1を再投入し、主変圧器TRを投入したときの励磁突入電
流の大きさを予め定められた範囲内に留めることがで
き、保護継電器システムとして誤動作、誤不動作を防止
することができる。
As a result, when the main transformer TR is cut off, the residual magnetic flux of the iron core can be made close to zero.
The magnitude of the exciting inrush current when S1 is turned on again and the main transformer TR is turned on can be kept within a predetermined range, and malfunctions and malfunctions of the protection relay system can be prevented.

【0034】[0034]

【発明の効果】以上述べたように本発明によれば、従来
技術では主変圧器毎に励磁突入電流検出要素の検出感度
を検討していたが、主変圧器を遮断したとき、鉄心の残
留磁束を零近傍にすることにより、遮断器を再投入し主
変圧器を再接続したときの励磁突入電流の大きさを予め
定められた範囲内に留め、励磁突入電流検出要素の検出
感度を一定とし、保護継電器システムとして誤動作、誤
不動作を防止する保護継電器、残留磁束を零とするタイ
ミングを予測する方法および保護継電器システムを提供
することができる。
As described above, according to the present invention, in the prior art, the detection sensitivity of the exciting inrush current detection element was examined for each main transformer. However, when the main transformer is cut off, the residual iron core remains. By making the magnetic flux near zero, the magnitude of the exciting inrush current when the circuit breaker is turned on again and the main transformer is reconnected is kept within a predetermined range, and the detection sensitivity of the exciting inrush current detection element is kept constant. It is possible to provide a protective relay that prevents malfunctions and malfunctions as a protective relay system, a method for predicting the timing of zero residual magnetic flux, and a protective relay system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての保護継電器のブロッ
ク図
FIG. 1 is a block diagram of a protective relay as an embodiment of the present invention.

【図2】一実施例における残留磁束を零とするタイミン
グを予測する方法を説明するブロック図
FIG. 2 is a block diagram illustrating a method of predicting a timing at which a residual magnetic flux becomes zero according to an embodiment.

【図3】主変圧器の等価回路図[Fig. 3] Equivalent circuit diagram of main transformer

【図4】本発明による他の実施例としての保護継電器シ
ステムを説明するブロック図
FIG. 4 is a block diagram illustrating a protection relay system as another embodiment according to the present invention.

【図5】電力系統の主変圧器を保護する保護継電器シス
テムの要部構成図
[Fig. 5] Main part configuration diagram of a protective relay system that protects a main transformer of an electric power system

【図6】励磁突入電流による保護継電器RYの誤動作防止
回路図
[Fig.6] Circuit diagram for preventing malfunction of protective relay RY due to inrush current of excitation

【符号の説明】[Explanation of symbols]

1 系統入力手段 11,12,13,14,41,42,43,44 データ 2 保護継電器演算回路 21,31 トリップ信号 3 論理回路 5 予測回路 51 パラメータ設定値 52,r1,r2,x1,x2,g0,b0 変圧器データ 55 磁束零予測信号 86 励磁突入電流検出要素 87 比率差動継電器 V1,V2 変圧器電圧 I1,I2 変圧器電流 E1,E2 誘起電圧 Im 励磁電流 φ 磁束 S1,S2,S3 遮断器 TR 主変圧器 V3 低周波電源 RY 保護継電器 PT1,PT2 電圧変成器 CT1,CT2 変流器 1 system input means 11,12,13,14,41,42,43,44 data 2 protection relay arithmetic circuit 21,31 trip signal 3 logic circuit 5 prediction circuit 51 parameter setting value 52, r1, r2, x1, x2, g0, b0 Transformer data 55 Flux zero prediction signal 86 Excitation inrush current detection element 87 Ratio differential relay V1, V2 Transformer voltage I1, I2 Transformer current E1, E2 Induced voltage Im Excitation current φ Magnetic flux S1, S2, S3 Break Transformer TR Main transformer V3 Low frequency power supply RY Protective relay PT1, PT2 Voltage transformer CT1, CT2 Current transformer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】主変圧器と、この主変圧器の1次側および
2次側に配備され電力系統との接続を行う遮断器と、と
もに電力系統の保護継電器システムを構成し、電力系統
あるいは変圧器内部の事故を検出したとき遮断器へのト
リップ指令を出力する保護継電器において、 主変圧器の1次側および2次側の電圧、電流を計測する
系統入力手段と、この系統入力手段からのデータにより
電力系統あるいは変圧器内部の事故を検出しトリップ信
号を出力する保護継電器演算回路と、系統入力手段から
のデータより主変圧器の鉄心の残留磁束を零とするタイ
ミングを予測する予測回路と、保護継電器演算回路のト
リップ信号と予測回路の磁束零予測信号との論理積をと
る論理回路と、を備え、 保護継電器がトリップ指令を出力し電力系統から主変圧
器を遮断するとき、主変圧器の鉄心の残留磁束が予め定
められた零範囲内に収まる様に遮断する、 ことを特徴とする保護継電器。
Claim: What is claimed is: 1. A main transformer and a circuit breaker, which is arranged on the primary side and the secondary side of the main transformer and is connected to the electric power system, together with a main system protective relay system. In a protective relay that outputs a trip command to the circuit breaker when an accident inside the transformer is detected, a system input means for measuring the voltage and current on the primary and secondary sides of the main transformer, and from this system input means Protection relay arithmetic circuit that detects an accident in the power system or transformer based on the data of the power transformer and outputs a trip signal, and a prediction circuit that predicts the timing to zero the residual magnetic flux of the iron core of the main transformer from the data from the system input means And a logic circuit that takes the logical product of the trip signal of the protective relay calculation circuit and the magnetic flux zero prediction signal of the prediction circuit.The protection relay outputs the trip command and the main transformer from the power system. When blocking, the main residual magnetic flux of the transformer core is cut off as fall within zero a predetermined range, protection relay, characterized in that.
【請求項2】請求項1に記載の保護継電器の予測回路が
主変圧器の鉄心の残留磁束を零とするタイミングを予測
する方法において、 予測回路は、 系統入力手段からのデータと、変圧器データと、に基づ
き、主変圧器の1次側および2次側の誘起電圧E1,E2 を
演算し、 この誘起電圧E1,E2 の比率が、予め定められた許容誤差
範囲内で主変圧器の1次巻線数および2次巻線数の比率
と等しいとき、主変圧器の1次側および2次側の電圧、
電流は健全時電圧、電流と見做し、 誘起電圧E1,E2 の比率が1次、2次巻線数の比率の許容
誤差範囲外にあるとき、主変圧器の1次側および2次側
の電圧、電流は事故時電圧、電流と見做し、 保護継電器がトリップ指令を出力するとき、 主変圧器の1次側または2次側の電圧、電流が健全相の
電圧、電流であるとき、鉄心の残留磁束を零とするタイ
ミング時刻列は、前記誘起電圧E1,E2 が零となるタイミ
ングから電気角で90°遅れた時刻列を残留磁束零のタイ
ミング時刻列とし、 事故相の残留磁束を零とするタイミング時刻列は、他の
相に健全相があれば、前記健全相から求めた残留磁束零
のタイミング時刻列から主変圧器の各相が構造的に定ま
る電気角だけタイミング時刻列をずらし、事故時電圧、
電流値でこのタイミング時刻列を補正して残留磁束零の
タイミング時刻列とし、 全ての相が事故相のとき、事故発生直前の健全時電圧、
電流から得られる健全時の残留磁束を零とするタイミン
グ時刻を起点とし電力系統周波数とから得られるタイミ
ング時刻列を事故時電圧、電流で補正して残留磁束零の
タイミング時刻列とし、 トリップ指令を出力する磁束零予測信号は、これらの残
留磁束零のタイミング時刻列から遮断器がトリップ指令
を受け開路するまでの遅延時間が電力系統周波数の周期
からのずれ時間だけ先行して出力する、 ことを特徴とする残留磁束零を予測する方法。
2. A method for predicting the timing when the predicting circuit of the protective relay according to claim 1 sets the residual magnetic flux of the iron core of the main transformer to zero, in which the predicting circuit comprises data from the grid input means and the transformer. Based on the data and, the induced voltage E1, E2 of the primary side and the secondary side of the main transformer is calculated, and the ratio of the induced voltage E1, E2 is within the predetermined allowable error range. When the ratio of the number of primary windings and the number of secondary windings is equal, the voltage on the primary side and secondary side of the main transformer,
The current is regarded as a healthy voltage and current, and when the ratio of the induced voltage E1 and E2 is outside the allowable error range of the ratio of the primary and secondary winding numbers, the primary and secondary sides of the main transformer Voltage and current are regarded as fault voltage and current, and when the protective relay outputs a trip command, the voltage or current on the primary or secondary side of the main transformer is the voltage or current on a healthy phase. , The time sequence for making the residual magnetic flux of the iron core zero is the time sequence of 90 ° electrical angle delayed from the time when the induced voltages E1 and E2 become zero, as the timing sequence of zero residual magnetic flux, and the residual magnetic flux of the accident phase If there is a sound phase in other phases, the timing time series with zero is the timing time series with the electrical angle at which each phase of the main transformer is structurally determined from the timing time series of zero residual flux obtained from the sound phase. The voltage at the time of the accident,
This timing time series is corrected by the current value to make a timing time series with zero residual magnetic flux, and when all phases are in the accident phase, the sound voltage immediately before the accident occurs,
The timing command sequence obtained from the power system frequency with the timing time when the residual magnetic flux in a sound state is zero obtained from the current is used as the starting point, is corrected with the voltage and current at the time of an accident to be the timing sequence sequence with zero residual flux, and the trip command is issued. The flux zero prediction signal to be output shall be output in advance of the delay time from the timing time series of these residual flux zero to the time when the circuit breaker receives the trip command and opens the circuit, by the deviation time from the cycle of the power system frequency. A method for predicting the characteristic residual magnetic flux zero.
【請求項3】主変圧器と、この主変圧器の1次側および
2次側に配備され電力系統との接続を行う第1、第2の
遮断器と、主変圧器の1次側および2次側の電圧、電流
を入力し,電力系統あるいは変圧器内部の事故を検出し
たとき遮断器へのトリップ指令を出力する保護継電器
と、を備えてなる電力系統の保護継電器システムにおい
て、 システムは、トリップ指令で投入される第3の遮断器
と、 この第3の遮断器を介して主変圧器に印加される低周波
電源と、を備え、 保護継電器がトリップ指令を出力し電力系統から主変圧
器を遮断するとき、トリップ指令により、少なくとも、
第1の遮断器で電力系統から主変圧器を遮断し、第3の
遮断器で主変圧器に低周波電源を印加し、主変圧器の鉄
心の残留磁束が予め定められた零範囲内に収める、 ことを特徴とする保護継電器システム。
3. A main transformer, first and second breakers arranged on the primary side and the secondary side of the main transformer for connection with a power system, and a primary side of the main transformer and In the protection relay system of the power system, which comprises the protection relay that inputs the voltage and current of the secondary side and outputs the trip command to the circuit breaker when an accident in the power system or the transformer is detected, the system is , A third circuit breaker that is turned on by a trip command, and a low-frequency power source that is applied to the main transformer via this third circuit breaker, and the protection relay outputs a trip command and the mains from the power system. When shutting off the transformer, at least
The first circuit breaker disconnects the main transformer from the power system, the third circuit breaker applies a low-frequency power source to the main transformer, and the residual magnetic flux of the iron core of the main transformer falls within a predetermined zero range. A protective relay system that is characterized by:
JP09076396A 1996-04-12 1996-04-12 Protective relay Expired - Fee Related JP3456089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09076396A JP3456089B2 (en) 1996-04-12 1996-04-12 Protective relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09076396A JP3456089B2 (en) 1996-04-12 1996-04-12 Protective relay

Publications (2)

Publication Number Publication Date
JPH09284989A true JPH09284989A (en) 1997-10-31
JP3456089B2 JP3456089B2 (en) 2003-10-14

Family

ID=14007654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09076396A Expired - Fee Related JP3456089B2 (en) 1996-04-12 1996-04-12 Protective relay

Country Status (1)

Country Link
JP (1) JP3456089B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058475A1 (en) * 2004-12-02 2006-06-08 Zhejiang University Transformer longitudinal difference protection method with zero-sequence ratio braking
JP2009131106A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Operation controller and operation control method for transformer
CN102623958A (en) * 2011-01-27 2012-08-01 Ls产电株式会社 Relay and method for protecting transformer, and transformer protecting system having the same
KR20190125645A (en) * 2018-04-30 2019-11-07 한국전력공사 Apparatus for preventing malfunction of transformer and method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058475A1 (en) * 2004-12-02 2006-06-08 Zhejiang University Transformer longitudinal difference protection method with zero-sequence ratio braking
JP2009131106A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Operation controller and operation control method for transformer
CN102623958A (en) * 2011-01-27 2012-08-01 Ls产电株式会社 Relay and method for protecting transformer, and transformer protecting system having the same
EP2482410A1 (en) * 2011-01-27 2012-08-01 LSIS Co., Ltd. Relay and method for protecting transformer, transformer protecting system having the same
US20120194949A1 (en) * 2011-01-27 2012-08-02 Lsis Co., Ltd Relay and method for protecting transformer, and transformer protecting system having the same
US8854776B2 (en) 2011-01-27 2014-10-07 Lsis Co., Ltd. Relay and method for protecting transformer, and transformer protecting system having the same
KR20190125645A (en) * 2018-04-30 2019-11-07 한국전력공사 Apparatus for preventing malfunction of transformer and method thereof

Also Published As

Publication number Publication date
JP3456089B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
EP1706928B1 (en) Method and device for fault detection in transformers or power lines
Novosel et al. IEEE PSRC report on performance of relaying during wide-area stressed conditions
EP2680385B1 (en) Differential protection in electrical power networks
EP1929602B1 (en) Method and system for fault detection in electrical power devices
JPS62144535A (en) Differential relay for power transformer
EP0637865B1 (en) Transformer differential relay
US4433353A (en) Positive sequence undervoltage distance relay
US11177645B2 (en) Systems and methods for improving restricted earth fault protection
JPH09284989A (en) Protective relay, and method and protective relay system for estimating timing to zero residual magnetic flux
EP0316202B1 (en) Selecting a faulty phase in a multi-phase electrical power system
JP2000312434A (en) Ground leakage breaker and detecting method of ground fault
Codling et al. Adaptive relaying. A new direction in power system protection
US4296451A (en) Ultra high speed protective relay circuit
JP3199940B2 (en) Transformer protection relay device
JP2004125688A (en) Field test method for differential relay using excitation inrush current
US20240097449A1 (en) Line reactor protection security using local frequency measurement
JPH0327716A (en) Method and apparatus for reclosing of transmission system
Phadke 3.4 Protection
Jogaib et al. Autotransformer Protection Case Studies, Going Above and Beyond the Traditional Cookbook
Sevov et al. Considerations for differential protection in LV buses
Dasgupta Switch-on-to-fault scheme for transmission line protection
Thompson et al. Redundancy Strategies for Distribution Protection
JP3421244B2 (en) Ratio differential relay
JPS6147048B2 (en)
JPH1090376A (en) Method for controlling switch testing circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees