JPS6230442Y2 - - Google Patents

Info

Publication number
JPS6230442Y2
JPS6230442Y2 JP5584378U JP5584378U JPS6230442Y2 JP S6230442 Y2 JPS6230442 Y2 JP S6230442Y2 JP 5584378 U JP5584378 U JP 5584378U JP 5584378 U JP5584378 U JP 5584378U JP S6230442 Y2 JPS6230442 Y2 JP S6230442Y2
Authority
JP
Japan
Prior art keywords
relay
current transformer
winding
relays
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5584378U
Other languages
Japanese (ja)
Other versions
JPS54159055U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5584378U priority Critical patent/JPS6230442Y2/ja
Publication of JPS54159055U publication Critical patent/JPS54159055U/ja
Application granted granted Critical
Publication of JPS6230442Y2 publication Critical patent/JPS6230442Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【考案の詳細な説明】 本考案は保護継電装置の点検方式の改良に関す
る。
[Detailed Description of the Invention] The present invention relates to an improvement in an inspection method for a protective relay device.

電力系統を異常事故から保護する保護継電装置
は近年高感度、高速度動作、低負担化等のため静
止形化が計られているが、使用部品が多いことな
どの理由により信頼度向上対策として点検機能を
持たせることが一般的である。そのために保護継
電装置を点検する方式が各種提案されている。そ
のうち主CT回路に接続される継電器を点検する
場合、主CTの2次回路オープンを決して生じさ
せてはいけないし、また潮流が点検性能に影響を
与えないか、与えても良否判定に支障のない方式
としなければならない。これらの条件を満たす方
法として常時の潮流をキヤンセルした上で点検電
流を印加する方法がとられている。
In recent years, protective relay devices that protect power systems from abnormal accidents have been made stationary to achieve higher sensitivity, higher speed operation, and lower burden. However, due to the large number of parts used, measures have been taken to improve reliability. It is common to have an inspection function. To this end, various methods for inspecting protective relay devices have been proposed. When inspecting the relay connected to the main CT circuit, the secondary circuit of the main CT should never be opened, and the current should not affect the inspection performance, or even if it does, it should not interfere with pass/fail judgment. There must be a method that does not. A method that satisfies these conditions is to cancel the constant current and then apply a check current.

従来行われている点検回路の一例を第1図に示
す。1は保護対象とする電力系統、2は主CT、
5は継電器、3は継電器5の入力変換器、4は継
電器の本巻線、6は動作判定部、7は点検用電
源、8a1,8a2は継電器5の点検を行うべく
与えられる点検指令により動作する補助リレー
(図示せず)の常開接点、8bは同じくその常閉
接点、9は潮流をキヤンセルするための補助変流
器(以下キヤンセルCTと呼ぶ)、9−1は主CT
回路に接続された巻線、9−2はその2次巻線、
9−3は点検用電源7に常開接点8a1を介して
接続された巻線である。10は非直線抵抗素子で
キヤンセルCT2次回路の過電圧を抑制する。
An example of a conventional inspection circuit is shown in FIG. 1 is the power system to be protected, 2 is the main CT,
5 is a relay, 3 is an input converter for the relay 5, 4 is the main winding of the relay, 6 is an operation determination section, 7 is a power source for inspection, 8a1 and 8a2 operate according to an inspection command given to inspect the relay 5. 8b is the normally closed contact of the auxiliary relay (not shown), 9 is the auxiliary current transformer (hereinafter referred to as cancel CT) for canceling the power flow, and 9-1 is the main CT
The winding connected to the circuit, 9-2 is its secondary winding,
9-3 is a winding connected to the inspection power source 7 via a normally open contact 8a1. 10 is a nonlinear resistance element that suppresses overvoltage in the cancel CT secondary circuit.

常時主CT回路の2次電流IMは巻線9−1を通
つて継電器5の入力変換器3に供給されている。
この時キヤンセルCT9の2次電流iMは常閉接点
8bと巻線9−2を循環しており、継電器5には
なんら影響を与えない。
The secondary current I M of the main CT circuit is always supplied to the input converter 3 of the relay 5 through the winding 9-1.
At this time, the secondary current i M of the cancel CT 9 circulates through the normally closed contact 8b and the winding 9-2, and has no effect on the relay 5.

次に継電器5の点検を行うべく与えられる点検
指令により常開接点8a2および8bが動作する
とキヤンセルCT9の2次電流iMは巻線9−2→
接点8a2→入力変換器3の本巻線4→巻線9−
2と流れ、入力変換器3の本巻線4には、IM
逆位相の電流iMとの差分だけが流れることにな
る。この時|IM|=|iM|となるようにキヤン
セルCT9の巻数比を選んでおけば、継電器5の
点検中は見かけ上入力変換器3の本巻線4に流れ
る電流は零となる。
Next, when the normally open contacts 8a2 and 8b operate according to the inspection command given to inspect the relay 5, the secondary current i M of the cancel CT9 changes from the winding 9-2 to
Contact 8a2 → main winding 4 of input converter 3 → winding 9-
2, and only the difference between I M and the current i M having the opposite phase flows through the main winding 4 of the input converter 3. At this time, if the turn ratio of the canceller CT 9 is selected so that |I M |=|i M .

一方、巻線9−3に点検用電源7から点検用電
流ITを図のように流すと2次電流iTは入力変換
器3の本巻線4に流れるので、キヤンセルCT9
の巻線9−2と9−3の巻数比を適当に選んでお
けば、任意の電流値でしかも潮流の影響を受けな
い点検電流を得ることができる。しかもこの方式
によれば主CTの2次回路に直接接点を入れてな
いので接点の接触不良等によるCT2次オープンの
恐れがないうえ、継電器の入力変換器の本巻線に
点検電流を印加しているので、点検範囲も広く信
頼性の高い点検を行うことができる。
On the other hand, when the inspection current I T is applied to the winding 9-3 from the inspection power supply 7 as shown in the figure, the secondary current i T flows to the main winding 4 of the input converter 3, so cancel CT9
By appropriately selecting the turns ratio of the windings 9-2 and 9-3, it is possible to obtain a check current of any current value and unaffected by the current. Moreover, according to this method, there is no direct contact in the secondary circuit of the main CT, so there is no risk of the CT secondary opening due to poor contact, etc., and a check current is not applied to the main winding of the input converter of the relay. This allows for a wide range of inspections and highly reliable inspections.

ところが保護継電装置は一般にフエイルセーフ
を考慮して二種以上の継電器を組み合わせて構成
しており、点検中の事故優先を考慮すると全部の
継電器の主CT2次回路を同時にキヤンセルするこ
とは好ましくない。そのため従来事故優先を行う
方法として、例えば距離継電器と過電流継電器の
両者が動作した条件でしや断器に引外し指令を出
す装置の場合、距離継電器の点検にはキヤンセル
CTを用いて、測距性能の良否点検を行うが、過
電流継電器の点検にはキヤンセルCTを用いない
方法とするか、両継電器ともに専用のキヤンセル
CTを用いる方法を採用して、点検中は常にどち
らか一方の継電器は主CT回路に接続しておき、
系統事故に対して応動可能となるよう独立に点検
を行つていた。前者の場合、過電流継電器の点検
にキヤンセルCTを用いないので、点検用の補助
巻線を用いるなどの点検となるため継電器の本巻
線から行う点検より信頼度も点検精度も低下した
点検とならざるをえない。また後者の場合継電器
の本巻線から点検可能となるので信頼度も点検精
度も高くなるがキヤンセルCTの数が2倍必要と
なり、装置の縮小化をめざす、すう勢に反するも
のとなる。第2図に各継電器ごとに専用のキヤン
セルCTを使用した場合の従来の方法の回路図を
示す。3,4,5,6,9の添字A,Bは異なる
継電器5A,5Bの区別を表わし第1図と同一番
号のものは同一または同一機能を持つものとす
る。接点8a1,8a2,8bは継電器5Aを点
検すべく与えられる点検指令により動作する補助
リレー(図示せず)の接点、11a1,11a
2,11bは継電器5Bを点検すべく与えられる
点検指令により動作する補助リレー(図示せず)
の接点であり、8と11は同時に動作しないよう
制御されている。継電器5A,5Bの潮流のキヤ
ンセル方法および点検電流の印加方法は第1図の
場合と同様である。
However, protective relay devices are generally configured by combining two or more types of relays with fail-safe considerations in mind, and considering the priority of accidents during inspection, it is not desirable to cancel the main CT secondary circuits of all relays at the same time. Therefore, as a conventional method of prioritizing accidents, for example, in the case of a device that issues a trip command to a disconnector under conditions where both a distance relay and an overcurrent relay are activated, inspection of the distance relay is canceled.
A CT is used to check the quality of distance measurement performance, but a method that does not use a cancel CT to check overcurrent relays is recommended, or a dedicated cancel CT is used for both relays.
By adopting a CT method, one of the relays is always connected to the main CT circuit during inspection.
They conducted independent inspections to ensure that they could respond to system accidents. In the former case, a cancel CT is not used to inspect the overcurrent relay, so the inspection uses an auxiliary winding for inspection, resulting in an inspection that is less reliable and less accurate than an inspection performed from the main winding of the relay. I have no choice but to do so. In the latter case, inspection can be performed from the main winding of the relay, which increases reliability and inspection accuracy, but doubles the number of cancel CTs, which goes against the trend toward downsizing of equipment. Figure 2 shows a circuit diagram of a conventional method in which a dedicated cancel CT is used for each relay. Subscripts A and B of 3, 4, 5, 6, and 9 indicate different relays 5A and 5B, and those having the same numbers as those in FIG. 1 are the same or have the same functions. Contacts 8a1, 8a2, 8b are contacts 11a1, 11a of an auxiliary relay (not shown) that operates according to an inspection command given to inspect relay 5A.
2, 11b is an auxiliary relay (not shown) that operates according to an inspection command given to inspect relay 5B.
8 and 11 are controlled so that they do not operate at the same time. The method of canceling the power flow of the relays 5A and 5B and the method of applying the inspection current are the same as in the case of FIG.

本考案は上述の点に鑑みなされたもので、キヤ
ンセルCTの数を増やさずにしかも継電器の本巻
線から点検可能とする点検方式を提供することを
目的とするものである。
The present invention was developed in view of the above points, and aims to provide an inspection method that allows inspection from the main winding of a relay without increasing the number of cancel CTs.

以下図面に従がつて本発明の1実施例を説明す
る。第3図は第2図の回路に本発明を適用してキ
ヤンセルCTの数を減らせるための1実施例を示
す図である。なお第1図、第2図と同一番号のも
のは同一または同一機能を持つものとする。本実
施例では継電器を2グループに分け、各グループ
当り1個の継電器を設けるものとする。すなわ
ち、第1グループには継電器5Aを、第2グルー
プには継電器5Bを配置する。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a diagram showing an embodiment for reducing the number of cancel CTs by applying the present invention to the circuit shown in FIG. 2. Components with the same numbers as in FIGS. 1 and 2 are assumed to have the same or the same functions. In this embodiment, the relays are divided into two groups, and each group is provided with one relay. That is, the relay 5A is arranged in the first group, and the relay 5B is arranged in the second group.

継電器5Aを点検する点検指令によつて動作す
る補助リレー(図示せず)の常開接点を13a
1,13a2、常閉接点を13bとする。また継
電器5Bを点検する点検指令によつて動作する動
作リレー(図示せず)の常開接点を14a1,1
4a2、常閉接点を14bとする。いま継電器5
Aを点検する場合について説明する。主CT2の
2次電流IMは補助CT9の1次巻線9−1で矢印
の向きに流れるとすると補助CT9の2次側巻線
9−2には2次電流iMが矢印の向きに流れる。
この時継電器5Aを点検する点検指令により接点
13a1,13a2,13bが動作すると補助
CT9の2次電流iMは接点13a2→継電器5A
の本巻線4A→接点13a1→補助CT9の2次
巻線9−2を環流する。継電器5Aの本巻線4A
には補助CT9の1次電流IMと2次電流iMが逆
位相で流れることになり、|IM|=|iM|とな
るように補助CT9の9−1と9−2の巻数比を
選んでおけば本巻線4Aには見かけ上電流が零と
なる。補助CT9の2次巻線9−2は補助CT回路
の2次オープンを生じないよう13a1,13a
2と13bは第4図に示すタイムチヤートの如く
動作がラツプする接点を用いる。また万一接点が
ラツプしなかつた場合に対して非直線抵抗素子1
0等により過電圧を生じないようにしておく。
A normally open contact of an auxiliary relay (not shown) that operates in response to an inspection command to inspect relay 5A is connected to 13a.
1, 13a2, and the normally closed contact is 13b. In addition, normally open contacts 14a1, 1 of an operating relay (not shown) that operates in response to an inspection command to inspect the relay 5B are connected.
4a2, and the normally closed contact is 14b. Now relay 5
The case of inspecting A will be explained. If the secondary current I M of the main CT2 flows in the direction of the arrow in the primary winding 9-1 of the auxiliary CT9, then the secondary current i M flows in the direction of the arrow in the secondary winding 9-2 of the auxiliary CT9. flows.
At this time, when the contacts 13a1, 13a2, and 13b operate due to the inspection command to check the relay 5A, the auxiliary
Secondary current i M of CT9 is contact 13a2 → relay 5A
The main winding 4A → the contact 13a1 → the secondary winding 9-2 of the auxiliary CT 9 are circulated. Main winding 4A of relay 5A
The primary current I M and the secondary current i M of the auxiliary CT 9 flow in opposite phases, and the number of turns of the auxiliary CT 9 9-1 and 9-2 is adjusted so that |I M |=|i M | If the ratio is selected, the apparent current in the main winding 4A becomes zero. The secondary winding 9-2 of the auxiliary CT 9 is connected to 13a1 and 13a so as not to cause a secondary open in the auxiliary CT circuit.
2 and 13b use contacts whose operations overlap as shown in the time chart shown in FIG. In addition, in case the contacts do not wrap, the non-linear resistance element 1
Make sure that overvoltage does not occur due to zero voltage, etc.

一方、補助CT9の1次巻線9−1と同一鉄心
に巻き込んだ9−3なる巻線に点検電源7より点
検中閉成する接点12aを介して点検電流IT
矢印の向きに流し込む。すると補助CT9の2次
巻線9−2にはiMとは逆向きの電流iTが流れ、
Mとは逆の順序で継電器5Aの本巻線4Aに点
検電流が流れる。すなわち継電器5Aの本巻線4
Aは潮流IMがキヤンセルされ点検電流iTのみが
印加される。この点検電流iTの大きさを適当に
選べば、継電器5Aの点検を本巻線から、しかも
潮流の影響を受けることなしに実施できる。次に
継電器5Bの点検を行うには、継電器5Aの点検
と同様に継電器5Bを点検する点検指令によつて
動作する補助リレーの接点14a1,14a2,
14bによつて、継電器5Aの点検に用いたと同
一の補助CT9を用いて、継電器5Aの点検の場
合と同様、継電器5Bの本巻線4BにはiTのみ
が印加される。これらの継電器動作条件に他の要
素(例えば電圧)を必要とする場合には点検電源
7から適宜取り出した要素を継電器5Aまたは5
Bに印加すれば良い。
On the other hand, a test current I T is applied in the direction of the arrow from the test power source 7 to a winding 9-3 wound around the same core as the primary winding 9-1 of the auxiliary CT 9 through a contact 12a that is closed during the test. Then, a current i T in the opposite direction to i M flows through the secondary winding 9-2 of the auxiliary CT 9,
The inspection current flows through the main winding 4A of the relay 5A in the reverse order of iM . In other words, main winding 4 of relay 5A
At A, the tidal current I M is canceled and only the inspection current i T is applied. If the magnitude of this inspection current i T is appropriately selected, the inspection of the relay 5A can be carried out from the main winding without being affected by the current. Next, in order to inspect the relay 5B, the contacts 14a1, 14a2 of the auxiliary relay, which are activated by the inspection command to inspect the relay 5B in the same way as the inspection of the relay 5A, are
14b, only i T is applied to the main winding 4B of the relay 5B using the same auxiliary CT 9 as used for inspecting the relay 5A, as in the case of inspecting the relay 5A. If other elements (for example, voltage) are required for these relay operating conditions, the elements taken out from the inspection power supply 7 may be used as the relay 5A or 5.
It is sufficient to apply it to B.

以上述べたように本考案の方式によれば継電器
のCT回路本巻線から潮流の影響を受けずに異な
る2グループの継電器に対して1個のキヤンセル
CTにて独立に点検可能となるため、信頼度が高
くしかもキヤンセルCTの数が少なくて良いので
経済的であり装置の縮小化にも極めて有効であ
る。なお本実施例では2個の継電器を2グループ
に分ける場合について説明したが第6図に示すよ
うに類似の検出機能をもつ継電器(例えば短絡距
離継電器と地絡距離継電器)を1組にして一括し
て潮流キヤンセルしても良い。
As described above, according to the method of the present invention, one cancel cell can be transmitted from the main winding of the CT circuit of the relay to two different groups of relays without being affected by the power flow.
Since inspection can be performed independently using CT, reliability is high, and since only a small number of cancel CTs are required, it is economical and extremely effective in downsizing the equipment. In this embodiment, we have explained the case where two relays are divided into two groups, but as shown in Fig. 6, relays with similar detection functions (for example, a short-circuit distance relay and a ground-fault distance relay) are grouped together as a group. You can cancel the current by doing so.

第6図において継電器5A1,5A2はそれぞ
れ短絡距離リレーおよび地絡距離リレーであり、
継電器5B1,5B2は短絡過電流リレーおよび
地絡過電流リレーとする組合せが考えられる。組
み合わせる継電器は本実施例に限定されず、任意
の組み合わせとしても良い。
In FIG. 6, relays 5A1 and 5A2 are a short-circuit distance relay and a ground-fault distance relay, respectively,
The relays 5B1 and 5B2 may be combined as a short circuit overcurrent relay and a ground fault overcurrent relay. The relays to be combined are not limited to those in this embodiment, and any combination may be used.

またnグループの継電器に対してはn/2
(n:偶数)個、またはn+1/2(n:寄数)個のキ ヤンセルCTで同様の点検を行える。4個の継電
器5A,5B,5A′,5B′に2個のキヤンセル
CT9および9′を適用した例を第7図に示す。
Also, for n groups of relays, n/2
Similar inspection can be performed using (n: even number) or n+1/2 (n: even number) cancel CTs. 2 cancells for 4 relays 5A, 5B, 5A', 5B'
An example in which CT9 and CT9' are applied is shown in FIG.

また同一の主CTを用いた二系列化装置に本考
案を適用すれば、1個のキヤンセルCTで片系列
ごとに独立して点検することも可能である。
Furthermore, if the present invention is applied to a dual-sequence device using the same main CT, it is also possible to independently inspect each one-sequence using one cancel CT.

第8図がその実施例を示す図であり、31Aが
第1系列、31Bが第2系列とすれば、1個のキ
ヤンセルCTを用いて片系列ごとに点検可能とな
るので、一方の系列が点検中に系統事故が発生し
た場合でも、残りの系列の継電器は正常に応動可
能であり、時間遅れなしでトリツプ指令を出すこ
とができ極めて信頼度の高い保護継電装置とな
る。
FIG. 8 is a diagram showing an example of the embodiment. If 31A is the first series and 31B is the second series, each series can be inspected using one cancel CT. Even if a system fault occurs during inspection, the relays in the remaining series can respond normally and issue a trip command without any time delay, making it an extremely reliable protective relay device.

なお本説明ではすべて一相分について述べたが
三相回路に適用するにはこれを3倍すれば良いこ
とは言うまでもない。
In this explanation, everything has been described for one phase, but it goes without saying that this can be multiplied by three to apply to a three-phase circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の潮流キヤンセル回路の1例を示
す図、第2図は2個の継電器の潮流キヤンセルす
る従来の装置を示す図、第3図は本考案の1実施
例を説明するための図、第4図は第3図の回路の
接点協調を示すタイムチヤート、第5図ないし第
7図は本考案の他の実施例を説明するための回路
構成図である。 1……保護対象、2……主CT、3……入力変
換器、9……補助変流器。
Fig. 1 is a diagram showing an example of a conventional power flow cancel circuit, Fig. 2 is a diagram showing a conventional device for canceling the power flow of two relays, and Fig. 3 is a diagram for explaining an embodiment of the present invention. 4 are time charts showing the contact coordination of the circuit of FIG. 3, and FIGS. 5 to 7 are circuit configuration diagrams for explaining other embodiments of the present invention. 1...Protection target, 2...Main CT, 3...Input converter, 9...Auxiliary current transformer.

Claims (1)

【実用新案登録請求の範囲】 (1) 保護対象に流れる端子電流を入力しこれを変
成して2次電流を出力する主変流器と、 この主変流器の2次回路に直列に接続され、
かつn個(n:2以上の整数)のグループに分
けられたm個(m≧n)の継電器入力変換器
と、 この入力変換器の各グループ相互間を接続す
る主変流器2次回路に介挿され前記主変流器2
次電流が流れる一次巻線、この一次巻線に電磁
的に結合する2次巻線及び点検巻線を備えた補
助変流器と、 前記補助変流器2次巻線に誘起する電流の極
性が継電器入力変換器に流れる電流の極性とは
逆極性となるように、かつ当該補助変流器2次
巻線の両端子をそれぞれ各グループの継電器入
力変換器の両端子間に対して接続して構成した
n個の閉回路と、 このn個の各閉回路において、補助変流器2
次巻線両端子と各グループの継電器入力変換器
両端子との間にそれぞれ介挿されると共に、当
該各グループ内の継電器点検時のみ閉路し、常
時は開路している一対のスイツチ素子と、 前記補助変流器2次巻線の両端子間に直列接
続され、この端子間を常時は短絡し当該グルー
プ内の継電器点検時のみそれぞれ開路する2個
のスイツチ素子と、 当該グループ内の継電器点検時のみ前記補助
変流器点検巻線に点検電源を印加するスイツチ
素子とを備えたことを特徴とする保護継電装
置。 (2) 実用新案登録請求の範囲第1項に記載のもの
において、各グループ内の継電器の数を1個以
上としたことを特徴とする保護継電装置。 (3) 実用新案登録請求の範囲第1項に記載のもの
において、n個のグループに分けられた継電器
に対してn/2(但しn:偶数)個、または
(n+1)/2(但しn:奇数)個の補助変流
器を設けたことを特徴とする保護継電装置。
[Claims for Utility Model Registration] (1) A main current transformer that inputs terminal current flowing through the protected object, transforms it, and outputs a secondary current, and is connected in series to the secondary circuit of this main current transformer. is,
and m relay input converters (m≧n) divided into n groups (n: an integer of 2 or more), and a main current transformer secondary circuit that connects each group of the input converters. The main current transformer 2 is inserted into the main current transformer 2.
an auxiliary current transformer comprising a primary winding through which a secondary current flows, a secondary winding electromagnetically coupled to the primary winding, and a check winding; and polarity of the current induced in the secondary winding of the auxiliary current transformer. Connect both terminals of the secondary winding of the auxiliary current transformer to both terminals of the relay input converter of each group so that the polarity of the current flowing through the relay input converter is opposite to that of the current flowing through the relay input converter. In each of these n closed circuits, the auxiliary current transformer 2
a pair of switch elements that are respectively inserted between both terminals of the next winding and both terminals of the relay input converter of each group, and are closed only when inspecting the relays in each group, and are normally open; Two switch elements are connected in series between both terminals of the secondary winding of the auxiliary current transformer, and these terminals are normally short-circuited and open only when inspecting the relays in the group. and a switch element for applying a test power source to the auxiliary current transformer test winding. (2) A protective relay device according to claim 1 of the utility model registration, characterized in that the number of relays in each group is one or more. (3) In the utility model registration claim described in paragraph 1, for relays divided into n groups, n/2 (where n is an even number) or (n+1)/2 (where n A protective relay device characterized by having an odd number of auxiliary current transformers.
JP5584378U 1978-04-28 1978-04-28 Expired JPS6230442Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5584378U JPS6230442Y2 (en) 1978-04-28 1978-04-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5584378U JPS6230442Y2 (en) 1978-04-28 1978-04-28

Publications (2)

Publication Number Publication Date
JPS54159055U JPS54159055U (en) 1979-11-06
JPS6230442Y2 true JPS6230442Y2 (en) 1987-08-05

Family

ID=28952116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5584378U Expired JPS6230442Y2 (en) 1978-04-28 1978-04-28

Country Status (1)

Country Link
JP (1) JPS6230442Y2 (en)

Also Published As

Publication number Publication date
JPS54159055U (en) 1979-11-06

Similar Documents

Publication Publication Date Title
DE69823936T2 (en) GROUNDING ERROR PROTECTION FOR MULTI-SOURCE SYSTEM
JPS5889028A (en) Method and device for detecting 1-wire ground fault accident of 3-phase power system
JPS6230442Y2 (en)
US1752947A (en) Protective system
JPH0626037Y2 (en) Ground fault protection device
SU391675A1 (en) DEVICE FOR PROTECTION AGAINST SHORT CIRCUITS
US2565127A (en) Protective relay
JPS5840407B2 (en) Residual circuit monitoring method
JPS6341804Y2 (en)
JPS61191229A (en) Current differential relay
JPS607884B2 (en) Inspection method of ratio differential relay device
JPH06284556A (en) Grounding current detection method for three-phase four-wire circuit
JPH0130368B2 (en)
JPH0356099A (en) Field test method for generator
JPS6026412A (en) Inspecting device of protecting relay
JPS585396Y2 (en) Earth fault protection device
JPH01209927A (en) Bypass circuit for ground-fault trip type zone switch
JPH0130369B2 (en)
US2315471A (en) Protective system
JPS6084918A (en) Display wire relaying device
JPH0231879Y2 (en)
JPH0469010A (en) High voltage ground relay system
Powell et al. Special uses for the automatic oscillograph
Bhatti A Microcomputer Based Approach for Identification and Selective Control of Uhv Lines Operating Under Mixed Faults
JPH0475414A (en) Leakage circuit breaker