JPS6152430B2 - - Google Patents

Info

Publication number
JPS6152430B2
JPS6152430B2 JP54013513A JP1351379A JPS6152430B2 JP S6152430 B2 JPS6152430 B2 JP S6152430B2 JP 54013513 A JP54013513 A JP 54013513A JP 1351379 A JP1351379 A JP 1351379A JP S6152430 B2 JPS6152430 B2 JP S6152430B2
Authority
JP
Japan
Prior art keywords
winding
windings
primary
transformer
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54013513A
Other languages
Japanese (ja)
Other versions
JPS55106366A (en
Inventor
Kosuke Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP1351379A priority Critical patent/JPS55106366A/en
Publication of JPS55106366A publication Critical patent/JPS55106366A/en
Publication of JPS6152430B2 publication Critical patent/JPS6152430B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は変圧器の温度上昇試験方法に関す
る。 変圧器の温度試験方法には(a)実負荷法、(b)等価
負荷法、(c)返還負荷法の3種類があるが、(a)の実
負荷法は工場内では一般に実施出来ないので、(b)
の等価負荷法および(c)の返還負荷法が実施されて
いる。 前記等価負荷法は主として油入変圧器の試験に
用いられ、返還負荷法は主として乾式変圧器の試
験に用いられるが試験方法が繁雑である。また、
上記温度試験実施に当つて規格上から制限を受け
る供給電流は定格電流の90%以上となつている。
例えば油入式では供給損失が80%以上、電流が90
%以上、乾式では電流90%以上であれば100%損
失、100%電流時の温度換算をすることが可能で
ある。 上記各試験方法は一般の変圧器に適用可能であ
るが、例えば1次対2次あるいは1次対2次に3
次巻線があるもので巻線容量が大きく異なる特殊
な変圧器の場合には試験方法が繁雑になる欠点が
あつた。特に特殊な変圧器が油入式でその結線が
第1図に示すように1次側がデルタ(Δ)結線
で、2次側がスター(Y)結線の2次,3次巻線
を有する変圧器であるとその温度試験は普通等価
負荷法で3回行なわれる。ところが、近年、変圧
器の設置場所の不燃化対策のため、上記のような
特殊な変圧器にも乾式のものが製造されるように
なつて来た。乾式変圧器の場合には前記した返還
負荷法を用いて温度試験を行なうため、試験が簡
単にできない。このため、等価負荷法を用いて試
験を行ないたいが、変圧器の1次側と2次側の容
量比が大きくなると試験は不可能になる。例えば
第1図に示す変圧器が次表のような定格であつた
場合、この変圧器を等価負荷法によ
The present invention relates to a method for testing a temperature rise in a transformer. There are three types of transformer temperature testing methods: (a) actual load method, (b) equivalent load method, and (c) return load method, but (a) actual load method cannot generally be performed in a factory. Therefore, (b)
The equivalent load method of (c) and the return load method of (c) have been implemented. The equivalent load method is mainly used to test oil-immersed transformers, and the returned load method is mainly used to test dry type transformers, but the test method is complicated. Also,
When conducting the above temperature test, the supplied current is limited by the standards to be 90% or more of the rated current.
For example, in the oil-immersed type, the supply loss is over 80% and the current is 90%.
% or more, and in a dry method, if the current is 90% or more, it is possible to convert the temperature to 100% loss and 100% current. Each of the above test methods can be applied to general transformers, but for example, primary to secondary or primary to secondary to tertiary transformers.
In the case of special transformers that have a secondary winding and the winding capacity differs greatly, the test method has the disadvantage of being complicated. A particularly special type of transformer is an oil-immersed transformer that has secondary and tertiary windings with a delta (Δ) connection on the primary side and a star (Y) connection on the secondary side, as shown in Figure 1. The temperature test is usually performed three times using the equivalent load method. However, in recent years, special transformers such as those described above have come to be manufactured as dry type transformers in order to make the location where the transformer is installed incombustible. In the case of dry type transformers, temperature tests are conducted using the above-mentioned return load method, so testing cannot be easily performed. For this reason, we would like to perform a test using the equivalent load method, but this becomes impossible if the capacity ratio between the primary and secondary sides of the transformer becomes large. For example, if the transformer shown in Figure 1 has the ratings shown in the table below, this transformer can be calculated using the equivalent load method.

【表】 つて温度試験するために、2次側の全端子を短絡
し、1次側に100%電流を供給すると、2次側に
流れる2次電流(I)は I=2230/3150×100%=70.8% となる。この値は前記した90%以上に満たないの
で、さらに、2次側に90%流すために必要な1次
側過電流%はI1=90÷70.8=127.1%となり、通常
の変圧器では耐える限界を越えた過電流であるこ
とが判る。従つて、この方法で実施するための条
件としては、1次側の巻線サイズを過電流に耐え
る様過剰に大きくする必要があり、経済性のある
製品を提供出来ないことになる。 この発明は上記の事情に鑑みてなされたもの
で、等価負荷法を用いて特殊な結線の変圧器の温
度試験が確実かつ簡単にできる変圧器の温度上昇
試験方法を提供することを目的とする。 以下第2図を参照してこの発明の一実施例を説
明する。第2図において、1次側の1次巻線1は
デルタ結線のままで、2次側の2次巻線2と3次
巻線3は次のように結線する。2次巻線2はスタ
ー結線のままで、3次巻線3のx,y,z相の巻
線3a〜3cをそれぞれ分離し、各巻線の一端を
2次巻線2のu,v,w相に接続する。このよう
に2次側を結線したときの2次側容量を算出する
と次のようになる。 2次電圧=682(V)×√3×√3=2046V また、2次容量=√3×2046(V)×770(A)=
2729KVAとなる。上記のように第1図の結線か
ら第2図のように結線すると2次巻線の容量は
3150KVAより2729KVAに低減できる。次に3次
巻線3の各巻線3a,3b,3cの開放他端を短
絡して等価負荷法により温度試験を行なうため
に、1次側に100%電流を供給すると2次電流I
は次のようになる。 I=2230/2729×100%=81.7% この値は90%に満たないが、1次側の供給電流
を110%にすれば2次電流Iは I=81.7%×1.1=90% となり、等価負荷法を用いて乾式変圧器の温度試
験が確実にできる。又2台同一定格の変圧器があ
る場合は返還負荷法も可能となる。 なお、第2図において、2次巻線2のu,v,
w相を分離して3次巻線3に接続してもよい。 以上は乾式変圧器の場合の試験方法であるが、
油入変圧器にして前記と同様の結線を実施させ
て、等価負荷法の試験を行なうと、1回の試験で
温度上昇試験ができるので、従来方法に比較して
試験が容易になる。 以上述べたようにこの発明によれば、特殊な結
線の乾式変圧器も規定の等価負荷法により確実に
温度上昇試験ができ、かつ試験方法も極めて簡単
にできる利点がある。特に特殊な結線の変圧器が
増加する傾向があるので、この発明の方法のメリ
ツトは極めて大きい。
[Table] To perform a temperature test, all terminals on the secondary side are short-circuited and 100% current is supplied to the primary side. The secondary current (I) flowing to the secondary side is I = 2230/3150 x 100. %=70.8%. Since this value is less than the above-mentioned 90% or more, the primary side overcurrent % required to flow 90% to the secondary side is I 1 = 90 ÷ 70.8 = 127.1%, which can be tolerated by a normal transformer. It turns out that the overcurrent exceeds the limit. Therefore, as a condition for implementing this method, it is necessary to make the primary winding size excessively large so as to withstand overcurrent, and it is not possible to provide an economical product. This invention was made in view of the above circumstances, and aims to provide a temperature rise test method for transformers that can reliably and easily test the temperature of transformers with special wiring connections using the equivalent load method. . An embodiment of the present invention will be described below with reference to FIG. In FIG. 2, the primary winding 1 on the primary side remains connected in delta, and the secondary winding 2 and tertiary winding 3 on the secondary side are connected as follows. While the secondary winding 2 remains star-connected, the x, y, and z phase windings 3a to 3c of the tertiary winding 3 are separated, and one end of each winding is connected to the u, v, Connect to w phase. The secondary side capacitance when the secondary side is connected in this way is calculated as follows. Secondary voltage = 682 (V) × √3 × √3 = 2046V Also, secondary capacity = √3 × 2046 (V) × 770 (A) =
It will be 2729KVA. As shown above, if you connect the wires in Figure 1 as shown in Figure 2, the capacity of the secondary winding will be
It can be reduced from 3150KVA to 2729KVA. Next, in order to short-circuit the open other ends of the windings 3a, 3b, and 3c of the tertiary winding 3 and perform a temperature test using the equivalent load method, when 100% current is supplied to the primary side, the secondary current I
becomes as follows. I = 2230/2729 x 100% = 81.7% This value is less than 90%, but if the primary side supply current is 110%, the secondary current I will be I = 81.7% x 1.1 = 90%, equivalent Temperature testing of dry type transformers can be reliably performed using the load method. In addition, if there are two transformers with the same rating, the return load method is also possible. In addition, in FIG. 2, u, v,
The w phase may be separated and connected to the tertiary winding 3. The above is a test method for dry type transformers.
If an oil-immersed transformer is connected in the same manner as described above and the equivalent load method is tested, the temperature rise test can be performed in one test, making the test easier than the conventional method. As described above, the present invention has the advantage that even dry type transformers with special wiring connections can be reliably tested for temperature rise using the specified equivalent load method, and the testing method can be extremely simple. In particular, since there is a tendency for the number of transformers with special wiring to increase, the merits of the method of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特殊結線の変圧器を示す結線図、第2
図はこの発明による一実施例の結線図である。 1……1次巻線、2……2次巻線、3……3次
巻線、3a〜3c……3次巻線の各相巻線。
Figure 1 is a wiring diagram showing a transformer with special wiring, Figure 2
The figure is a wiring diagram of an embodiment according to the present invention. 1... Primary winding, 2... Secondary winding, 3... Tertiary winding, 3a to 3c... Each phase winding of tertiary winding.

Claims (1)

【特許請求の範囲】[Claims] 1 1次側にデルタ結線された1次巻線を有し、
2次側にスター結線された2次巻線及び3次巻線
を有するとともに、2次側の巻線容量が1次側の
巻線容量よりも大きい乾式変圧器を等価負荷法に
より試験を行なう際に、前記2次側の一方の巻線
のスター結線を分離させた後、その巻線が千鳥結
線となるようにし、分離させた巻線の各々の一端
を他方のスター結線の巻線の各相に接続するとと
もに、分離させた巻線の他端を一括接続して2次
側を短絡させ、1次側に所定の電流を供給させる
ようにした変圧器の温度上昇試験方法。
1 It has a primary winding connected in delta on the primary side,
A dry type transformer that has star-connected secondary and tertiary windings on the secondary side, and the secondary winding capacity is larger than the primary winding capacity, is tested using the equivalent load method. In this case, after separating the star connection of one of the windings on the secondary side, the windings are arranged in a staggered connection, and one end of each of the separated windings is connected to the winding of the other star connection. A temperature rise test method for a transformer in which each phase is connected and the other ends of the separated windings are connected together to short-circuit the secondary side and supply a predetermined current to the primary side.
JP1351379A 1979-02-07 1979-02-07 Test method for temperature incresae of transformer Granted JPS55106366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1351379A JPS55106366A (en) 1979-02-07 1979-02-07 Test method for temperature incresae of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1351379A JPS55106366A (en) 1979-02-07 1979-02-07 Test method for temperature incresae of transformer

Publications (2)

Publication Number Publication Date
JPS55106366A JPS55106366A (en) 1980-08-15
JPS6152430B2 true JPS6152430B2 (en) 1986-11-13

Family

ID=11835220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1351379A Granted JPS55106366A (en) 1979-02-07 1979-02-07 Test method for temperature incresae of transformer

Country Status (1)

Country Link
JP (1) JPS55106366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723034Y2 (en) * 1987-12-28 1995-05-24 山洋電気株式会社 Phase loss detector for three-phase rectifier circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565569A (en) * 2011-11-17 2012-07-11 东莞市广安电气检测中心有限公司 Full-automatic power transformer temperature rise test system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723034Y2 (en) * 1987-12-28 1995-05-24 山洋電気株式会社 Phase loss detector for three-phase rectifier circuit

Also Published As

Publication number Publication date
JPS55106366A (en) 1980-08-15

Similar Documents

Publication Publication Date Title
Blume et al. Transformer magnetizing inrush currents and influence on system operation
US4523249A (en) Alternating current limiting apparatus
JPS6152430B2 (en)
US3452311A (en) Interleaved winding having a tapped section and switch
US3531653A (en) Multiphase generator and bus system
US3210648A (en) Regulating and current limiting transformer system
US1347910A (en) Transformer for use with rotary converters
McNutt et al. Transformer short-circuit strength and standardsߞA state-of-the-art paper
US2928995A (en) Protective means for series capacitors on power lines
JPH0231879Y2 (en)
Blume Influence of transformer connections on operation
US1760540A (en) Transformer
JPH0322898Y2 (en)
RU1800543C (en) Device of differential current protection of buses of network with insulated or compensated neutral
US3141995A (en) System for protecting capacitor type bushings in high tension equipment
CN212459897U (en) Test system for power transformer
JPS6325858Y2 (en)
US2473144A (en) Winding arrangement in alternating current machines
JPH0632664Y2 (en) Output transformer of instrument transformer
JPS5846047B2 (en) On-load tap switching autotransformer
US3334289A (en) Cascaded voltage balancing circuit
JPS586290B2 (en) On-load tap-changing transformer
Leitch Air-core reactors as fault limiting means on high interrupting capacity controllers
Berg Tests with arcing grounds and connections
JPS5915223Y2 (en) Power supply voltage switching device