JPS62104427A - Branching reactor - Google Patents

Branching reactor

Info

Publication number
JPS62104427A
JPS62104427A JP24147285A JP24147285A JPS62104427A JP S62104427 A JPS62104427 A JP S62104427A JP 24147285 A JP24147285 A JP 24147285A JP 24147285 A JP24147285 A JP 24147285A JP S62104427 A JPS62104427 A JP S62104427A
Authority
JP
Japan
Prior art keywords
current
shunt reactor
reactor
shunt
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24147285A
Other languages
Japanese (ja)
Other versions
JPH0522458B2 (en
Inventor
野原 哈夫
益雄 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24147285A priority Critical patent/JPS62104427A/en
Publication of JPS62104427A publication Critical patent/JPS62104427A/en
Publication of JPH0522458B2 publication Critical patent/JPH0522458B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、静電容量の大きい送電線の母線に補償用分路
リアクトルの設置されている系統の電流零なしの解消に
好適な方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method suitable for eliminating current zero in a system in which a compensating shunt reactor is installed on the bus bar of a power transmission line with a large capacitance.

〔発明の背景〕[Background of the invention]

例えば、昭和55年電気学会全国大会論文扁875「故
障電流のゼロミス発生予測」に示されるように、電力系
統事故時に発生するrMfflか交流の振巾よりも大き
いと、交Mtの数ザイクルにわたって電流の零点が生じ
ないという現象の発生し得ることが知られている。
For example, as shown in Paper No. 875 of the 1981 National Conference of the Institute of Electrical Engineers of Japan, ``Prediction of zero-miss occurrence of fault current,'' if rMffl that occurs during a power system fault is larger than the amplitude of AC, the current It is known that a phenomenon may occur in which the zero point does not occur.

・59、現状は、この電流零なし現象の発生にもかかわ
遣ず事故の検出による遮断器の開放指令が遮断器に与え
られている。
・59.Currently, despite the occurrence of this no-current phenomenon, a command to open the circuit breaker is given to the circuit breaker due to the detection of an accident.

この場合、遮断器は機械的に極間を開放しているが、電
気的には直流が印加され続けており、アークで接続され
た状態と々す、接点溶解などの遮断器破損を引き起す可
能性がある。また、このこと以上に、長時間事故除去で
きガいことにより電力系統の安定度低下が問題である。
In this case, the circuit breaker mechanically opens the poles, but DC continues to be applied electrically, causing the circuit breaker to break due to arcing and contact melting. there is a possibility. Further, more than this, the problem is that the stability of the power system decreases due to the inability to eliminate faults for a long time.

この電流零なし現象の発生をいかにして阻止し、発生後
はいかにしてこれを速やかに減衰せしめ、遮断器、ある
いは、保護継電器をいかに対応せしめるかといった観点
から種々の検討が成されている。しかし、これといった
決めてのないのが実情である。
Various studies have been conducted from the viewpoints of how to prevent this no-current phenomenon from occurring, how to quickly attenuate it after it occurs, and how to respond to it with circuit breakers or protective relays. . However, the reality is that there is no such thing as fixed.

この電流零なし現象は、超高圧系統で発生し易いといわ
れている。
This non-zero current phenomenon is said to easily occur in ultra-high voltage systems.

〔発明の目的〕[Purpose of the invention]

以上のことから本発明の目的は、静電容量の大きい送電
線において、電流零なしを速やかに解消することのでき
る方式を提供することにある。
In light of the above, an object of the present invention is to provide a system that can quickly eliminate the problem of zero current in a power transmission line with a large capacitance.

〔発明の概要〕[Summary of the invention]

超高圧送電系統においては、充電電流補償及び不平衡事
故時の異常電圧の抑制等のために、母線や送電線と大地
間に分路リアクトルを設置することが不可欠である。本
発明では、分路リアクトルに直列にコンデンサを設置す
ることによ如、送電線事故時に分路リアクトルより流出
する電流に低次周波数振動をおこさせ、この電流により
、遮断器を通過する電流に零点を生せしめようとしよう
とするものである。
In ultra-high voltage power transmission systems, it is essential to install a shunt reactor between the bus bar or transmission line and the ground in order to compensate for charging current and suppress abnormal voltage in the event of an unbalanced accident. In the present invention, by installing a capacitor in series with the shunt reactor, a low-order frequency oscillation is caused in the current flowing out from the shunt reactor in the event of a transmission line fault, and this current causes the current passing through the circuit breaker to change. It is an attempt to create a zero point.

〔発明の実施例〕[Embodiments of the invention]

本発明の適用される超高圧系統の一例を第2図により説
明する。同図は電気所S1 が変圧器TrotTrt、
送電線Ll〜L、を介して電気所S1に電力を送ってい
る例を示したものであり、送電線LI〜Lsの両端には
遮断器CBt−CBeが設置されている。その上、送′
F!L線の静電容ILを補償するため、上記遮断器CB
の母線側に分路リアクトルL h l” Lh eが設
置されている。このような系統において、送電線■、1
〜TJIの受電側の点、この図では例えば地点Fで2線
短絡が生ずると、送電線の遅れ相、すなわち、遮断器C
BIを通過する電流に電流零なしが生ずる。この理由は
、事故前潮流により定まるjH流分及び事故発生時の電
圧によシ定まる直流分及び送′醒線の静電容1により生
ずる直流分が相加わる方向に作用するためである。母線
側に分路リアクトルを設置した場合には、第4図に示す
ように、過渡的には、分路リアクトルLに事故時に流れ
ていた電流が事故点1介して流出する(図中のiz)た
め、事故発生位相によっては、過渡直流分電流の増大を
まねき、電流零なしは発生しやすくなる。同図でE、L
、は各々等価電源及び電源側の等価リアクタンスを示す
An example of an ultra-high pressure system to which the present invention is applied will be explained with reference to FIG. In the figure, electric station S1 has transformer TrotTrt,
This shows an example in which power is sent to an electric station S1 via power transmission lines Ll to L, and circuit breakers CBt to CBe are installed at both ends of the power transmission lines LI to Ls. Besides, shipping
F! In order to compensate for the capacitance IL of the L line, the circuit breaker CB
A shunt reactor Lh l” Lh e is installed on the bus side of the transmission line.
~When a two-wire short circuit occurs at a point on the receiving side of TJI, for example at point F in this figure, the delayed phase of the transmission line, that is, circuit breaker C
No current zero occurs in the current passing through BI. The reason for this is that the jH flow component determined by the pre-fault current, the DC component determined by the voltage at the time of the accident, and the DC component generated by the capacitance 1 of the transmission line act in a direction in which they are added to each other. When a shunt reactor is installed on the busbar side, as shown in Figure 4, the current that was flowing through the shunt reactor L at the time of the accident flows out through the fault point 1 (IZ in the figure). ), depending on the phase in which the fault occurs, this may lead to an increase in the transient DC current, making it more likely that the current will not reach zero. In the same figure, E, L
, respectively indicate the equivalent power supply and the equivalent reactance on the power supply side.

このため、事故の検出により遮断器CBに遮断指令を発
しても、遮断器は開放できず、遮断器が破損することが
懸念されている。本発明は前記の欠点を補なおうとする
ものである。第1図は、本発明の実施例を示したもので
あり、分路リアクトル以外は、第1図と同一である。こ
の図において、分路リアクトルTJ b +〜Lhaに
直列に静電容量C。
Therefore, even if a shutdown command is issued to the circuit breaker CB upon detection of an accident, the circuit breaker cannot be opened, and there is a concern that the circuit breaker may be damaged. The present invention seeks to compensate for the aforementioned drawbacks. FIG. 1 shows an embodiment of the present invention, which is the same as FIG. 1 except for the shunt reactor. In this figure, a capacitance C in series with the shunt reactor TJ b +~Lha.

〜Ca k設けであることが本発明の特徴である。The feature of the present invention is that ˜Cak is provided.

第3図は本発明で提案する分路リアクトルの効果を説明
するためのものであシ、同図でCは静電容量である。
FIG. 3 is for explaining the effect of the shunt reactor proposed by the present invention, and in the same figure, C is the capacitance.

第3図の場合には、リアクトルL及びコンデンサCに印
加されていた電圧により、低次調波電流が生ずる。この
時の周波数fは f=2□17(1) で定まり、この電流の大きさは、次のように定まる。
In the case of FIG. 3, the voltage applied to the reactor L and capacitor C causes a low-order harmonic current. The frequency f at this time is determined by f=2□17(1), and the magnitude of this current is determined as follows.

ここで、■は分路リアクトル端子電圧とする。Here, ■ is the shunt reactor terminal voltage.

この電流i。が潮流より定寸る過渡直流分電流l2、充
電電流より定まる過渡直流分1゜の和より大きくなった
場合に、零なしは解消する。これらの関係より零なしの
解消する条件は、となる。
This current i. When becomes larger than the sum of the transient DC current l2 determined by the power flow and the transient DC component 1° determined by the charging current, the non-zero condition is resolved. From these relationships, the condition for eliminating zero is as follows.

次に、分路リアクトルに直列に設けるコンデンサの値に
つき述べる。
Next, we will discuss the value of the capacitor installed in series with the shunt reactor.

分路リアクトルの補償度をγ、分路リアクトルのりアク
タンス分に対するコンデンサの系統周波数におけるイン
ピーダンスの比をηとすると、ことで、Ct:送電、線
の対地静電容量、ω。=2πf0とする。
If the degree of compensation of the shunt reactor is γ, and the ratio of the impedance of the capacitor at the system frequency to the actance of the shunt reactor is η, then Ct: the ground capacitance of the power transmission line, ω. =2πf0.

(8)〜(5)よりηを求めると、 となる。(6)式に示す条件を満足すれば、零なしは急
速に消滅する。
When η is calculated from (8) to (5), it becomes. If the condition shown in equation (6) is satisfied, the non-zero condition disappears rapidly.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分路リアクトルに直列に潮流。 According to the invention, the power flow in series with the shunt reactor.

端子電圧1分路リアクトル補償度より定まるコンデンサ
を設置するのみで、電流零なしを解消することができ、
経済的効果は極めて大きい。
By simply installing a capacitor determined by the terminal voltage 1 shunt reactor compensation degree, it is possible to solve the problem of no current zero.
The economic effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超高圧送電系統、第2図は従来の
系統、第3図は本発明に係る、系統図、第4図は従来の
解析図である。 SI、S2・・・電気所、Tr+ l Trl ”’変
圧器、L。 〜L、・・・送電線、CD I”’= CB s・・・
遮断器、Lh+〜Lbe・・・分路リアクトル。
FIG. 1 is an ultra-high voltage power transmission system according to the present invention, FIG. 2 is a conventional system, FIG. 3 is a system diagram according to the present invention, and FIG. 4 is an analysis diagram of the conventional system. SI, S2...Electrical station, Tr+ l Trl "'Transformer, L.~L,... Transmission line, CD I"'= CB s...
Circuit breaker, Lh+~Lbe...Shunt reactor.

Claims (1)

【特許請求の範囲】 1、送電線の充電電流を補償するために設置する分路リ
アクトルに直列に最大潮流、運転電圧、分路リアクトル
の補償度より定まるコンデンサを設けることを特徴とし
た分路リアクトル。 2、請求範囲第1項において、最大電流をi_p、運転
電圧の最大値をe、補償度をγ、系統周波数をf、とし
た場合に、上記系統周波数におけるコンデンサの分路リ
アクトルに対するインピーダンスの比率ηを η<{1/[(2πf_oi_p/e)+γ]}^2と
なるように選定することを特徴とする分路リアクトル。
[Scope of Claims] 1. A shunt characterized by installing a capacitor determined by the maximum power flow, operating voltage, and compensation degree of the shunt reactor in series with the shunt reactor installed to compensate for the charging current of the power transmission line. reactor. 2. In claim 1, when the maximum current is i_p, the maximum value of the operating voltage is e, the degree of compensation is γ, and the system frequency is f, the ratio of the impedance of the capacitor to the shunt reactor at the system frequency A shunt reactor characterized in that η is selected so that η<{1/[(2πf_oi_p/e)+γ]}^2.
JP24147285A 1985-10-30 1985-10-30 Branching reactor Granted JPS62104427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24147285A JPS62104427A (en) 1985-10-30 1985-10-30 Branching reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24147285A JPS62104427A (en) 1985-10-30 1985-10-30 Branching reactor

Publications (2)

Publication Number Publication Date
JPS62104427A true JPS62104427A (en) 1987-05-14
JPH0522458B2 JPH0522458B2 (en) 1993-03-29

Family

ID=17074822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24147285A Granted JPS62104427A (en) 1985-10-30 1985-10-30 Branching reactor

Country Status (1)

Country Link
JP (1) JPS62104427A (en)

Also Published As

Publication number Publication date
JPH0522458B2 (en) 1993-03-29

Similar Documents

Publication Publication Date Title
Jacobson Examples of ferroresonance in a high voltage power system
Tumilty et al. Approaches to network protection for inverter dominated electrical distribution systems
Patton et al. Analysis of utility protection problems associated with small wind turbine interconnections
JPS62104427A (en) Branching reactor
Sannino Power quality improvement in an industrial plant with motor load by installing a static transfer switch
Henville Power quality impacts on protective relays-and vice versa
CN110299704A (en) A kind of the power distribution network intelligent trouble processing unit and method of grid type
JPS6180716A (en) Power system
Shipley et al. Digital analysis of single-pole switching on EHV lines
JPS61288323A (en) Shunt reactor
JPS6016122A (en) Current differential relay
JP2000092708A (en) Harmonic current suppression device
RU1772862C (en) Device to protect instrument voltage transformer from damage at ferroresonance processes in insulated neutral network
JPH028515Y2 (en)
JPS6010609A (en) Potential transformer
JPS605727A (en) Defect current breaking system
JPS60185319A (en) Branch reactor
JPS6051413A (en) Distance relay
JPS60125110A (en) Branch reactor installing method
CN108832653A (en) A kind of adjusting method of phase modifier-transformer group open-phase operation
JPH0150175B2 (en)
JPS62193511A (en) Svc overcurrent protective device
JPS60156211A (en) Ground switch controller
JPH06105484A (en) Uninterruptible power source
JPS5846524A (en) Power circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees