JPH0546775B2 - - Google Patents

Info

Publication number
JPH0546775B2
JPH0546775B2 JP61038538A JP3853886A JPH0546775B2 JP H0546775 B2 JPH0546775 B2 JP H0546775B2 JP 61038538 A JP61038538 A JP 61038538A JP 3853886 A JP3853886 A JP 3853886A JP H0546775 B2 JPH0546775 B2 JP H0546775B2
Authority
JP
Japan
Prior art keywords
current
voltage side
differential
transformer
tap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61038538A
Other languages
Japanese (ja)
Other versions
JPS62196019A (en
Inventor
Yasuaki Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3853886A priority Critical patent/JPS62196019A/en
Publication of JPS62196019A publication Critical patent/JPS62196019A/en
Publication of JPH0546775B2 publication Critical patent/JPH0546775B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、変圧器保護用差動継電装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a differential relay device for protecting a transformer.

〔従来の技術〕[Conventional technology]

第3図は従来の変圧器保護用差動継電装置を示
すブロツク図であり、図において、PSは電力系
統の電源、MTRは被保護変圧器、TCは負荷時
タツプ切換器、R10,…R2,R1,C,L
1,L2,…,L10はタツプ位置で、例えば最
大タツプR10は+15%、最小タツプL10は−
15%で、1タツプ1.5%ステツプである。
Fig. 3 is a block diagram showing a conventional differential relay device for protecting transformers. In the figure, PS is the power supply of the power system, MTR is the protected transformer, TC is the on-load tap changer, R10,... R2, R1, C, L
1, L2, ..., L10 are tap positions, for example, maximum tap R10 is +15%, minimum tap L10 is -
At 15%, each tap is a 1.5% step.

CTHは高圧側変流器、CTLは低圧側変流器、
NHはCTHのCT比、NLはCTLのCT比、10は比
率差動継電器(以下、単に差動リレーと略す)、
RCHは高圧側抑制コイル、RCLは低圧側抑制コイ
ル、OCは動作コイル、1は比率差動要素、VH
高圧側電圧、VLは低圧側電圧、I1Hは高圧側1次
電流、I1Lは低圧側1次電流、I2Hは高圧側2次電
流、IRHは高圧側リレー入力電流、IRLは低圧側リ
レー入力電流、ACTは1次側巻数n1、2次側巻
数n2の補償変流器で、負荷時タツプ切換器TCが
中心位置Cの時高圧側リレー入力電流IRHと低圧
側リレー入力電流IRLが等しくなるように高圧側
2次電流I2Hを適切な値の高圧側1次電流IRHに変
換する目的のものである。FOは外部故障点、FI
は内部故障点である。
CT H is the high voltage side current transformer, CT L is the low voltage side current transformer,
N H is the CT ratio of CT H , N L is the CT ratio of CT L , 10 is a ratio differential relay (hereinafter simply referred to as differential relay),
R CH is the high voltage side suppression coil, R CL is the low voltage side suppression coil, OC is the operating coil, 1 is the ratio differential element, V H is the high voltage side voltage, V L is the low voltage side voltage, I 1H is the high voltage side primary current , I 1L is the primary current on the low voltage side, I 2H is the secondary current on the high voltage side, I RH is the relay input current on the high voltage side, I RL is the relay input current on the low voltage side, ACT is the number of turns on the primary side n 1 , the number of turns on the secondary side n 2 compensation current transformer, adjust the high voltage side secondary current I 2H appropriately so that when the on-load tap changer TC is at the center position C, the high voltage side relay input current I RH and the low voltage side relay input current I RL are equal. The purpose is to convert the high voltage side primary current I RH to a value of FO is external failure point, FI
is the internal failure point.

次に動作について説明する。なお、第4図は従
来の差動リレーの比率差動特性例を示す図であ
る。
Next, the operation will be explained. Note that FIG. 4 is a diagram showing an example of ratio differential characteristics of a conventional differential relay.

(イ) 健全時又は外部故障FO時で、負荷時タツプ
切換器(以下単にタツプ切換器)TCが中心位
置Cの時 高圧側リレー入力電流IRHと低圧側リレー入
力電流IRLが等しくなるよう、補償変流器ACT
の変流比がn1/n2=VH・NH/VL・NLに設定されており、 動作コイルOCの差動電流IDは、例えば負荷電
流(低圧側リレー入力電流IRL)100%に対して
も、外部故障電流(低圧側リレー入力電流IRL
1000%に対しても零である。
(a) When the on-load tap changer (hereinafter referred to simply as the tap changer) TC is at the center position C when it is in good condition or when there is an external failure FO, so that the high voltage side relay input current I RH and the low voltage side relay input current I RL are equal. , compensation current transformer ACT
The current transformation ratio of n 1 /n 2 = V H・N H /V L・N L is set, and the differential current I D of the operating coil OC is, for example, the load current (low voltage side relay input current I RL ) even for 100%, external fault current (low voltage side relay input current I RL )
It is also zero for 1000%.

(ロ) 健全時又は外部故障FO時でタツプ切換器TC
が最大タツプR10+15%の時 高圧側リレー入力電流IRHは低圧側リレー入
力電流IRLに比べ15%小さくなり、動作コイル
OCに15%の差動電流IDが流れている。比率差
動要素1の比率特性は、第4図に示す様に、タ
ツプ切換器TCの変動による15%に、更に余裕
5%(変流器の誤差及び差動リレーの誤差を考
慮)を加えた20%で動作するようになつてい
る。即ち、負荷電流(低圧側リレー入力電流
IRL)100%に対しては20%の差動電流IDが、ま
た、外部故障電流(低圧側リレー入力電流IRL
1000%に対しては200%の差動電流IDが流れた
時動作する特性であるため、比率差動要素1は
出力しない。
(b) Tap changer TC when in good condition or when external failure FO
When is the maximum tap R10+15%, the high voltage side relay input current I RH is 15% smaller than the low voltage side relay input current I RL , and the operating coil
A 15% differential current I D is flowing through OC. As shown in Figure 4, the ratio characteristic of ratio differential element 1 is calculated by adding 5% margin (taking into account current transformer error and differential relay error) to 15% due to fluctuation of tap changer TC. It now works at 20%. In other words, load current (low voltage side relay input current
I RL ) 20% differential current I D for 100%, and also external fault current (low side relay input current I RL )
Compared to 1000%, the ratio differential element 1 does not output because it operates when a 200% differential current ID flows.

(ハ) 健全時又は外部故障FO時でタツプ切換器TC
が最小タツプL10−15%の時 高圧側リレー入力電流IRHは低圧側リレー入
力電流IRLに比べて15%大きくなり、動作コイ
ルOCに15%の差動電流が流れているが、比率
差動要素1の比率特性が20%であるため、上記
(ロ)と同様に比率差動要素1は出力しない。
(c) Tap changer TC when normal or external failure FO
When is the minimum tap L10-15%, the high voltage side relay input current I RH is 15% larger than the low voltage side relay input current I RL , and a 15% differential current flows through the operating coil OC, but the ratio difference is Since the ratio characteristic of dynamic element 1 is 20%, the above
Similarly to (b), ratio differential element 1 does not output.

(ニ) 内部故障FI時でタツプ切換器TCが中心位置
Cの時 タツプ切換器TC位置に伴なう差動電流ID
零で、電源PSから故障点FIに流入する内部故
障電流IFが負荷電流100%に比し20%以上のと
きに比率差動要素1が出力する。
(d) When an internal fault FI occurs and the tap changer TC is at the center position C, the differential current I D associated with the position of the tap changer TC is zero, and the internal fault current I F flows from the power supply PS to the fault point FI. When the load current is 20% or more compared to 100% of the load current, the ratio differential element 1 outputs.

(ホ) 内部故障FI時でタツプ切換器TCが最大タツ
プR10+15%位置の時 負荷電流100%でタツプ切換器TC位置による
差動電流ID−15%が発生しているので、負荷電
流と内部故障電流IFの力率角が等しい場合は、
電源PSからの内部故障電流IFが20%+15%=
35%以上のときに比率差動要素1が出力する。
(E) When the internal failure FI occurs and the tap changer TC is at the maximum tap R10+15% position, the load current is 100% and a differential current I D -15% is generated due to the tap changer TC position, so the load current and internal If the power factor angles of the fault currents I F are equal, then
Internal fault current I F from power supply PS is 20% + 15% =
When the ratio is 35% or more, the ratio differential element 1 outputs.

(ヘ) 内部故障FI時でタツプ切換器TCが最小タツ
プL10−15%位置の時 負荷電流100%でタツプ切換器TC位置による
差動電流ID+15%が発生しているので、負荷電
流と内部故障電流IFの力率角が等しい場合は、
電源PSからの内部故障電流IFが20%−15%=
5%以上のときに比率差動要素1が出力する。
(F) When the internal failure FI occurs and the tap changer TC is at the minimum tap L10-15% position, the load current is 100% and a differential current I D +15% is generated due to the tap changer TC position, so the load current and If the power factor angles of the internal fault current I F are equal, then
Internal fault current I F from power supply PS is 20% - 15% =
When the ratio is 5% or more, the ratio differential element 1 outputs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の変圧器保護用差動継電装置は上記のよう
に構成されているので、タツプ切換器TCの変動
が±15%であれば、比率差動要素1の比率特性を
余裕を加味して20%以上とせねばならず、従つ
て、内部故障に対する感度が上記(ニ)、(ホ)、(ヘ)の様
に5%、20%、35%とタツプ切換器TCの位置に
より変動し、かつ、低感度で、徴故障の検出が充
分でないという難点があつた。
The conventional differential relay device for protecting transformers is configured as described above, so if the fluctuation of the tap changer TC is ±15%, the ratio characteristic of the ratio differential element 1 is taken into account. Therefore, the sensitivity to internal failures varies depending on the position of the tap changer TC, such as 5%, 20%, and 35% as shown in (d), (e), and (f) above. Another problem was that the sensitivity was low and the detection of symptomatic failures was insufficient.

この発明は上記のような問題点を解消するため
なされたもので、タツプ切換器TCの位置にかか
わらず感度が一定で、かつ高感度な変圧器保護用
差動継電装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and its purpose is to provide a differential relay device for protecting a transformer that has constant sensitivity regardless of the position of the tap changer TC and is highly sensitive. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る変圧器保護用差動継電装置は、
差動リレー内部に、高圧側リレー入力電流IRH
所定電流方向で所定値以上の差動電流IDが流れて
いることを検出し、且つ方向要素Rが出力する時
は高圧側リレー入力電流IRHを減少させる方向要
素Rを備え、また、上記と反対方向で所定値以上
の差動電流IDが流れていることを検出し、且つ方
向要素Lが出力する時は高圧側リレー入力電流
IRHを増加させる方向要素Lを備えている。そし
て、タツプ切換器TCの位置変動に伴なう差動電
流IDを打ち消すようにこれらのリレー入力電流を
自動的に調整する電流変換回路2を設けたもので
ある。
The differential relay device for protecting a transformer according to the present invention includes:
When it is detected that a differential current ID greater than a predetermined value is flowing in a predetermined current direction in the high voltage side relay input current I RH inside the differential relay, and when the direction element R outputs, the high voltage side relay input current It is equipped with a directional element R that reduces I RH , and also detects that a differential current I D of a predetermined value or more is flowing in the opposite direction to the above, and when the directional element L outputs, the high voltage side relay input current
It is provided with a directional element L that increases I RH . Further, a current conversion circuit 2 is provided which automatically adjusts these relay input currents so as to cancel out the differential current ID caused by the positional fluctuation of the tap changer TC.

