JPH0322898Y2 - - Google Patents

Info

Publication number
JPH0322898Y2
JPH0322898Y2 JP1982184460U JP18446082U JPH0322898Y2 JP H0322898 Y2 JPH0322898 Y2 JP H0322898Y2 JP 1982184460 U JP1982184460 U JP 1982184460U JP 18446082 U JP18446082 U JP 18446082U JP H0322898 Y2 JPH0322898 Y2 JP H0322898Y2
Authority
JP
Japan
Prior art keywords
current
circuit
current detector
storage case
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982184460U
Other languages
Japanese (ja)
Other versions
JPS5987677U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18446082U priority Critical patent/JPS5987677U/en
Publication of JPS5987677U publication Critical patent/JPS5987677U/en
Application granted granted Critical
Publication of JPH0322898Y2 publication Critical patent/JPH0322898Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は電流検出器、特に三相の被検線路の各
電流値を検出する3個の変流器と三相の全被検線
路の電流を検出する1個の変流器とを有する電流
検出器に関する。
[Detailed description of the invention] The present invention consists of a current detector, in particular, three current transformers that detect each current value of the three-phase line under test, and one current transformer that detects the current of all three-phase lines under test. The present invention relates to a current detector having a current transformer.

三相負荷例えば三相誘導電動機に過電流が流れ
たり地絡等が発生した場合、電動機が損傷しない
ように電動機を電源から直ちに切り離す必要があ
る。このため、電動機には通常、過電流保護リレ
ー及び地絡保護リレーが設けられ、過電流、地絡
等の異常時にこれらリレーのリレー動作により電
動機と電源との遮断が行われる。ところが、電動
機の動力回路には通常大電流が流れており、この
大電流で保護リレーを直接作動することは、保護
リレーの容量との関係上実用的でない。
When an overcurrent flows or a ground fault occurs in a three-phase load, such as a three-phase induction motor, it is necessary to immediately disconnect the motor from the power supply to prevent damage to the motor. For this reason, the electric motor is usually provided with an overcurrent protection relay and a ground fault protection relay, and in the event of an abnormality such as an overcurrent or a ground fault, the relay operation of these relays disconnects the motor from the power source. However, a large current normally flows through the power circuit of an electric motor, and it is not practical to directly operate a protective relay with this large current due to the capacity of the protective relay.

そこで、一般に動力回路に流れる大電流を小電
流に変流する計器用変流器(CT)を有する電流
検出器が使用され、動力回路に流れる電流を模擬
的に測定することにより、過電流、地絡等の異常
検出が行われる。
Therefore, current detectors are generally used that have a current transformer (CT) that transforms the large current flowing through the power circuit into a small current. Abnormalities such as ground faults are detected.

従来、この種の保護リレー回路として第1図に
示される回路が使用されていた。第1図において
動力回路は三相交流電源(図示せず)から電動機
10に至るまでの回路構成からなり、この動力回
路には定格電流を越える負荷電流が流れた場合に
引外し動作を行う配線用遮断器12が設けられ、
該配線用遮断器12は電動機10の始動電流で誤
つて引外し動作をしないように引外し特性が始動
開閉器の特性に合せられている。また、動力回路
には電磁開閉器14が設けられ、過電流、地絡等
の異常時に電磁開閉器14が開離し、電動機10
と電源とを切り離すことができる。
Conventionally, a circuit shown in FIG. 1 has been used as this type of protective relay circuit. In Fig. 1, the power circuit consists of a circuit configuration from a three-phase AC power source (not shown) to the electric motor 10, and this power circuit has wiring that performs a tripping operation when a load current exceeding the rated current flows. A circuit breaker 12 is provided,
The molded circuit breaker 12 has a tripping characteristic matched to that of the starting switch so that the starting current of the motor 10 will not cause an erroneous tripping operation. Further, the power circuit is provided with an electromagnetic switch 14, and when an abnormality such as overcurrent or ground fault occurs, the electromagnetic switch 14 is opened and the motor 10 is opened.
and the power supply can be separated.

そして、動力回路に流れる大電流を所望の小電
流に変流して検出するために電流検出器が設けら
れ、該電流検出器は三相の各被検線路15a〜1
5cに流れる電流を検出する回路電流検出器16
と零相電流を検出する零相電流検出器18とを有
している。
A current detector is provided to transform and detect the large current flowing in the power circuit into a desired small current, and the current detector is connected to each of the three-phase test lines 15a to 1.
A circuit current detector 16 that detects the current flowing through 5c.
and a zero-sequence current detector 18 for detecting zero-sequence current.

第2図には回路電流検出器16の回路構成が示
され、図において回路電流検出器16は三相の被
検線路15a〜15cのうち各1線路が貫通する
各1個の鉄心開口部20〜24を有する3個の第
1変流器26〜30を備えている。上記第1変流
器26〜30の鉄心(図示せず)には絶縁体を介
してコイルが巻回されており、各コイルの一端は
互いに接続され、他端には6個のダイオードから
なる全波整流回路32が接続され、更に該整流回
路32の出力端子34a,34bには出力電圧を
設定するための負荷抵抗36が接続されている。
The circuit configuration of the circuit current detector 16 is shown in FIG. -24, three first current transformers 26-30 are provided. Coils are wound around the iron cores (not shown) of the first current transformers 26 to 30 via insulators, one end of each coil is connected to each other, and the other end is connected to six diodes. A full-wave rectifier circuit 32 is connected, and a load resistor 36 for setting an output voltage is further connected to output terminals 34a and 34b of the rectifier circuit 32.

第3図には前記回路電流検出器16の外観が示
され、図において収納ケース38は前記第1変流
器26〜30の鉄心開口部20〜24と連通する
3個の貫通孔40〜44を有し、この収納ケース
38内に3個の第1変流器26〜30が収納され
ている。詳細には、第8図に示されるような断面
構造となる。そして、収納ケース38の各貫通孔
40〜44には三相の各被検線路15a〜15c
がそれぞれ1線づつ貫通配置され、この結果、各
第1変流器26〜30のコイルには各被検線路1
5a〜15cに流れる電流を変流した小さな三相
電流が流れる。この三相電流は全波整流回路32
により整流され、負荷抵抗36の両端子である出
力端子34a,34bには各被検線路15a〜1
5cに流れる電流に応じた電圧が発生する。
FIG. 3 shows the appearance of the circuit current detector 16, and in the figure, the storage case 38 has three through holes 40 to 44 communicating with the core openings 20 to 24 of the first current transformers 26 to 30. The three first current transformers 26 to 30 are housed in this storage case 38. Specifically, the cross-sectional structure is as shown in FIG. Each of the through holes 40 to 44 of the storage case 38 has three-phase test lines 15a to 15c.
are arranged through each line, and as a result, each tested line 1 is connected to the coil of each first current transformer 26 to 30.
A small three-phase current flows through the currents 5a to 15c, which are transformed. This three-phase current flows through the full-wave rectifier circuit 32
The test lines 15a to 1 are rectified by the output terminals 34a and 34b, which are both terminals of the load resistor 36.
A voltage is generated according to the current flowing through 5c.

また、零相電流検出器18は1個の鉄心開口部
(図示せず)を有する1個の第2変流器46を有
し、上記鉄心開口部に三相の全被検線路15a〜
15cが貫通配置される。
Further, the zero-phase current detector 18 has one second current transformer 46 having one core opening (not shown), and all three-phase tested lines 15a to 15a are connected to the core opening.
15c is arranged through.

第4図には零相電流検出器18の外観が示さ
れ、第9図には断面構造が示されている。これら
の図において収納ケース48には前記第2変流器
46の鉄心開口部と連通する1個の貫通孔50が
設けられ、該貫通孔50に三相の全被検線路15
a〜15cが貫通配置される。従つて、零相電流
検出器18の出力端子52a,52bには動力回
路の零相電流に対応する電圧が誘導されることと
なる。
FIG. 4 shows the external appearance of the zero-phase current detector 18, and FIG. 9 shows the cross-sectional structure. In these figures, the storage case 48 is provided with one through hole 50 that communicates with the core opening of the second current transformer 46, and all three-phase test lines 15 are connected to the through hole 50.
a to 15c are arranged through. Therefore, a voltage corresponding to the zero-sequence current of the power circuit is induced at the output terminals 52a, 52b of the zero-sequence current detector 18.

そして、上記回路電流検出器16及び零相電流
検出器18の出力端子34a,34b,52a,
52bにはそれぞれ過電流保護リレー54及び地
絡保護リレー56が接続され、更に被検線路15
a〜15cのうち2線路15a,15b間には起
動スイツチ58、停止スイツチ60、電磁開閉器
コイル14a及び前記各保護リレー54,56の
リレー動作によりオンオフ作動を行う常閉接点5
4a,56aがそれぞれ直列に接続されている。
また、前記起動スイツチ58には常開接点14b
が並列に接続され、該常開接点14bは起動スイ
ツチ58が一度閉成作動してから停止スイツチあ
るいは常閉接点54a,56aが開離作動するま
での間、閉成状態を保持する。
Output terminals 34a, 34b, 52a of the circuit current detector 16 and zero-phase current detector 18,
52b are connected to an overcurrent protection relay 54 and a ground fault protection relay 56, respectively, and are further connected to the test line 15.
Between the two lines 15a and 15b of a to 15c, there is a normally closed contact 5 that performs on/off operation by the relay operation of a start switch 58, a stop switch 60, an electromagnetic switch coil 14a, and each of the protection relays 54 and 56.
4a and 56a are each connected in series.
The start switch 58 also has a normally open contact 14b.
are connected in parallel, and the normally open contact 14b remains closed until the stop switch or the normally closed contacts 54a, 56a open and separate after the start switch 58 is once closed.

従来の電流検出器は以上の構成からなり、以下
にその作用を説明する。
The conventional current detector has the above configuration, and its operation will be explained below.

起動スイツチ58をオン作動すると、電磁開閉
器コイル14aに励磁電流が流れ、電磁開閉器1
4が閉成作動する。従つて、電源から配線用遮断
器12、電磁開閉器14を通つて電動機10に電
力が供給され、電動機10が駆動する。この時、
三相の各被検線路15a〜15cには負荷電流が
流れており、回路電流検出器16及び零相電流検
出器18により各被検線路15a〜15cの回路
電流及び零相電流が検出され、各検出電流がそれ
ぞれ過電流保護リレー54及び地絡保護リレー5
6に流れる。
When the start switch 58 is turned on, an exciting current flows through the electromagnetic switch coil 14a, and the electromagnetic switch 1
4 is operated to close. Therefore, power is supplied from the power source to the electric motor 10 through the molded circuit breaker 12 and the electromagnetic switch 14, and the electric motor 10 is driven. At this time,
A load current flows through each of the three-phase tested lines 15a to 15c, and the circuit current and zero-sequence current of each tested line 15a to 15c are detected by the circuit current detector 16 and the zero-sequence current detector 18, Each detection current is an overcurrent protection relay 54 and a ground fault protection relay 5, respectively.
It flows to 6.

そして、動力回路に過電流が流れると、回路電
流検出器16から過電流保護リレー54には動力
回路に流れる電流に対応した検出電流が流れ、過
電流保護リレー54がリレー動作を行う。この結
果、常閉接点54aが開離作動し、電磁開閉器コ
イル14aに流れる励磁電流が遮断されて電磁開
閉器14が開離作動し、電動機10と電源とが切
り離される。また、電動機10に地絡事故が発生
すると、零相電流検出器18から地絡保護リレー
56に地絡検出電流が流れ、地絡保護リレー56
がリレー作動を行う。この結果、常閉接点56a
が開離作動し、電磁開閉器コイル14aに流れる
励磁電流が遮断されて電磁開閉器14が開離作動
し、電動機10と電源とが切り離される。
When an overcurrent flows in the power circuit, a detection current corresponding to the current flowing in the power circuit flows from the circuit current detector 16 to the overcurrent protection relay 54, and the overcurrent protection relay 54 performs a relay operation. As a result, the normally closed contact 54a is operated to open and separate, the excitation current flowing through the electromagnetic switch coil 14a is cut off, the electromagnetic switch 14 is operated to open, and the motor 10 and the power source are disconnected. Further, when a ground fault occurs in the motor 10, a ground fault detection current flows from the zero-phase current detector 18 to the ground fault protection relay 56,
performs relay operation. As a result, the normally closed contact 56a
is operated to open, the excitation current flowing through the electromagnetic switch coil 14a is cut off, and the electromagnetic switch 14 is operated to open, thereby disconnecting the motor 10 from the power source.

なお、電動機10の駆動中に停止スイツチ60
を開離作動した場合には、電磁開閉器コイル14
aに流れる励磁電流が遮断され、電動機10と電
源との切り離しが行われる。
Note that if the stop switch 60 is not activated while the electric motor 10 is being driven,
When the electromagnetic switch coil 14 is opened, the electromagnetic switch coil 14
The excitation current flowing through a is cut off, and the electric motor 10 is disconnected from the power source.

しかしながら、従来の電流検出器においては第
3図及び第4図から明らかなように、回路電流検
出器16及び零相電流検出器18が別々の収納ケ
ース38,48に収納されていたので、各被検線
路15a〜15cである動力回路の配線を回路電
流検出器16及び零相電流検出器18のそれぞれ
について行わなければならず、広い取付スペース
を必要とし、また配線コストが高くなるという欠
点があつた。
However, in the conventional current detector, as is clear from FIGS. 3 and 4, the circuit current detector 16 and the zero-sequence current detector 18 are housed in separate storage cases 38 and 48. Wiring of the power circuit, which is the test lines 15a to 15c, must be done for each of the circuit current detector 16 and the zero-sequence current detector 18, which requires a large installation space and has the disadvantage of increasing wiring cost. It was hot.

本考案は上述した従来の課題に鑑み為されたも
のであり、その目的は、小型かつ被検線路の配線
を簡単に行うことができる電流検出器を提供する
ことにある。
The present invention has been devised in view of the above-mentioned conventional problems, and its purpose is to provide a current detector that is compact and allows easy wiring of the line to be tested.

上記目的を達成するために本考案は、三相の被
検線路がそれぞれ1線路ずつ貫通する3個の貫通
孔を有する収納ケースと、それぞれ異なる1個の
貫通孔が鉄心開口部内を貫通するよう収納ケース
内に収納される3個の第1変流器と、3個の貫通
孔が鉄心開口部内を貫通するよう収納ケース内に
収納される1個の第2変流器と、を備え、前記3
個の第1変流器と1個の第2変流器とを1個の収
納ケース内に隣接して収納一体化したことを特徴
とする。
In order to achieve the above object, the present invention includes a storage case having three through holes through which one three-phase test line passes through each line, and a case in which one different through hole passes through the core opening. comprising three first current transformers housed in a storage case and one second current transformer housed in the storage case so that three through holes pass through the core opening, Said 3
The present invention is characterized in that two first current transformers and one second current transformer are integrated and housed adjacently in one storage case.

以下図面に基づいて本考案の好適な実施例を説
明する。
Preferred embodiments of the present invention will be described below based on the drawings.

第5図には本考案に係る電流検出器の好適な実
施例が示され、図において前述した従来例と同一
部分には同一符号を付して説明を省略する。
FIG. 5 shows a preferred embodiment of the current detector according to the present invention, and in the figure, the same parts as those of the conventional example described above are given the same reference numerals and the explanation thereof will be omitted.

本考案において特徴的なことは、1個の収納ケ
ース62内に回路電流検出器16及び零相電流検
出器18を収納し、各被検線路15a〜15cが
貫通する貫通孔64〜68を両検出器16,18
に共用したことである。
A characteristic feature of the present invention is that the circuit current detector 16 and the zero-sequence current detector 18 are housed in one storage case 62, and the through holes 64 to 68 through which each of the lines to be tested 15a to 15c pass are provided on both sides. Detector 16, 18
It was shared by

すなわち、本考案の電流検出器に使用される収
納ケース62は、前記各第1変流器26〜30の
鉄心開口部20〜24と第2変流器46の鉄心開
口部(図示せず)とを連通する貫通孔64〜68
を有し、この1個の収納ケース62内に3個の第
1変流器26〜30と1個の第2変流器46とが
隣接して収納されている。第7図には電流検出器
の外観が示され、第10図にはその断面構造が示
されている。これらの図から明らかなように収納
ケース62の端部には、回路電流検出器16及び
零相電流検出器18の各出力端子34a,34
b,52a,52bが隣接して配置されている。
That is, the storage case 62 used in the current detector of the present invention includes the core openings 20 to 24 of each of the first current transformers 26 to 30 and the core opening of the second current transformer 46 (not shown). Through holes 64 to 68 communicating with
In this one storage case 62, three first current transformers 26 to 30 and one second current transformer 46 are stored adjacent to each other. FIG. 7 shows the external appearance of the current detector, and FIG. 10 shows its cross-sectional structure. As is clear from these figures, each output terminal 34a, 34 of the circuit current detector 16 and zero-phase current detector 18 is provided at the end of the storage case 62.
b, 52a, and 52b are arranged adjacent to each other.

このように、本実施例においては回路電流検出
器16及び零相電流検出器18が1個の収納ケー
ス62内に収納されているので、従来装置のよう
に2個の収納ケース38,48を別々に取り付け
るよりも小型化することができる。
In this way, in this embodiment, the circuit current detector 16 and the zero-sequence current detector 18 are housed in one storage case 62, so unlike the conventional device, two storage cases 38 and 48 are used. It can be made more compact than if they were installed separately.

また、本実施例の収納ケース62には、各第1
変流器26〜30の鉄心開口部20〜24と第2
変流器46の鉄心開口部とを連通する3個の貫通
孔64〜68が設けられ、これら貫通孔64〜6
8が両検出器16,18に共用されているので、
各貫通孔64〜68に各被検線路15a〜15c
を1度通すのみでよく、被検線路15a〜15c
の配線を簡単に行うことができる。
In addition, the storage case 62 of this embodiment includes each first
The core openings 20 to 24 of the current transformers 26 to 30 and the second
Three through holes 64 to 68 are provided that communicate with the core opening of the current transformer 46, and these through holes 64 to 6
8 is shared by both detectors 16 and 18, so
Each test line 15a to 15c is inserted into each through hole 64 to 68.
It is only necessary to pass through the test lines 15a to 15c once.
Wiring can be done easily.

更に、本実施例においては収納ケース62の端
部には、各検出器16,18の出力端子34a,
34b,52a,52bが別々に取り出されてい
るので、特別な保護リレーを必要とするものでは
なく、従来の各保護リレー54,56をそのまま
使用することができる。
Furthermore, in this embodiment, the output terminals 34a and 34a of each detector 16 and 18 are provided at the end of the storage case 62, respectively.
Since 34b, 52a, and 52b are taken out separately, there is no need for a special protection relay, and the conventional protection relays 54 and 56 can be used as they are.

以上説明したように本考案によれば、1個の収
納ケース内に3個の第1変流器及び1個の第2変
流器を収納し、各被検線路が貫通する貫通孔を第
1変流器及び第2変流器に共用したことにより、
小型かつ被検線路の配線を簡単に行うことができ
る。
As explained above, according to the present invention, three first current transformers and one second current transformer are housed in one storage case, and the through-hole through which each test line passes is set as the first current transformer. By sharing the 1st current transformer and the 2nd current transformer,
It is compact and allows easy wiring of the line to be tested.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電流検出器の一例を示す回路構
成図、第2図は第1図で示される回路電流検出器
の詳細な回路構成図、第3図は第1図における回
路電流検出器を収納した収納ケースの外観図、第
4図は第1図で示される零相電流検出器を収納し
た収納ケースの外観図、第5図は本考案に係る電
流検出器の好適な実施例を示す回路構成図、第6
図は第5図で示される電流検出器の詳細な回路構
成図、第7図は本考案に係る電流検出器の収納ケ
ースを示す外観図、第8図は第3図に示される回
路電流検出器の水平断面図、第9図は第4図に示
される零相電流検出器の水平断面図、第10図は
第7図に示される本考案に係る電流検出器の水平
断面図である。 各図中、同一部分には同一符号を付して、10
は電動機、15a〜15cは被検線路、16は回
路電流検出器、18は零相電流検出器、20〜2
4は鉄心開口部、26〜30は第1変流器、46
は第2変流器、62は収納ケース、64〜68は
貫通孔である。
Fig. 1 is a circuit diagram showing an example of a conventional current detector, Fig. 2 is a detailed circuit diagram of the circuit current detector shown in Fig. 1, and Fig. 3 is a circuit diagram of the circuit current detector shown in Fig. 1. Fig. 4 is an external view of a storage case containing the zero-sequence current detector shown in Fig. 1, and Fig. 5 shows a preferred embodiment of the current detector according to the present invention. Circuit configuration diagram shown, No. 6
The figure is a detailed circuit configuration diagram of the current detector shown in Figure 5, Figure 7 is an external view showing the storage case of the current detector according to the present invention, and Figure 8 is the circuit current detection circuit shown in Figure 3. 9 is a horizontal sectional view of the zero-phase current detector shown in FIG. 4, and FIG. 10 is a horizontal sectional view of the current detector according to the present invention shown in FIG. 7. In each figure, the same parts are denoted by the same reference numerals.
is a motor, 15a to 15c are test lines, 16 is a circuit current detector, 18 is a zero-phase current detector, 20 to 2
4 is the core opening, 26 to 30 are the first current transformers, 46
is a second current transformer, 62 is a storage case, and 64 to 68 are through holes.

Claims (1)

【実用新案登録請求の範囲】 三相の拡検線路がそれぞれ1線路ずつ貫通する
3個の貫通孔を有する収納ケースと、 それぞれ異なる1個の貫通孔が鉄心開口部内を
貫通するよう収納ケース内に収納される3個の第
1変流器と、 3個の貫通孔が鉄心開口部内を貫通するよう収
納ケース内に収納される1個の第2変流器と、 を備え、 前記3個の第1変流器と1個の第2変流器とを
1個の収納ケース内に隣接して収納一体化したこ
とを特徴とする電流検出器。
[Scope of Claim for Utility Model Registration] A storage case having three through holes through which three-phase expanded lines pass through, one through each, and a storage case in which one different through hole passes through the core opening. three first current transformers housed in the core opening; and one second current transformer housed in the storage case so that the three through holes pass through the core opening. A current detector characterized in that a first current transformer and a second current transformer are integrated and housed adjacently in one storage case.
JP18446082U 1982-12-06 1982-12-06 current detector Granted JPS5987677U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18446082U JPS5987677U (en) 1982-12-06 1982-12-06 current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18446082U JPS5987677U (en) 1982-12-06 1982-12-06 current detector

Publications (2)

Publication Number Publication Date
JPS5987677U JPS5987677U (en) 1984-06-13
JPH0322898Y2 true JPH0322898Y2 (en) 1991-05-20

Family

ID=30398959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18446082U Granted JPS5987677U (en) 1982-12-06 1982-12-06 current detector

Country Status (1)

Country Link
JP (1) JPS5987677U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541065A (en) * 2005-05-12 2008-11-20 コーポレーション ヌヴォルト インク. Current sensor
JP2011106890A (en) * 2009-11-14 2011-06-02 Mitsubishi Materials Corp Current sensor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029465A (en) * 2009-07-28 2011-02-10 Hitachi Ltd Current transformer, iron core for current transformer, and method of manufacturing iron core for current transformer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141629B2 (en) * 1973-03-06 1976-11-11

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141629U (en) * 1974-09-24 1976-03-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141629B2 (en) * 1973-03-06 1976-11-11

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008541065A (en) * 2005-05-12 2008-11-20 コーポレーション ヌヴォルト インク. Current sensor
JP2013057692A (en) * 2005-05-12 2013-03-28 Corporation Nuvolt Inc Current sensor
JP2015148631A (en) * 2005-05-12 2015-08-20 コーポレーション ヌヴォルト インク.Corporation Nuvolt Inc. current sensor
JP2011106890A (en) * 2009-11-14 2011-06-02 Mitsubishi Materials Corp Current sensor device

Also Published As

Publication number Publication date
JPS5987677U (en) 1984-06-13

Similar Documents

Publication Publication Date Title
US4685022A (en) Ground fault circuit interrupter capable of deriving energy from ground fault current in order to achieve circuit interruption in the presence of a reduced supply voltage
US4068276A (en) Protective system for electrical appliances
US4814641A (en) Electric safety supply apparatus and connector device combination
US4060843A (en) Protection circuit for multiple phase power systems
CA1073038A (en) Ground fault protection system
US5488303A (en) GFCI with auxiliary coil current blocking means and improved test button configuration
US20050073780A1 (en) Fault detector for two line power distribution system and protection apparatus incorporating the same
Detjen et al. Grounding transformer applications and associated protection schemes
JPS5931283B2 (en) 2-pole grounding fault type circuit disconnector
JPH0322898Y2 (en)
Pillai et al. Grounding and ground fault protection of multiple generator installations on medium-voltage industrial and commercial power systems. Part 1-the problem defined
US3414772A (en) Differential relay with restraining means responsive to transformer bank voltage
Czapp Residual Current Devices: Selection, Operation, and Testing
JPH0422509Y2 (en)
JPH0746753A (en) Earth leakage breaker
JPH07298477A (en) Power distribution panel
JPS5840407B2 (en) Residual circuit monitoring method
JPH11134999A (en) Breaker and distribution board with built-in current detecting current transformer
US1617377A (en) Relay
US2306591A (en) Electric protective system
JPH04372519A (en) Breaker
RU1786620C (en) Device for protection of three-phase asynchronous electric motor against disappearance of voltage in phase of power supply network
JPS6245766B2 (en)
JPH0356099A (en) Field test method for generator
JPS639213Y2 (en)