JPH0542213B2 - - Google Patents

Info

Publication number
JPH0542213B2
JPH0542213B2 JP4773786A JP4773786A JPH0542213B2 JP H0542213 B2 JPH0542213 B2 JP H0542213B2 JP 4773786 A JP4773786 A JP 4773786A JP 4773786 A JP4773786 A JP 4773786A JP H0542213 B2 JPH0542213 B2 JP H0542213B2
Authority
JP
Japan
Prior art keywords
differential
current
tap
circuit
voltage side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4773786A
Other languages
Japanese (ja)
Other versions
JPS62207124A (en
Inventor
Yasuaki Myake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4773786A priority Critical patent/JPS62207124A/en
Publication of JPS62207124A publication Critical patent/JPS62207124A/en
Publication of JPH0542213B2 publication Critical patent/JPH0542213B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は負荷時にタツプ切換えが可能な変圧
器の保護をする変圧器保護差動継電装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transformer protection differential relay device for protecting a transformer that is capable of tap switching during load.

〔従来の技術〕[Conventional technology]

第6図は従来の変圧器保護差動継電装置を示す
接続図であり、図において、PSは電力系統の電
源、MTRは被保護変圧器、TCは負荷時タツプ
切換器、R1,R2,……R10,C,L1,L2,……
L10はタツプ位置で、例えば、最大タツプR10は+
15%、最小タツプL10は−15%で、1タツプ1.5%
ステツプである。CTHは変圧器高圧側変流器、
CTLは低圧側変流器、NHは高圧側変流器CTH
変流比、NLは低圧側変流器CTLの交流比、10
は差動継電器(以下、単に差動リレーという)、
RCHは高圧側抑制回路、RCLは低圧側抑制回路、
DFは差動回路、1は比率差動要素、VHは高圧側
電圧、VLは低圧側電圧、I1Hは高圧側1次電流、
I1Lは低圧側1次電流、I2Hは高圧側2次電流、IRH
は高圧側リレー入力電流、IRLは低圧側リレー入
力電流、IDTはタツプ変動差動電流、IDFは内部故
障電流、ACTは1次側巻数n1、2次側巻数n2
補償変流器で、負荷時タツプ切換器TCが中心位
置Cの時、高圧側リレー入力電流IRHと低圧側リ
レー入力電流IRLが等しくなるように、高圧側2
次電流I2HをIRHに変換する。FOは外部故障点、FI
は内部故障点である。また、第7図は従来の差動
継電装置10の比率差動特性図である。
Figure 6 is a connection diagram showing a conventional transformer protection differential relay device. In the figure, PS is the power supply of the power system, MTR is the protected transformer, TC is the on-load tap changer, and R 1 , R 2 ,... R10 ,C, L1 , L2 ,...
L 10 is the tap position, for example, the maximum tap R 10 is +
15%, minimum tap L 10 is -15%, 1 tap 1.5%
It is a step. CT H is the transformer high voltage side current transformer,
CT L is the low voltage side current transformer, N H is the current transformation ratio of the high voltage side current transformer CT H , N L is the AC ratio of the low voltage side current transformer CT L , 10
is a differential relay (hereinafter simply referred to as differential relay),
RC H is a high voltage side suppression circuit, RC L is a low voltage side suppression circuit,
DF is the differential circuit, 1 is the ratio differential element, V H is the high voltage side voltage, V L is the low voltage side voltage, I 1H is the high voltage side primary current,
I 1L is the primary current on the low voltage side, I 2H is the secondary current on the high voltage side, I RH
is the high voltage side relay input current, I RL is the low voltage side relay input current, I DT is the tap fluctuation differential current, IDF is the internal fault current, ACT is the compensation current change with the number of turns n 1 on the primary side and n 2 on the secondary side When the on-load tap changer TC is at the center position C, the high voltage side 2 is set so that the high voltage side relay input current I RH and the low voltage side relay input current I RL are equal.
Convert the next current I 2H to I RH . F O is the external failure point, F I
is the internal failure point. Moreover, FIG. 7 is a ratio differential characteristic diagram of the conventional differential relay device 10.

次に動作について説明する。 Next, the operation will be explained.

(イ) 負荷時タツプ切換器(以下単にタツプ切換
器)TCが中心位置Cで、健全時又は外部故障
FO時。
(b) On-load tap changer (hereinafter simply referred to as tap changer) When TC is at center position C and in good condition or due to external failure
F O time.

高圧側リレー入力電流IRHと低圧側リレー入
力電流IRLが等しくなるよう補償変流器ACTの
変流比が n1/n2=VH・NH/VL・NL に設定されており、差動回路DFの差動電流は、
変流器の若干の誤差を無視すれば、負荷電流
(低圧側リレー入力電流IRL)が100%に対して
も、また外部故障電流(低圧側リレー入力電流
IRL)が1000%に対しても、それぞれ零である。
The current transformation ratio of the compensation current transformer ACT is set to n 1 /n 2 = V H・N H /V L・N L so that the high voltage side relay input current I RH and the low voltage side relay input current I RL are equal. Therefore, the differential current of the differential circuit DF is
Ignoring the slight error of the current transformer, even when the load current (low-voltage side relay input current I RL ) is 100%, the external fault current (low-voltage side relay input current I RL )
Even when I RL ) is 1000%, each is zero.

(ロ) タツプ切換器TCが最大タツプR10の位置
(+15%)で、健全時又は外部故障FO時。
(b) When the tap changer TC is at the maximum tap R 10 position (+15%) and it is healthy or there is an external failure F O.

高圧側リレー入力電流IRHは低圧側リレー入
力電流IRLに比べ15%小さくなり、差動回路DF
にタツプ切換器TCの変動による−15%のタツ
プ変動差動電流IDTが流れるが、比率差動要素
1の比率特性は第7図に示す様に最大タツプ変
動差動電流IDT15%に、余裕5%(変流器の誤
差、差動リレーの誤差を考慮)を加えた20%、
即ち、負荷電流(低圧側リレー入力電流IRL
100%に対しては20%の、また外部故障電流
(低圧側リレー入力電流IRL)1000%に対しては
200%の各差動電流IDが流れた時動作する特性
であるので、比率差動要素1は出力しない。
The high voltage side relay input current I RH is 15% smaller than the low voltage side relay input current I RL , and the differential circuit DF
A -15% tap fluctuation differential current I DT flows due to the fluctuation of the tap changer TC, but the ratio characteristic of the ratio differential element 1 is such that the maximum tap fluctuation differential current I DT reaches 15% as shown in Figure 7. , 20% with a margin of 5% (considering current transformer error and differential relay error),
In other words, load current (low voltage side relay input current I RL )
20% for 100% and 1000% for external fault current (low voltage side relay input current I RL )
Since it has a characteristic that it operates when each differential current I D of 200% flows, the ratio differential element 1 does not output.

(ハ) タツプ切換器TCが最小タツプL10の位置(−
15%)で、健全時又は外部故障FO時。
(c) The tap changer TC is at the minimum tap L 10 position (-
15%) when in good condition or when an external failure occurs.

高圧側リレー入力電流IRHは低圧側リレー入
力電流IRLに比べ15%大きくなり、差動回路DF
に+15%のタツプ変動差動電流IDTが流れてい
るが、比率差動要素1の比率特性が20%である
ので、上記(ロ)と同様に比率差動要素1は出力し
ない。
The high voltage side relay input current I RH is 15% larger than the low voltage side relay input current I RL , and the differential circuit DF
A +15% tap-fluctuation differential current IDT is flowing through, but since the ratio characteristic of the ratio differential element 1 is 20%, the ratio differential element 1 does not output as in (b) above.

(ニ) タツプ切換器TCが中心位置Cで、内部故障
時。
(d) When the tap changer TC is in the center position C and there is an internal failure.

第8図イに示すように、タツプ変動差動電流
IDTは零で、電源PSから故障点FIに流入する内
部故障電流IDFが負荷電流100%に比し20%以上
で、比率差動要素1が出力する。
As shown in Figure 8A, the tap fluctuation differential current
I DT is zero, and the internal fault current I DF flowing from the power supply PS to the fault point FI is 20% or more compared to 100% of the load current, and the ratio differential element 1 outputs.

(ホ) タツプ切換器TCが最大タツプR10の位置
(+15%)で内部故障時。
(E) Internal failure occurs when the tap changer TC is at the maximum tap R 10 position (+15%).

第8図ロに示すように、負荷電流100%で、
タツプ切換器TC位置に伴なうタツプ変動差動
電流IDT−15%が発生しているので、負荷電流
と内部故障電流IDFの力率角が等しい場合は、
電源PSからの内部故障電流IDFが、上記の差動
電流−15%を引いて、20%+15%=35%以上
で、比率差動要素1が出力する。
As shown in Figure 8B, at 100% load current,
Since a tap fluctuation differential current I DT -15% is generated due to the tap changer TC position, if the power factor angle of the load current and internal fault current I DF are equal, then
The ratio differential element 1 outputs when the internal fault current I DF from the power supply PS is equal to or greater than 20% + 15% = 35% after subtracting the above differential current -15%.

(ヘ) タツプ切換器TCが最小タツプL10の位置(−
15%)で内部故障時。
(f) The tap changer TC is at the minimum tap L 10 position (-
15%) at the time of internal failure.

第8図ハに示すように、負荷電流100%でタ
ツプ切換器TC位置に伴なうタツプ変動差動電
流IDT+15%が発生しているので、負荷電流と
内部故障電流IDFの力率角が等しい場合は、電
源PSからの内部故障電流IDFが20%−15%=5
%以上で、比率差動要素1が出力する。
As shown in Figure 8 (c), a tap fluctuation differential current I DT +15% occurs due to the tap changer TC position when the load current is 100%, so the power factor of the load current and internal fault current I DF occurs. If the angles are equal, the internal fault current I DF from the power supply PS is 20% - 15% = 5
% or more, the ratio differential element 1 outputs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の変圧器保護差動継電装置は以上のように
構成されているので、タツプ切換器TCの位置で
のタツプ変動作動電流が±15%であれば、比率差
動要素1の比率特性を余裕を加味して20%以上と
せねばならず、従つて、内部故障に対する感度
が、上記(ニ)、(ホ)、(ヘ)の様に5%、20%、35%とタ
ツプ切換器TCの位置により変動し、かつ低感度
で、微故障の検出が充分でないなどの問題点があ
つた。
Since the conventional transformer protection differential relay device is configured as described above, if the tap fluctuation operating current at the position of the tap changer TC is ±15%, the ratio characteristic of the ratio differential element 1 is It must be set to 20% or more, taking into account the margin, and therefore, the sensitivity to internal failure is 5%, 20%, and 35% as in (d), (e), and (f) above. There were problems such as fluctuations depending on the position of the sensor, low sensitivity, and insufficient detection of minor failures.

この発明は上記のような問題点を解消するため
になされたもので、タツプ切換器TCの位置のい
かんにかかわらず感度が一定で、かつ微故障の検
出を可能にする高感度な変圧器保護差動継電装置
を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides highly sensitive transformer protection that has constant sensitivity regardless of the position of the tap changer TC and allows detection of minor faults. The purpose is to obtain a differential relay device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる変圧器保護差動継電装置は、
被保護変圧器の各端子に設置された変流器回路
に、抑制回路および差動回路を設け、これらに差
動電流の変化分を導出する変化分差動回路を接続
し、この変化分差動回路の出力および上記抑制回
路の出力を比率差動要素に導入し、タツプ切換え
の変動巾に関係なく、高感度の比率特性を得るよ
うに構成したものである。
The transformer protection differential relay device according to the present invention includes:
A suppression circuit and a differential circuit are provided in the current transformer circuit installed at each terminal of the protected transformer, and a change differential circuit for deriving the change in differential current is connected to these. The output of the dynamic circuit and the output of the above-mentioned suppression circuit are introduced into a ratio differential element, so that a highly sensitive ratio characteristic is obtained regardless of the range of variation in tap switching.

〔作用〕[Effect]

この発明における変化分差動検出回路は、タツ
プの切換えに応じて差動電流の変化分を導出し、
これにもとづき、差動継電器の比率作動要素に、
タツプ切換えによる上記差動電流を除去した真の
内部故障差動電流を入力するように作用する。
The change differential detection circuit in this invention derives the change in differential current according to the switching of the taps,
Based on this, the ratio actuation elements of differential relays are
It functions to input a true internal fault differential current from which the differential current caused by tap switching has been removed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図において、2は変化分差動電流を導出
する変化分差動回路で、第3図に示す様に、差動
電流を記憶するメモリ回路21と、メモリ回路2
1の出力と上記差動電流の減算を行う減算回路2
2とから構成されている。なお、メモリ回路21
の追従時定数は、タツプ切換器TCの一タツプ移
動速度より短かく、比率差動要素1の動作速度よ
り長ければ任意で良く、例えば、一タツプ移動速
度が1秒で、比率差動要素1の動作速度が50ms
であれば、0.1秒程度とする。また、被保護変圧
器の1次側を高圧側、2次側を高圧側とする。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, reference numeral 2 denotes a differential differential circuit that derives a differential current, and as shown in FIG.
Subtraction circuit 2 that subtracts the output of 1 and the above differential current.
It is composed of 2. Note that the memory circuit 21
The follow-up time constant may be arbitrary as long as it is shorter than the moving speed of one tap of the tap changer TC and longer than the operating speed of the ratio differential element 1. For example, if the moving speed of one tap is 1 second, the tracking time constant of the ratio differential element 1 operating speed is 50ms
If so, set it to about 0.1 seconds. Further, the primary side of the protected transformer is defined as a high voltage side, and the secondary side is defined as a high voltage side.

上記比率差動要素1は高圧側抑制回路RCH、低
圧側抑制回路RCLの出力を導入して動作感度を決
定し、変化分差動回路2の出力時間内に応動す
る。
The ratio differential element 1 determines the operating sensitivity by introducing the outputs of the high-voltage side suppression circuit RCH and the low-voltage side suppression circuit RCL , and responds within the output time of the differential differential circuit 2.

第2図は本発明の差動リレー10の比率差動特
性図で、比率差動要素1の比率特性は、タツプ切
換器TCの一タツプの1.5%に余裕5%(変流器の
誤差、差動リレーの誤差を考慮)を加えた6.5%
即ち負荷電流(低圧側電流IRL)100%に対しては
6.5%、また、外部故障電流(低圧側電流IRL
1000%に対しては65%の差動電流IDが流れた時動
作する特性である。
FIG. 2 is a diagram showing the ratio differential characteristics of the differential relay 10 of the present invention. 6.5% including differential relay error)
In other words, for 100% of the load current (low voltage side current I RL )
6.5%, also external fault current (low voltage side current I RL )
The characteristic is that it operates when a differential current I D of 65% compared to 1000% flows.

次に、本発明による変圧器保護差動継電装置の
動作について説明する。
Next, the operation of the transformer protection differential relay device according to the present invention will be explained.

(イ) 負荷時タツプ切換器TCが中心位置Cで、健
全時又は外部故障FO時。
(a) When the on-load tap changer TC is at center position C and is healthy or when an external failure occurs .

この場合には、高圧側リレー電流IRHと低圧
側リレー電流IRLが等しく、差動回路電流は零
である。
In this case, the high voltage side relay current I RH and the low voltage side relay current I RL are equal, and the differential circuit current is zero.

(ロ) タツプ切換器TCがタツプR9+13.5%からタ
ツプR10+15%への移動時で、健全時又は外部
故障時FO時。
(b) When the tap changer TC moves from tap R 9 +13.5% to tap R 10 +15% when it is healthy or when there is an external failure.

タツプR9の位置の静止の状態では、高圧側
リレー入力電流IRHは低圧側リレー入力電流IRL
に比べ13.5%小さく、タツプ変動差動電流IDT
第1図の−IDTの向きに−13.5%流れているが、
第3図の変化分差動回路2において、メモリ回
路21の出力と非メモリ差動電流の大きさは等
しく、変化分差動回路2の出力は零である。
In the stationary state at tap R 9 position, the high voltage side relay input current I RH is the low voltage side relay input current I RL
It is 13.5% smaller than , and the tap fluctuation differential current IDT flows by -13.5% in the direction of -IDT in Figure 1.
In the variation differential circuit 2 of FIG. 3, the output of the memory circuit 21 and the non-memory differential current are equal in magnitude, and the output of the variation differential circuit 2 is zero.

次に、タツプR9の位置からタツプR10の位置
へ移動した瞬間は、メモリ回路21の出力は時
定数時間即ち0.1秒間は−13.5%のままであり、
一方非メモリ差動電流は−13.5%から−15%へ
瞬時に変化し、従つて、変化分差動回路2の出
力として、1.5%の差動電流が0.1秒間発生す
る。
Next, at the moment when the tap moves from the position of tap R 9 to the position of tap R 10 , the output of the memory circuit 21 remains at -13.5% for the time constant time, that is, 0.1 seconds.
On the other hand, the non-memory differential current instantaneously changes from -13.5% to -15%, and therefore a 1.5% differential current is generated as the output of the differential circuit 2 for 0.1 seconds.

しかるに、比率差動要素1の感度は上記の様
に6.5%であるので、出力しない。移動後0.1秒
経過後は、再び差動電流は零に戻る。
However, since the sensitivity of the ratio differential element 1 is 6.5% as described above, no output is produced. After 0.1 seconds have passed after the movement, the differential current returns to zero again.

(ハ) タツプ切換器TCがタツプL9−13.5%からタ
ツプL10−15%へ移動時で、健全時又は外部故
障FO時。
(c) When the tap changer TC moves from tap L 9 -13.5% to tap L 10 -15% and is in good condition or when there is an external failure F O.

上記(ロ)と同様に、タツプL9の位置の静止の
状態では、タツプ変動差動電流IDTが第1図の
+IDTの向きに+13.5%流れているが、変化分差
動回路2の出力は零である。
Similarly to (b) above, in the stationary state at the tap L 9 position, the tap fluctuation differential current I DT flows by +13.5% in the direction of +I DT in Figure 1. The output of 2 is zero.

次に、タツプL9からタツプL10へ移動した瞬
間から0.1秒間は、変化分差動回路2から1.5%
の差動電流が出力されるが、比率差動要素1は
出力することなく、0.1秒経過後はこの差動電
流も零に戻る。
Next, for 0.1 seconds from the moment of moving from tap L 9 to tap L 10 , the change is 1.5% from differential circuit 2.
A differential current of 1 is output, but the ratio differential element 1 does not output any output, and this differential current also returns to zero after 0.1 seconds have elapsed.

(ニ) タツプ切換器TCが中心位置Cで、内部故障
FI時。
(d) Tap changer TC is at center position C and internal failure occurs.
F I time.

第4図イに示す様に、タツプ切換器TCによ
るタツプ変動差動電流IDTは零で、電源PSから
故障点FIに流入する内部故障電流IDFが負荷電
流100%に比し6.5%以上で、比率差動要素1が
出力する。
As shown in Figure 4A, the tap fluctuation differential current I DT caused by the tap changer TC is zero, and the internal fault current I DF flowing from the power supply PS to the fault point FI is 6.5% compared to 100% of the load current. With the above, the ratio differential element 1 outputs.

この場合に、内部故障発生の瞬間に、変化分
差動回路2から変化分差動電流が出力され、メ
モリ回路21の追従時定数0.1秒間だけ出力さ
れる。比率差動要素1はこの出力時間内に確実
に応動し、出力する。
In this case, at the moment when an internal failure occurs, the differential differential current is output from the differential differential circuit 2 for only 0.1 seconds, which is the follow-up time constant of the memory circuit 21. The ratio differential element 1 reliably responds and outputs within this output time.

(ホ) タツプ切換器TCが中心位置C以外で、内部
故障FI時。
(E) When the tap changer TC is in a position other than center position C and there is an internal failure F I.

第4図ロ,ハに示す様に、例えば、タツプ切
換器TCがタツプR10の位置(+15%)の時は、
第4図ロに示すように、−15%のタツプ変動差
動電流IDTを発生し、タツプ切換器TCがタツプ
L10の位置(−15%)の時は、第4図ハに示す
ように+15%のタツプ変動差動電流IDTが発生
しているが、変化分差動回路2は変化分差動電
流のみを導出して比率差動要素1に与えるの
で、タツプ変動差動電流IDTの大きさ、向きに
関係なく内部故障電流検出感度は6.5%となる。
As shown in Figure 4 B and C, for example, when the tap changer TC is in the tap R 10 position (+15%),
As shown in Figure 4B, a -15% tap fluctuation differential current IDT is generated, and the tap changer TC
When L is at the 10 position (-15%), a +15% tap fluctuation differential current IDT is generated as shown in Figure 4C, but the variation differential circuit 2 Since only the differential current IDT is derived and applied to the ratio differential element 1, the internal fault current detection sensitivity is 6.5% regardless of the magnitude and direction of the tap fluctuation differential current IDT .

なお、上記実施例は被保護変圧器MTRが2
巻線変圧器の場合について説明したが、3巻線
変圧器の場合にも同様に適用でき、これによれ
ば第5図のように変流器CTMが変圧器中圧巻線
端子に設置され、変流器CTMに中圧側抑制回路
RCMが接続され、上記同様の効果を奏する。な
お、中圧巻線端子は被保護変圧器MTRに新た
に設けた2次側巻線に設けられている。
In addition, in the above embodiment, the protected transformer MTR is 2.
Although we have explained the case of a wire-wound transformer, it can also be applied to the case of a three-winding transformer.According to this, the current transformer C M is installed at the medium voltage winding terminal of the transformer as shown in Figure 5. , medium voltage side suppression circuit on current transformer CT M
RCM is connected and the same effect as above is achieved. Note that the medium voltage winding terminal is provided in the secondary winding newly provided in the protected transformer MTR.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、差動回路に
変化分差動電流を導出する変化分差動回路を設
け、これの出力と2つの抑制回路RCH,RCLの出
力に比率差動要素1が応動するよう構成したの
で、タツプ切換器TCの位置変動に感度が影響さ
れず、しかも高感度に変圧器の微故障検出が可能
なものが簡単な構成で得られる効果がある。
As described above, according to the present invention, a differential differential circuit for deriving a differential differential current is provided in the differential circuit, and the output of this differential circuit and the output of the two suppression circuits RCH and RCL are connected to a ratio differential circuit. Since the element 1 is configured to respond, the sensitivity is not affected by positional fluctuations of the tap changer TC, and there is an effect that a small fault in the transformer can be detected with high sensitivity with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による変圧器保護
差動継電装置の接続図、第2図はこの発明による
比率差動特性図、第3図は変化分差動回路のブロ
ツク接続図、第4図はこの発明の差動継電装置の
検出感度を説明する図、第5図は他の実施例を示
す接続図、第6図は従来の変圧器保護継電装置の
接続図、第7図は従来の比率差動特性図、第8図
は従来の差動継電装置の検出感度を説明する図で
ある。 MTRは被保護変圧器、CTH,CTM,CTLは変
流器、RCH,RCM,RCLは抑制回路、DFは差動
回路、1は比率差動要素、2は変化分差動回路、
10は差動リレー。なお、図中、同一符号は同
一、または相当部分を示す。
FIG. 1 is a connection diagram of a transformer protection differential relay device according to an embodiment of the present invention, FIG. 2 is a ratio differential characteristic diagram according to the present invention, and FIG. 3 is a block connection diagram of a differential differential circuit. FIG. 4 is a diagram explaining the detection sensitivity of the differential relay device of the present invention, FIG. 5 is a connection diagram showing another embodiment, FIG. 6 is a connection diagram of a conventional transformer protection relay device, and FIG. FIG. 7 is a conventional ratio differential characteristic diagram, and FIG. 8 is a diagram explaining the detection sensitivity of the conventional differential relay device. MTR is the protected transformer, CT H , CT M , CT L are current transformers, R H , RC M , R C L are suppression circuits, DF is a differential circuit, 1 is a ratio differential element, 2 is a change difference dynamic circuit,
10 is a differential relay. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 被保護変圧器の1次側および2次側のそれぞ
れに変流器を介して接続した抑制回路と、上記各
変流器を介して入力される上記1次側および2次
側の各リレー入力電流にもとづき差動電流を求め
る差動回路と、上記被保護変圧器のタツプ切換え
に応じて上記差動電流変化分のみを導出する変化
分差動回路と、前記各抑制回路の出力を導入して
動作感度を決定し、前記変化分差動回路の出力時
間内に応動する比率差動要素とを備えた変圧器保
護差動継電装置。
1. A suppression circuit connected to each of the primary and secondary sides of the protected transformer via a current transformer, and each relay on the primary and secondary sides inputted via each of the current transformers. Introducing a differential circuit that calculates a differential current based on the input current, a variation differential circuit that derives only the differential current change in response to tap switching of the protected transformer, and the output of each of the suppression circuits. and a ratio differential element that determines the operating sensitivity and responds within the output time of the differential differential circuit.
JP4773786A 1986-03-05 1986-03-05 Differential relay for protecting transformer Granted JPS62207124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4773786A JPS62207124A (en) 1986-03-05 1986-03-05 Differential relay for protecting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4773786A JPS62207124A (en) 1986-03-05 1986-03-05 Differential relay for protecting transformer

Publications (2)

Publication Number Publication Date
JPS62207124A JPS62207124A (en) 1987-09-11
JPH0542213B2 true JPH0542213B2 (en) 1993-06-25

Family

ID=12783656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4773786A Granted JPS62207124A (en) 1986-03-05 1986-03-05 Differential relay for protecting transformer

Country Status (1)

Country Link
JP (1) JPS62207124A (en)

Also Published As

Publication number Publication date
JPS62207124A (en) 1987-09-11

Similar Documents

Publication Publication Date Title
JPS60501986A (en) Phase relay for AC power transmission line protection
JPS5893422A (en) Protecting device for high voltage transmission line
US3633071A (en) Differential protective circuit
JPH0542213B2 (en)
US3209204A (en) Phase to ground protective systems
US2201829A (en) Protective apparatus
JPH0550207B2 (en)
US2290101A (en) Protective arrangement
JPH0546775B2 (en)
US2363895A (en) Protective system
JPH0546776B2 (en)
JPS5840407B2 (en) Residual circuit monitoring method
JP2002335625A (en) Relay method for protecting transformer
JPH0546774B2 (en)
JPS60148333A (en) Ratio differential relay
US3679937A (en) Method of and apparatus for blocking phase-comparison protection
JPH0231879Y2 (en)
JPS607454B2 (en) Differential protection relay method
US1508174A (en) Control of electric switches
JPS6027256B2 (en) Protection method of thyristor rectifier
JP3100536B2 (en) High pressure switchgear device
JPS6146116A (en) Transformer protective relaying device
JPS6240924B2 (en)
JPS5836124A (en) Current differential relay unit
JPS5976185A (en) Internal defect detector for starting compensator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees