JPS6016122A - Current differential relay - Google Patents

Current differential relay

Info

Publication number
JPS6016122A
JPS6016122A JP58123379A JP12337983A JPS6016122A JP S6016122 A JPS6016122 A JP S6016122A JP 58123379 A JP58123379 A JP 58123379A JP 12337983 A JP12337983 A JP 12337983A JP S6016122 A JPS6016122 A JP S6016122A
Authority
JP
Japan
Prior art keywords
current
transmission line
current differential
differential relay
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58123379A
Other languages
Japanese (ja)
Inventor
野原 哈夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58123379A priority Critical patent/JPS6016122A/en
Publication of JPS6016122A publication Critical patent/JPS6016122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、分路リアクトルで補償されている系統に設置
される電流差動リレーに係り、特に、受電端負荷しゃ断
時にも良好な特性tうる方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a current differential relay installed in a system compensated with a shunt reactor, and in particular has good characteristics even when the receiving end load is cut off. Regarding the method.

〔発明の背景〕[Background of the invention]

従来の電流差動IJ V−は、単に送電線両端の電流の
ベクトル和をめて、事故の内外判定を行なっていた。こ
のため、LIHV系統のように静電容量の大きな系統に
分路リアクトルが設置されているような場合には、基本
周波数に近い電流が、送電線の両端に異なった割合で流
れる。このため、前述のように電流のベクトル和をめた
場合には、健全状態であるにもかかわらず、内部事故と
みるような欠点がめった。
Conventional current differential IJV- simply calculates the vector sum of the currents at both ends of the power transmission line to determine whether an accident is occurring or not. For this reason, when a shunt reactor is installed in a system with a large capacitance, such as an LIHV system, currents close to the fundamental frequency flow at different rates at both ends of the power transmission line. For this reason, when calculating the vector sum of the currents as described above, defects that appear to be internal accidents occur frequently even though the device is in a healthy state.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、送電線の両端に基本周波数に近い低次
高調波が異なった比率で流れた場合にも、正規に判定で
きる電流差動リレーを提供するにある。
An object of the present invention is to provide a current differential relay that can make a correct determination even when low-order harmonics close to the fundamental frequency flow at different ratios at both ends of a power transmission line.

〔発明の概要〕[Summary of the invention]

本発明の要点は従来の電流差動リレーの他に、基本波成
分の大きさ及び低次高調波の大きさの比率をめ、低次高
調波成分が基本波成分を上まわった場合には、従来構成
の電流差動IJ L/−の動作を阻止しようとするもの
である。
The key point of the present invention is that in addition to the conventional current differential relay, the ratio of the magnitude of the fundamental wave component and the magnitude of the lower harmonics is determined, and when the lower harmonic component exceeds the fundamental wave component, , which attempts to prevent the operation of the current differential IJ L/- of the conventional configuration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。同図
は、電気所G、が送電線tを介して、電気所G、に電力
を送っている例を示している。同図では、送tustの
静電容量を一括してCで示してあり、送電線tの両端の
母線B、、B、にに分路リアクトルL s h 1 及
びl a h 2が設置され、送′亀線の両端にはしゃ
断器及び電流変成器CB、、CB、。
An embodiment of the present invention will be described below with reference to FIG. The figure shows an example in which electric station G is sending power to electric station G via power transmission line t. In the figure, the capacitance of the transmission line t is collectively indicated by C, and shunt reactors L sh 1 and l a h 2 are installed on the bus bars B, , B, at both ends of the transmission line t, There are circuit breakers and current transformers CB, CB, at both ends of the transmission line.

CT、 、 C’l’、が設置され、受電端電気所G2
にはしゃ断器CB3が設置されている。このような系統
でしゃ断器CB、を開放すると、電流変成器cT。
CT, , C'l', are installed, and the receiving end electrical station G2
A circuit breaker CB3 is installed. In such a system, when breaker CB is opened, current transformer cT.

には充電電流に相当する電流11及び、静電容量Cと分
路リアクトルLsbl 、 L@1.1及び発電機のり
アクタンスL、で定まる低次の高調波成分i。1゜ic
lが流れ、受電端の電流変成器CT、には分路リアクト
ルIgbtで定まる低次の篩調波成分1゜が流れる。
is a current 11 corresponding to the charging current, and a low-order harmonic component i determined by the capacitance C, the shunt reactor Lsbl, L@1.1, and the generator actance L. 1゜ic
l flows, and a low-order sieve harmonic component 1° determined by the shunt reactor Igbt flows through the current transformer CT at the receiving end.

第1図の定数をもとに、インダクタンス及び静電容量を
示すと第2図のようにあられされる。同図より等価イン
ダクタンスL、をめると、次のようにあられされる。
Based on the constants shown in FIG. 1, the inductance and capacitance are shown in FIG. 2. From the same figure, when the equivalent inductance L is included, it is obtained as follows.

この値と靜′亀容量Cより共振周波数fk求めると、 となり、L]HV系統の電源系統約500kmに約10
0係の補償をすると、(2)式のfは70Hz程度の値
となる。この時の′1流の大きさく■。=I。1+1.
、十I。、)は ■。=2πfCΔE(3) で表わされる。ここでΔEFi、静電容量Cの電圧の変
化分とする。第1図のしゃ断器CB、ij電流管の点で
しゃ断され、力率が1.0から0に変化することから、
電圧の変化分は、定格電圧となる。電圧1000kV 
、 C= 10μF1fに70 Hzとして、1.をめ
ると、 ■。:2X3.14X70X15X10−’X100O
XIc中6kAとなる。この値が゛電流変成器CT、及
びCT、に分流して約3kA程度ずつ流れる。これに対
し、光電[流I、は、 I、 =2X3.14X50X15X10−’X100
OXIO”中4.7 kA(4) でめる。ここで、I、 、 I。、■。l + Ie2
 、、■。、はj l 1 icl LI I i!、
 I Is3の実効値を示す。
If we calculate the resonance frequency fk from this value and the capacitance C, we get:
When the zero coefficient is compensated for, f in equation (2) becomes a value of about 70 Hz. The size of the '1st class at this time■. =I. 1+1.
, Ten I. , ) is ■. =2πfCΔE(3) Here, ΔEFi is the change in voltage of the capacitance C. Since the current is cut off at the point of breaker CB and ij current tube in Figure 1, and the power factor changes from 1.0 to 0,
The amount of change in voltage becomes the rated voltage. Voltage 1000kV
, C=10 μF1f and 70 Hz, 1. ■. :2X3.14X70X15X10-'X100O
It becomes 6kA in XIc. This value is divided into current transformers CT and CT, and flows approximately 3 kA each. On the other hand, the photocurrent [current I, I, =2X3.14X50X15X10-'X100
4.7 kA (4) in "OXIO".Here, I, , I., ■.l + Ie2
,,■. , is j l 1 icl LI I i! ,
I Indicates the effective value of Is3.

このように、低次の高調波成分は充電電流と同程度であ
る。このため、従来構成である1 ’TI ’T!l 
Jl’ttl+I’t*l)7ム (4)で動作判定し
た場合には、周波数の関係が考慮されていないため、低
次高調波のみで誤動作する恐れがある。
In this way, the low-order harmonic components are comparable to the charging current. For this reason, the conventional configuration of 1 'TI 'T! l
Jl'ttl+I't*l)7mu When the operation is determined in (4), the frequency relationship is not taken into account, so there is a risk of malfunction due to only low-order harmonics.

ここで、(4)式のi〒Is’〒2と同一のjl*je
l+j et + Fjの関係は i7.=i、 −1、、Fte 鳳 Tt = icl
 (5)とする。電流差動リレーが誤動作した場合には
、しゃ断器CB、、CB、にしゃ断信号を発するため、
系統は分断され、供給信頼度の低下をまねくと共に復旧
時間が延びるという欠点があった。第1図では保護リレ
ー装置Rアで電流差動リレーの処理を行なうものとする
。第1図において、充電電流i、の補償は、種々検討さ
れており、送電線亘長でほぼ定まるという特徴がある。
Here, jl*je which is the same as i〒Is'〒2 in equation (4)
The relationship of l+j et + Fj is i7. = i, −1,, Fte Tt = icl
(5). If the current differential relay malfunctions, it will issue a cutoff signal to the circuit breaker CB, CB,
This had the disadvantage that the grid was divided, leading to a decline in supply reliability and prolonging the restoration time. In FIG. 1, it is assumed that the protection relay device Ra performs the processing of the current differential relay. In FIG. 1, compensation for the charging current i has been studied in various ways, and has the characteristic that it is almost determined by the length of the power transmission line.

これに対し、前述の低次の共振成分i 、tfl、発電
機の運転台数の影wを受けることになる。UHV系統の
定数をもとに算出した例では、低次の高調波の次数は前
述の通り基本波の1.5倍程度である。このため、高調
波除去用のフィルタを設けても除去することは困難であ
る。また、iIL流値は充電電流の数倍に達する場合も
ある。このような状況でも正規に判断させようとするも
のである。
On the other hand, it is affected by the aforementioned low-order resonance components i, tfl, and the number w of operating generators. In the example calculated based on the constants of the UHV system, the order of the lower harmonic is about 1.5 times that of the fundamental wave, as described above. Therefore, it is difficult to remove harmonics even if a filter for removing harmonics is provided. Additionally, the iIL current value may reach several times the charging current. The aim is to ensure that legal judgments are made even in such situations.

このため、′tL流変成器CT、及びCT2の′電流情
報を一定時間間隔でサンプリングし、この情報をもとに
調波分析により各周波数成分をめ、基本波成分との比を
とり、この比がミ1以上では、従来構成の1!流差動I
J V−の動作を阻止しようとするものである。第3図
は、この状況を示したものであり、電流変成器CT、、
C’l’、の出力を1゜T。
Therefore, the current information of the tL flow transformers CT and CT2 is sampled at regular time intervals, and based on this information, each frequency component is determined by harmonic analysis, and the ratio with the fundamental wave component is calculated. If the ratio is more than 1, the conventional configuration is 1! Flow differential I
This is an attempt to prevent the operation of JV-. Figure 3 shows this situation and shows the current transformers CT, .
The output of C'l' is 1°T.

1eT2で示す。この情報をもとに、従来構成の電流差
動137−の処理を行なう部分子1tylと本発明の特
徴である構成部分几ア、の処理を行なう。Ry!の出力
がある場合には、)1.、の動作を阻止アンド(ロ)路
A、で行なう。几ア、の詳細を第4図に示す。同図では
、取り込んだデータをもとに各周波数成分を算出し、基
本波以外の低次高調波成分の最大のもの全基本波成分で
割った値が1以上では出力を発する。このようにするこ
とにより、低次高調波による誤動作を阻止できる。
Indicated by 1eT2. Based on this information, processing is performed on the component 1tyl that performs the processing of the current differential 137- of the conventional configuration and the component processing that is a feature of the present invention. Ry! If there is an output of )1. The operations of , are performed by the blocking and (b) path A. The details of 几AA are shown in Fig. 4. In the figure, each frequency component is calculated based on the captured data, and if the maximum low-order harmonic component other than the fundamental wave divided by all fundamental wave components is 1 or more, an output is generated. By doing so, malfunctions due to low-order harmonics can be prevented.

ここで用いている各周波数成分の算出法は各種あること
はいうまでもない。
Needless to say, there are various methods of calculating each frequency component used here.

電流差動IJ L/−に要求される動作時間は事故発生
後数10WSであり、この時間内に、負荷しゃ断による
低次高調波の発生か、事故による基本波成分の増大かを
区別する必要がある。基本波と低次高調波の周波数差が
前述のように約20Hz程度である場合には、1/20
 =0.05 (sec)、すなわち、50w5あれば
区別することができ、電流差動リレーの動作時間を遅ら
せることはない。
The operating time required for the current differential IJ L/- is several 10 WS after the accident occurs, and within this time it is necessary to distinguish between the generation of low-order harmonics due to load cutoff and the increase in the fundamental wave component due to the accident. There is. If the frequency difference between the fundamental wave and the lower harmonic is about 20Hz as mentioned above, 1/20
= 0.05 (sec), that is, 50w5 can be used to differentiate, and the operation time of the current differential relay will not be delayed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、静電容量をもつ系統に設置されるia
i差動1) L/−の正規動作を確保することができる
According to the present invention, ia installed in a system with capacitance
i differential 1) Normal operation of L/- can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概要説明図、第2図は低次高調波の発
生余水す図、第3図は本発明の詳細な説明図、第4図に
本発明の特徴部分の処理フロー図である。 Gl 、 G2・・・電気所、t・・・送電線、C・・
・静電容量、B、、B、・・・母線、Lab+ + I
jah2・・・分路リアクトル、CB、ンCB3・・・
しゃ断器、CT、、C’l’3・・・電流変成器、Ll
・・・発電機リアクタンス、ial ”” ial・・
・低次高調波成分、il ・・・充電電流、Ry・・・
保護リレー、Ry、・・・従来構成の保謙りV−機能、
R2,・・・本願の%徴とする保設リレー機能、A1・
・・アンド回路、’cTI 、 ’cTt・・・C’I
’、、CT、より得られる電流情報。 代理人 弁理士 ^橋明夫 第1匣 〜Φ 第2図 107 第3図 茶4図
Fig. 1 is a schematic explanatory diagram of the present invention, Fig. 2 is a diagram showing the generation of low-order harmonics, Fig. 3 is a detailed explanatory diagram of the present invention, and Fig. 4 is a processing flow of the characteristic parts of the present invention. It is a diagram. Gl, G2...Electric station, t...Transmission line, C...
・Capacitance, B, , B, ... Bus bar, Lab+ + I
jah2...Shunt reactor, CB, CB3...
Breaker, CT, C'l'3...Current transformer, Ll
... Generator reactance, ial "" ial...
・Low-order harmonic component, il...Charging current, Ry...
Protection relay, Ry...Conventional configuration protection V-function,
R2, . . . storage relay function, which is a feature of the present application, A1.
・・AND circuit, 'cTI, 'cTt...C'I
', ,Current information obtained from CT. Agent Patent Attorney ^Akio Hashi Box 1 ~ Φ Figure 2 107 Figure 3 Tea Figure 4

Claims (1)

【特許請求の範囲】 1、送電線の電圧、電流情報を用いて、この送電線の保
St−行なう方式において、 前記送電線の一端の前記電圧、電流情報の低次高調波成
分が基本波成分全土まわる場合には、前記送電線の両端
の前記電圧、電流情報を用いて保護区間内部事故全検出
している装置の動作出力を阻止する手段を設けたことを
特徴とする電流差動リレー。
[Scope of Claims] 1. In a method of maintaining the power transmission line using voltage and current information of the power transmission line, a lower harmonic component of the voltage and current information at one end of the power transmission line is a fundamental wave. A current differential relay, characterized in that a current differential relay is provided with a means for blocking the operational output of a device that detects all faults within a protected area using the voltage and current information at both ends of the power transmission line when the entire component is circulated. .
JP58123379A 1983-07-08 1983-07-08 Current differential relay Pending JPS6016122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58123379A JPS6016122A (en) 1983-07-08 1983-07-08 Current differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123379A JPS6016122A (en) 1983-07-08 1983-07-08 Current differential relay

Publications (1)

Publication Number Publication Date
JPS6016122A true JPS6016122A (en) 1985-01-26

Family

ID=14859118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123379A Pending JPS6016122A (en) 1983-07-08 1983-07-08 Current differential relay

Country Status (1)

Country Link
JP (1) JPS6016122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169103A (en) * 1986-12-23 1988-07-13 ボール、コーパレイシヤン Radio frequency antenna
JPS63199503A (en) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> Microstrip antenna
JPS63258104A (en) * 1987-04-15 1988-10-25 Matsushita Electric Works Ltd Plane antenna

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63169103A (en) * 1986-12-23 1988-07-13 ボール、コーパレイシヤン Radio frequency antenna
JPS63199503A (en) * 1987-02-13 1988-08-18 Nippon Hoso Kyokai <Nhk> Microstrip antenna
JPS63258104A (en) * 1987-04-15 1988-10-25 Matsushita Electric Works Ltd Plane antenna

Similar Documents

Publication Publication Date Title
Tumilty et al. Approaches to network protection for inverter dominated electrical distribution systems
Jacobson Examples of ferroresonance in a high voltage power system
US5790356A (en) Transformer protection system for protecting source transformers from ill effects of zero-sequence currents
JPS60255012A (en) Protecting relay
Nagpal et al. Damaging open-phase overvoltage disturbance on a shunt-compensated 500-kV line initiated by unintended trip
Key et al. On good behavior: Inverter-grid protections for integrating distributed photovoltaics
Tugay The resonance overvoltages in EHV network
CN100461572C (en) Floating threshold and current ratio brake combined turn-to-turn protection method for electric generator
JPS6016122A (en) Current differential relay
Das Surges transferred through transformers
Owen The historical development of neutral grounding practices
Mohanty et al. Current restrained undervoltage protection scheme of converter dominated microgrids
Lambert et al. Long line single-phase switching transients and their effect on station equipment
CN208062774U (en) A kind of main transformer equipment protection system
CN110034540A (en) A kind of main transformer equipment protection system and method
Horton et al. Unbalance protection of fuseless, split-wye, grounded, shunt capacitor banks
Gin et al. BC Hydro harmonic resonance experience
Power System Relaying Committee The impact of sine-wave distortions on protective relays
US2342800A (en) Generator grounding system
Henville Power quality impacts on protective relays-and vice versa
Banaiemoqadam et al. Loss-of-voltage detection for relays protecting systems with inverter-based resources
Harbaugh et al. Important considerations for capacitor applications in the petroleum and chemical process industries
Gatta et al. Large Temporary Overvoltages in MV Network due to a Series Fault in the HV Subtransmission System
Gutman et al. Application and operation of a static var system on a power system-americal electric power experience Part II: equipment design and installation
JPS6321152Y2 (en)