JPH0231879Y2 - - Google Patents

Info

Publication number
JPH0231879Y2
JPH0231879Y2 JP277988U JP277988U JPH0231879Y2 JP H0231879 Y2 JPH0231879 Y2 JP H0231879Y2 JP 277988 U JP277988 U JP 277988U JP 277988 U JP277988 U JP 277988U JP H0231879 Y2 JPH0231879 Y2 JP H0231879Y2
Authority
JP
Japan
Prior art keywords
transformer
current
winding
landing gear
relay device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP277988U
Other languages
Japanese (ja)
Other versions
JPS63131535U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP277988U priority Critical patent/JPH0231879Y2/ja
Publication of JPS63131535U publication Critical patent/JPS63131535U/ja
Application granted granted Critical
Publication of JPH0231879Y2 publication Critical patent/JPH0231879Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は変圧器内部事故を微小事故(1ターン
短絡等)でも比率差動継電器にて電気的に検出す
ることのできる変圧器保護継電装置に関する。
[Detailed description of the invention] [Field of industrial application] The present invention is a transformer protection relay that can electrically detect internal faults in a transformer, even if they are minute faults (such as one-turn short circuit), using a ratio differential relay. Regarding equipment.

〔従来の技術〕[Conventional technology]

変圧器の保護装置は変圧器の大容量化、高電圧
化に伴い、近年とみに高信頼性、高性能化が要求
され、それに対応すべくシステムの2重化2系
列、異方式2重化、高速度静止形リレーの採用、
自動監視装置の採用などが実施されている。
In recent years, transformer protection devices have been required to have higher reliability and higher performance as transformers have become larger in capacity and higher in voltage. Adoption of high-speed static relay,
Automatic monitoring devices are being adopted.

変圧器の巻線構造は大容量化に対しては鉄心の
主脚を追加し、それに巻線を巻き並列に接続する
方法がよくとられている。
In order to increase the capacity of a transformer, the winding structure of a transformer is often increased by adding a main leg of the iron core and winding the windings around it and connecting it in parallel.

例えば500kV単相変圧器の例では容量500/
3MVAの場合は第1図に示すように1個の主脚
A1と2個の帰路脚B1,B2からなる3脚鉄心
のうちの主脚A1に巻線がまかれて図示のように
磁束φが形成されるが、容量が2倍となり、
1000/3MVAの場合には第2図に示すように2
個の主脚A1,A2と2個の帰路脚B1,B2か
らなる4脚鉄心が用いられ、主脚が2個/相とな
り、巻線も各主脚に対してまかれ、巻線は並列に
接続される。同じく容量が3倍となり1500/
3MVAの場合には第3図に示すように3個の主
脚A1,A2,A3と2個の帰路脚B1,B2か
らなる5脚鉄心が用いられ、主脚が3個/相とな
り同様に巻線がまかれ、巻線は3並列に接続され
る。そして3個の主脚のうちの中央は帰路脚とし
て用いられる。容量が4倍となり2000/3MVA
の場合には第4図に示すように第2図に示されて
いる4脚鉄心が2個用いられる。なお、鉄心主脚
主巻線の設計は上記いずれの容量のものも同一で
あり、巻線の体格は同じであるから容量ベースの
インピーダンス電圧は同じとなる。
For example, in the case of a 500kV single-phase transformer, the capacity is 500/
In the case of 3MVA, as shown in Figure 1, a winding is wound around the main leg A1 of the three-leg iron core consisting of one main leg A1 and two return legs B1 and B2, and the magnetic flux φ is is formed, but the capacity is doubled,
In the case of 1000/3MVA, 2 as shown in Figure 2.
A four-leg iron core consisting of two main legs A1, A2 and two return legs B1, B2 is used, and there are two main legs/phase. The windings are also wound for each main leg, and the windings are parallel. connected to. Similarly, the capacity is tripled to 1500/
In the case of 3MVA, as shown in Fig. 3, a five-leg iron core consisting of three main legs A1, A2, A3 and two return legs B1, B2 is used, and the number of main legs is three per phase. The windings are wound and the windings are connected in three parallels. The center of the three main legs is used as the return leg. Capacity quadruples to 2000/3MVA
In this case, as shown in FIG. 4, two four-legged iron cores shown in FIG. 2 are used. Note that the design of the core main leg main winding is the same for all of the capacities mentioned above, and the physique of the winding is the same, so the impedance voltage based on the capacity is the same.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

しかしながら、このようにブロツク積上げ的な
構造の場合の問題点は、従来の保護装置では並列
巻線が増える程、いいかえれば大容量化となる
程、一脚巻線の同一事故条件で比較した時、比率
差動継電器の入力が小さくなつて(容量がn倍と
なると入力は1/nとなる)、事故検出ができな
い恐れがでてくる。このような従来の保護装置を
第5図、第6図に基づいて説明する。第5図は
1000/3MVAの変圧器の構造図を示しており、
第6図はその保護回路図を示すものである。従来
の保護装置においては第5図に示すように各相に
対して1個の変流器CT1,CT2がそれぞれ設置
され、この変流器CT1,CT2を用いて第6図に
示すように比率差動継電器D1が接続される。し
かし、このような保護装置よれば、第1図、第2
図、第3図に示すような変圧器の構造において、
各主脚にまかれた巻線のうちの1脚に事故が生
じ、事故電流Ifが流れたとすると、変流比が容量
に比例してそれぞれα,2α,3αであるため、比
率差動継電器の差回路への入力はそれぞれIf×
1/α,If×1/2α,If×1/3αとなり、容量が大き
くな るほど入力が小さくなる。比率差動継電器の最小
動作値は定格電流の約30%程度が一般的であり、
前述の比率差動継電器の入力が最小動作値以下の
場合は動作できないことになる。変圧器の防災対
策上、いかる微小事故でも検出し、事故が拡大す
る前にすみやかにしや断器をトリツプさせる必要
がある。変圧器の仕様、構造および系統条件など
によるが、微小事故ケースに於て、一般に1ター
ン短絡時の事故電流は定格電流の約30〜100%、
1タツプ短絡時の事故電流は定格電流の約50〜
200%であり、大容量化した場合、比率差動継電
器の入力は容量がn倍となると1/nとなるため
1ターン短絡事故はもとより1タツプ短絡事故す
ら比率差動継電器にては検出することが困難とな
つてくる。
However, the problem with this type of stacked block structure is that in conventional protection devices, the more parallel windings there are, the larger the capacity, the more the monopod windings are compared under the same accident conditions. As the input of the ratio differential relay becomes smaller (if the capacity increases by n times, the input becomes 1/n), there is a possibility that an accident cannot be detected. Such a conventional protection device will be explained based on FIGS. 5 and 6. Figure 5 is
It shows the structure diagram of a 1000/3MVA transformer.
FIG. 6 shows the protection circuit diagram. In the conventional protection device, one current transformer CT1, CT2 is installed for each phase as shown in Fig. 5, and the current transformers CT1, CT2 are used to change the ratio as shown in Fig. 6. Differential relay D1 is connected. However, according to such a protection device,
In the structure of the transformer as shown in Fig. 3,
If a fault occurs in one of the windings wound around each main leg and a fault current If flows, the current transformation ratio is α, 2α, and 3α, respectively, in proportion to the capacity, so the ratio differential relay The inputs to the difference circuit are respectively If×
1/α, If×1/2α, If×1/3α, and the larger the capacity, the smaller the input. The minimum operating value of a ratio differential relay is generally about 30% of the rated current.
If the input of the ratio differential relay described above is less than the minimum operating value, it will not be able to operate. In terms of disaster prevention measures for transformers, it is necessary to detect even the slightest accident and promptly trip the disconnector before the accident escalates. Although it depends on the transformer specifications, structure, system conditions, etc., in the case of a small accident, the fault current when one turn is shorted is generally about 30 to 100% of the rated current.
The fault current in the event of a 1-tap short circuit is approximately 50 to 50% of the rated current.
200%, and when the capacity is increased, the input of a ratio differential relay becomes 1/n when the capacity increases by n times, so a ratio differential relay can detect not only a one-turn short circuit accident but also a one-tap short circuit accident. It becomes difficult.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上記に鑑み、1ターン短絡事故でも比
率差動継電器にて検出することのできる変圧器保
護継電装置として複数の主脚鉄心を有し、各主脚
に巻かれた巻線を並列接続してなる変圧器におい
て、各巻線にそれぞれ変流器を設置し、変圧器の
互いに異なる次数の巻線に配置された変流器を組
み合わせて比率差動保護継電回路を構成するとこ
ろにある。
In view of the above, the present invention has multiple main landing gear cores as a transformer protection relay device that can detect even a one-turn short circuit accident with a ratio differential relay, and the windings wound around each main landing gear are connected in parallel. In connected transformers, a current transformer is installed in each winding, and current transformers placed in windings of different orders of the transformer are combined to form a ratio differential protection relay circuit. be.

〔作用〕[Effect]

本考案は前記構成の各主脚に並列接続した巻線
毎に変流器をそれぞれ配置したことにより、並列
接続した変圧器の互いに異なる次数の巻線の端子
側の一次電流と二次電流の変流比は、1脚鉄心に
単巻された第1図に図示された巻線構成によるも
のと同一になるため、並列接続された巻線の鉄心
1脚の巻線事故による事故電流は、従来の構成よ
り2倍の感度で検出できることになる。
In the present invention, a current transformer is arranged for each winding connected in parallel to each main leg of the above configuration, so that the primary current and secondary current at the terminal side of the windings of different orders of the transformers connected in parallel are Since the current transformation ratio is the same as that of the winding configuration shown in Fig. 1 with a single winding around one leg core, the fault current due to a winding fault in one leg of the core of the windings connected in parallel is: This means that detection can be performed with twice the sensitivity compared to the conventional configuration.

〔実施例〕〔Example〕

以下、本考案を図に示す実施例に基づいて詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on embodiments shown in the drawings.

第7図は1000/3MVAの変圧器の構成図を示
しており、第5図に示す変圧器と同様に4脚鉄心
が用いられているが、第5図と比較して各巻線毎
に変流器CT1ないしCT4が取付けられている点
が相違している。このように変流器CT1ないし
CT4を各巻線毎に取付けた場合の本考案による
保護回路図の実施例を第8図に示す。
Figure 7 shows a configuration diagram of a 1000/3MVA transformer. Similar to the transformer shown in Figure 5, a four-leg iron core is used, but compared to Figure 5, each winding is The difference is that flow vessels CT1 to CT4 are attached. In this way, current transformer CT1 or
FIG. 8 shows an embodiment of the protection circuit diagram according to the present invention when CT4 is attached to each winding.

第8図は各巻線に設置された変流器を各主脚毎
(A1脚、A2脚毎)に組み合わせて比率差動保
護継電回路を構成した場合の実施例を示すもので
あり、変流器が各巻線毎に設置されているため
に、変流比(1次電流/2次電流)は容量が大き
くなつても一定にすることができ、比率差動継電
器の入力も変わらない。したがつて容量がn倍に
なると変流比が1/nとなる従来の保護装置と比
較して比率差動継電器の感度がn倍向上したこと
と同等になり、従来は検出できなかつた1ター
ン、1タツプ短絡などの微小事故の検出が可能と
なる。
Figure 8 shows an example in which a ratio differential protective relay circuit is constructed by combining current transformers installed in each winding for each main leg (A1 leg, A2 leg each). Since a current transformer is installed for each winding, the current transformation ratio (primary current/secondary current) can be kept constant even if the capacity increases, and the input to the ratio differential relay does not change. Therefore, when the capacity increases by n times, it is equivalent to increasing the sensitivity of the ratio differential relay by n times compared to the conventional protection device in which the current transformation ratio is 1/n, which means that the current ratio is 1/n. It is possible to detect minute accidents such as turns and one-tap short circuits.

第9図は各巻線毎に設置された変流器を異なる
主脚毎に組み合わせて比率差動保護継電回路を構
成した場合の実施例を示すものであり、事故脚
(巻線)と健全脚(巻線)とを比較し、事故時に
は事故脚のみに事故電流が流れることを応用し、
建全脚とのアンバランスにより比率差動継電器へ
の入力を形成してトリツプするようにしている。
この場合にも容量が大きくつても変流比は一定に
することができ、第8図に示した比率差動保護継
電回路と同様に従来と比較して感度をn倍向上さ
せたのと同等になる。さらに第9図に示すような
構成においては、内部事故が生じた場合には比率
差動継電器D1,D2の両方が動作するために、
この比率差動継電器D1,D2の出力接点を用い
て接点二重化、二系列化を行なうことにより誤動
作、誤不動作を防止して信頼性を向上させること
ができる。
Figure 9 shows an example in which a ratio differential protection relay circuit is constructed by combining current transformers installed for each winding for different main legs, and shows the faulty leg (winding) and the healthy leg (winding). By comparing the legs (windings) and applying the fact that in the event of an accident, the fault current flows only to the accident leg,
The unbalance between the two legs creates an input to the ratio differential relay and causes it to trip.
In this case, even if the capacity is large, the current transformation ratio can be kept constant, and like the ratio differential protection relay circuit shown in Figure 8, the sensitivity has been improved by n times compared to the conventional one. become equivalent. Furthermore, in the configuration shown in FIG. 9, if an internal accident occurs, both ratio differential relays D1 and D2 operate.
By using the output contacts of the ratio differential relays D1 and D2 to make the contacts redundant and to create two lines, it is possible to prevent malfunctions and malfunctions and improve reliability.

以上の実施例においては1次、2次巻線が設け
られた変圧器のみを示したが、1次、2次、3次
巻線が設けられた変圧器の場合も同様である。第
10図は1次、2次、3次巻線が設けられた変圧
器の構成図を示しており、第7図と同様に4脚鉄
心が用いられ、各巻線に変流器CT1ないしCT6
が取付けられている。なお、図において破線にて
示されている巻線が3次巻線である。このように
3次巻線を設けて各巻線毎に変流器CT1ないし
CT6を取付けた場合の本考案による保護回路図
の実施例を第11図、第12図に示す。
In the above embodiments, only a transformer provided with a primary winding and a secondary winding is shown, but the same applies to a transformer provided with a primary winding, a secondary winding, and a tertiary winding. FIG. 10 shows a configuration diagram of a transformer provided with primary, secondary, and tertiary windings. Similar to FIG. 7, a four-leg iron core is used, and each winding has current transformers CT1 to CT6.
is installed. Note that the winding indicated by a broken line in the figure is the tertiary winding. In this way, a tertiary winding is provided and each winding is connected to a current transformer CT1 or CT1.
An embodiment of the protection circuit diagram according to the present invention when the CT6 is installed is shown in FIGS. 11 and 12.

第11図は各巻線に取付けられた変流器を各主
脚毎(A1脚、A2脚)に組み合わせて比率差動
保護継電回路を構成した場合の実施例を示すもの
である。また第12図は各巻線に取付けられた変
流器のうち1次巻線に取付けられた変流器と、こ
の1次巻線が巻かれた主脚とは異なる主脚に巻か
れた2次、3次巻線に取付けられた変流器とを組
み合わせて比率差動保護継電回路を構成した場合
の実施例を示すものである。なお、第12図に示
すように2次巻線と同一の主脚に巻かれた3次巻
線に取付けられた変流器のかわりに1次巻線と同
一の主脚に巻かれた3次巻線に取付けられた変流
器を用いることもできる。このように3次巻線を
有する変圧器に適用した場合にも比率差動継電器
の感度がn倍向上したことと同等の効果が得られ
ることは勿論である。
FIG. 11 shows an embodiment in which a ratio differential protection relay circuit is constructed by combining current transformers attached to each winding for each main leg (A1 leg, A2 leg). Figure 12 also shows the current transformer attached to the primary winding of the current transformers attached to each winding, and the current transformer attached to the primary winding, and the two Next, an embodiment will be shown in which a ratio differential protection relay circuit is constructed by combining the tertiary winding with a current transformer attached. Furthermore, as shown in Figure 12, instead of the current transformer attached to the tertiary winding wound on the same main landing gear as the secondary winding, there is a current transformer attached to the tertiary winding wound on the same main landing gear as the primary winding. It is also possible to use a current transformer attached to the next winding. It goes without saying that when applied to a transformer having a tertiary winding in this manner, the same effect as that of the n-fold improvement in sensitivity of a ratio differential relay can be obtained.

また大容量となつて第4図に示すように複数個
の鉄心を用いる場合には各鉄心毎に変流器を設置
して、比率差動継電器回路を構成することができ
る。ただしこの場合には各巻線毎に変流器を設置
する場合に比べて感度は低下する。
Further, when the capacity is increased and a plurality of cores are used as shown in FIG. 4, a current transformer can be installed for each core to form a ratio differential relay circuit. However, in this case, the sensitivity is lower than when a current transformer is installed for each winding.

以上の実施例の説明においては4脚鉄心の場合
についてのみ述べたが、5脚鉄心、あるいはそれ
以上の脚数の鉄心の場合にも所定の変流器を選択
することにより適用することができる。
In the above description of the embodiment, only the case of a four-legged core has been described, but it can also be applied to a five-legged core or a core with more legs by selecting a predetermined current transformer. .

〔考案の効果〕[Effect of idea]

このように本考案によれば各巻線毎に変流器を
設置し、各変流器のうちで変圧器の互いに異なる
次数の巻線に配置された変流器を組み合わせるよ
うにしたために、1タツプ、1ターン短絡のよう
な微小事故でも検出することができるようにな
る。また第8図ないし第9図、第11図、第12
図に示すような本考案による保護装置を第6図に
示すような保護装置と組み合わせて用い、前者を
変圧器の微小事故検出用(分割保護)とし、後者
を変圧器全体の一括保護に使用してシステム的に
更に信頼性を向上させることができる。さらに各
巻線毎に設置される変流器を追加すれば第8図な
いし第9図、第11図、第12図に示す保護装置
を組み合わせた保護装置も可能であり、保護の信
頼性を向上させることができる。
In this way, according to the present invention, a current transformer is installed for each winding, and among the current transformers, current transformers arranged in windings of different orders of the transformer are combined. Even minute accidents such as taps or single-turn short circuits can be detected. Also, Figures 8 to 9, Figures 11 and 12
The protection device according to the present invention as shown in the figure is used in combination with the protection device shown in Fig. 6, the former being used for detecting minute accidents in the transformer (split protection), and the latter being used for all-in-one protection of the entire transformer. As a result, system reliability can be further improved. Furthermore, by adding a current transformer installed for each winding, it is possible to create a protection device that combines the protection devices shown in Figures 8 to 9, 11, and 12, improving the reliability of protection. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図は変圧器の鉄
心構成図、第5図は従来の保護装置による変圧器
の構成図、第6図はその保護回路図、第7図、第
10図は本考案の保護装置による変圧器の構成
図、第8図ないし第9図、第11図、第12図は
その保護回路図を示している。 A1,A2,A3……主脚鉄心、B1,B2…
…帰路脚鉄心、CT1ないしCT6……変流器、D
1,D2,D3……比率差動継電器。
Figures 1, 2, 3, and 4 are configuration diagrams of the core of a transformer, Figure 5 is a configuration diagram of a transformer with a conventional protection device, Figure 6 is its protection circuit diagram, and Figure 7 , FIG. 10 is a block diagram of a transformer using the protection device of the present invention, and FIGS. 8 to 9, 11, and 12 are diagrams of its protection circuit. A1, A2, A3...Main landing gear core, B1, B2...
...Return leg iron core, CT1 to CT6...Current transformer, D
1, D2, D3...Ratio differential relay.

Claims (1)

【実用新案登録請求の範囲】 1 複数個の主脚鉄心を有し、各主脚鉄心に巻か
れた巻線を並列接続してなる変圧器において、
各巻線毎にそれぞれ変流器を設置し、変圧器の
互いに異なる次数の巻線に配置された変流器を
組み合わせて比率差動保護継電回路を構成した
ことを特徴とする変圧器保護継電装置。 2 実用新案登録請求の範囲第1項に記載の変圧
器保護継電装置において、同一の主脚鉄心に巻
かれた巻線に設置された変流器を組み合わせた
ことを特徴とする変圧器保護継電装置。 3 実用新案登録請求の範囲第1項に記載の変圧
器保護継電装置において、異なる主脚鉄心に巻
かれた巻線に設置された変流器を組み合わせた
ことを特徴とする変圧器保護継電装置。 4 実用新案登録請求の範囲第3項に記載の変圧
器保護継電装置において、異なる主脚鉄心に巻
かれた1次巻線、2次巻線に設置された変流器
を組み合わせたことを特徴とする変圧器保護継
電装置。 5 実用新案登録請求の範囲第3項に記載の変圧
器保護継電装置において、1つの主脚鉄心に巻
かれた1次巻線に設置された変流器と他の主脚
鉄心に巻かれた2次巻線、3次巻線に設置され
た変流器とを組み合わせたことを特徴とする変
圧器保護継電装置。 6 実用新案登録請求の範囲第3項に記載の変圧
器保護継電装置において、1つの主脚鉄心に巻
かれた1次巻線、3次巻線に設置され変流器
と、他の主脚鉄心に巻かれた2次巻線に設置さ
れた変流器とを組み合わせたことを特徴とする
変圧器保護護継電装置。
[Claims for Utility Model Registration] 1. In a transformer having a plurality of main landing gear cores and having windings wound around each main landing gear core connected in parallel,
A transformer protection relay characterized in that a current transformer is installed for each winding, and a ratio differential protection relay circuit is constructed by combining current transformers placed in windings of different orders of the transformer. Electrical equipment. 2. A transformer protection relay device according to claim 1 of the utility model registration, characterized in that current transformers installed on windings wound around the same main landing gear core are combined. Relay device. 3. A transformer protective relay device according to claim 1 of the utility model registration claim, characterized in that current transformers installed in windings wound around different main landing gear cores are combined. Electrical equipment. 4. In the transformer protective relay device set forth in claim 3 of the utility model registration, the current transformer installed in the primary winding and secondary winding wound on different main landing gear cores is combined. Characteristic transformer protection relay device. 5. In the transformer protection relay device set forth in claim 3 of the utility model registration claim, a current transformer installed in a primary winding wound around one main landing gear core and a current transformer installed in a primary winding wound around one main landing gear core, and a current transformer installed in a primary winding wound around one main landing gear core, A transformer protection relay device characterized by a combination of a current transformer installed in a secondary winding and a tertiary winding. 6. In the transformer protective relay device set forth in claim 3 of the utility model registration, a current transformer installed in a primary winding and a tertiary winding wound around one main landing gear core and a current transformer and other main A transformer protection relay device characterized by combining a current transformer installed in a secondary winding wound around a leg iron core.
JP277988U 1988-01-13 1988-01-13 Expired JPH0231879Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP277988U JPH0231879Y2 (en) 1988-01-13 1988-01-13

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP277988U JPH0231879Y2 (en) 1988-01-13 1988-01-13

Publications (2)

Publication Number Publication Date
JPS63131535U JPS63131535U (en) 1988-08-29
JPH0231879Y2 true JPH0231879Y2 (en) 1990-08-29

Family

ID=30781940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP277988U Expired JPH0231879Y2 (en) 1988-01-13 1988-01-13

Country Status (1)

Country Link
JP (1) JPH0231879Y2 (en)

Also Published As

Publication number Publication date
JPS63131535U (en) 1988-08-29

Similar Documents

Publication Publication Date Title
US3863109A (en) Short circuit sensing device for electromagnetic induction apparatus
US4347542A (en) Ratio ground relay
US3930187A (en) Ground fault interrupter with means protecting against a grounded neutral condition and with a test circuit for testing performance
US2289149A (en) Electrical relay
US6181125B1 (en) Combination apparatus of a distribution transformer and switches
JPS5893422A (en) Protecting device for high voltage transmission line
JPH0231879Y2 (en)
Das et al. 13.8-kV selective high-resistance grounding system for a geothermal generating plant—A case study
US3414772A (en) Differential relay with restraining means responsive to transformer bank voltage
US3141995A (en) System for protecting capacitor type bushings in high tension equipment
Jogaib et al. Autotransformer Protection Case Studies, Going Above and Beyond the Traditional Cookbook
Love Ground fault protection for electric utility generating station medium voltage auxiliary power systems
JPH0528747Y2 (en)
Cosse et al. The practice of ground differential relaying
US1535588A (en) Electrical measuring instrument
Cook et al. SDG&E Relay Standards–Updating Tertiary Bus and Reactor Protection
JPH0626037Y2 (en) Ground fault protection device
US2296099A (en) Protection of alternating current electric power systems
JPS6152430B2 (en)
JPH04130421U (en) zero phase current transformer
Griffin Principles of ground relaying for high voltage and extra high voltage transmission lines
US1594117A (en) Electrical protective device
JPH08271566A (en) Ground fault detector for leakage transformer
Gajic et al. Capabilities of modern numerical differential protections
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit