JP3558309B2 - Ratio differential relay - Google Patents

Ratio differential relay Download PDF

Info

Publication number
JP3558309B2
JP3558309B2 JP26942495A JP26942495A JP3558309B2 JP 3558309 B2 JP3558309 B2 JP 3558309B2 JP 26942495 A JP26942495 A JP 26942495A JP 26942495 A JP26942495 A JP 26942495A JP 3558309 B2 JP3558309 B2 JP 3558309B2
Authority
JP
Japan
Prior art keywords
output
differential relay
ratio differential
electric quantity
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26942495A
Other languages
Japanese (ja)
Other versions
JPH0993788A (en
Inventor
聡 中野
力生 佐藤
哲也 祖父江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba System Technology Corp
Original Assignee
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba System Technology Corp filed Critical Toshiba System Technology Corp
Priority to JP26942495A priority Critical patent/JP3558309B2/en
Publication of JPH0993788A publication Critical patent/JPH0993788A/en
Application granted granted Critical
Publication of JP3558309B2 publication Critical patent/JP3558309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Protection Of Generators And Motors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電機等の回転機及びその他の機器の保護に用いられる比率差動継電器に関する。
【0002】
【従来の技術】
図11は発電機の保護回路を示し、図11において、Gは発電機、TRは変圧器、CBはしゃ断器であり、しゃ断器CBを介して系統へ電力を供給する状態を示す。CT1,CT2は計器用変流器であり、これらCT1及びCT2からの電流を発電機をまたいで設けた比率差動継電器87へ導入する構成となっている。
【0003】
図12は図13の(a)に示す動作領域を有する可変比率特性を有する比率差動継電器の機能ブロック図であり、これは図12の比率差動継電器87に対応する。CT1及びCT2から導入された電流ICT1 ,ICT2 はアナログ/ディジタル変換器A/Dを通して、ディジタル量I,Iに変換され、演算部CPUにおいてソフト処理される。
【0004】
11は動作量作成部であり、入力されたディジタル量I,Iとのベクトル和Id=I+I(Id:動作量と称す)を作成する。又、振幅値演算部12ではこの動作量Idの振幅値|Id|を求める。
【0005】
振幅値演算部13,14では入力された夫々のディジタル量I及びIの振幅値|I|,|I|を求め、ここで夫々求めた振幅値を抑制量作成部15へ導入し、抑制量作成部15ではディジタル量I,Iのスカラー和|Ir|=|I|+|I|(Ir:抑制量と称す)を作成する。
【0006】
又、この抑制量Irが比率演算部16,17で夫々k1,k2倍(k1,k2は定数)される。加算回路18では振幅値演算部12及び比率演算部16での演算結果を加算(|Id|−k1・|Ir|)し、この合成電気量がDF1判定部20で一定値以上となったときに、DF1判定部20は出力する。以上をまとめると(1) 式となり、DF1の特性図となる。
【0007】
又、前記加算回路19出力からの合成電気量はDF2判定部21へ導入され、DF2判定部21で一定値以上となったときにDF2判定部21は出力する。以上をまとめると(2) 式となり、図12のDF1判定部20及びDF2判定部21の2つの出力の論理積を保護指令31として出力する。
【0008】
【数1】
|Id|−k1・|Ir|≧k3(k3は定数) ………(1)
|Id|−k2・|Ir|≧k4(k4は定数) ………(2)
【0009】
図11のF1のように発電機の至近端で外部事故が発生すると、大きな事故電流が発生する。この事故電流に過渡直流分が重畳した場合、CTの鉄心の磁束が増大し飽和を起こすことがある。
【0010】
CT1,CT2とも同様のCT飽和を起こした場合はCT1とCT2の2次電流波形の差は小さく、これによる差動電流(動作量)は図13の(b)に示すCT飽和領域に存在することになり、継電器の動作域へは入らず、継電器は動作することはない。このように従来の比率差動継電器は可変比率特性を持たせることで継電器の誤動作を防止している。
【0011】
【発明が解決しようとする課題】
図11のF2のような、遠方端事故時のCT飽和について図15を用いて説明する。図11のF2のように発電機の遠方端で事故が発生するとCT1,CT2を通過する事故電流は小さく、重畳する過渡直流分もこれに比例した値となる。
【0012】
しかし、これが長時間続くと過渡直流分によるCTの鉄心の磁束が時間と共に蓄積され飽和を起こす。この結果、CT飽和は事故発生時点から時間をおいて発生することになる。CT飽和はCTの特性,事故電流の大きさ,過渡直流分の大きさなどにより、その様子が変わるが、CT1,CT2のCT特性が異なる場合はCT飽和までの時間が異なるため、事故発生から時間遅れを生じて差動電流(動作量)Idが発生する。
【0013】
又、遠方端では抑制量Irが小さいため、図14の(b)に示すような継電器の動作域へCT飽和域が入る場合があり、継電器の誤動作を招いてしまう問題があった。このように従来の比率差動継電器の可変比率特性では遠方端の外部事故が長時間継続する場合には、比率差動継電器が誤動作する可能性があった。
【0014】
又、この誤動作を逃れるためには比率差動継電器の動作比率を低くすることも考えられるが、回転機の保護上、一定以上に比率の感度を落とすことが困難である。
【0015】
本発明は上記課題を解決するためになされたものであり、比率差動継電器の外部遠方端事故で事故電流が小さく、かつ過渡直流分が長時間発生したときに、比率差動継電器に適用しているCTが飽和を起こしても誤動作しない比率差動継電器を提供することを目的としている。
【0016】
【課題を解決するための手段】
本発明の請求項1に係る比率差動継電器は、2つ以上の交流電流を一定時間間隔でサンプリングして、アナログ/ディジタル変換されたディジタル量として取り込み、前記交流電流のディジタル量をもとにそれらのベクトル和の振幅値とスカラー和を演算し、前記ベクトル和の振幅値とスカラー和から得られる合成電気量を演算して出力する合成電気量演算要素と、前記合成電気量演算手段からの合成電気量が所定値(K 以上となったときに出力する第1の演算要素と、前記第1の演算要素出力を条件に前記同様の合成電気量を積算し、ここで積算した合成電気量の値が所定値(K 以上となったときに出力する第2の演算要素とを備え、前記第2の演算要素の出力を、保護指令出力とする手段を備えた。
【0017】
したがって遠方端の外部事故で事故電流が小さく、かつ過渡直流分が長時間発生して比率差動継電器に適用しているCTが飽和を起こした場合には、第1の演算要素20,21との判定が両方とも出力され、可変比率特性の内部に入ることがある。
【0018】
しかしこの場合には、第2の演算要素である反限時判定部に起動入力が発せられる。そこで反限時判定部にて動作量|Id|と比率演算部でk1倍された制御量|Ir|とが加算回路を介して合成電気量として得られるが、外部事故であるためこの積算が所定の値以上となる前に他の継電器により事故が除去されてしまい、継電器誤動作に至らない。
【0019】
又、内部事故時には第1の演算要素20,21との判定が両方とも出力され、可変比率特性の内部に入って反限時判定部に起動入力が発せられる。この場合内部事故であるための他の継電器により事故が除去されることはなく、反限時判定部にて動作量|Id|と比率演算部16でk1倍された抑制量|Ir|が加算回路18を通して得られた合成電気量の積算が行なわれ、かつ、この積算が所定の値以上となって継電器動作となる。
【0020】
又、本発明の請求項2では請求項1において、前記ベクトル和の振幅値が所定値(K 以上となったときに出力する第3の演算要素を付加し、前記第1の演算要素出力と前記第3の演算要素とが共に導出されたとき動作する論理積出力と、前記第2の演算要素出力との論理和出力を保護指令出力とする手段を備えた。
【0021】
又、本発明の請求項3では請求項1において、前記合成電気量演算手段からの合成電気量が所定値(K 以上となったときに出力する第4の演算要素を付加し、前記第1演算要素の出力と前記第4の演算要素出力とが共に導出されたとき動作する論理積出力と、前記第2の演算要素出力との論理和出力を保護指令出力とする手段を備えた。
【0022】
又、本発明の請求項4では請求項1において、前記第2の演算要素に代えて、前記第1の演算要素出力を条件に、前記ベクトル和の振幅値を積算し、この積算値が所定値(K 以上となったときに出力する第5の演算要素を備え、前記第5の演算要素の出力を保護指令出力とする手段を備えた。
【0023】
【発明の実施の形態】
図1は本発明の請求項1に係る比率差動継電器の一実施例の機能ブロック構成図である。図1において図12と同一部分については同一符号を付して説明を省略する。図1の構成上の特徴部分は反限時判定部23を設けて、論理積回路22からの起動入力を得る構成としたものである。
【0024】
したがって起動入力があると反限時判定部23では、動作量|Id|と比率演算部16でk1倍された抑制量|Ir|とが加算回路18を通して合成電気量として得られ、この合成電気量の積算が(3) 式に示すような所定の値以上となるか否かを判定する。
【0025】
(3) 式を満たした場合には保護指令24を出力する。又、論理積回路22を通して導入される起動入力がないときは、前加算回路18を通して得られる合成電気量の積算をクリアする。
【数2】
∫(|Id|−k1・|Ir|)dt≧k5(k5は定数) ……(3)
【0026】
次に作用について説明する。
先ず、遠方端の外部事故で事故電流が小さく、かつ過渡直流分が長時間発生して比率差動継電器に適用しているCTが飽和を起こした場合には、機能ブロック図のDF1判定部20とDF2判定部21との判定が両方とも出力され、図2(a)の可変比率特性の動作範囲内に入ることがある。
【0027】
この場合には、論理積回路22から反限時判定部23に起動入力が発せられ、反限時判定部23にて動作量|Id|と比率演算部16でk1倍された抑制量|Ir|が加算回路18を通して合成電気量として得られる。そして合成電気量の積算が行なわれるが、この場合は外部事故であるためこの積算が所定の値以上となる前に他の継電器によって事故が除去されてしまい、継電器誤動作には至らない。
【0028】
一方、内部事故時には図1の機能ブロック図のDF1判定部20とDF2判定部21との判定が両方とも出力されて、図2(a)の可変比率特性の保護領域内部に入る。しかし、論理積回路22から反限時判定部23に対して起動入力が発せられ他の継電器により事故が除去されることもない。
【0029】
演算部16でk1倍された抑制量|Ir|が加算回路18を通して得られる合成電気量の積算が行なわれ、この積算が所定の値以上となって継電器動作となる。又、上記実施例に限定されるものではなく、動作量|Id|と、比率演算部17でk2倍された抑制量|Ir|とから加算回路19を介して合成電気量を得、ここで得られた合成電気量を反限時判定部23に導入するようにしてもよい。
【0030】
本実施例によれば、保護範囲外部事故電流によるCT飽和の影響でDF1判定部とDF2判定部の両方がその動作判定式を満たしてしまい、図2に示す動作域に至っても、反限時判定部により保護指令の出力には至らず、保護範囲外部事故電流によるCT飽和の影響で誤動作をしない比率差動継電器を提供することが可能となる。
【0031】
図3は図1の変形例を示す構成図である。本変形例では、比率演算部32および加算回路33を別に設けて、動作量|Id|と比率演算部32でk8倍された抑制量|Ir|が加算回路33を通して得られる合成電気量から、反限時判定部23において(4) 式を判定するようにしてもよい。
【数3】
∫(|Id|−k8・|Ir|)dt≧k5(k5は定数) ……(4)
【0032】
図4は本発明の請求項2に係る比率差動継電器の一実施例の構成図である。本実施例では図1の振幅値演算部12の出力段にHOC判定部25を設けたものである。
【0033】
そして,DF1判定部20の判定出力とDF2判定部21の判定出力とが論理積回路22を通して論理積された出力と、HOC判定部25との出力とを論理積回路26を通して論理積し、更に論理積回路26の出力と反限時判定部23の出力とを論理和回路27を通して論理和された出力を保護指令として出力するようにしたことを特徴とする。
【0034】
なお、HOC判定部25では、動作量が(5) 式を満足するかを判定する。したがって動作量がHOC判定部25の設定値未満であるときは図1と同様に反限時動作域図5(a)を有し、設定値以上であるときは瞬時動作域となる。これは図5(b)の特性図に示される。
【数4】
|Id|≧k6(k6は定数) ……………(5)
【0035】
要するに本実施例の比率差動継電器では、その動作域内でかなり大きな動作量Idが発生する内部事故の場合、比率差動継電器の動作域内の事故であるため、DF1判定部20の判定出力とDF2判定部21の判定出力とが論理積回路22を通して論理積された出力がありとなる。
【0036】
又、振幅値演算部12を通してかなり大きな動作量|Id|がHOC判定部25に導入され、この動作量|Id|によりHOC判定部25にて(5) 式を満たし、HOC判定部25も出力ありとなれば、論理積回路26を通して論理積回路22の出力とHOC判定部25との出力の論理積が更に出力ありとなる。
【0037】
論理積回路26の出力は論理和回路27を通してこの場合、反限時判定部23の出力に拘らず、論理和出力ありとなり保護指令を出力する。本実施例によれば、前記図1の比率差動継電器に対し内部事故時の大電流域において、高速に内部事故を検出することが可能となる。
【0038】
図6は本発明の請求項3に係る比率差動継電器の一実施例の構成図である。本実施例ではHOC判定部29を設け、加算回路18を経由した合成電気量を反限時判定部23の入力として取り込むと共に、HOC判定部29の入力としても取り込む構成とした。
【0039】
図6から明らかなように、HOC判定部29においては(6) 式の動作判定が行なわれる。
【数5】
|Id|−k1・|Ir|≧k6(k6は定数) ………(6)
【0040】
したがって動作としては、DF1判定部20の判定出力とDF2判定部21の判定出力とが論理積回路22を通して論理積された出力と、HOC判定部29との出力とを論理積回路26を通して論理積し、更に論理積回路26の出力と反限時判定部23の出力とを論理和回路27を通して論理和された出力を保護指令として出力する。
【0041】
本実施例では比率差動継電器において、その動作域内で動作量|Id|と比率演算部16でk1倍された抑制量|Ir|とが加算回路18を通して得られるが、この合成電気量(|Id|−k1・|Ir|)が内部事故の場合に大となり、しかも比率差動継電器の動作域内の事故であるため、DF1判定部20の判定出力とDF2判定部21の判定出力とが、論理積回路22を通して論理積された出力ありとなる。
【0042】
又、振幅値演算部12を通してかなり大きな前記の合成電気量がHOC判定部29に導入され、この合成電気量により、HOC判定部29にて(6) 式を満たしてHOC判定部29も出力ありとなる。したがって論理積回路26を通して、論理積回路22の出力とHOC判定部29との出力の論理積が更に出力ありとなる。
【0043】
論理積回路26の出力は論理和回路27を通してこの場合、反限時判定部23の出力に拘らずに論理和出力ありとなって保護指令を発する(図7)。本実施例によればHOC判定部29が動作する以前は反限時判定部23による反限時動作をし、内部事故時の大電流域では高速に内部事故を検出し、保護指令を出力する。
【0044】
又、上記実施例に限定されるものではなく、動作量|Id|と比率演算部17でk2倍された抑制量|Ir|とから加算回路19を介して合成電気量を得、ここで得られた合成電気量を反限時判定部23及びHOC判定部24に導入するようにしてもよい。そして、反限時判定部23では(7) 式を判定することになる。
【数6】
∫(|Id|−k2・|Ir|)dt≧k5(k5は定数) ……(7)
【0045】
図8は図6の変形例であり、本変形例ではHOC判定部29の入力を変えたものである。即ち、図8に示されるように、比率演算部34及び加算回路35を別に設け、動作量|Ir|と比率演算部34でk8倍された抑制量|Ir|を、加算回路35を通して合成電気量として得、この合成電気量をもとにHOC判定部29にて、(8) 式を判定するものである。
【数7】
|Id|−k8・|Ir|≧k5(k5は定数) ………(8)
【0046】
図9は本発明の請求項4に係る比率差動継電器の一実施例の構成図である。図9において図1と同一部分については同一符号を付して説明を省略する。本実施例では反限時判定部30の入力を、動作量として置きかえたものである。即ち、反限時判定部30の入力を動作量|Id|からとしたものである。
【0047】
したがって、DF1判定部20の判定出力とDF2判定部21の判定出力は論理積回路22を通して論理積され、この出力が反限時判定部30への起動入力として導入される。
【0048】
反限時判定部30では起動入力があるときは動作量|Id|の積算が所定の値以上となるかを(9) 式にて判定する。そして(9) 式を満たした場合には保護指令を出力する。又、論理積回路22を通して導入される起動入力がないときは、(10)式と動作量|Id|の積算をクリアする。
【0049】
【数8】
∫|Id|dt≧k5(k5は定数) ………(9)
∫|Id|dt=0 ……………………(10)
【0050】
本実施例によれば、保護範囲外部事故電流によるCT飽和の影響でDF1とDF2の両方がその動作判定式を満たしてしまい、動作域に至ったとしても反限時判定部30により、保護指令の出力には至らず、保護範囲外部事故電流によるCT飽和の影響で誤動作をすることはない。
【0051】
【発明の効果】
以上説明したように、本発明によれば比率差動継電器の外部遠方端事故で事故電流が小さく、かつ過渡直流分が長時間発生したときに、比率差動継電器に適用しているCTが飽和を起こしても誤動作しない比率差動継電器を提供することが可能となる。
【図面の簡単な説明】
【図1】
本発明の請求項1に係る比率差動継電器の一実施例の構成図。
【図2】
図1の比率差動継電器の特性図。
【図3】
図1の変形例。
【図4】本発明の請求項2に係る比率差動継電器の一実施例の構成図。
【図5】図4の比率差動継電器の特性図。
【図6】本発明の請求項3に係る比率差動継電器の一実施例の構成図。
【図7】図6の比率差動継電器の特性図。
【図8】図6の変形例。
【図9】本発明の請求項4に係る比率差動継電器の一実施例の構成図。
【図10】図9の比率差動継電器の特性図。
【図11】比率差動継電器の適用例。
【図12】従来の比率差動継電器を説明するための機能ブロック図。
【図13】従来の比率差動継電器の特性図。
【図14】従来の比率差動継電器の問題点を説明するための特性図。
【図15】保護範囲外部の遠方端事故による動作量の発生を説明するための図。
【符号の説明】
11 動作量作成部
12,13,14 振幅値演算部
15 抑制量作成部
16,17,32,34 係数演算部
18,19,33,35 加算回路
20 DF1判定部
21 DF2判定部
22,26 論理積回路
23,30 反限時判定部
25,29 HOC判定部
27 論理和回路
87 比率差動継電器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ratio differential relay used for protecting a rotating machine such as a generator and other devices.
[0002]
[Prior art]
FIG. 11 shows a protection circuit for the generator. In FIG. 11, G indicates a generator, TR indicates a transformer, and CB indicates a circuit breaker, and shows a state in which power is supplied to the system via the circuit breaker CB. CT1 and CT2 are instrument current transformers, and are configured to introduce currents from these CT1 and CT2 to a ratio differential relay 87 provided across a generator.
[0003]
FIG. 12 is a functional block diagram of a ratio differential relay having a variable ratio characteristic having the operation region shown in FIG. 13A, and corresponds to the ratio differential relay 87 of FIG. The currents I CT1 and I CT2 introduced from CT1 and CT2 are converted into digital quantities I 1 and I 2 through an analog / digital converter A / D, and are subjected to software processing in the arithmetic unit CPU.
[0004]
Reference numeral 11 denotes an operation amount creating unit which creates a vector sum Id = I 1 + I 2 (Id: referred to as an operation amount) with the input digital amounts I 1 and I 2 . Further, the amplitude value calculating section 12 obtains the amplitude value | Id | of the movement amount Id.
[0005]
The amplitude value calculators 13 and 14 determine the amplitude values | I 1 | and | I 2 | of the input digital quantities I 1 and I 2 , and introduce the determined amplitude values into the suppression amount generator 15. Then, the suppression amount creating unit 15 creates a scalar sum | Ir | = | I 1 | + | I 2 | (Ir: referred to as suppression amount) of the digital amounts I 1 and I 2 .
[0006]
Further, the suppression amount Ir is multiplied by k1 and k2 (k1 and k2 are constants) by the ratio calculation units 16 and 17, respectively. The addition circuit 18 adds the calculation results of the amplitude value calculation unit 12 and the ratio calculation unit 16 (| Id | −k1 · | Ir |), and when the combined electric quantity becomes a certain value or more in the DF1 determination unit 20. Then, the DF1 determination unit 20 outputs. Summarizing the above, the equation (1) is obtained, which is a characteristic diagram of the DF1.
[0007]
Further, the combined electric quantity from the output of the adder circuit 19 is introduced to the DF2 judging section 21, and when the DF2 judging section 21 becomes a certain value or more, the DF2 judging section 21 outputs. The above is summarized as equation (2), and the logical product of the two outputs of the DF1 determination unit 20 and DF2 determination unit 21 in FIG.
[0008]
(Equation 1)
| Id | −k1 · | Ir | ≧ k3 (k3 is a constant) (1)
| Id | −k2 · | Ir | ≧ k4 (k4 is a constant) (2)
[0009]
When an external accident occurs near the end of the generator as in F1 of FIG. 11, a large accident current occurs. When a transient DC component is superimposed on this fault current, the magnetic flux of the iron core of the CT increases and saturation may occur.
[0010]
When the same CT saturation occurs in both CT1 and CT2, the difference between the secondary current waveforms of CT1 and CT2 is small, and the resulting differential current (operation amount) exists in the CT saturation region shown in FIG. As a result, the relay does not enter the operation range and the relay does not operate. As described above, the conventional ratio differential relay has a variable ratio characteristic to prevent malfunction of the relay.
[0011]
[Problems to be solved by the invention]
CT saturation at the time of a far-end accident such as F2 in FIG. 11 will be described with reference to FIG. When an accident occurs at the far end of the generator as indicated by F2 in FIG. 11, the accident current passing through CT1 and CT2 is small, and the superimposed transient DC component also takes a value proportional to this.
[0012]
However, if this continues for a long time, the magnetic flux of the CT iron core due to the transient DC component accumulates over time, causing saturation. As a result, CT saturation occurs after a certain time from the point of occurrence of the accident. The state of CT saturation changes depending on the characteristics of the CT, the magnitude of the fault current, the magnitude of the transient DC component, and the like. However, when the CT characteristics of CT1 and CT2 are different, the time until CT saturation is different. A time delay occurs and a differential current (operation amount) Id is generated.
[0013]
In addition, since the suppression amount Ir is small at the far end, the CT saturation region may enter the operation region of the relay as shown in FIG. 14B, causing a problem that the relay malfunctions. As described above, according to the variable ratio characteristics of the conventional ratio differential relay, when the external accident at the far end continues for a long time, the ratio differential relay may malfunction.
[0014]
In order to avoid this malfunction, it is conceivable to lower the operation ratio of the ratio differential relay. However, it is difficult to lower the ratio sensitivity to a certain level or more for protection of the rotating machine.
[0015]
The present invention has been made to solve the above-mentioned problem, and is applied to a ratio differential relay when the fault current is small and a transient DC component occurs for a long time in an external far end accident of the ratio differential relay. It is an object of the present invention to provide a ratio differential relay which does not malfunction even if the CT in which saturation occurs occurs.
[0016]
[Means for Solving the Problems]
A ratio differential relay according to claim 1 of the present invention samples two or more AC currents at fixed time intervals, takes in the analog / digital converted digital amount, and based on the AC amount digital amount. calculates the amplitude value of their vector sum and scalar sum, the synthesis electric quantity calculation element which calculates the amplitude values and combining the electrical quantity obtained from the scalar sum outputs of the vector sum, from the synthesized electrical quantity computation means The first calculation element which is output when the combined electric quantity of the first element becomes equal to or more than a predetermined value (K 1 ), and the same combined electric quantity as described above are integrated under the condition of the output of the first arithmetic element. A second operation element for outputting when the value of the combined electric quantity becomes equal to or more than a predetermined value (K 2 ), and means for setting an output of the second operation element to a protection command output .
[0017]
Therefore, when the fault current is small due to an external fault at the far end, and a transient DC component is generated for a long time and the CT applied to the ratio differential relay is saturated, the first arithmetic elements 20 and 21 May be output and may fall within the variable ratio characteristic.
[0018]
However, in this case, a start input is issued to the reciprocal time determination unit that is the second calculation element. Then, the operation amount | Id | and the control amount | Ir | multiplied by k1 in the ratio calculation unit are obtained as a combined electric amount through the addition circuit in the time limit determination unit. The accident is eliminated by another relay before the value becomes equal to or more than the value of, and the relay does not malfunction.
[0019]
Also, in the event of an internal accident, both judgments with the first arithmetic elements 20 and 21 are output, and the operation enters the variable ratio characteristic and an activation input is issued to the time limit judgment unit. In this case, since the accident is an internal accident, the accident is not eliminated by another relay, and the operation amount | Id | in the time limit judgment unit and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are added to the addition circuit. The integration of the combined amount of electricity obtained through 18 is performed, and the integration becomes a predetermined value or more, and the relay operation is performed.
[0020]
According to a second aspect of the present invention, in the first aspect, a third operation element that is output when an amplitude value of the vector sum becomes equal to or more than a predetermined value (K 3 ) is added, and the first operation element is added. Means are provided for setting a logical sum output of an AND output that operates when both the output and the third operation element are derived and the output of the second operation element as a protection command output.
[0021]
Further, in claim 3, claim 1 of the present invention, the synthesis electric quantity from the synthesized electrical quantity calculating means adds a fourth computing element for output when a predetermined value (K 4) above, wherein a logical product output that operates when the output and the operation element outputs of the fourth of the first computing element is derived both, comprises means for the protection Directive outputs the logical sum output of the second calculation element output Was.
[0022]
Further, in claim 4, claim 1 of the present invention, the second in place of the computing element, on condition the first operation element output, integrates the amplitude of the vector sum, this integrated value is predetermined A fifth operation element for outputting when the value becomes equal to or more than the value (K 5 ) is provided, and means for using the output of the fifth operation element as a protection command output is provided.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a functional block diagram of an embodiment of a ratio differential relay according to claim 1 of the present invention. In FIG. 1, the same parts as those in FIG. The configuration in FIG. 1 is characterized in that a time limit judging unit 23 is provided to obtain a start-up input from the AND circuit 22.
[0024]
Accordingly, when there is a start input, in the time limit determination unit 23, the operation amount | Id | and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are obtained as a combined electric amount through the adder circuit 18. Then, it is determined whether or not the integration is equal to or more than a predetermined value as shown in Expression (3).
[0025]
(3) If the expression is satisfied, the protection command 24 is output. When there is no start input introduced through the AND circuit 22, the integration of the combined electric quantity obtained through the pre-addition circuit 18 is cleared.
(Equation 2)
∫ (| Id | −k1 · | Ir |) dt ≧ k5 (k5 is a constant) (3)
[0026]
Next, the operation will be described.
First, when a fault current is small due to an external fault at the far end and a transient DC component is generated for a long time and the CT applied to the ratio differential relay is saturated, the DF1 determination unit 20 in the functional block diagram is used. 2 and the DF2 determination unit 21 are both output, and may fall within the operation range of the variable ratio characteristic shown in FIG.
[0027]
In this case, an activation input is issued from the AND circuit 22 to the time limit determination unit 23, and the action amount | Id | in the time limit determination unit 23 and the suppression amount | Ir | It is obtained as a combined electric quantity through the adding circuit 18. Then, the integration of the combined electric quantity is performed. In this case, since the accident is an external accident, the accident is eliminated by another relay before the integration becomes a predetermined value or more, and the relay does not malfunction.
[0028]
On the other hand, at the time of an internal accident, both the judgments of the DF1 judgment unit 20 and the DF2 judgment unit 21 in the functional block diagram of FIG. 1 are output, and the inside of the protection area of the variable ratio characteristic shown in FIG. However, an activation input is issued from the AND circuit 22 to the time limit determination unit 23, and the accident is not eliminated by another relay.
[0029]
The amount of suppression | Ir | multiplied by k1 in the operation unit 16 is integrated through the addition circuit 18 to integrate the combined electric amount, and this integration becomes equal to or more than a predetermined value, and the relay operation is performed. Further, the present invention is not limited to the above-described embodiment, and a combined electric quantity is obtained via the adder circuit 19 from the operation quantity | Id | and the suppression quantity | Ir | The obtained combined amount of electricity may be introduced to the time limit determination unit 23.
[0030]
According to the present embodiment, both the DF1 determination unit and the DF2 determination unit satisfy the operation determination expression due to the influence of CT saturation due to the fault current outside the protection range, and even if the operation range shown in FIG. It is possible to provide a ratio differential relay that does not output a protection command and does not malfunction due to the influence of CT saturation due to a fault current outside the protection range.
[0031]
FIG. 3 is a configuration diagram showing a modified example of FIG. In this modification, the ratio calculation unit 32 and the addition circuit 33 are separately provided, and the operation amount | Id | and the suppression amount | Ir | multiplied by k8 in the ratio calculation unit 32 are calculated from the combined electric amount obtained through the addition circuit 33. Expression (4) may be determined in the time limit determination unit 23.
(Equation 3)
∫ (| Id | −k8 · | Ir |) dt ≧ k5 (k5 is a constant) (4)
[0032]
FIG. 4 is a configuration diagram of one embodiment of the ratio differential relay according to claim 2 of the present invention. In this embodiment, an HOC determination unit 25 is provided at the output stage of the amplitude value calculation unit 12 in FIG.
[0033]
Then, an output obtained by ANDing the judgment output of the DF1 judgment unit 20 and the judgment output of the DF2 judgment unit 21 through the AND circuit 22 and the output of the HOC judgment unit 25 are ANDed through the AND circuit 26. It is characterized in that the output of the AND circuit 26 and the output of the time limit judging section 23 are logically ORed through the OR circuit 27 and the output is output as a protection command.
[0034]
The HOC determination unit 25 determines whether the amount of operation satisfies the expression (5). Therefore, when the amount of operation is less than the set value of the HOC determination unit 25, the time limit operation area is shown in FIG. 5A as in FIG. 1, and when it is more than the set value, it becomes the instantaneous operation area. This is shown in the characteristic diagram of FIG.
(Equation 4)
| Id | ≧ k6 (k6 is a constant) (5)
[0035]
In short, in the ratio differential relay according to the present embodiment, in the case of an internal fault in which a considerably large operation amount Id occurs in the operation range, the fault is in the operation range of the ratio differential relay, so that the determination output of the DF1 determination unit 20 and DF2 There is an output obtained by performing a logical product of the determination output of the determination unit 21 and the logical product circuit 22.
[0036]
Also, a considerably large operation amount | Id | is introduced into the HOC determination unit 25 through the amplitude value calculation unit 12, and the HOC determination unit 25 satisfies the expression (5) with the operation amount | Id |, and the HOC determination unit 25 also outputs If there is, the logical product of the output of the logical product circuit 22 and the output of the HOC determination unit 25 through the logical product circuit 26 is further output.
[0037]
In this case, the output of the logical product circuit 26 passes through the logical sum circuit 27 and, regardless of the output of the time limit determination unit 23, the logical sum is output and the protection command is output. According to the present embodiment, the internal fault can be detected at high speed in the large current range at the time of the internal fault with respect to the ratio differential relay of FIG.
[0038]
FIG. 6 is a configuration diagram of one embodiment of the ratio differential relay according to claim 3 of the present invention. In the present embodiment, the HOC determination unit 29 is provided, and the combined electric quantity that has passed through the addition circuit 18 is captured as an input to the time limit determination unit 23 and is also captured as an input to the HOC determination unit 29.
[0039]
As is apparent from FIG. 6, the HOC determination unit 29 performs the operation determination of the expression (6).
(Equation 5)
| Id | −k1 · | Ir | ≧ k6 (k6 is a constant) (6)
[0040]
Therefore, as an operation, the logical product of the output of the DF1 determining unit 20 and the logical output of the DF2 determining unit 21 through the logical product circuit 22 and the output of the HOC determining unit 29 are logical producted through the logical product circuit 26. Further, an output obtained by performing an OR operation on the output of the AND circuit 26 and the output of the infinite time determination unit 23 through the OR circuit 27 is output as a protection command.
[0041]
In this embodiment, in the ratio differential relay, the operation amount | Id | and the suppression amount | Ir | multiplied by k1 in the ratio calculation unit 16 are obtained through the adder circuit 18 within the operation range. Id | −k1 · | Ir |) is large in the case of an internal accident, and is an accident within the operating range of the ratio differential relay, so that the judgment output of the DF1 judgment unit 20 and the judgment output of the DF2 judgment unit 21 are: There is an output that is ANDed through the AND circuit 22.
[0042]
In addition, the considerably large combined electric quantity is introduced into the HOC determining section 29 through the amplitude value calculating section 12, and the HOC determining section 29 satisfies the expression (6) and outputs the HOC determining section 29 with the combined electric quantity. It becomes. Therefore, the AND of the output of the AND circuit 22 and the output of the HOC determination unit 29 is further output through the AND circuit 26.
[0043]
In this case, the output of the AND circuit 26 passes through the OR circuit 27. In this case, regardless of the output of the time limit judging section 23, the output of the logical sum is output and a protection command is issued (FIG. 7). According to the present embodiment, before the HOC determination unit 29 operates, the time limit operation is performed by the time limit determination unit 23, and the internal fault is detected at high speed in a large current region at the time of the internal fault, and a protection command is output.
[0044]
Further, the present invention is not limited to the above-described embodiment. A combined electric quantity is obtained via the adder circuit 19 from the operation quantity | Id | and the suppression quantity | Ir | The combined electric quantity obtained may be introduced into the time limit judgment unit 23 and the HOC judgment unit 24. Then, the time limit determination unit 23 determines Expression (7).
(Equation 6)
∫ (| Id | −k2 · | Ir |) dt ≧ k5 (k5 is a constant) (7)
[0045]
FIG. 8 is a modified example of FIG. 6, in which the input of the HOC determination unit 29 is changed. That is, as shown in FIG. 8, a ratio calculation unit 34 and an addition circuit 35 are separately provided, and the operation amount | Ir | and the suppression amount | Ir | The HOC determination unit 29 determines the expression (8) based on the combined amount of electricity.
(Equation 7)
| Id | −k8 · | Ir | ≧ k5 (k5 is a constant) (8)
[0046]
FIG. 9 is a block diagram of an embodiment of the ratio differential relay according to claim 4 of the present invention. In FIG. 9, the same parts as those in FIG. In the present embodiment, the input of the time limit determination unit 30 is replaced with the operation amount. That is, the input of the time limit determination unit 30 is based on the operation amount | Id |.
[0047]
Therefore, the judgment output of the DF1 judgment unit 20 and the judgment output of the DF2 judgment unit 21 are ANDed through the AND circuit 22, and this output is introduced as a start input to the infinite time judgment unit 30.
[0048]
When there is a start input, the time limit determination unit 30 determines whether or not the integration of the operation amount | Id | is equal to or larger than a predetermined value by using Expression (9). Then, when the equation (9) is satisfied, a protection command is output. When there is no start input introduced through the AND circuit 22, the integration of the equation (10) and the operation amount | Id | is cleared.
[0049]
(Equation 8)
∫ | Id | dt ≧ k5 (k5 is a constant) (9)
∫ | Id | dt = 0 ………………… (10)
[0050]
According to the present embodiment, both DF1 and DF2 satisfy the operation determination formula due to the influence of CT saturation caused by the fault current outside the protection range. Output does not occur, and no malfunction occurs due to the influence of CT saturation due to a fault current outside the protection range.
[0051]
【The invention's effect】
As described above, according to the present invention, when the fault current is small and the transient DC component occurs for a long time in the external far end accident of the ratio differential relay, the CT applied to the ratio differential relay is saturated. Thus, it is possible to provide a ratio differential relay that does not malfunction even if the above-mentioned situation occurs.
[Brief description of the drawings]
FIG.
1 is a configuration diagram of an embodiment of a ratio differential relay according to claim 1 of the present invention.
FIG. 2
FIG. 2 is a characteristic diagram of the ratio differential relay of FIG. 1.
FIG. 3
Modification of FIG.
FIG. 4 is a configuration diagram of an embodiment of a ratio differential relay according to claim 2 of the present invention.
FIG. 5 is a characteristic diagram of the ratio differential relay of FIG. 4;
FIG. 6 is a configuration diagram of an embodiment of a ratio differential relay according to claim 3 of the present invention.
FIG. 7 is a characteristic diagram of the ratio differential relay of FIG. 6;
FIG. 8 is a modified example of FIG. 6;
FIG. 9 is a configuration diagram of one embodiment of a ratio differential relay according to claim 4 of the present invention.
FIG. 10 is a characteristic diagram of the ratio differential relay of FIG. 9;
FIG. 11 shows an application example of a ratio differential relay.
FIG. 12 is a functional block diagram for explaining a conventional ratio differential relay.
FIG. 13 is a characteristic diagram of a conventional ratio differential relay.
FIG. 14 is a characteristic diagram for explaining a problem of the conventional ratio differential relay.
FIG. 15 is a diagram for explaining occurrence of an operation amount due to a far-end accident outside the protection range.
[Explanation of symbols]
Reference Signs List 11 Operation amount creation units 12, 13, 14 Amplitude value calculation unit 15 Suppression amount creation units 16, 17, 32, 34 Coefficient calculation units 18, 19, 33, 35 Addition circuit 20 DF1 determination unit 21 DF2 determination unit 22, 26 Logic Product circuits 23, 30 Reverse time limit determination unit 25, 29 HOC determination unit 27 OR circuit 87 Ratio differential relay

Claims (4)

2つ以上の交流電流を一定時間間隔でサンプリングして、アナログ/ディジタル変換されたディジタル量として取り込み、前記交流電流のディジタル量をもとにそれらのベクトル和の振幅値とスカラー和を演算し、前記ベクトル和の振幅値とスカラー和から得られる合成電気量を演算して出力する合成電気量演算要素と、前記合成電気量演算手段からの合成電気量が所定値(K 以上となったときに出力する第1の演算要素と、前記第1の演算要素出力を条件に前記同様の合成電気量を積算し、ここで積算した合成電気量の値が所定値(K 以上となったときに出力する第2の演算要素とを備え、前記第2の演算要素の出力を、保護指令出力とすることを特徴とする比率差動継電器。Two or more of the alternating current was sampled at regular time intervals, capture a digital quantity which is an analog / digital converter, calculates the amplitude values and the scalar sum of the vector sum on the basis of the digital quantity of the alternating current , is a synthetic electrical quantity computation element calculates and outputs the amplitude value and the synthesis the quantity of electricity obtained from the scalar sum of the vector sum, the synthesis electric quantity from the synthesized electrical quantity computation means exceeds a predetermined value and (K 1) or The combined electric quantity similar to the above is integrated under the condition of the first arithmetic element output when the first arithmetic element is output and the output of the first arithmetic element, and the value of the integrated electric quantity integrated is equal to or greater than a predetermined value (K 2 ). And a second operation element that outputs when the output of the second operation element is obtained, wherein the output of the second operation element is used as a protection command output . 請求項1記載の比率差動継電器において、前記ベクトル和の振幅値が所定値(K 以上となったときに出力する第3の演算要素を付加し、前記第1の演算要素出力と前記第3の演算要素とが共に導出されたとき動作する論理積出力と、前記第2の演算要素出力との論理和出力を保護指令出力とする手段を備えたことを特徴とする比率差動継電器。 In proportion differential relay according to claim 1, the amplitude value of the vector sum is added a third operation element outputs when a predetermined value (K 3) above, wherein said first computing element output A ratio differential relay comprising means for setting a logical sum output of the logical product output operated when both the third arithmetic element is derived and the output of the second arithmetic element to a protection command output. . 請求項1記載の比率差動継電器において、前記合成電気量演算手段からの合成電気量が所定値(K 以上となったときに出力する第の演算要素を付加し、前記第1演算要素出力と前記第4の演算要素出力とが共に導出されたとき動作する論理積出力と、前記第2の演算要素出力との論理和出力を保護指令出力とする手段を備えたことを特徴とする比率差動継電器。 In proportion differential relay according to claim 1, wherein the synthesis electric quantity from the synthesis electric quantity calculating means adds a fourth computing element for output when a predetermined value (K 4) above, wherein the first operational wherein the output element and said fourth computing element output is provided with a logical output which operates when derived together, the means to protect command output a logical sum output of the second calculation element output And the ratio differential relay. 請求項1記載の比率差動継電器において、前記第2の演算要素に代えて、前記第1の演算要素出力を条件に、前記ベクトル和の振幅値を積算し、この積算値が所定値(K 以上となったときに出力する第5の演算要素を備え、前記第5の演算要素の出力を保護指令出力とする手段を備えたことを特徴とする比率差動継電器。 2. The ratio differential relay according to claim 1, wherein the amplitude value of the vector sum is integrated under the condition of the output of the first arithmetic element instead of the second arithmetic element, and the integrated value is equal to a predetermined value (K 5 ) A ratio differential relay, comprising: a fifth operation element that outputs when the above condition is satisfied, and a unit that uses the output of the fifth operation element as a protection command output .
JP26942495A 1995-09-22 1995-09-22 Ratio differential relay Expired - Fee Related JP3558309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26942495A JP3558309B2 (en) 1995-09-22 1995-09-22 Ratio differential relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26942495A JP3558309B2 (en) 1995-09-22 1995-09-22 Ratio differential relay

Publications (2)

Publication Number Publication Date
JPH0993788A JPH0993788A (en) 1997-04-04
JP3558309B2 true JP3558309B2 (en) 2004-08-25

Family

ID=17472237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26942495A Expired - Fee Related JP3558309B2 (en) 1995-09-22 1995-09-22 Ratio differential relay

Country Status (1)

Country Link
JP (1) JP3558309B2 (en)

Also Published As

Publication number Publication date
JPH0993788A (en) 1997-04-04

Similar Documents

Publication Publication Date Title
JPH0340718A (en) Static tripping device in protective breaker in system of ac power
ZA200300254B (en) Electronic protective relay with variable and fixed delay tally time of current protection.
JP3808624B2 (en) System protection relay device
JPH04229015A (en) Transformer differential relay
US20100053828A1 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP3558309B2 (en) Ratio differential relay
KR100307034B1 (en) Reverse Phase Overcurrent Relay
Kasztenny et al. Generator protection and CT saturation problems and solutions
JPS6110911A (en) Transformer protective relay
JP3841248B2 (en) Ground fault suppression system and ground fault suppression method
JP3305084B2 (en) Ratio actuation protection relay
RU2096885C1 (en) Method and device for ground fault protection of generator stator winding
JP3269220B2 (en) Transformer protection relay
JP2001025154A (en) Transformer protective relay device
KR20200038164A (en) Protection relay device
JP3665402B2 (en) Digital type protective relay
JP2503972B2 (en) Busbar protection relay
JPH06121455A (en) Protective relay
JP3231415B2 (en) Differential relay
JPH05236636A (en) Ratio differential relay
CN100367612C (en) Fault component transformer longitudinal error protecting element with zero sequence ratio brake
JPS6327927B2 (en)
JPS63224618A (en) Overcurrent relay
JPH09149539A (en) Differential relay
JP2533186B2 (en) Excitation current judgment method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040517

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080528

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees