JPS607454B2 - Differential protection relay method - Google Patents

Differential protection relay method

Info

Publication number
JPS607454B2
JPS607454B2 JP6719275A JP6719275A JPS607454B2 JP S607454 B2 JPS607454 B2 JP S607454B2 JP 6719275 A JP6719275 A JP 6719275A JP 6719275 A JP6719275 A JP 6719275A JP S607454 B2 JPS607454 B2 JP S607454B2
Authority
JP
Japan
Prior art keywords
current
transformer
tap
bridging
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6719275A
Other languages
Japanese (ja)
Other versions
JPS51142655A (en
Inventor
貞治 能木
房男 手塚
和貴 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP6719275A priority Critical patent/JPS607454B2/en
Publication of JPS51142655A publication Critical patent/JPS51142655A/en
Publication of JPS607454B2 publication Critical patent/JPS607454B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Protection Of Transformers (AREA)

Description

【発明の詳細な説明】 本発明は、負荷時タップ切換装置等切襖動作により橋絡
電流の流れる装置を含む変圧器系電路の葦勤保護継電方
式に係り、特に通常運転時の橋絡電流発生時に、この橋
絡電流により差動継電器が不用の動作を生じせしめない
様にした新規な差動保護継電方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reed protection relay system for transformer system circuits including devices such as on-load tap switching devices through which bridging current flows by switching operation, and particularly relates to a reed protection relay system for a transformer-based circuit that includes a device such as a tap changer under load, in which a bridging current flows through switching operation. The present invention relates to a novel differential protection relay system that prevents a differential relay from causing unnecessary operation due to this bridging current when current is generated.

一般に変圧器、負荷時タップ切換装置及び母線等を含む
露路に於ては、例えば短絡事故等の発生を検知する為の
方式として差動保護継電方式が適用されている。
Generally, in open circuits including transformers, on-load tap changers, busbars, etc., a differential protection relay system is applied as a system for detecting the occurrence of, for example, a short circuit accident.

この保護方式は周知の如く各端子に設けられた電流検出
用変成器の二次側を差動援続して、この菱電流回路内に
比率差動継電器の如き差動総電器を挿入し、外部事故に
対して差動継電器はOFF、一方内部事故に対してのみ
○Nして所定の保護動作を行なうものであるが、この種
差動保護方式を負荷時タップ切換装置等を含む露路系に
適用した場合、定常運転時に於ける所定のタップ切襖動
作時に大きな橋総電流が生じて、この橋絡電流により内
部事故に対してのみ動作すべき差動継電器が不用の動作
をする事になる。この様な橋絡電流を生ずる場合は純然
たる内部事故ではないので、蓋勤継電器が不用の動作を
して電路系の機能自体をマヒする事は是非とも回避せね
ばならぬ事柄である。この種差動継電器の不用な動作を
回避する手段0として従来に於ては、例えば保護継電器
の感度を鋭敏にせず鈍化させる手法と、保護継電器の動
作時間を高速にせず遅延させる手法とがある。
As is well known, this protection method connects the secondary side of the current detection transformer provided at each terminal differentially, inserts a differential electrical device such as a ratio differential relay into this rhombic current circuit, and A differential relay turns OFF in case of an external fault, while turning ON only in case of an internal fault to carry out the specified protective operation. When applied to a system, a large total bridge current is generated during the predetermined tap-cutting operation during steady operation, and this bridge current causes unnecessary operation of differential relays that should only operate in response to internal faults. become. When such a bridging current is generated, it is not a pure internal accident, so it is absolutely necessary to avoid the possibility that the covering relay operates unnecessarily and paralyzes the function of the electrical circuit system itself. Conventionally, there are methods for avoiding unnecessary operation of this type of differential relay, such as a method of dulling the sensitivity of the protective relay instead of making it more sensitive, and a method of delaying the operation time of the protective relay instead of increasing its speed. .

この様な従来手法に於て例えば前者の手法では、橋絡過
渡電流が相当大きな場合には保護総電器に流入夕する電
流も相当大きな値となりこれによる不用動作を避け得る
為には差動継電器の感度を大中に鈍化させなければなら
ないが、この様な方法を適用すれば例えば実際に事故が
発生した場合、所定の検出保護が困難或いは不能となり
継電方式本釆の機能を発揮する事ができない。一方後者
の従来手法に於ては、例えば負荷時タップ切換装置の橋
絡切換が極めて短時間に完了しない場合は、不要動作の
県れがあるので遅延時間も充分に長くしなければならな
いが、これにより当該露路及びこれに連接する他の露路
系の保護協調に影響を生じ脇調整定が困難或いは不可能
になる。この様な場合前者手法と同様に実際の事故検出
の機能を発揮できない事は申す迄もない。本発明はこの
点に鑑みて発明されたものであって、特に本願は電圧調
整巻線の橋絡回路に電流検出用変成器を設けて、この変
成器に導びかれるタップ切換え時の橋絡電流と、直列変
圧器の二次側に流れる負荷電流に応じた電流とを差動継
電器の動作線輪に流す事によって、これら電流によって
生ずる電圧調整変圧器の一次側電流増加分を補償する様
にしたものであって、以下本実施例に基づき詳述する。
In such conventional methods, for example, in the former method, if the bridging transient current is considerably large, the current flowing into the protective general equipment will also be a considerably large value, and in order to avoid unnecessary operation due to this, it is necessary to install a differential relay. However, if such a method is applied, for example, if an accident actually occurs, the specified detection protection will be difficult or impossible, and the relay system will not be able to function properly. I can't. On the other hand, in the latter conventional method, for example, if the bridge switching of the on-load tap switching device is not completed in an extremely short time, unnecessary operations may occur, so the delay time must be made sufficiently long. This affects the protection coordination of the exposed passageway and other exposed passage systems connected thereto, making side adjustment difficult or impossible. Needless to say, in such a case, like the former method, the actual accident detection function cannot be achieved. The present invention was invented in view of this point, and in particular, the present application provides a current detecting transformer in the bridging circuit of the voltage regulating winding, and the bridging circuit at the time of tap switching led to this transformer. By passing current and a current corresponding to the load current flowing in the secondary side of the series transformer through the operating wire of the differential relay, it is possible to compensate for the increase in the primary side current of the voltage regulating transformer caused by these currents. This will be described in detail below based on this example.

先ず本実施例を説明する前に従来の差動保護継電方式は
どの様な点で不用の動作を生ずるかを、第1図に示す具
体的な回路構成図に基づき詳述するものとする。
First, before explaining this embodiment, we will explain in detail how the conventional differential protection relay system causes unnecessary operations based on the specific circuit configuration diagram shown in Fig. 1. .

さて第1図でT,は主変成器を示しこの変成器は一次側
巻線N,及び電圧調整用の調整巻線N2,N3より成る
。Lは調整巻線N,,N2を介して竜路系に直列接続さ
れる直列用変圧器で、N4,N5は夫々一次側巻線及び
二次側巻線である。S,,S2は夫々サィリスタを逆並
列接続して成るサィリスタスィッチで、このサィリスタ
スィッチを調整巻線N2,N3のタップ数と同数用意し
て電路電圧に応じて各サィリスタスィッチを適宜任意数
組合せて所定の電圧調整を行なうものである。CT,,
CLは各端子に設けた電流検出用変成器でこの変成器は
実施例では2個を示しているが1個でも動作上支障はな
い。DFは所定の保護動作を行なう差動保護継電器でR
3,M3はその抑制線輪及び動作線輪である。さてこの
様に構成される変圧電路系で二次側を差動接続して成る
検出用変成器は、従来に於ては図示する如くT,,T2
の一次側、二次側に夫々設けられるのが一般的であり、
この場合各変成器の変成比は次の様に決定される。即ち
、従来では負荷時電圧調整装置の調整巻線N2,N3の
影響を無視して、CT,,CT2の各二次側より取り出
される電流j,,i2が整合する様に調整される。
Now, in FIG. 1, T indicates a main transformer, and this transformer consists of a primary winding N and adjusting windings N2 and N3 for voltage adjustment. L is a series transformer connected in series to the winding system via adjustment windings N, N2, and N4 and N5 are a primary winding and a secondary winding, respectively. S, , S2 are thyristor switches formed by connecting thyristors in anti-parallel, and prepare the same number of thyristor switches as the number of taps of the adjustment windings N2 and N3, and adjust each thyristor switch as appropriate according to the line voltage. A predetermined voltage adjustment is performed by combining several numbers. CT,,
CL is a current detection transformer provided at each terminal, and although two transformers are shown in the embodiment, there is no problem in operation even if only one transformer is provided. DF is a differential protection relay that performs a specified protective operation, and R
3, M3 are its suppression wire and operating wire. Now, in a transformer circuit system configured as described above, a detection transformer having a differential connection on the secondary side has conventionally been configured with T, , T2 as shown in the figure.
Generally, they are installed on the primary and secondary sides of the
In this case, the transformation ratio of each transformer is determined as follows. That is, conventionally, the influence of the adjustment windings N2 and N3 of the on-load voltage adjustment device is ignored, and the currents j, , i2 taken out from the secondary sides of CT, , CT2 are adjusted so as to match.

これを式で示せばa.・N,=a2・N5なる式は示さ
れこぬりa・=a20串の関係式欄られる。〔ここでC
T,,CT2の変成比をa,,a2,T,,Lの一次側
巻線数、二次側巻線数をN,,N5で示す〕従ってこの
様な方法では定常運転時の橋絡切換に生ずる橋絡電流に
よる調整巻線N2,N3の影響を無視しているものであ
るから、橋絡電流に基因して差動継電器DFの動作線論
Msに流入する電流が増大し、動作勢力が強まってこれ
によりDFが不用の動作を行なう様になる。かかる橋絡
電流に関して具体的に述べるに、定常時に行なわれるタ
ップ功換操作とは、例えば図示しない電圧検出回路で、
負荷が増加し負荷電圧が所定値より低下した事を検出す
ると上げタップ側のサィリスタスィッチS,を点弧し、
これとは反対に負荷電圧が所定値より上昇した事を検出
すると下げタップ側のサィリスタスィツチS2を点弧す
ると云うように、ゲート切換えはランダムに行なわれ、
しかもゲート切換え時(橋絡切換え時)にはS,一S2
の各サィリスタスィツチが導適状態にあるものであるか
らして、これらサィリスタスィッチを通して橋絡回路が
形成される。この橋絡回路には、よく知られているよう
に図示はしないが一般には限流リアクトルなるものが挿
入され、橋絡切換え時の橋絡電流そのものを限流する機
能を持つ。この橋絡電流発生に於けるT,一次側電流の
増加分を述べてみるに、先ず調整巻線及びL一次側巻線
の巻回数を夫々N2,N3,N4とし、橋絡電流io、
負荷電流1が流れた場合この1に対応するT2一次側電
流を1L、サイリスタスイツチS,或いはS2を○Nし
た場合のS,側分流電流を(1一Q)IL「S2側分流
電流をQILとすれば次の如く算出される。即ち負荷電
流1力汀2二次側巻線を流れる事によりこの二次側起磁
力はN5・1となり、この二次側起磁力に同値の起磁力
がT2一次側に生じなければならないから、N5・1=
N4・ILなる関係式が得られこれより1に対応したL
一次側電流1は・=帯.・L………■なる式に示される
This can be expressed as a formula: a. The equation ・N,=a2・N5 is shown, and the relational expression of konuri a・=a20 is written in the column. [Here C
The transformation ratio of T,, CT2 is shown as a,, a2, the number of primary windings of T,, L and the number of secondary windings as N,, N5] Therefore, with this method, the bridge during steady operation is Since the influence of the adjusting windings N2 and N3 due to the bridging current that occurs during switching is ignored, the current flowing into the operating line Ms of the differential relay DF increases due to the bridging current, resulting in poor operation. The force becomes stronger, which causes the DF to perform unnecessary actions. Specifically regarding this bridging current, the tap switching operation performed during steady state is, for example, a voltage detection circuit (not shown).
When it is detected that the load increases and the load voltage drops below a predetermined value, the thyristor switch S on the up tap side is fired,
On the contrary, when it is detected that the load voltage has risen above a predetermined value, the thyristor switch S2 on the lower tap side is fired, so that gate switching is performed randomly.
Moreover, when switching gates (when switching bridges), S, -S2
Since each thyristor switch is in a conductive state, a bridge circuit is formed through these thyristor switches. As is well known, although not shown, a current limiting reactor is generally inserted into this bridging circuit, and has the function of limiting the bridging current itself at the time of bridging switching. To describe the increase in T and primary current when this bridging current is generated, first let the number of turns of the adjustment winding and L primary winding be N2, N3, and N4, respectively, and the bridging current io,
When load current 1 flows, the T2 primary side current corresponding to this 1 is 1L, and when the thyristor switch S or S2 is turned on, the S side shunt current is (1-Q)IL, and the S2 side shunt current is QIL. Then, it is calculated as follows.In other words, as the load current 1 and force 2 flow through the secondary winding, this secondary magnetomotive force becomes N5・1, and the magnetomotive force of the same value as this secondary magnetomotive force is Since it must occur on the primary side of T2, N5・1=
The relational expression N4・IL is obtained, and from this, L corresponding to 1
The primary current 1 is = band.・L......■ It is shown in the formula.

ここで電圧調整装置でS,のみ通電しているものとすれ
ば、このS,側分流分(1一Q)・ILによるT,一次
側電流の上昇分△1,は調整巻線側種磁力とこれに対応
するT,一次側起磁力の関係より〔(1−Q)・IL〕
・N3=△11‐N・一〔(1−Q)‐器・〕・N3=
AI.・N,→「‐‐‐△・.=学‐〔(・−Q)‐達
‐・〕‐‐‐■なる式にて示される。
Here, if we assume that only S is energized in the voltage regulator, this S, side shunt (1-Q)/IL, increase in T, primary current △1, is the seed magnetic force on the adjustment winding side. From the relationship between T and the primary magnetomotive force, [(1-Q)・IL]
・N3=△11-N・1 [(1-Q)-device・]・N3=
A.I.・N, → "---△・.=学-[(・-Q)-datsu-・]---■ It is shown by the formula.

Z同様にS2のみ通電した場合の
S2側分流分IL・QによるT,一次側電流の上昇分△
12はQ・IL・N2 =△12‐NI→葦‐1一Q●N2=△12‐NI→・
‐・△,2帯‐帯‐1‐Q‐‐‐‐‐‐■なる式にて示
され、この場合の△12の流れる方向は△1,とは逆方
向になる。
Similarly to Z, when only S2 is energized, the increase in T and primary current due to the S2 side shunt IL and Q is △
12 is Q・IL・N2 =△12-NI→Reed-11Q●N2=△12-NI→・
-・△,2 band-band-1-Q------■ In this case, the direction of flow of △12 is opposite to that of △1.

一方、橋絡電流ioが生じた場合のT,‐−次側電流上
昇分いま10‐(N2十N3〉=10‐N・^L=N半
音こい…”■なる式にて示され、従って橋絡電流ioが
生じた場合のT,一次側電流の全電流上昇分△1は■,
■,■の各式より■+■+■ −N3‐〔(・−Q)‐学‐・〕−帯‐嶺‐一N,・‐
Q+王寺&‐io→ .・. △1 −竿;・i。
On the other hand, when the bridging current io occurs, T, - the rise in the next-side current is shown by the formula: When bridging current io occurs, T, the total increase in primary current △1 is ■,
From each formula of ■,
Q+Oji&-io→.・.. △1 - rod;・i.

十〔帯・崇(・−Q)−母‐串‐Q〕●1‐‐‐‐‐‐
■ なる式にて示され、この■式なるT,一次側電流の上昇
分△1が第1図のDFに流入する事によりDF自体の動
作勢力が増大してDFが不用の動作を生ずる事になる。
10 [Obi/Takashi (・-Q)-Mother-Kushi-Q]●1-----
■ It is shown by the following formula, and as this formula (■) T and the increase △1 of the primary side current flow into the DF in Figure 1, the operating force of the DF itself increases and the DF causes unnecessary operation. become.

第2図が本発明による一実施例を示すもので、本発明で
は負荷時電圧調整装置の橋絡回路内に、新たに橋絡電流
を導出する電流検出用変成器を設けた点に特徴を有する
ものである。即ち同図で第1図と同一のものは同一符号
を附しており、CT3,CT4が夫々橋絡回路内に設け
た電流検出用変成器で、このCT4側に挿入したCBは
本発明による効果をより拡大利用する為に新たに設けた
遮断器で、この遮断器CBは例えば橋絡継続による異常
電流を断つ為のものである。
FIG. 2 shows an embodiment according to the present invention, and the present invention is characterized in that a current detection transformer for deriving a new bridging current is provided in the bridging circuit of the on-load voltage regulator. It is something that you have. That is, in the figure, the same parts as in Fig. 1 are given the same reference numerals, and CT3 and CT4 are current detection transformers installed in the bridge circuit, respectively, and the CB inserted on the CT4 side is according to the present invention. This is a new circuit breaker installed to further expand the effectiveness of the circuit breaker.This circuit breaker CB is used to cut off abnormal current caused by continued bridging, for example.

さてこの様に構成される本発明の動作を詳述するに、例
えば定常運転時のタップ切襖動作時に於ける橋絡電流i
oの発生時、前述せる如くT,一次側電流は橋絡電流等
に基因して大きな値となり、この電流上昇分lo+△1
,一△12がCT,を介してDFに導入される訳である
が、本発明に於ては橋絡電競両oと各サィリスタスィツ
チの通電電流QIL,IL(1一Q)とをCT3,CT
4にて検出する様にしているので「 これ等CT3,C
T4より導入せられる電流成分は以下に示す如くなる。
即ちS,を通電した場合のS,側分流分と、S2を通電
した場合のS2側分流分との電流方向は図示する如く逆
方向であるので、CL,CT4の各変流比を夫々a3,
a4及びCT3,CT4を介して得る二次側電を夫々i
3,i4と仮定するならば、S,を〇Nした場合CL二
次側より導入せられる電流成分i4は14= 〔i。
Now, to explain in detail the operation of the present invention configured in this way, for example, the bridging current i during tap cutting operation during steady operation.
When o occurs, as mentioned above, T, the primary current becomes a large value due to bridging current, etc., and this current increase is lo + △1
. CT3, CT
4, so "These are CT3, C
The current component introduced from T4 is as shown below.
In other words, the current directions of the S, side shunt when S is energized and the S2 side shunt when S2 is energized are opposite directions as shown in the figure, so the current transformation ratios of CL and CT4 are respectively a3 ,
The secondary side voltages obtained through a4 and CT3 and CT4 are respectively i
3, i4, the current component i4 introduced from the CL secondary side when S is 0N is 14= [i.

十IL(1−Q)〕・1/a4=〔i。十N5/N41
(1一Q)〕・1/a4....・.■なる式にて示さ
れる。一方S2を○Nした場合CT3二次側より導入せ
られる電流成分i3は‐ 1 13=(i。
10IL(1-Q)]・1/a4=[i. 10N5/N41
(11Q)]・1/a4. .. .. ..・.. It is shown by the formula: On the other hand, when S2 is set to ○N, the current component i3 introduced from the secondary side of CT3 is - 1 13 = (i.

−QI)・蚕=(i。-QI)・Silkworm=(i.

−鯖・‐Q)‐毒…‐‐‐■なる式にて示される。−Mackerel・−Q)−Poison…−−■ It is shown by the formula.

従って■式及び■式より得られる電流成分とが夫々加え
合わさる様にCT3,CLの接続を図示する如く考慮し
てあるので、これ等電流分の総和とCT,より導入せら
れる電流成分の総和lo十△1,一AI2とが相等しく
なる様に、即ちこの事を換言すればCT3,CT4より
導入せられる電流成分を合成し、CT,から検出された
電流上昇分をDFに於て補償する様にすれば、DFの動
作線論鳩には橋絡電流ioに基因する電流上昇分は流れ
ずDFが不用の動作を生ずる事はない。なおCL,CT
4により平常時の電流により極めて小さな誤差を生ずる
が、これ等は事故電流或いは橋絡電流ioに比べ極めて
小さいので実用上全く問題にならないものである。上述
せる如く本発明によれば、例えば定常運転時に於ける負
荷電圧調整装置の橋絡電流による影響を確実に除去でき
るので、差動継電器の感度を充分に鋭敏にし、或いは動
作時間を極めて高速にしても不要動作する怖れがないの
で、例えば従来不可能であった鋭敏、迅速な事故保護が
可能となり「又当該露路系に連接する他の霞路系との保
護協調が極めて容易となる。
Therefore, since the connection of CT3 and CL is considered as shown in the figure so that the current components obtained from equations (2) and (2) are added together, the sum of these current components and the sum of the current components introduced from CT In other words, the current components introduced from CT3 and CT4 are combined so that lo + Δ1 and - AI2 are equal, and the current increase detected from CT is compensated in DF. If this is done, the current increase due to the bridging current io will not flow through the DF operation line, and the DF will not perform unnecessary operations. Furthermore, CL, CT
4 causes an extremely small error due to the normal current, but these are extremely small compared to the fault current or bridging current io, so they pose no problem in practice. As described above, according to the present invention, it is possible to reliably eliminate the influence of the bridging current of the load voltage regulator during steady operation, for example, so that the sensitivity of the differential relay can be made sufficiently sensitive, or the operating time can be made extremely fast. Since there is no risk of unnecessary operation even when the system is in use, for example, it becomes possible to provide sensitive and quick accident protection that was previously impossible, and it also becomes extremely easy to coordinate protection with other haze road systems connected to the open road system. .

更に従釆の保叢継電方式に於ては、例えば負荷時タップ
切換装置の切襖スイッチが不良で端子間の橋絡が継続し
た場合は橋絡が継続している旨の識別が不可能であった
。従ってこの様な橋絡状態が継続している事に基因して
保護継電器が動作し、当該設備系を全停せざるを得ない
。この種事故は当該設備系の内でその他の部分に比し最
大の弱点部分と言われているものであるが、端子間の橋
絡事故等の如き単純故障の為に全設備を停止する事は極
めて不得策である。この点本発明に於ては例えば橋絡回
路内に新たに設けた検出用変成器で橋絡電流を検出して
、この検出信号を論理回路より成る判定部に導入して所
定の判定を行なはしめ、この判定結果に基づき橋絡回路
に挿入した遮断器にBをトリップする様にすれば、実施
例より明らかな様に負荷時電圧調整装置の一部分の使用
継続が可能である。即ちこの設備系は負荷時電圧調整装
置のタップの切替はロックされるが、系としての暫定的
な使用継続が可能となりこの種珠護継電装直で懸案化さ
れてる課題が一挙に解決できるものである。
Furthermore, in the secondary relay relay system, if the switching switch of the on-load tap switching device is defective and a bridge continues between the terminals, it is impossible to identify that the bridge continues. Met. Therefore, due to the continuation of such a bridging condition, the protective relay is activated, forcing the equipment system to be completely shut down. This type of accident is said to be the weakest point in the equipment system compared to other parts, but it is possible for all equipment to stop due to a simple failure such as a bridge accident between terminals. is an extremely bad idea. In this regard, in the present invention, for example, the bridging current is detected by a detection transformer newly installed in the bridging circuit, and this detection signal is introduced into a judgment section consisting of a logic circuit to make a predetermined judgment. Finally, if B is tripped to the circuit breaker inserted in the bridge circuit based on this determination result, it is possible to continue using a part of the on-load voltage regulator, as is clear from the embodiment. In other words, although the switching of the tap of the load voltage regulator is locked in this equipment system, it is possible to continue using it temporarily as a system, and the problems that have been pending with this type of relay electrical system can be solved at once. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は変圧器電路系に適用する従釆の差動保護継電方
式の回路例、第2図は本発明による−実施例を示す差動
保護継電方式の具体的回路例。 T,は主変圧器、T2は直列変圧器、S,,S2はサィ
リスタスィッチ、CT,〜CT4は電流検出用変成器、
DFは差動保護継電器、CBは遮断器。汁′図矛2図
FIG. 1 shows a circuit example of a secondary differential protection relay system applied to a transformer electrical circuit system, and FIG. 2 shows a specific circuit example of a differential protection relay system according to an embodiment of the present invention. T, is the main transformer, T2 is the series transformer, S,, S2 is the thyristor switch, CT, to CT4 are the current detection transformers,
DF is a differential protection relay, and CB is a circuit breaker. Soup' Zuko 2

Claims (1)

【特許請求の範囲】[Claims] 1 二次側に上げタツプ、中性点タツプ、下げタツプと
を有し、且つ上げタツプ、下げタツプとにそれぞれサイ
リスタを逆並列接続してなるサイリスタスイツチを設け
て、これらサイリスタスイツチを接続して橋絡回路を形
成する電圧調整変圧器、一次側巻線の一端が上記中性点
タツプと接続され、その他端が前記橋絡回路と接続され
二次側巻線より負荷電圧を取出す直列変圧器、前記電圧
調整変圧器の一次側巻線と、前記直列変圧器の二次側巻
線とにそれぞれ電流検出用変成器を挿入して、これら変
成器の差電流回路に電流差動リレーを接続して所定の保
護を行なうものに於て、前記電圧調整変圧器の上げタツ
プ側と下げタツプ側とに各別に電流検出用変成器A,B
を挿入して、橋絡電流の発生時に際して、電流差動リレ
ーに流入する電圧調整変圧器の一次側電流上昇分を前記
変成器A,Bに導びかれる橋絡電流の電流成分と、直列
変圧器の二次側に流れる負荷電流の電流成分とに基づき
補償するようにしたことを特徴とする差動保護継電方式
1. A thyristor switch is provided on the secondary side, which has an up tap, a neutral point tap, and a down tap, and a thyristor is connected in inverse parallel to each of the up tap and down tap, and these thyristor switches are connected. A voltage regulating transformer forming a bridge circuit, a series transformer in which one end of the primary winding is connected to the neutral point tap, the other end is connected to the bridge circuit, and the load voltage is extracted from the secondary winding. , a current detection transformer is inserted into the primary winding of the voltage regulating transformer and the secondary winding of the series transformer, and a current differential relay is connected to the differential current circuit of these transformers. In the case where the voltage regulating transformer is provided with specified protection, current detection transformers A and B are installed on the up tap side and the down tap side of the voltage regulating transformer, respectively.
is inserted, and when a bridging current is generated, the primary side current rise of the voltage regulating transformer flowing into the current differential relay is connected in series with the current component of the bridging current led to the transformers A and B. A differential protection relay system characterized by compensation based on the current component of the load current flowing to the secondary side of the transformer.
JP6719275A 1975-06-04 1975-06-04 Differential protection relay method Expired JPS607454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6719275A JPS607454B2 (en) 1975-06-04 1975-06-04 Differential protection relay method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6719275A JPS607454B2 (en) 1975-06-04 1975-06-04 Differential protection relay method

Publications (2)

Publication Number Publication Date
JPS51142655A JPS51142655A (en) 1976-12-08
JPS607454B2 true JPS607454B2 (en) 1985-02-25

Family

ID=13337785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6719275A Expired JPS607454B2 (en) 1975-06-04 1975-06-04 Differential protection relay method

Country Status (1)

Country Link
JP (1) JPS607454B2 (en)

Also Published As

Publication number Publication date
JPS51142655A (en) 1976-12-08

Similar Documents

Publication Publication Date Title
JPS607454B2 (en) Differential protection relay method
KR20090120766A (en) Fault current limiting method through the application of superconducting fault current limiter into the neutral line of power system
US3141995A (en) System for protecting capacitor type bushings in high tension equipment
JPH0546775B2 (en)
JPH0231879Y2 (en)
JP2553837B2 (en) Input device for ratio differential relay
SU433589A1 (en) DEVICE YES BL (PROTECTION TIPS FOR FAILURE IN THE SECONDARY CIRCUITS OF THREE-WATER TRANSFORMERS ^ VOLTAGES INPUT REFERENCE TO AREA-] [C]. interlocking devices based on the use of differential transformers. ^ Such devices have a significant consumption, which is due to the fact that, with operable secondary circuits of a transformer, Differential transformers operate in a short circuit mode. In addition, differential devices deduce protection from operating in the event of faults in both the star and the open circuit of the voltage transformer, although in the latter case the protection could remain in operation. devices use the transformer star's zero wire, voltage, and the integrity (the zero conductor does not control –101520 is faulty, then the following short circuit to ground prevents the interlock from acting incorrectly. The proposed device is characterized in that in order to increase the reliability, a three-phase rectifier bridge is connected to the phase outputs of the star of intermediate transformers, the output of which is connected to the comparison circuit of the absolute values of two voltages, and a three-phase rectifier bridge connected to the phase voltage is connected to the second input of the comparison circuit wires of the star transformer voltage transformer. The drawing shows the device diagram. The device is connected to the secondary windings of the transformer I, connected by one star, and the other - about the scheme open triangle. The device contains an intermediate two-winding I transformer 2, connected by
US1165844A (en) Protecting means for electrical distribution systems.
JPH0546776B2 (en)
JPH0542213B2 (en)
JPS5854819A (en) Transmission line protecting device
JPS6230442Y2 (en)
Gajic et al. Capabilities of modern numerical differential protections
JPS62196018A (en) Differential relay for transformer protection
JPH0638690B2 (en) Ground fault relay
JPS631809B2 (en)
JPS607884B2 (en) Inspection method of ratio differential relay device
JPH0256009B2 (en)
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPS6125226A (en) Semiconductor type tap switching device
JPH0583844A (en) Distance relay unit
JPS5814137B2 (en) Busbar selection relay device
JPH0638362A (en) Bus protective system
JPS60207418A (en) Device for protecting main circuit
JPH05276648A (en) Wiring method of test terminal for bus protective relay