〔作用〕[Effect]

この発明における差動リレーは、例えば、タツ
プ切換器TCが中心位置より1タツプ移動し、高
圧側リレー入力電流IRHが増加し差動電流IDが流れ
たとすると、上記所定電流方向、所定値以上を検
出する方向要素RまたはLが、電流変換回路2へ
出力し電流変換回路2が高圧側リレー入力電流
IRHを減少させる。
In the differential relay according to the present invention, for example, if the tap changer TC moves one tap from the center position, the high voltage side relay input current I RH increases, and the differential current ID flows, the above-mentioned predetermined current direction and predetermined value The directional element R or L that detects the above outputs to the current conversion circuit 2, and the current conversion circuit 2 outputs the high voltage side relay input current.
Decrease I RH .

〔実施例〕〔Example〕

以下この発明の一実施例を第1図について説明
する。但し、第3図と同様の構成部材には同一符
号を付することとし、適宜その説明を省略する。
An embodiment of the present invention will be described below with reference to FIG. However, the same reference numerals are given to the same constituent members as in FIG. 3, and the explanation thereof will be omitted as appropriate.

第1図において、Rは差動電流の電流方向が−
ΔIDの方向で、その大きさがタツプ切換器TCの
1タツプが1.5%の場合は、1/2×1.5%=0.75%以 上流れたことを検出する方向要素であり、Lは差
動電流の電流方向が+ΔIDの方向で、その大きさ
が同様に0.75%以上流れたことを検出する方向要
素である。
In Figure 1, R indicates that the current direction of the differential current is -
In the direction of ΔI D , if one tap of the tap changer TC is 1.5%, it is a directional element that detects the flow of 1/2 x 1.5% = 0.75% or more, and L is the differential current. This is a direction element that detects that the current direction is +ΔI D and the magnitude is also 0.75% or more.

ここで、タツプ切換器TCの1タツプが1.5%で
あるのに対し、方向要素の感度を0.75%としたの
は、1タツプの移動を確実に検出するためであ
る。
Here, while one tap of the tap changer TC is 1.5%, the sensitivity of the direction element is set to 0.75% in order to reliably detect movement of one tap.

2は電流変換回路で、第1の方向要素Rから一
度出力を受けるとタツプSCからタツプSR1、さ
らに出力を受けるとタツプSR1からタツプSR2
へというように、補償変流器ACTの出力電流を、
タツプ切換器TCの1タツプ1.5%に等しいステツ
プで増流させる。同様に、第2の方向要素Lから
の出力を受けると、タツプSCからタツプSL1、
さらにタツプSL1からタツプSL2へというよう
に、補償変流器ACTの出力電流を1.5%毎に減流
して、比率作動要素1に供給するものである。
2 is a current conversion circuit; once it receives an output from the first direction element R, it changes from tap SC to tap SR1, and when it receives an output again, it changes from tap SR1 to tap SR2.
The output current of the compensation current transformer ACT is
Increase the flow in steps equal to 1.5% per tap on the tap changer TC. Similarly, upon receiving the output from the second direction element L, from tap SC to tap SL1,
Furthermore, the output current of the compensating current transformer ACT is reduced by 1.5% from tap SL1 to tap SL2, and then supplied to the ratio operating element 1.

次に、上記構成の作動リレーの動作について説
明する。第2図は差動リレー10の比率差動特性
例で、比率差動要素1の比率特性は、タツプ切換
器TCの一タツプの1.5%に余裕5%(変流器の誤
差、差動リレーの誤差を考慮)を加えた6.5%、
即ち負荷電流(低圧側電流IRL)100%に対しては
6.5%、また、外部故障電流(低圧側電流IRL
1000%に対しては65%の差動電流IDが流れた時動
作する特性である。
Next, the operation of the actuation relay having the above configuration will be explained. Figure 2 shows an example of the ratio differential characteristics of the differential relay 10. (taking into account the error of) 6.5%,
In other words, for 100% of the load current (low voltage side current I RL )
6.5%, also external fault current (low voltage side current I RL )
The characteristic is that it operates when a differential current I D of 65% compared to 1000% flows.

(イ) 健全時又は外部故障FO時で、タツプ切換器
TCが中心位置Cの時 高圧側リレー入力電流IRHと低圧側リレー入
力電流IRLが等しいため、差動電流IDは零であ
る。したがつて、第1及び第2の方向要素R,
Lのいずれからも出力はなく、電流変換器2の
タツプはCの位置のまゝで、比率差動要素1も
出力しない。
(b) When the tap changer is in good condition or when there is an external failure FO.
When TC is at center position C, the high voltage side relay input current I RH and the low voltage side relay input current I RL are equal, so the differential current ID is zero. Therefore, the first and second directional elements R,
There is no output from either L, the tap of current converter 2 remains in position C, and ratio differential element 1 does not output either.

(ロ) 健全時又は外部故障FO時で、タツプ切換器
TCがR1+1.5%の時 高圧側リレー入力電流IRHは低圧側リレー入
力電流IRLに比べ1.5%小さく、一旦は差動電流
が第1図の−ΔIDの方向に1.5%発生するが、比
率差動要素1の比率特性は第2図に示すように
6.5%であるため、比率差動要素1は出力しな
い。
(b) When the tap changer is in good condition or when there is an external failure FO.
When TC is R1 + 1.5%, the high voltage side relay input current I RH is 1.5% smaller than the low voltage side relay input current I RL , and once a differential current of 1.5% is generated in the direction of -ΔI D in Figure 1, , the ratio characteristics of the ratio differential element 1 are as shown in Figure 2.
Since it is 6.5%, ratio differential element 1 does not output.

しかるに上記差動電流−ΔIDの大きさが1.5%
で方向要素Rの感度0.75%以上であるので、方
向要素Rが出力し、電流変換回路2のタツプは
タツプSCからタツプSR1となり、高圧側リレ
ー入力電流IRHが1.5%増流され、差動電流−ΔID
は零に戻される。
However, the magnitude of the above differential current −ΔI D is 1.5%.
Since the sensitivity of the directional element R is 0.75% or more, the directional element R outputs, and the tap of the current conversion circuit 2 changes from tap SC to tap SR1, and the high voltage side relay input current IRH is increased by 1.5%, and the differential Current −ΔI D
is returned to zero.

(ハ) 健全時又は外部故障FO時で、タツプ切換器
TCがR2+3%の時 タツプ切換器TCが位置R1からR2に移動
すると、再び高圧側リレー入力電流IRHは低圧
側リレー入力電流IRLに比べ1.5%小さくなり、
一旦は差動電流が第1図の−ΔIDの方向に1.5%
発生するが、比率差動要素1の比率特性は6.5
%なので上記(ロ)と同様比率要素1は出力しな
い。
(c) When the tap changer is in good condition or when there is an external failure FO.
When TC is R2 + 3%, when the tap changer TC moves from position R1 to R2, the high voltage side relay input current I RH becomes 1.5% smaller than the low voltage side relay input current I RL again.
Once the differential current is 1.5% in the direction of -ΔI D in Figure 1,
However, the ratio characteristic of ratio differential element 1 is 6.5
Since it is %, ratio element 1 is not output as in (b) above.

しかるに、上記差動電流−ΔIDの大きさが1.5
%で方向要素Rの感度0.75%以上であるので、
第1の方向要素Rが出力し、上記(ロ)と同様に電
流変換回路2のタツプSR1からタツプSR2と
なり、再び高圧側リレー入力電流IRHが1.5%増
流されて差動電流−ΔIDは零に戻される。
However, the magnitude of the above differential current −ΔI D is 1.5
% and the sensitivity of the direction element R is 0.75% or more, so
The first directional element R outputs, and as in (b) above, tap SR1 of current conversion circuit 2 changes to tap SR2, and high voltage side relay input current I RH is increased by 1.5% again, resulting in differential current -ΔI D is returned to zero.

(ニ) 健全時又は外部故障FO時で、タツプ切換器
TCがL1−1.5%、L2−3%の時 上記(ロ)、(ハ)と同様に、一旦は差動電流が第1
図の+ΔIDの方向に1.5%発生するが、第2の方
向要素Lが検出し、電流変換回路2が、タツプ
SCからタツプSL1、タツプSL2と追従してい
るので差動電流+ΔIDは零に戻されている。
(d) When the tap changer is in good condition or when there is an external failure FO.
When TC is L1 - 1.5%, L2 - 3% Similar to (b) and (c) above, once the differential current is the first
1.5% occurs in the direction of +ΔI D in the figure, but the second direction element L detects it, and the current conversion circuit 2
Since the taps SL1 and SL2 follow from SC, the differential current +ΔI D is returned to zero.

(ホ) 内部故障FI時で、タツプ切換器TCが中心位
置Cの時 タツプ切換器TC位置に伴なう差動電流は零
で、電源PSから故障点FIに流入する内部故障
電流IFが負荷電流100%に比し6.5%以上のと
き、比率差動要素1が出力する。
(e) When an internal fault FI occurs and the tap changer TC is in the center position C, the differential current associated with the tap changer TC position is zero, and the internal fault current I F flowing from the power supply PS to the fault point FI is zero. When the load current is 6.5% or more compared to 100%, the ratio differential element 1 outputs.

(ヘ) 内部故障FI時でタツプ切換器TCが中心位置
C以外の時 上記(ロ)、(ハ)、(ニ)で述べたように、タツプ切換
器TC移動後電流変換回路2のタツプ追従動作
が完了する迄の期間のみ、差動電流−ΔID又は
+ΔIDが最大±1.5%発生する。したがつて、負
荷電流と内部故障電流IFの力率角が等しい場合
は、電源PSからの内部故障電流IFが6.5±1.5=
5%〜8%以上で、比率差動要素1が出力す
る。
(F) When the tap changer TC is in a position other than the center position C due to an internal failure FI As stated in (B), (C), and (D) above, the current conversion circuit 2 follows the taps after the tap changer TC moves. A differential current of -ΔI D or +ΔI D of up to ±1.5% is generated only during the period until the operation is completed. Therefore, if the power factor angle of the load current and the internal fault current I F are equal, the internal fault current I F from the power supply PS is 6.5±1.5=
Above 5% to 8%, the ratio differential element 1 outputs.

以上説明したように、従来の差動リレーにおい
ては、タツプ切換器TCの変動範囲が±15%であ
れば、内部故障IFの検出感度は5〜35%であつた
が、上記(ホ)、(ヘ)の説明から明らかなように、本発
明によれば、5〜8%と高感度で、均一感度の差
動リレーが得られ、変圧器の微故障検出が可能と
なる。
As explained above, in conventional differential relays, if the variation range of the tap changer TC is ±15%, the detection sensitivity of the internal fault IF is 5 to 35%. As is clear from the explanations in (f), according to the present invention, a differential relay with uniform sensitivity and high sensitivity of 5 to 8% can be obtained, making it possible to detect slight faults in the transformer.

なお、以上の説明では、電流変換回路2のタツ
プ切換器TCのタツプ間隔と等しい1.5%とした場
合の例で説明したが、これに限られるものでな
く、任意に構成することができる。例えば電流変
換回路2のタツプ間隔をタツプ切換器TCのタツ
プ間隔の2倍の3%で構成する場合は、第1及び
第2の方向要素R,Lの検出感度を3%×2/3= 2%に設定し、タツプ切換器TCのタツプ位置が
2タツプ移動した時、電流変換回路2が1タツプ
追従するものとする。これに伴ない、比率差動要
素1の比率特性は3%+5%(余裕)=8%とす
る。
In the above explanation, an example has been explained in which the tap interval is 1.5%, which is equal to the tap interval of the tap changer TC of the current conversion circuit 2, but the tap interval is not limited to this, and any configuration can be made. For example, when the tap interval of the current conversion circuit 2 is configured to be 3%, which is twice the tap interval of the tap changer TC, the detection sensitivity of the first and second directional elements R and L is set to 3% x 2/3 = 2%, and when the tap position of the tap changer TC moves by 2 taps, the current conversion circuit 2 follows by 1 tap. Accordingly, the ratio characteristic of the ratio differential element 1 is set to 3%+5% (margin)=8%.

また以上の説明では、電流変換器2を高圧側リ
レー入力電流(補償変流器出力電流)側に設けて
あるが、低圧側リレー入力電流側に設けることも
可能である。
Further, in the above description, the current converter 2 is provided on the high voltage side relay input current (compensation current transformer output current) side, but it can also be provided on the low voltage side relay input current side.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば高圧側リレー
入力電流と低圧側リレー入力電流との差動電流及
びその電流方向を検出し、この結果に基いて高圧
側リレー入力電流と低圧側リレー入力電流のうち
いずれか一方を増加させ、タツプ切換器の位置変
動に伴なう差動電流を打ち消すように構成したの
で、タツプ切換器の位置変動に感度が影響され
ず、しかも変圧器の微故障検出が可能な高感度の
ものが得られる効果がある。
As described above, according to the present invention, the differential current between the high-voltage side relay input current and the low-voltage side relay input current and its current direction are detected, and based on the results, the high-voltage side relay input current and the low-voltage side relay input current are detected. The configuration is such that one of the two is increased to cancel out the differential current caused by positional fluctuations in the tap changer, so the sensitivity is not affected by positional fluctuations in the tap changer, and moreover, it is possible to detect minor faults in the transformer. This has the effect of providing high sensitivity that is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による変圧器保護
用差動継電装置を示すブロツク図、第2図は第1
図に示したものの比率差動特性例を示すグラフ
図、第3図は従来の変圧器保護用差動継電装置を
示すブロツク図、第4図は第3図に示したものの
従来の比率差動特性例を示すグラフ図である。 1は比率作動要素、2は電流変換回路、10は
比率作動継電器、Rは第1の方向要素、Lは第2
の方向要素、MTRは被保護変圧器、TCは電流
タツプ切換器、CTHは高圧側変流器、CTLは低圧
側変流器、ACTは補償変流器、IRHは高圧側リレ
ー入力電流、IRLは低圧側リレー入力電流、ΔID
差動電流である。なお、図中、同一符号は同一、
又は相当部分を示す。
FIG. 1 is a block diagram showing a differential relay device for protecting a transformer according to an embodiment of the present invention, and FIG.
A graph showing an example of the ratio differential characteristics of the one shown in the figure, Fig. 3 is a block diagram showing a conventional differential relay device for protecting a transformer, and Fig. 4 shows a conventional ratio difference of the one shown in Fig. 3. It is a graph diagram showing an example of dynamic characteristics. 1 is a ratio actuation element, 2 is a current conversion circuit, 10 is a ratio actuation relay, R is a first directional element, L is a second
, MTR is the protected transformer, TC is the current tap changer, CT H is the high-side current transformer, CT L is the low-side current transformer, AC T is the compensation current transformer, I RH is the high-side relay The input current, I RL is the low voltage side relay input current, and ΔID is the differential current. In addition, in the figure, the same reference numerals are the same,
or a corresponding portion.

Claims (1)

【特許請求の範囲】[Claims] 1 負荷時タツプ切換器を有する被保護変圧器の
高圧側及び低圧側にそれぞれ設けられた高圧側変
流器及び低圧側変流器と、上記両変流器のうちい
ずれか一方に接続された補償変流器と、上記補償
変流器と上記両変流器のうちの他方の変流器との
間に設けられ、且つ該補償変流器を介して高圧側
リレー入力電流及び低圧側リレー入力電流のうち
の一方を電流調整する比率差動継電器とを備えた
変圧器保護用差動継電装置において、上記高圧側
リレー入力電流及び低圧側リレー入力電流の差動
電流及びその電流方向を検出する第1及び第2の
方向要素と、上記第1及び第2の方向要素の検出
結果に基づいて、上記補償変流器の出力電流を、
上記負荷時タツプ切換器の切換ステツプに対応す
るステツプにより増減させる電流変換回路とを、
上記比率差動継電器内に設けたことを特徴とする
変圧器保護用差動継電装置。
1 A high voltage side current transformer and a low voltage side current transformer installed on the high voltage side and low voltage side of a protected transformer having an on-load tap changer, respectively, and a current transformer connected to either one of the above two current transformers. A compensation current transformer is provided between the compensation current transformer and the other current transformer of the two current transformers, and the high voltage side relay input current and the low voltage side relay input current are provided through the compensation current transformer. In a transformer protection differential relay device equipped with a ratio differential relay that adjusts one of the input currents, the differential current between the high-voltage side relay input current and the low-voltage side relay input current and its current direction are Based on the first and second direction elements to be detected and the detection results of the first and second direction elements, the output current of the compensation current transformer is
A current conversion circuit that increases or decreases the current by steps corresponding to the switching steps of the on-load tap changer,
A differential relay device for protecting a transformer, characterized in that it is provided in the ratio differential relay.
JP3853886A 1986-02-24 1986-02-24 Differential relay for transformer protection Granted JPS62196019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3853886A JPS62196019A (en) 1986-02-24 1986-02-24 Differential relay for transformer protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3853886A JPS62196019A (en) 1986-02-24 1986-02-24 Differential relay for transformer protection

Publications (2)

Publication Number Publication Date
JPS62196019A JPS62196019A (en) 1987-08-29
JPH0546775B2 true JPH0546775B2 (en) 1993-07-14

Family

ID=12528063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3853886A Granted JPS62196019A (en) 1986-02-24 1986-02-24 Differential relay for transformer protection

Country Status (1)

Country Link
JP (1) JPS62196019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476646B1 (en) * 2013-08-29 2014-12-26 주식회사 케이엔제이 Panel rotation method for polishing a rotating device and the panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560487B (en) * 2013-11-19 2016-02-03 国家电网公司 Many taps special transformer differential protecting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193932A (en) * 1981-05-26 1982-11-29 Fuji Electric Co Ltd Radio differential protective relay unit for transformer
JPS605731A (en) * 1983-06-24 1985-01-12 三菱電機株式会社 Internal shortcircuit protecting device of transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193932A (en) * 1981-05-26 1982-11-29 Fuji Electric Co Ltd Radio differential protective relay unit for transformer
JPS605731A (en) * 1983-06-24 1985-01-12 三菱電機株式会社 Internal shortcircuit protecting device of transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476646B1 (en) * 2013-08-29 2014-12-26 주식회사 케이엔제이 Panel rotation method for polishing a rotating device and the panel

Also Published As

Publication number Publication date
JPS62196019A (en) 1987-08-29

Similar Documents

Publication Publication Date Title
JPH07143669A (en) Circuit breaker at time of ground bad
JPH0546775B2 (en)
JPH0546774B2 (en)
US3974423A (en) Differential current protective device
JP2721285B2 (en) Control device of AC / DC converter
JPS62207125A (en) Differential relay for protecting transformer
Edgley et al. The application of transductors as relays to protective gear
JPH0542213B2 (en)
JP2642825B2 (en) Single phase load tap change transformer
JP2553837B2 (en) Input device for ratio differential relay
JPS60180435A (en) Transformer protecting relay
JPS6146116A (en) Transformer protective relaying device
SU1134983A1 (en) Device for protecting generator against single-phase short circuits
JPS607454B2 (en) Differential protection relay method
JPH0515295U (en) Ratio differential relay
JPS61128721A (en) Transformer protective relay
JPH0247174B2 (en)
JPH0888934A (en) Bus shorting protective device
JPS5836124A (en) Current differential relay unit
JPS59149718A (en) Dc line protecting device
JPS5814137B2 (en) Busbar selection relay device
JPH0688149U (en) Ratio differential relay for generator
JPH01308124A (en) Transformer protective-relay
JPS59149728A (en) Ratio differential relay
JPH08335521A (en) Series transformer and phase regulator using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees