JPS61191229A - Current differential relay - Google Patents

Current differential relay

Info

Publication number
JPS61191229A
JPS61191229A JP60029703A JP2970385A JPS61191229A JP S61191229 A JPS61191229 A JP S61191229A JP 60029703 A JP60029703 A JP 60029703A JP 2970385 A JP2970385 A JP 2970385A JP S61191229 A JPS61191229 A JP S61191229A
Authority
JP
Japan
Prior art keywords
current
differential relay
current differential
inspection
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60029703A
Other languages
Japanese (ja)
Inventor
貞神 高通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60029703A priority Critical patent/JPS61191229A/en
Publication of JPS61191229A publication Critical patent/JPS61191229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は母線保護装置の如く複数の交流器(以下、CT
と称する)から入力量を導入して電流差動方式を適用す
る保護継電装置に係り、特に入力変換器およびその制御
回路を簡単に構成すると共に、電流差動継電器(以下、
電流差動リレーと称する)の点検を潮流の影響を受けず
に行ない得るようにした電流差動継電装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a plurality of AC transformers (hereinafter referred to as CT
It relates to a protective relay device that applies a current differential method by introducing an input amount from a current differential relay (hereinafter referred to as
The present invention relates to a current differential relay device that allows inspection of a current differential relay (referred to as a current differential relay) without being affected by current.

[発明の技術的背景とその問題点] 電流差動方式は、複数の入力電流の差を動作量とする方
式であり、母線保護、変圧器保護、発電機保護および送
電線保護等に広く適用されている有用な方式である。本
発明はこれらの電流差動方式のいずれにも適用しうるち
のであるが、以下の説明は母線保護装置を例として行な
う。
[Technical background of the invention and its problems] The current differential method is a method that uses the difference between multiple input currents as the operating amount, and is widely applied to busbar protection, transformer protection, generator protection, power transmission line protection, etc. This is a useful method. Although the present invention can be applied to any of these current differential systems, the following description will be made using a bus protection device as an example.

第4図は、母線保護に電流差動継電装置を適用した場合
の構成を示すものである。なお、図では簡単のため2つ
の送電線Ll、12と、2v母線Bus−A、BLJS
−Bで構成される系統を示しでおり、送電線L1は断路
器LSIAおよびLSlB、送電線L2は断路器LS2
AおよびLS2Bにより、保護対象としての母線Bus
−A。
FIG. 4 shows a configuration in which a current differential relay device is applied to bus bar protection. In addition, in the figure, for simplicity, two power transmission lines Ll and 12, and 2v bus lines Bus-A and BLJS are shown.
-B, the power transmission line L1 is the disconnector LSIA and LS1B, and the power transmission line L2 is the disconnector LS2.
A and LS2B protect the bus line Bus as a protection target.
-A.

Bus−Bの、いずれにも任意に接続し得る構成となっ
ている。図において、1.2は入力変換器、3.4は電
流差動リレー、5.6.7.8はそれぞれの断路器LS
IA、LS1B、LS2A。
The configuration is such that it can be arbitrarily connected to either Bus-B. In the figure, 1.2 is the input converter, 3.4 is the current differential relay, and 5.6.7.8 is the respective disconnector LS.
IA, LS1B, LS2A.

LS2Bに連動し、断路器1人」の時「閉」する常開接
点である。
It is a normally open contact that is linked to LS2B and closes when there is only one disconnector.

第4図において、断路器LSIAおよびLS2Aが「入
」すなわち送電線L1.L2がBLJS−Aに接続され
ている場合、系統電流はそれぞれの変流器CT1.CT
2を介して入力変換器1および2に導入される。さらに
、入力変換器1および2で所定の電気量に変換されたの
ち、断路器LSIA、LS2Aに連動する常開接点5お
よび7を介して電流差動リレー3に導入される。一方、
送電線L1.L2がBus−8に接続されている場合は
、入力変換器1.2の出力は断路器LSIB。
In FIG. 4, disconnectors LSIA and LS2A are "on", that is, power transmission line L1. When L2 is connected to BLJS-A, the grid current is transferred to the respective current transformer CT1. CT
2 into input transducers 1 and 2. Furthermore, after being converted into a predetermined quantity of electricity by input converters 1 and 2, it is introduced into current differential relay 3 via normally open contacts 5 and 7 which are interlocked with disconnectors LSIA and LS2A. on the other hand,
Power transmission line L1. If L2 is connected to Bus-8, the output of input converter 1.2 is disconnector LSIB.

LS2Bに連動する常開接点6および8を介して電流差
動リレー4に導入されることになる。すなわち、母線B
us−Aに接続されている送電線の情報は電流差動リレ
ー3に、母線Bus−Bに接続されている送電線の情報
は電流差動リレー4に導入され、電流差動リレー3は母
線Bus−Aの保護をリレー4は母線Bus−8の保護
を行なうことになる。
The current will be introduced into the differential relay 4 via normally open contacts 6 and 8 linked to LS2B. That is, bus line B
Information on the power transmission line connected to us-A is introduced into the current differential relay 3, information on the power transmission line connected to the bus bus-B is introduced into the current differential relay 4, and the current differential relay 3 is introduced into the current differential relay 4. Relay 4 protects Bus-A and bus Bus-8.

第5図は、上記電流差動リレー3および4の特性の一例
を示すものである。図において、横軸に流入電流、縦軸
に流出電流をとると、常時潮流又は外部事故時の電流軌
跡は+45°の線つまり図の破線上に存在し、内部事故
時の電流軌跡は横軸上又はその近傍に存在するので、リ
レーは図に示す9または10の特性を有するように構成
すれば内、外部事故の判別を行うことが出来る。実際に
は、9と10をアンドにした図のハツチングで示す比率
差動特性となっている。この特性は、動作式を変えるこ
とによりある程度任意の特性を得られるが、特性自体は
本発明の本意ではないのでその詳細な説明は省略する。
FIG. 5 shows an example of the characteristics of the current differential relays 3 and 4. In the diagram, if we take the inflow current on the horizontal axis and the outflow current on the vertical axis, the current trajectory during normal power flow or an external fault is on the +45° line, that is, the broken line in the diagram, and the current trajectory during an internal fault is on the horizontal axis. Therefore, if the relay is configured to have characteristics 9 or 10 shown in the figure, it is possible to distinguish between internal and external accidents. In reality, it has a ratio differential characteristic as shown by the hatching in the figure where 9 and 10 are ANDed. This characteristic can be obtained to some extent by changing the operating formula, but since the characteristic itself is not the essence of the present invention, a detailed explanation thereof will be omitted.

第6図は、入力変換器および電流差動リレーへの入力回
路の1相分の詳細を示したものである。
FIG. 6 shows details of one phase of the input circuit to the input converter and current differential relay.

図において、1は入力変換器であり、1−1.1−2は
入力変換器の1次巻線で、1−1はCT2次電流を導入
する巻線、1−2は点検電流を導入する巻線、1−3.
1−4は入力変換器の2次巻線、1−5.1−6.1−
7.1−8は整流素子である。ここで、巻線の極性側(
○印を付した方)を正、他方を負とすると、2次巻線1
−3を流れる電流は正の半波時は整流素子1−7.1−
6が導通し入力変換器の出力としては11+、負の半波
時は整流素子1−8.1−5が導通し入力変換器の出力
として■1−が生じる。一方、巻線1−4に生じる電流
は入力電流に応じた電流■1が生じる(厳密には巻数比
率に逆比例の電流)。また、入力変換器2についても同
様であり、常開接点5゜7が共に閉ならばこれらは全て
電流差動リレー3に導入される。
In the figure, 1 is the input converter, 1-1.1-2 is the primary winding of the input converter, 1-1 is the winding that introduces the CT secondary current, and 1-2 introduces the inspection current. winding wire, 1-3.
1-4 is the secondary winding of the input converter, 1-5.1-6.1-
7.1-8 is a rectifying element. Here, the polar side of the winding (
If the one marked with ○ is positive and the other is negative, secondary winding 1
-3 The current flowing through rectifying element 1-7.1- during the positive half wave
6 becomes conductive and the output of the input converter is 11+, and at the time of a negative half wave, the rectifying elements 1-8, 1-5 become conductive and the output of the input converter is 1-. On the other hand, the current generated in the windings 1-4 is a current 1 corresponding to the input current (strictly speaking, a current inversely proportional to the turns ratio). The same applies to the input converter 2, and if the normally open contacts 5.7 are both closed, all of them are introduced into the current differential relay 3.

この電流差動リレー3に導入される電流は、それぞれΣ
1+−11” +12 +、ΣI−=Is−+I2−、
Id=Tt +I2となり、実際の波形を示すと、■1
と12の大きさおよび位相にJ:り第7図(a)〜(C
)のように変化する。図において、(a)、’(C)は
母線の内部事故時、(b)は外部事故時の様相と同様で
あり、例えば動作式%式%) ≧に3 (但しk・1.に2.に3は任意の定数)とす
ることにより、第2図のような特性を有する電流差動リ
レーとなる。
The current introduced into this current differential relay 3 is Σ
1+-11" +12 +, ΣI-=Is-+I2-,
Id=Tt +I2, and the actual waveform is: ■1
and the magnitude and phase of 12.
). In the figure, (a) and '(C) are the same as when an internal accident occurs on the busbar, and (b) is the same as when an external accident occurs. . and 3 are arbitrary constants), a current differential relay having characteristics as shown in FIG. 2 is obtained.

一方、常開接点6.8が「閉」の場合、入力変換器の出
力は電流差動リレー4に導入されるが、この場合の応動
はリレー3の場合と同様になる。
On the other hand, if the normally open contact 6.8 is "closed", the output of the input converter is introduced into the current differential relay 4, but the response in this case is similar to that of the relay 3.

なお、以上は入力変換器が2個の例で説明したが、3個
以上の場合でも同様の作用となる。また、実際の母線保
護装置においては、多数の送電線および変圧器が接続さ
れる母線を保護することになるが、この場合でも第1図
に示すLSIA、LSIB、’LS2A、LS2Bのよ
うな断路器と連動する常開接点により、当該母線に接続
される送電線・変圧器の電流のみを当該母線を保護する
電流差動リレーに導入することが可能であり、これによ
り確実に内外部判定を行うことが出来る。さらに、第6
図の場合は1相分を示しているが、実際は3相分の回路
が必要なことと、電流差動リレーの動作式によっては更
に別な電気量を必要とする場合がある。
Note that although the above description has been made using an example in which there are two input converters, the same effect can be achieved even in the case of three or more input converters. In addition, in an actual busbar protection device, a busbar to which many power transmission lines and transformers are connected is protected, but even in this case, disconnections such as LSIA, LSIB, 'LS2A, and LS2B shown in Fig. The normally open contact that works with the bus allows only the current of the power transmission line/transformer connected to the bus to be introduced into the current differential relay that protects the bus, which allows reliable internal/external determination. It can be done. Furthermore, the sixth
Although the figure shows a circuit for one phase, in reality, a circuit for three phases is required, and an additional amount of electricity may be required depending on the operating formula of the current differential relay.

黙しながら、かかる方式の電流差動リレーの自動点検を
行なう場合には次のような不具合現象が生じうる。すな
わち一般に、第5図に示す特性の自動点検を行う場合、
第8図に示すA点相出の点検電流を印加して動作側点検
、8点相当の点検電流を印加して不動作側点検を行って
いる。この場合、自動点検の対象範囲を極力広くするた
め、入力変換器を含めて点検を行うのが一般的であり、
第6図に示す点検巻線1−2から点検電流を印加する。
However, when performing automatic inspection of this type of current differential relay, the following problems may occur. That is, in general, when performing automatic inspection of the characteristics shown in Fig. 5,
The operating side is inspected by applying the inspection currents phased out from point A shown in FIG. 8, and the non-operating side is inspected by applying inspection currents corresponding to 8 points. In this case, in order to widen the scope of automatic inspection as much as possible, it is common to inspect the input converter as well.
A test current is applied from the test winding 1-2 shown in FIG.

また、A点またはB点を模擬するためには2つの入力変
換器を必要とするので、当該母線保護装置の中の任意の
2つの入力変換器を選んで行うことになる。ここで、被
選択入力変換器の断路器に連動する常開接点は゛閉″シ
、伯の常開接点は“開″′として各々の入力変換器に印
加する点検電流を変えることにより、第7図に示すIf
Furthermore, since two input converters are required to simulate point A or point B, any two input converters in the busbar protection device are selected. Here, by changing the check current applied to each input converter, the normally open contact linked to the disconnector of the input converter to be selected is "closed" and the normally open contact of the selected input converter is "open". If shown in the figure
.

I2の大きさおよび位相を任意に制御出来る。The magnitude and phase of I2 can be controlled arbitrarily.

このように、第8図のA点およびB点を容易に制御出来
るが、第6図からも明らかなように入力変換器の1次側
にはCT2次電流も導入されているため、実際には、点
検電流に潮流が重畳されることになる。従って、A点、
B点は潮流の影響により各々破線で囲んだ範囲内のいず
れかに変動する。例えば、潮流のIlj?iによりA点
がA1点、またはB点がB1点に移った場合を想定する
と、リレーの動作限界近傍であって動作側点検で不動作
、不動作側点検で動作となり点検不良となる可能性があ
る。そこで、このような不具合を避けるためにはA点、
B点は潮流の影響を受けても、十分なマージンがあるよ
うに動作限界の点から十分前れた点を模擬することにな
るが、他方潮流の影響が逆方向に作用してA点がA2点
、B点が82点に移動したことを想定すると、更にリレ
ーの動作限界から離れることにより、せっかく比率特性
の点検を行なっていながら、何らかの不具合によりリレ
ーの比率特性の変化があっても検出し得ないこととなる
In this way, points A and B in Fig. 8 can be easily controlled, but as is clear from Fig. 6, the CT secondary current is also introduced to the primary side of the input converter, so in reality In this case, the power flow will be superimposed on the inspection current. Therefore, point A,
Point B varies within the ranges each surrounded by a broken line due to the influence of the tidal current. For example, the current Ilj? Assuming that point A moves to point A1 or point B to point B1 due to i, it is near the operating limit of the relay, and there is a possibility that it will not work when inspected on the operating side and will operate when inspected on the non-operating side, resulting in a defective inspection. There is. Therefore, in order to avoid such problems, point A,
Point B is simulated at a point sufficiently ahead of the operating limit point so that there is sufficient margin even if it is affected by the tidal current, but on the other hand, the influence of the tidal current acts in the opposite direction and points A Assuming that point A2 and point B have moved to point 82, by moving further away from the relay's operating limit, even if the ratio characteristics of the relay are checked, even if there is a change in the ratio characteristics of the relay due to some malfunction, it will not be detected. That would be impossible.

以上述べたように、従来から採用されている電流差動継
電@置においては、リレーの点検を行う場合に潮流の影
響を受けるため高精度の点検を行なうことが出来ないと
いう問題がある。一方、かかる問題を解消する方法とし
ては、点検時潮流をキャンセルする回路を付加する方法
や、潮流が印加されない点検専用の入力変換器を2個付
加して行なう方法が考えられるが、いずれも装置番複雑
にする方法であり好ましくない。
As described above, the conventionally employed current differential relay system has a problem in that highly accurate inspection cannot be performed because the relay is affected by the current when inspecting the relay. On the other hand, possible ways to solve this problem include adding a circuit that cancels the power flow during inspection, or adding two input converters exclusively for inspection to which no power flow is applied, but both of these methods involve This method complicates the process and is not desirable.

[発明の目的] 本発明は上記のような問題を解決するために成されたも
のであり、その目的は装置を複雑にすることなくしかも
潮流の影響を受けることなく高精度の点検を行なうこと
が可能な電流差動継電装置を提供することにある。
[Purpose of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to perform highly accurate inspection without complicating the device and without being affected by currents. The object of the present invention is to provide a current differential relay device that is capable of

[発明の概要] 上記目的を達成するために本発明では、電力系統におけ
る複数の系統電流を夫々に対応して設けられた入力変換
器を介して電流差動リレーに導入し、上記複数の系統電
流の差を動作量として電力系統を保護する電流差動継電
装置において、上記電流差動リレーの点検時に、上記電
力系統の各回線に対応して設□けられた入力変換器の2
次巻線を3相並列に接続す□る第1の回路と、上記入力
変換器の2次側に設けへれかつ上記電力系統の保護対象
を連系す菖開閉器と連動して上記電流差動り1ノに導入
される系統電流を選択する第2の回路と、上記入力変換
器の1次側に設けられた所定の点検電iを印加する点検
用巻線を備えた第3の回路とから成る点検装置を具備し
て構成し、点検時には第1の回路により潮流の影響をな
くすると共に第2の回路により各回線を選択し、第3の
回路により点検電流を印加して電流差動リレーの点検を
行なうようにしたことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the present invention introduces a plurality of system currents in a power system into a current differential relay via input converters provided correspondingly to each other, and In a current differential relay device that protects a power system by using the difference in current as an operating quantity, when inspecting the current differential relay, two of the input converters installed corresponding to each line of the power system are checked.
A first circuit that connects the next winding in three phases in parallel, and an iris switch that is installed on the secondary side of the input converter and connects the protection target of the power system, a second circuit for selecting the system current introduced into the differential circuit 1, and a third circuit provided with a test winding for applying a predetermined test voltage i provided on the primary side of the input converter. During inspection, the first circuit eliminates the influence of power flow, the second circuit selects each line, and the third circuit applies inspection current to check the current. A feature is that the differential relay is inspected.

[発明の実施例] 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.

第1図は本発明による電流差動継電装置の構成例を示し
たもので、第6図と同一部分には同一符号を付してその
説明を省略し、ここでは異なる部分についてのみ述べる
FIG. 1 shows a configuration example of a current differential relay device according to the present invention. The same parts as in FIG. 6 are given the same reference numerals, and the explanation thereof will be omitted, and only the different parts will be described here.

第1図において、1A、IB、ICは前記送電線の3相
つまりR,S、T相の系統電流を適宜の大きさに変換す
る入力変換器で、その2次側出力を電流差動リレー3A
、3B、3Gおよび4A。
In Fig. 1, 1A, IB, and IC are input converters that convert the three-phase grid currents of the power transmission line, that is, the R, S, and T phases, into appropriate magnitudes, and the secondary output is connected to the current differential relay. 3A
, 3B, 3G and 4A.

4B、4Cに夫々導入するようにしている。また、11
は上記電流差動リレー3A、3B、3Cおよび4A、4
B、4Cの点検時に閉路する常開接点で、その閉路によ
り上記各回線に対応して設けられた入力変換器IA、1
−8.1Gの2次巻線1−3および1−4を3相(R,
S、T相)並列に接続する一点検回路を構成している。
We are trying to introduce it to 4B and 4C respectively. Also, 11
are the above current differential relays 3A, 3B, 3C and 4A, 4
A normally open contact that closes during inspection of B and 4C, which closes the input converter IA and 1 provided corresponding to each of the above lines.
-8.1G secondary windings 1-3 and 1-4 are connected in 3 phases (R,
(S, T phase) constitutes a one-check circuit connected in parallel.

なお、第1図では送電線−回線分の構成を示しているが
、実際には他回線の系統電流についても同様に電流差動
リレー3A、3B、3Cおよび4A、4B、4Cに導入
するようにしているものである。
Although Fig. 1 shows the configuration of the power transmission lines and circuits, in reality, the system current of other lines is also introduced in the current differential relays 3A, 3B, 3C and 4A, 4B, 4C. This is what we do.

すなわち、本実施例による電流差動継電装置は本来の電
流差動継電装置に、電流差動リレー3A。
That is, the current differential relay device according to this embodiment includes the current differential relay 3A in addition to the original current differential relay device.

3B、3Cおよび4A、4B、iGの点検時に、電力系
統の各回線に対応して設けられた入力変換器IA、IB
、ICの2次巻線1−3および1−4を3相並列に接続
する常開接点11を有してなる第1の回路と、上記入力
変換器1 A、1B 、ICの2次側に設けられかつ上
記電力系統の保護対象(ここでは母線BUS−Δ、Bu
s−B)を連系する開閉器としての断路器LS1A、L
SIBおよびLS2A、LS2Bと連動して上記電流差
動リレー3A、3B、3Cおよび4A、4B、4Cに導
入される系統電流を選択する上記常開接点5および6を
有してなる第2の回路と、上記入力変換器IA、IB、
ICの1次側に設けられ所定の点検電流を印加する前記
点検用巻線1−2を備えてなる第3の回路とから成る点
検装置を付加して構成したものである。
When inspecting 3B, 3C, 4A, 4B, and iG, input converters IA and IB installed corresponding to each line of the power system
, a first circuit having a normally open contact 11 that connects the secondary windings 1-3 and 1-4 of the IC in three-phase parallel; and the input converters 1A, 1B, the secondary side of the IC. and the objects of protection of the power system (here, the bus BUS
Disconnector LS1A, L as a switch connecting s-B)
a second circuit comprising the normally open contacts 5 and 6 that select the grid current introduced into the current differential relays 3A, 3B, 3C and 4A, 4B, 4C in conjunction with SIB and LS2A, LS2B; and the input converters IA, IB,
The present invention is constructed by adding an inspection device comprising a third circuit provided on the primary side of the IC and comprising the inspection winding 1-2 for applying a predetermined inspection current.

次に、かかる構成の電流差動継電装置における点検時の
作用について第2図を用いて述べる。なお、第2図は説
明を分りやすくするために、第1図の入力変換器1A〜
1Cから一方、の2次巻線1−3を省略し、他方の2次
巻線1−4のみを示したものである。実際には、1−3
も1−4と同様の構成となっている。
Next, the operation of the current differential relay device having such a configuration during inspection will be described using FIG. 2. Note that in order to make the explanation easier to understand, FIG.
One of the secondary windings 1-3 from 1C is omitted, and only the other secondary winding 1-4 is shown. Actually, 1-3
It also has the same configuration as 1-4.

第2図において、入力変換器IA、IB、1C夫々の2
次巻線1−4は、点検指令により常開接点11が閉にな
ると同−極炸同志が短絡される。
In FIG. 2, two input converters IA, IB, and 1C each
In the next winding 1-4, when the normally open contact 11 is closed in response to an inspection command, the same poles are short-circuited.

これにより、入力変換器2次側で各々120°ずつ位相
のずれた3相交流が合成されることになる。
As a result, three-phase alternating currents each having a phase shift of 120° are synthesized on the secondary side of the input converter.

Oとなり電流差動リレーに導入され出力1dは零となる
。次に、この状態で点検電流(単相交流)を点検用巻線
1−2に夫々流すと、上記2次巻線1−4には同一位相
の電流が出力され、3相を合成した出力Idは点検電流
の3倍に相当する値となって電流差動リレーに導入され
る。
0, the current is introduced into the differential relay, and the output 1d becomes zero. Next, in this state, when a check current (single-phase AC) is applied to the check windings 1-2, currents of the same phase are output to the secondary windings 1-4, and an output is obtained by combining the three phases. Id becomes a value equivalent to three times the inspection current and is introduced into the current differential relay.

このように、点検時に閉粋する常開接点11で夫々の入
力変換器2次巻線を短絡することにより、13一 点検時に電流差動リレーに導入される系統電流つまり潮
流の影響をなくすると共に点検電流分のみを導入するこ
とが出来る。すなわちこのことは、従来の電流差動リレ
ーの点検では点検電流とmmとが重畳された出力が電流
差動リレーに導入されるため、第8図においてA点、8
点の点検ポイントがA1.A2およびB1.82点の範
囲まで移動することを考慮する必要があったが、本実施
例の回路を構成することで点検電流のみを電流差動リレ
ーに導入することが可能となる。
In this way, by short-circuiting the secondary winding of each input converter with the normally open contact 11 that is closed during inspection, the influence of the grid current, that is, power flow, introduced into the current differential relay during inspection is eliminated. In addition, only the inspection current can be introduced. In other words, this means that in the conventional inspection of a current differential relay, an output in which the inspection current and mm are superimposed is introduced into the current differential relay.
The inspection point is A1. Although it was necessary to consider moving to the range of A2 and B1.82 points, by configuring the circuit of this embodiment, it becomes possible to introduce only the inspection current to the current differential relay.

なお、上記では点検巻線1−2を各粗金てに設けている
が、常開接点11により各相の2次巻線を短絡させてい
るためいずれか1相分だけ設は他の相を省略することが
可能だが、巻線を含めて点検することを考えて3相共設
けているものである。
In the above example, the inspection windings 1-2 are installed in each rough metal, but since the secondary windings of each phase are short-circuited by the normally open contact 11, the installation for only one phase is not necessary for the other phases. Although it is possible to omit this, all three phases are provided in order to inspect the windings as well.

また、第2図では2次巻線1−4について説明したが、
実際は第1図のように2次巻線1−3についても1−4
と同様に常開接点11により短絡されている。このため
、2次巻線出力11”1ll−1■は点検時に潮流が除
去されて点検電流分のみとなり、電流差動リレー3A〜
3C14Δ〜4Cに導入される。その結果、点検ポイン
トは第8図のA点、8点のみ考慮すればよいことから、
極めて高精度の点検を行なうことが出来る。さらに、点
検は3相一括または各桁毎のいずれの方法でも可能であ
ることは言うまでもない。
In addition, although the secondary winding 1-4 was explained in Fig. 2,
Actually, as shown in Figure 1, the secondary winding 1-3 is also 1-4.
Similarly, it is short-circuited by the normally open contact 11. Therefore, the power flow of the secondary winding output 11"1ll-1■ is removed at the time of inspection and only the inspection current remains, and the current differential relay 3A~
Introduced into 3C14Δ~4C. As a result, since it is only necessary to consider the inspection points A and 8 points in Figure 8,
It is possible to perform inspections with extremely high precision. Furthermore, it goes without saying that the inspection can be performed either all at once or for each digit.

上述したように本実施例の電流差動継電装置によれば、
入力変換器1A〜1Cの2次巻線1−3゜1−4を点検
時に短絡するようにしているので、電流差動リレー3A
〜3C,4A〜4Cには潮流の影響をなくして点検電流
のみが導入され、これにより高精度の点検を行なうこと
が可能となり装置の信頼性を向上させることができる。
As described above, according to the current differential relay device of this embodiment,
Since the secondary windings 1-3゜1-4 of the input converters 1A to 1C are short-circuited during inspection, the current differential relay 3A
~3C, 4A~4C, only the inspection current is introduced without the influence of the current, which makes it possible to perform highly accurate inspection and improve the reliability of the device.

また、従来では小電流域の特性を点検するにあたって、
潮流の影響をなくするために別個に点検用入力変換器を
設けて行なったが、本実施例により点検用の入力変換器
を省略することができ、コスト的にも極めて安価な装置
を得ることが可能となる。
Additionally, in the past, when checking the characteristics in the small current range,
In order to eliminate the influence of tidal currents, a separate input converter for inspection was provided, but according to this embodiment, the input converter for inspection can be omitted, and an extremely low-cost device can be obtained. becomes possible.

次に、第3図は本発明の他の実施例を示すもので、第2
図及び第4図と同一部分には同一符号を付して示してい
る。なお、第3図では1相分のみを示しているが、実際
には3相分の回路が必要である。
Next, FIG. 3 shows another embodiment of the present invention.
The same parts as in the figures and FIG. 4 are designated by the same reference numerals. Although only one phase is shown in FIG. 3, three phase circuits are actually required.

図において、1.2は各送電線L1.L2の系統電流を
導入する入力変換器で、2次巻線1−4は常開接点11
に接続する端子が引出され、点検時に常開接点11が閉
となると2次巻線1−4の同一極性同志が短絡される。
In the figure, 1.2 indicates each power transmission line L1. In the input converter that introduces the L2 system current, the secondary winding 1-4 has a normally open contact 11.
When the terminal connected to is pulled out and the normally open contact 11 is closed during inspection, the secondary windings 1-4 having the same polarity are short-circuited.

図では、送電線2本の場合を示しているが、実際には第
4図において2重母線Bus−A又はBIJS−Bに接
続される送電線全ての入力変換器の2次側を、同様に常
開接点11により短絡するように構成される。
Although the figure shows the case of two power transmission lines, in reality, the secondary sides of the input converters of all the power transmission lines connected to the double bus Bus-A or BIJS-B in Figure 4 are connected in the same way. The normally open contact 11 is configured to short-circuit between the two terminals.

さて通常、母線の内部故障以外では母線に接続される送
電線の電流の合計が零となることは周知の通りである。
Now, it is well known that normally, except for an internal failure of the bus, the total current of the power transmission lines connected to the bus becomes zero.

このため、点検時に入力変換器2次側を第3図のように
常開接点11により短絡することで、電流差動リレーに
導入される出力Idは零となる。次にこの状態で入力変
換器1及び2の点検用巻線1−2に点検電流を同一方向
に入力すると、2次巻線1−4の電流は同一位相である
ため加算された電流として出力されることになる。
Therefore, by short-circuiting the secondary side of the input converter using the normally open contact 11 as shown in FIG. 3 during inspection, the output Id introduced into the current differential relay becomes zero. Next, in this state, if a check current is input in the same direction to the check windings 1-2 of input converters 1 and 2, the currents in the secondary windings 1-4 are in the same phase, so they are output as a summed current. will be done.

従って、かかる実施例の如く構成することにより、前述
同様点検時に潮流の影響をなくして点検電流のみを電流
差動リレーに導入することが可能となる。
Therefore, by configuring as in this embodiment, it becomes possible to introduce only the inspection current into the current differential relay while eliminating the influence of power flow during inspection as described above.

[発明の効果コ 以上説明したように本発明によれば、電力系統における
複数の系統電流を夫々に対応して設けられた入力変換器
を介して電流差動リレーに導入し、上記複数の系統電流
の差を動作量として電力系統を保護する電流差動継電装
置におむくで、上記電流差動リレーの点検時に、上記電
力系統の各回線に対応して設けられた入力変換器の2次
巻線を3相並列に接続する第1の回路と、上記入力変換
器の2次側に設けられかつ上記電力系統の保護対象を連
系する開閉器と連動して上記電流差動リレーに導入され
る系統電流を選択する第2の回路と、上記入力変換器の
1次側に設けられ所定の点検電流を印加する点検用巻線
を備えた第3の回路とから成る点検装置を具備する構成
としたので、装置を複雑にすることなくしかも潮流の影
響を受けることなく高精度の点検を行なうことが可能な
極めて信頼性の高い電流差動継電装置が提供できる。
[Effects of the Invention] As explained above, according to the present invention, a plurality of system currents in a power system are introduced into a current differential relay via input converters provided correspondingly to each other, and When inspecting the current differential relay, which protects the power system by using the difference in current as an operating quantity, two of the input converters installed corresponding to each line of the power system A first circuit that connects the secondary windings in three phases in parallel, and a switch that is provided on the secondary side of the input converter and that connects the protection target of the power system to the current differential relay. Equipped with an inspection device consisting of a second circuit that selects the system current to be introduced, and a third circuit provided on the primary side of the input converter and equipped with an inspection winding that applies a predetermined inspection current. With this configuration, it is possible to provide an extremely reliable current differential relay device that can perform highly accurate inspections without complicating the device and without being affected by power current.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図は同実
施例の作用を説明するための構成図、第3図は本発明の
他の実施例を示す構成図、第4図は従来の電流差動継電
装置を適用した場合の構成図、第5図は電流差動リレー
の特性図、第6図は入力変換回路の具体例を示す詳細図
、第7図(a)〜(C)は電流差動リレーに導入する電
流を示す波形図、第8図i点検ポイントを示す特性図で
ある。 1、IA、IB、IC,2・・・入力変換器、3゜4.
3A〜3’C’;’4A〜4C・・・電流差動リレー、
5.6.7.8・・・断路器と連動する常開接点、9゜
10・・・電流差動リレーの特性、11・・・点検時閉
となる常開接点、1−2・・・点検用巻線。 出願人代理人 弁理士 鈴江武彦 鞍 狸+1柳嘱 ω 慨 IRQ−
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a block diagram for explaining the operation of the same embodiment, FIG. 3 is a block diagram showing another embodiment of the present invention, and FIG. The figure is a configuration diagram when a conventional current differential relay device is applied, Figure 5 is a characteristic diagram of a current differential relay, Figure 6 is a detailed diagram showing a specific example of an input conversion circuit, and Figure 7 (a ) to (C) are waveform diagrams showing the current introduced into the current differential relay, and a characteristic diagram showing the inspection points in FIG. 8. 1, IA, IB, IC, 2...input converter, 3゜4.
3A~3'C';'4A~4C...Current differential relay,
5.6.7.8...Normally open contact that works with the disconnector, 9゜10...Characteristics of current differential relay, 11...Normally open contact that closes during inspection, 1-2...・Inspection winding. Applicant's agent Patent attorney Takehiko Suzue Kuranuki + 1 Yanagi Ka ω IRQ-

Claims (2)

【特許請求の範囲】[Claims] (1)電力系統における複数の系統電流を夫々に対応し
て設けられた入力変換器を介して電流差動継電器に導入
し、前記複数の系統電流の差を動作量として電力系統を
保護する電流差動継電装置において、前記電流差動継電
器の点検時に、前記電力系統の各回線に対応して設けら
れた入力変換器の2次巻線を3相並列に接続する第1の
回路と、前記入力変換器の2次側に設けられかつ前記電
力系統の保護対象を連系する開閉器と連動して前記電流
差動継電器に導入される系統電流を選択する第2の回路
と、前記入力変換器の1次側に設けられ所定の点検電流
を印加する点検用巻線を備えた第3の回路とから成る点
検装置を具備したことを特徴とする電流差動継電装置。
(1) A current that protects the power system by introducing a plurality of system currents in the power system into a current differential relay via corresponding input converters, and using the difference between the system currents as an operating amount. In the differential relay device, when inspecting the current differential relay, a first circuit connects secondary windings of input converters provided corresponding to each line of the power system in three-phase parallel; a second circuit that is provided on the secondary side of the input converter and selects a system current to be introduced into the current differential relay in conjunction with a switch that connects the protection target of the power system; 1. A current differential relay device comprising: a third circuit provided on the primary side of a converter and provided with a test winding for applying a predetermined test current.
(2)第1の回路は電力系統の各回線の同一相を一括し
て並列接続するようにしたことを特徴とする特許請求の
範囲第(1)項記載の電流差動継電装置。
(2) The current differential relay device according to claim 1, wherein the first circuit connects the same phases of each line of the power system in parallel.
JP60029703A 1985-02-18 1985-02-18 Current differential relay Pending JPS61191229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60029703A JPS61191229A (en) 1985-02-18 1985-02-18 Current differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029703A JPS61191229A (en) 1985-02-18 1985-02-18 Current differential relay

Publications (1)

Publication Number Publication Date
JPS61191229A true JPS61191229A (en) 1986-08-25

Family

ID=12283467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029703A Pending JPS61191229A (en) 1985-02-18 1985-02-18 Current differential relay

Country Status (1)

Country Link
JP (1) JPS61191229A (en)

Similar Documents

Publication Publication Date Title
US4398232A (en) Protective relaying methods and apparatus
Ciufo et al. Power system protection: fundamentals and applications
Edwards et al. Single-pole switching on TVA'S paradise-davidson 500-KV line design concepts and staged fault test results
JPS61191229A (en) Current differential relay
Sharma Novel directional protection scheme for the FREEDM smart grid system
US1752947A (en) Protective system
Costello et al. Paralleling CTs for line current differential applications: Problems and solutions
US1806392A (en) Polyphase electrical instrument
JPS61157222A (en) Current differential protective relay device
JPS6230442Y2 (en)
JPS62110431A (en) Differential current protective relay
Love Ground fault protection for electric utility generating station medium voltage auxiliary power systems
Mekić et al. Adaptive Features of Numerical Differential Relays
SU779930A1 (en) Method of testing current circuits of relay protection systems
Hostetler et al. Useful Applications for Differential Relays With Both KCL and ATB 87 Elements
JPS6084918A (en) Display wire relaying device
Perez et al. A guide to transformer digital fault recording event analysis
Mohammad et al. Protection Relay Setting based on Overcurrent Phenomena in Commercial Building
RU2643779C1 (en) Method of transformer relay protection
dos Santos et al. Current sensors for improved capacitor bank protection
Ristic et al. The major differences between electromechanical and microprocessor based technologies in relay setting rules for transformer current differential protection
JPS5846824A (en) Protective relay unit
Gajic et al. Capabilities of modern numerical differential protections
JPS607884B2 (en) Inspection method of ratio differential relay device
JPS5812813B2 (en) Protective relay device