JP2009204627A - Film thickness measuring method - Google Patents

Film thickness measuring method Download PDF

Info

Publication number
JP2009204627A
JP2009204627A JP2009146420A JP2009146420A JP2009204627A JP 2009204627 A JP2009204627 A JP 2009204627A JP 2009146420 A JP2009146420 A JP 2009146420A JP 2009146420 A JP2009146420 A JP 2009146420A JP 2009204627 A JP2009204627 A JP 2009204627A
Authority
JP
Japan
Prior art keywords
thin film
reflected wave
value
peak
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009146420A
Other languages
Japanese (ja)
Other versions
JP4392463B2 (en
Inventor
Toshihiko Tsujimaru
敏彦 辻丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Tower Co Ltd JST
Original Assignee
Japan Steel Tower Co Ltd JST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Tower Co Ltd JST filed Critical Japan Steel Tower Co Ltd JST
Priority to JP2009146420A priority Critical patent/JP4392463B2/en
Publication of JP2009204627A publication Critical patent/JP2009204627A/en
Application granted granted Critical
Publication of JP4392463B2 publication Critical patent/JP4392463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily and surely measuring a film thickness even with a detection waveform with a bottom surface reflection wave superposed on an interface reflection wave. <P>SOLUTION: In the method of measuring the thickness of an object to be measured, the amplitude of the bottom surface reflection wave of an ultrasonic wave transmitted from an opposed side surface to the thin film of a thin film support body includes a larger characteristic than that of the interface reflection wave thereof. The method includes the steps of: adjusting the levels of a peak at a rise time and a maximum peak of a received composite reflection wave to predetermined values, respectively; measuring each threshold value exceeding time in a rising area and a climbing area to a maximum peak with regard to the predetermined threshold values in the state above, respectively; evaluating a measurement value of the film thickness from a time difference between the two threshold value exceeding times; and correcting the evaluated measurement value from a predetermined correction formula to determine the film thickness. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特に送電用鉄塔、通信用鉄塔等の管の内面に施されためっきやボイラの配管の内面に付着するスケール等のように、非常に薄い膜または層(以下、これらを「薄膜」と総称する。)の厚さを超音波を用いて測定するための方法に関する。   The present invention is particularly applicable to very thin films or layers (hereinafter referred to as “thin films”) such as plating applied to the inner surface of pipes of power transmission towers, communication towers, etc., and scales attached to the inner surface of boiler piping. Is generally referred to as a "."

本発明の説明において、「最大ピーク」とは、測定される超音波波形のうちの最大値を示すピークを言い、「逆位相ピーク」とは、最大ピークに対して逆位相の関係にあるピークを言う。また、「上昇領域」とは、基準点またはゼロ点からピークまたは逆位相ピークへと移行する領域を言い、「立上り領域」とは、測定される超音波波形の最初のピークへと移行する領域を言う。   In the description of the present invention, “maximum peak” refers to a peak indicating the maximum value of the measured ultrasonic waveform, and “antiphase peak” refers to a peak that is in an antiphase relationship with respect to the maximum peak. Say. The “rising region” is a region where the reference point or zero point is shifted to the peak or the antiphase peak, and the “rising region” is a region where the measured ultrasonic waveform is shifted to the first peak. Say.

送電用鉄塔、通信用鉄塔等の管やボイラの配管等(以下、これらを「薄膜支持体」と総称する。)の内面に付着した薄膜の厚さを超音波を用いて測定する方法は数多く提案されており、実用化されている。しかしながら、これまで提案されている測定方法は、薄膜支持体と薄膜の境界面で反射される境界面反射波と、薄膜の外面で反射される底面反射波とが時間的に分離して測定されることを前提としたものであった(例えば、特許文献1参照。)。このため、薄膜の厚さが非常に薄い場合には、底面反射波が境界面反射波に重畳して測定できなくなっていた。   There are many methods for measuring the thickness of a thin film attached to the inner surface of a pipe for a power transmission tower, a communication tower, a boiler pipe, etc. (hereinafter collectively referred to as “thin film support”) using ultrasonic waves. It has been proposed and put into practical use. However, the measurement methods that have been proposed so far measure the boundary reflected wave reflected at the interface between the thin film support and the thin film and the bottom reflected wave reflected at the outer surface of the thin film in a temporally separated manner. (For example, refer to Patent Document 1). For this reason, when the thickness of the thin film is very thin, the bottom surface reflected wave cannot be measured by being superimposed on the boundary surface reflected wave.

この底面反射波が境界面反射波に重畳するような場合の解決策として、境界面反射波の立上り時と、境界面反射波と底面反射波の重畳部分における振幅ゼロ時との間の時間差を計測して膜厚を求める方法が提案されている(例えば、特許文献2参照。)。しかしながら、この方法は、重畳部分がどこであるのかを判別するためには反射波の形状が予め予測できることが必須であるが、実際の測定において反射波は送信された超音波の波形と異なった形で現れることが多く、重畳部分がどこであるかを判別することはきわめて困難であり、場合によっては振幅ゼロ時がないケースもあり得るため、実用的ではなかった。   As a solution when the bottom surface reflected wave is superimposed on the boundary surface reflected wave, the time difference between the rising edge of the boundary surface reflected wave and the time when the amplitude of the boundary surface reflected wave and the bottom surface reflected wave is overlapped is zero. A method for measuring the film thickness by measurement has been proposed (see, for example, Patent Document 2). However, in this method, it is essential to be able to predict the shape of the reflected wave in advance in order to determine where the superimposed portion is, but in the actual measurement, the reflected wave has a shape different from the waveform of the transmitted ultrasonic wave. This is not practical because it is extremely difficult to determine where the overlap portion is, and in some cases there may be no amplitude zero.

特開平8−159742号公報JP-A-8-159742 特開2001−227933号公報JP 2001-227933 A

本発明は、測定対象となる薄膜支持体と薄膜の一般的な組合せが、鉄や鋼と亜鉛やスケール等のように、底面反射波が境界面反射波よりも大きな振幅を呈する組合せが多いことに着目して考え出されたもので、底面反射波と境界面反射波が重畳した検出波形であっても、簡単かつ確実に膜厚を測定できる方法を提供しようとするものである。   In the present invention, there are many common combinations of a thin film support and a thin film to be measured, such as iron, steel, zinc, and scale, in which the bottom surface reflected wave exhibits a larger amplitude than the boundary surface reflected wave. The present invention has been conceived by focusing on the above, and it is intended to provide a method capable of easily and reliably measuring the film thickness even with a detection waveform in which a bottom surface reflected wave and a boundary surface reflected wave are superimposed.

本発明による膜厚測定方法は、薄膜支持体と該薄膜支持体の一面側に付着された薄膜とからなり、薄膜支持体の薄膜に対向する側の面から送信された超音波の底面反射波の振幅が境界面反射波の振幅よりも大きな特性を有する測定対象物の薄膜の厚さを測定する方法である。本発明の方法は、慣用の超音波探傷器を用いて従来技術におけると同様に超音波を薄膜支持体の薄膜に対向する側の面から送信することにより始められ、送信した超音波の境界面反射波と底面反射波とからなる合成反射波を超音波探傷器で受信し、受信した合成反射波が最初のピークと逆位相ピークへの上昇領域(以下、これを「立上り領域」という。)において当該ピークの値に対して所定%の値の閾値を通過する時(以下、これを「閾値通過時」という。)との時間差、または最大ピークへの上昇領域における閾値通過時との時間差を計測することによって膜厚の測定値を求め、この求めた測定値から所定の補正式に基づいて補正値を算出することにより薄膜の厚さを決定する。   The film thickness measuring method according to the present invention comprises a thin film support and a thin film attached to one side of the thin film support, and a bottom surface reflected wave of an ultrasonic wave transmitted from the surface of the thin film support facing the thin film. This is a method for measuring the thickness of the thin film of the measurement object having a characteristic that the amplitude of the measurement object has a characteristic larger than the amplitude of the boundary surface reflected wave. The method of the present invention is started by transmitting ultrasonic waves from the surface of the thin film support opposite to the thin film using a conventional ultrasonic flaw detector as in the prior art, and the boundary surface of the transmitted ultrasonic waves. A combined reflected wave composed of the reflected wave and the bottom reflected wave is received by the ultrasonic flaw detector, and the received combined reflected wave rises to the first peak and the opposite phase peak (hereinafter referred to as “rising region”). Is the time difference from the time when the threshold value of the peak is passed through a threshold value of a predetermined percentage (hereinafter referred to as “when the threshold value is passed”), or the time difference from when the threshold value is passed in the rising region to the maximum peak. The measurement value of the film thickness is obtained by measurement, and the thickness of the thin film is determined by calculating the correction value from the obtained measurement value based on a predetermined correction formula.

受信した合成反射波の波形の最先部分は、境界面反射波が底面反射波よりも先に戻ってくることから、基本的に境界面反射波の成分であり、波形の最大ピークの部分は、底面反射波が境界面反射波よりも大きいことから、基本的に底面反射波の成分であると捉えることができる。この理由により、合成反射波の立上り時を境界面反射波の測定点とし、最大ピーク時を底面反射波の測定点として膜厚の測定値を求め、上述した補正を行って膜厚を求めることは可能である。本発明においては、立上り時の第1の波を境界面反射波として捉え、最大ピーク時の波を底面反射波として捉えることを基本的な考えとするものであり、それ故、立上り領域における閾値通過時を境界面反射波の測定点とし、最大ピーク上昇領域における閾値通過時を底面反射波の測定点としている。少なくとも立上り領域の始まり部分は、前述したように、境界面反射波が底面反射波よりも先に戻ってくるため、実質的に境界面反射波の波形として処理することができる。一方、最大ピーク上昇領域は、境界面反射波と底面反射波の重畳の程度によってその曲線が変化されることになる。本発明では、基本的に、この曲線変化量を光学顕微鏡で測定した薄膜の実測値と比較解析することにより補正式、
Vc=(Vm−b)/a
ただし、Vm:薄膜の厚さの測定値
Vc:薄膜の厚さの補正値
a,b:薄膜および薄膜支持体の材質により設定される係数
を導き出している。
The earliest part of the waveform of the received composite reflected wave is basically the boundary reflected wave component because the boundary reflected wave returns earlier than the bottom reflected wave, and the maximum peak part of the waveform is Since the bottom surface reflected wave is larger than the boundary surface reflected wave, it can be basically regarded as a component of the bottom surface reflected wave. For this reason, the measurement value of the film thickness is obtained with the rising point of the synthetic reflected wave as the measurement point of the boundary reflection wave, the maximum peak time as the measurement point of the bottom reflection wave, and the above-mentioned correction is performed to obtain the film thickness. Is possible. In the present invention, the basic idea is to capture the first wave at the rising edge as the boundary reflection wave and the wave at the maximum peak as the bottom reflection wave. The time of passage is the measurement point of the boundary surface reflected wave, and the time of passage of the threshold in the maximum peak rise region is the measurement point of the bottom surface reflected wave. At least at the beginning of the rising region, as described above, the boundary surface reflected wave returns earlier than the bottom surface reflected wave, so that it can be processed substantially as a waveform of the boundary surface reflected wave. On the other hand, the curve of the maximum peak rising region is changed depending on the degree of superposition of the boundary surface reflected wave and the bottom surface reflected wave. In the present invention, basically, this curve change amount is compared with an actual measurement value of a thin film measured with an optical microscope, and a correction formula is obtained.
Vc = (Vm−b) / a
Where Vm: measured value of thin film thickness
Vc: Correction value of thin film thickness
a, b: The coefficient set by the material of the thin film and the thin film support is derived.

これらの閾値通過時を測定点とすることは、境界面反射波と底面反射波の重畳の程度、使用する超音波の周波数、検出した合成反射波の振幅の大きさ、閾値の値によってその時間的値が変化する可能性を含むことになる。このため、補正式はこれらの変動要因を固定した状態で求められる。本発明の適用形態の一つとして、薄膜支持体が鉄または鋼であり、薄膜が亜鉛である場合の本発明の薄膜測定方法は、立上り時のピークおよび最大ピークを所定の値までそれぞれ増幅または減衰し、そのときのピーク値に対して所定の割合の値を立上り領域における閾値および最大ピーク上昇領域における閾値としてそれぞれ設定したとき、前記の補正式の係数aおよびbを、
a=1.2798
b=151.74
とすることで実用上十分な正確性を有する膜厚の値を求めることができる。
The time when these threshold values are passed is taken as the measurement point depending on the degree of superposition of the boundary surface reflected wave and the bottom surface reflected wave, the frequency of the ultrasonic wave to be used, the magnitude of the detected amplitude of the synthesized reflected wave, and the threshold value. This includes the possibility that the target value will change. For this reason, the correction equation is obtained with these fluctuation factors fixed. As one of the application forms of the present invention, when the thin film support is iron or steel and the thin film is zinc, the thin film measuring method of the present invention amplifies the rising peak and the maximum peak to a predetermined value, respectively. Attenuating and setting the ratio of a predetermined ratio to the peak value at that time as the threshold value in the rising region and the threshold value in the maximum peak rising region, respectively, the coefficients a and b of the correction equation are
a = 1.798
b = 151.74
By doing so, the value of the film thickness having practically sufficient accuracy can be obtained.

また、薄膜支持体が鉄または鋼であり、薄膜がアルミニウムである場合、
a=1.8232
b=238.36
とすることで前述と同様に実用上十分な正確性を有する膜厚の値を求めることができる。
When the thin film support is iron or steel and the thin film is aluminum,
a = 1.8232
b = 238.36
By doing so, the value of the film thickness having practically sufficient accuracy can be obtained in the same manner as described above.

ところで、使用する超音波探傷器、超音波周波数等の測定条件によっても左右されるが、薄膜の厚さが相対的に厚いときや、薄膜支持体と薄膜の材質の組合せによって、合成反射波における最大ピークと最初のピークとの間に少なくとも1つのピークが現れる。このため、前述した最大ピークを所定の値まで増幅または減衰し、そのときのピーク値に対する所定の割合の値を読み取ろうとするとき、この介在するピークが閾値よりも大きい場合、最大ピークの閾値通過時の代わりに中間に介在するピークの閾値通過時の値を間違って読み取ってしまう虞がある。このような相対的に大きなピークが中間に介在する例としては、アルミニウム薄膜支持体とニッケルまたはクロムの薄膜の組合せや、銅の薄膜支持体と錫の薄膜の組合せの場合がある。また、特に、読取りを自動的に行う場合、中間に介在するピークの値であるか最大ピークの値であるかを自動認識させることはより複雑なプログラムを必要とする。   By the way, although it depends on the measurement conditions such as the ultrasonic flaw detector to be used and the ultrasonic frequency, when the thickness of the thin film is relatively thick or the combination of the thin film support and the material of the thin film, At least one peak appears between the maximum peak and the first peak. For this reason, when the above-mentioned maximum peak is amplified or attenuated to a predetermined value and a value of a predetermined ratio with respect to the peak value at that time is read, if this intervening peak is larger than the threshold value, the maximum peak threshold value passing There is a possibility that the value at the time of passing through the threshold value of the peak intervening instead of the time may be erroneously read. Examples of such relatively large peaks intervening include a combination of an aluminum thin film support and a nickel or chromium thin film, or a combination of a copper thin film support and a tin thin film. In particular, when reading is automatically performed, it is necessary to have a more complicated program for automatically recognizing whether the peak value is an intermediate peak value or the maximum peak value.

このような誤った読取りを避けるため、本発明の別の適用形態においては、最大ピークへと連なる直前の逆位相ピークと最初のピークとの間に誤った読取りを生ずるような相対的に大きな逆位相ピークが介在しない点に着目し、前述の最大ピーク上昇領域における閾値通過時の代わりに最大ピークへと連なる直前の逆位相ピークへの上昇領域における閾値通過時を使用する。   In order to avoid such erroneous readings, in another application of the present invention, a relatively large inverse that results in an erroneous reading between the immediately preceding antiphase peak leading to the maximum peak and the first peak. Focusing on the fact that no phase peak is present, instead of the above-described threshold passing in the maximum peak rising region, the threshold passing time in the rising region to the opposite phase peak immediately before the maximum peak is used.

自明な如く、立上り領域での閾値通過時と逆位相ピークへの上昇領域での閾値通過時の間の時間は、同一厚の薄膜を測定したとき、前述した立上り領域での閾値通過時と最大ピークへの上昇領域での閾値通過時の間の時間と異なり、また、補正式中の値aおよびbもまた同様に異なる。この適用形態における補正式中の係数aおよびbは、それぞれ、
薄膜支持体がアルミニウムであり、薄膜がニッケルである場合:
a=0.3682
b=103.36
薄膜支持体がアルミニウムであり、薄膜がクロムである場合:
a=0.7669
b=118.97
薄膜支持体が銅であり、薄膜が錫である場合:
a=1.4523
b=66.614
とすることで前述と同様に実用上十分な正確性を有する膜厚の値を求めることができる。
As is obvious, the time between the threshold passing in the rising region and the threshold passing in the rising region to the antiphase peak is the same as when the threshold is passed in the rising region and the maximum peak when the thin film of the same thickness is measured. And the values a and b in the correction formula are similarly different. The coefficients a and b in the correction formula in this application form are respectively
When the thin film support is aluminum and the thin film is nickel:
a = 0.3682
b = 103.36
When the thin film support is aluminum and the thin film is chromium:
a = 0.7669
b = 118.97
When the thin film support is copper and the thin film is tin:
a = 1.4523
b = 66.614
By doing so, the value of the film thickness having practically sufficient accuracy can be obtained in the same manner as described above.

ここにおいて、立上り領域と逆位相ピークの上昇領域とを基準とする方法は、立上り時のピークと最大ピークとの間に別のピークが介在しない場合であってもそのまま利用できることに留意されたい。この場合、前記の組合せにおける前述の補正式の係数aおよびbはそれぞれ次のように設定される。
薄膜支持体が鉄または鋼、薄膜が亜鉛の場合:
a=1.1015
b=130.06
薄膜支持体が鉄または鋼、薄膜がアルミニウムの場合:
a=1.7771
b=84.347
Here, it should be noted that the method based on the rising region and the rising region of the antiphase peak can be used as it is even when another peak is not interposed between the peak at the rising time and the maximum peak. In this case, the coefficients a and b of the above-described correction formula in the above combination are set as follows.
When the thin film support is iron or steel and the thin film is zinc:
a = 1.115
b = 130.06
When the thin film support is iron or steel and the thin film is aluminum:
a = 1.7771
b = 84.347

一方、説明が前後するが、薄膜が薄いと立上り時のピークと最大ピークとの間に別のピークが介在しない場合があり、上述の薄膜支持体:アルミニウム/薄膜:ニッケル、薄膜支持体:アルミニウム/薄膜:クロム、薄膜支持体:銅/薄膜:錫の場合であっても立上り上昇領域の閾値通過時と最大ピーク上昇領域の閾値通過時を計測することにより測定し得る。これらの場合の係数aおよびbはそれぞれ次のようになる。
薄膜支持体:アルミニウム/薄膜:ニッケル
a=0.2614
b=232.97
薄膜支持体:アルミニウム/薄膜:クロム
a=1.3772
b=212.88
薄膜支持体:銅/薄膜:錫
a=1.3592
b=162.91
On the other hand, although the explanation is mixed, if the thin film is thin, another peak may not be interposed between the peak at the time of rising and the maximum peak, and the above-mentioned thin film support: aluminum / thin film: nickel, thin film support: aluminum / Thin film: Chromium, Thin film support: Copper / Thin film: Tin can be measured by measuring the rising threshold region passing through the threshold and the maximum peak rising region passing through the threshold. The coefficients a and b in these cases are as follows.
Thin film support: Aluminum / Thin film: Nickel
a = 0.614
b = 232.97
Thin film support: Aluminum / Thin film: Chromium
a = 1.3772
b = 212.88
Thin film support: Copper / Thin film: Tin
a = 1.3592
b = 162.91

本発明によれば、測定した合成反射波の立上り領域と最大ピークへの上昇領域における閾値通過時の時間差、或いは、合成反射波の立上り領域と最大ピーク直前の逆位相ピークへの上昇領域における閾値通過時の時間差を測定して膜厚を求め、その値を所定の補正式を用いて補正することにより実用性のある値としての膜厚を得ることができ、それにより、従来波形が重畳することによって計測できなかった非常に薄い膜厚をも測定することができると共に、境界面反射波と底面反射波が分離されているか否かに関係なく薄膜の厚さを測定できるものである。   According to the present invention, the time difference at the time of passing the threshold value in the rising region of the synthetic reflected wave and the rising region to the maximum peak, or the threshold value in the rising region to the antiphase peak immediately before the rising region of the synthetic reflected wave and the maximum peak. The film thickness is obtained by measuring the time difference during passage, and the film thickness can be obtained as a practical value by correcting the value using a predetermined correction formula, whereby the conventional waveform is superimposed. Accordingly, it is possible to measure a very thin film thickness that could not be measured, and to measure the thickness of the thin film regardless of whether the boundary surface reflected wave and the bottom surface reflected wave are separated.

本発明の方法で用いることのできる超音波探傷器の例を示すブロック図である。It is a block diagram which shows the example of the ultrasonic flaw detector which can be used with the method of this invention. 反射波の生成過程を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the production | generation process of a reflected wave. 超音波を用いた厚さ測定において得られる合成反射波の波形の例を示す図である。It is a figure which shows the example of the waveform of the synthetic | combination reflected wave obtained in the thickness measurement using an ultrasonic wave. 閾値の設定を説明するための合成反射波の例を示す図である。It is a figure which shows the example of the synthetic | combination reflected wave for demonstrating the setting of a threshold value. 薄膜として亜鉛めっきを用いた場合の測定値と実測値の関係を示すグラフである。It is a graph which shows the relationship between the measured value at the time of using galvanization as a thin film, and an actual value. 薄膜としてアルミニウムめっきを用いた場合の測定値と実測値の関係を示すグラフである。It is a graph which shows the relationship between the measured value at the time of using aluminum plating as a thin film, and a measured value. 別の閾値の設定方法を説明するための合成反射波の例を示す、図4と同様な図である。FIG. 5 is a diagram similar to FIG. 4, illustrating an example of a composite reflected wave for explaining another threshold setting method.

本発明の実施例による膜厚測定方法は、図1に例示するような周知の超音波探傷器1を用いて行われる。この超音波探傷器1の信号処理等に関しては本発明の範囲外であるのでその詳細については割愛するが、概説すると次のように行われる。   The film thickness measurement method according to the embodiment of the present invention is performed using a known ultrasonic flaw detector 1 as illustrated in FIG. Since the signal processing and the like of the ultrasonic flaw detector 1 are out of the scope of the present invention, the details thereof will be omitted, but are outlined as follows.

超音波探傷器1は、パルサー2で発生された超音波パルスPは超音波トランスデューサ3により測定対象物4の外面側から送信される。測定対象物4は、図2に模式的に示すように、薄膜支持体4aとその内面に付着された薄膜4bとから構成されており、そのため、送信された超音波パルスPのエネルギーは、薄膜支持体4aと薄膜4bの境界面4cでその一部を境界面反射波P1として反射され、境界面4cを透過した超音波エネルギーは薄膜4bの外面4dで底面反射波P2として実質的に全反射される。境界面4cおよび外面4dでそれぞれ反射された境界面反射波P1および底面反射波P2は、超音波トランスデューサー3で受信され、信号増幅部5で増幅されて表示器6に両者が合成された合成反射波Pc(図3参照)として表示される。   In the ultrasonic flaw detector 1, the ultrasonic pulse P generated by the pulsar 2 is transmitted from the outer surface side of the measurement object 4 by the ultrasonic transducer 3. The measurement object 4 is composed of a thin film support 4a and a thin film 4b attached to the inner surface of the thin film support 4a, as shown schematically in FIG. A portion of the boundary surface 4c between the support 4a and the thin film 4b is reflected as a boundary surface reflected wave P1, and the ultrasonic energy transmitted through the boundary surface 4c is substantially totally reflected as a bottom surface reflected wave P2 at the outer surface 4d of the thin film 4b. Is done. The boundary surface reflected wave P1 and the bottom surface reflected wave P2 reflected by the boundary surface 4c and the outer surface 4d, respectively, are received by the ultrasonic transducer 3, amplified by the signal amplifying unit 5, and synthesized by the display device 6. It is displayed as a reflected wave Pc (see FIG. 3).

ここにおいて、本発明において扱う薄膜支持体4aと薄膜4bの組合せは、薄膜支持体4aの外面から送信された超音波の底面反射波P2の振幅が境界面反射波P1の振幅よりも大きな特性を有することを条件とする組合せである。このため、本発明において扱う薄膜支持体4aと薄膜4bの組合せの代表的な例としては、鉄または鋼製の薄膜支持体と、亜鉛、錫、アルミニウムまたはスケールの薄膜との組合せを挙げることができる。   Here, the combination of the thin film support 4a and the thin film 4b handled in the present invention has a characteristic that the amplitude of the bottom surface reflected wave P2 of the ultrasonic wave transmitted from the outer surface of the thin film support 4a is larger than the amplitude of the boundary surface reflected wave P1. It is a combination on condition of having. Therefore, a typical example of the combination of the thin film support 4a and the thin film 4b handled in the present invention is a combination of a thin film support made of iron or steel and a thin film of zinc, tin, aluminum or scale. it can.

第1の反射波である境界面反射波P1と第2の反射波である底面反射波P2とは、薄膜4bの厚さが相対的に厚い場合、図3の(A)に示すように、境界面反射波P1と底面反射波P2が相互に分離された形の合成反射波Pcとして検出され、薄膜4bの厚さが薄くなるに従って境界面反射波P1と底面反射波P2が近接し(図3の(B)参照)、ついには相互に重なり合って境界面反射波P1と底面反射波P2を分離できなくなってしまう(図3の(C)参照)。   When the thickness of the thin film 4b is relatively large, the boundary surface reflected wave P1 that is the first reflected wave and the bottom surface reflected wave P2 that is the second reflected wave are as shown in FIG. The boundary surface reflected wave P1 and the bottom surface reflected wave P2 are detected as a combined reflected wave Pc separated from each other, and the boundary surface reflected wave P1 and the bottom surface reflected wave P2 approach each other as the thickness of the thin film 4b decreases (FIG. 3 (B)), finally, the boundary surface reflected wave P1 and the bottom surface reflected wave P2 cannot be separated from each other (see FIG. 3C).

測定した反射波の時間差の値を薄膜の厚さに換算する方法自体については本発明の範囲外であるのでそれについての説明は割愛するが、図3の(A)に示されているように、境界面反射波P1と底面反射波P2が完全に分離されている場合、境界面反射波P1および底面反射波P2の立上り時Ti1およびTi2間、または閾値(Lx)通過時Tt1およびTt2間、或いは最大ピーク時Tm1およびTm2間の時間差dT0を計測し、それを測定条件に対応する所定の時間差−厚さ換算式に基づいて演算することにより薄膜4bの厚さが算出される。また、図3の(B)に示されているように、境界面反射波P1と底面反射波P2が完全に分離されてはいないが一部重畳している場合、重畳していない測定点、図示の場合、境界面反射波P1および底面反射波P2の閾値(Ly)通過時Tt1およびTt2または最大ピーク時Tm1およびTm2を取り出すことが可能であり、そのため、前述の場合と同様に、閾値通過時Tt1およびTt2間または最大ピーク時Tm1およびTm2間の時間差dT0を計測することによって薄膜4bの厚さを測定することができる。   Since the method of converting the measured time difference value of the reflected wave into the thickness of the thin film is outside the scope of the present invention, a description thereof will be omitted, but as shown in FIG. When the boundary surface reflected wave P1 and the bottom surface reflected wave P2 are completely separated, when the boundary surface reflected wave P1 and the bottom surface reflected wave P2 rise between Ti1 and Ti2, or when passing through a threshold (Lx), between Tt1 and Tt2, Alternatively, the thickness of the thin film 4b is calculated by measuring the time difference dT0 between the maximum peak times Tm1 and Tm2 and calculating it based on a predetermined time difference-thickness conversion formula corresponding to the measurement conditions. Further, as shown in FIG. 3B, when the boundary surface reflected wave P1 and the bottom surface reflected wave P2 are not completely separated but partially overlapped, In the illustrated case, it is possible to extract Tt1 and Tt2 or maximum peak times Tm1 and Tm2 when the boundary surface reflected wave P1 and bottom surface reflected wave P2 pass through the threshold value (Ly). The thickness of the thin film 4b can be measured by measuring the time difference dT0 between the times Tt1 and Tt2 or between the maximum peak times Tm1 and Tm2.

これらの場合に対し、図3の(C)に示されているように、境界面反射波P1に底面反射波P2が重畳して両者を分離できない場合には、上述した方法を用いることができない。このため、本発明では、境界面反射波P1に底面反射波P2が重畳した合成反射波Pcの立上り領域Raにおける閾値通過時Taと最大ピーク上昇領域Rbにおける閾値通過時Tbの間の時間差dT1を測定することにより薄膜4bの厚さを求めている。   In contrast to these cases, as shown in FIG. 3C, when the bottom surface reflected wave P2 is superimposed on the boundary surface reflected wave P1 and cannot be separated, the above-described method cannot be used. . For this reason, in the present invention, the time difference dT1 between the threshold passing time Ta in the rising region Ra and the threshold passing time Tb in the maximum peak rising region Rb of the combined reflected wave Pc in which the bottom surface reflected wave P2 is superimposed on the boundary surface reflected wave P1 is calculated. The thickness of the thin film 4b is obtained by measuring.

ところで、境界面反射波P1および底面反射波P2のどの時点を測定点として使用するかについては、立上り時(Ti1、Ti2)、閾値通過時(Tt1、Tt2)および最大ピーク時(Tm1、Tm2)を使用すると説明したが、立上り時は信号増幅部5の増幅度によって変化する傾向にあり、最大ピーク時は信号波形から明瞭に読み取れない場合がある。このため、本発明は以下のように対処することによりこれらの変動要因を実質的に一定にしている。   By the way, as to which time point of the boundary surface reflected wave P1 and the bottom surface reflected wave P2 is used as the measurement point, at the time of rising (Ti1, Ti2), at the time of passing the threshold (Tt1, Tt2), and at the time of the maximum peak (Tm1, Tm2) However, at the time of rising, there is a tendency to change depending on the degree of amplification of the signal amplifying unit 5, and at the maximum peak, there is a case where it cannot be clearly read from the signal waveform. For this reason, the present invention makes these fluctuation factors substantially constant by taking the following measures.

使用する超音波トランスデューサの周波数については、周波数が低いと分解能が低下し、高くなると、薄膜支持体伝播中の減衰率が大きいために反射波を検出できなくなってしまう。このため、使用する超音波トランスデューサの周波数は測定対象物に応じて適宜に選定される。   As for the frequency of the ultrasonic transducer to be used, when the frequency is low, the resolution is lowered, and when the frequency is high, the reflected wave cannot be detected because the attenuation rate during propagation of the thin film support is large. For this reason, the frequency of the ultrasonic transducer to be used is appropriately selected according to the measurement object.

検出した合成反射波の振幅の大きさによる変動に対しては、図4の(A)および(B)に示すように、合成反射波の立上り時のピークW1のレベルおよび最大ピークW2のレベルが所定の値となるように信号増幅部5の増幅度をそれぞれ調整し、その状態における所定の値を立上り領域Raおよび最大レベル上昇領域Rbにおける閾値LaおよびLbとしてそれぞれ設定することにより対応する。これは、合成反射波の立上り領域Raおよび最大レベル上昇領域Rbにおける波形を実質的に一定にすることで閾値通過時Ta、Tbを一定にすることができることを意味しており、境界面反射波と底面反射波の信号強度が薄膜支持体と薄膜の材質に応じてほぼ一定の比率で検出されることと併せて考察することにより、薄膜の厚さの変化を、最大レベル上昇領域の閾値通過時の値の変化として検出することができる。   As shown in FIGS. 4A and 4B, the level of the peak W1 and the level of the maximum peak W2 at the rising edge of the combined reflected wave are varied with respect to fluctuations due to the detected amplitude of the combined reflected wave. This is achieved by adjusting the amplification degree of the signal amplifying unit 5 so as to be a predetermined value, and setting the predetermined values in the state as the threshold values La and Lb in the rising region Ra and the maximum level rising region Rb, respectively. This means that Ta and Tb can be made constant when the threshold is passed by making the waveforms of the composite reflected wave in the rising region Ra and the maximum level rising region Rb substantially constant. In addition, the signal intensity of the reflected wave from the bottom surface is detected at an almost constant ratio depending on the material of the thin film support and the thin film. It can be detected as a change in time value.

〔実験例1〕
鋼製の薄膜支持体4aに亜鉛めっきを施して薄膜4bを形成して試料を作成した。25MHzの超音波トランスデューサ3を使用して超音波を送信し、受信した合成反射波Pcの立上り時のピークW1の振幅が表示器6の管面スケールで75%の位置にくるように信号増幅部5でレベル調整し、閾値Laをスケール25%のレベルに設定して立上り領域における閾値通過時Taの値を測定する(図4の(A)参照)と共に、合成反射波Pcの最大ピークW2の振幅が表示器6の管面スケールで75%の位置にくるように信号増幅部5でレベル調整し、閾値Lbをスケール25%のレベルに設定して最大ピーク上昇領域における閾値通過時Tbの値を測定した(図4の(B)参照)。これにより得られた2つの閾値通過時TaおよびTbの時間差dT1から膜厚の測定値(Vm)を算出した。その結果を図5に示す。このグラフの近似式より求められた補正式は以下のようになった。
Vc=(Vm−151.74)/1.2798 --- (1)
(Vm:薄膜の厚さの測定値、Vc:薄膜の厚さの補正値)
[Experimental Example 1]
The steel thin film support 4a was galvanized to form a thin film 4b to prepare a sample. The signal amplifying unit transmits ultrasonic waves using the ultrasonic transducer 3 of 25 MHz, and the amplitude of the peak W1 at the rising edge of the received composite reflected wave Pc is 75% on the tube scale of the display 6. 5, the threshold value La is set to a level of 25%, and the value of Ta when passing through the threshold value in the rising region is measured (see FIG. 4A), and the maximum peak W2 of the combined reflected wave Pc is measured. The signal amplification unit 5 adjusts the level so that the amplitude is 75% on the tube scale of the display 6, and the threshold value Lb is set to a level of 25%. Was measured (see FIG. 4B). The measured value (Vm) of the film thickness was calculated from the time difference dT1 between the two threshold passage times Ta and Tb obtained in this way. The result is shown in FIG. The correction formula obtained from the approximate formula of this graph is as follows.
Vc = (Vm-151.74) /1.2798 --- (1)
(Vm: measurement value of thin film thickness, Vc: correction value of thin film thickness)

この補正式の妥当性を検証するために、光学顕微鏡を用いて測定に供した試料の薄膜4bの厚さの実測値(Vr)を測定し、上述の実験において求められた各測定値(Vm)から上記の補正式(1)を用いて補正値(Vc)を算出して実測値Vrとの比較を行ったところ、補正値Vcと実測値Vrの間の誤差は、平均で6μm、最大でも11μmであり、実用上、十分に利用可能な範囲に収まっていることが判明した。   In order to verify the validity of this correction formula, the measured value (Vr) of the thickness of the thin film 4b of the sample subjected to the measurement was measured using an optical microscope, and each measured value (Vm) obtained in the above-described experiment was measured. ) Using the above correction equation (1) to calculate the correction value (Vc) and compare it with the actual measurement value Vr. The error between the correction value Vc and the actual measurement value Vr is 6 μm on average and the maximum However, it was 11 μm, and it was found that it was in a practically usable range.

〔実験例2〕
試料として、鋼製の薄膜支持体4aにアルミニウムめっきを施して薄膜4bを形成し、前記実験例と同様にして実験を行った。測定値Vmと実測値Vrの関係は図7に示すような関係であることが判明した。このグラフの近似式より求められた補正式は以下のようになった。
Vc=(Vm−238.36)/1.8232 --- (2)
[Experiment 2]
As a sample, a thin film support 4a made of steel was subjected to aluminum plating to form a thin film 4b, and an experiment was conducted in the same manner as in the above experimental example. It has been found that the relationship between the measured value Vm and the actually measured value Vr is as shown in FIG. The correction formula obtained from the approximate formula of this graph is as follows.
Vc = (Vm-238.36) /1.8232 --- (2)

実験例1と同様に、この補正式の妥当性を検証するために、試料の薄膜4bの厚さの実測値Vrを光学顕微鏡を用いて測定し、上述の実験において求められた各測定値Vmから上記の補正式(2)を用いて補正値Vcを算出して実測値Vrとの比較を行ったところ、補正値Vcと実測値Vrの間の誤差は、平均で9μm、最大でも20μmであり、実用上、十分に利用可能な範囲に収まっていることが判明した。   As in Experimental Example 1, in order to verify the validity of this correction formula, the measured value Vr of the thickness of the thin film 4b of the sample was measured using an optical microscope, and each measured value Vm obtained in the above experiment was measured. When the correction value Vc is calculated from the above correction equation (2) and compared with the actual measurement value Vr, the error between the correction value Vc and the actual measurement value Vr is 9 μm on average and 20 μm at maximum. Yes, it was found that it was in a practically usable range.

薄膜支持体がアルミニウムであり、薄膜がニッケルである場合、薄膜支持体がアルミニウムであり、薄膜がクロムである場合、薄膜支持体が銅であり、薄膜が錫である場合についても同様に実験した。その結果、補正式を以下のように設定することにより利用できることが判明した。
薄膜支持体がアルミニウム、薄膜がニッケルである場合:
Vc=(Vm−103.36)/0.3682
薄膜支持体がアルミニウム、薄膜がクロムである場合:
Vc=(Vm−118.97)/0.7669
薄膜支持体が銅、薄膜が錫である場合:
Vc=(Vm−66.614)/1.4523
When the thin film support was aluminum and the thin film was nickel, the thin film support was aluminum, the thin film was chromium, the thin film support was copper, and the thin film was tin. . As a result, it was found that the correction formula can be used by setting as follows.
When the thin film support is aluminum and the thin film is nickel:
Vc = (Vm−103.36) /0.3682
When the thin film support is aluminum and the thin film is chromium:
Vc = (Vm-118.97) /0.7669
When the thin film support is copper and the thin film is tin:
Vc = (Vm−66.614) /1.4523

アルミニウム製の薄膜支持体4aとニッケルめっきまたはクロムめっきの薄膜4bとの組合せ、銅製の薄膜支持体4aと錫めっきの薄膜4bとの組合せの場合、或いは、薄膜の厚さが相対的に薄い場合、図7に例示するように、立上り時のピークW1と最大ピークW2との間に位置するピークW3が最大ピークW2の値に近い値を示す。中間ピークW3の値が最大ピークW2の値に近似している場合、前述した合成反射波の振幅の大きさによる変動を回避するための手段、すなわち、ピークレベルが所定の値となるように調整してそのときの閾値通過時を計時する方法では、最大ピークW2および中間ピークW3の波形が、図7に破線で示すように、閾値に相当する横線を横切って表示されるため、最大ピークW2と中間ピークW3とを混同してしまう虞がある。特に、読取りの自動化を行う場合、中間ピークW3が最大ピークW2よりも先に位置するため、最大ピークW2の代わりに中間ピークW3の閾値通過時の値を読み取ってしまう虞がある。   In the case of a combination of an aluminum thin film support 4a and a nickel plating or chrome plating thin film 4b, a combination of a copper thin film support 4a and a tin plating thin film 4b, or a case where the thickness of the thin film is relatively thin As illustrated in FIG. 7, the peak W3 located between the peak W1 and the maximum peak W2 at the time of rising shows a value close to the value of the maximum peak W2. When the value of the intermediate peak W3 is close to the value of the maximum peak W2, the above-described means for avoiding the fluctuation due to the amplitude of the combined reflected wave, that is, the peak level is adjusted to a predetermined value. In the method of counting the threshold passing time at that time, the waveforms of the maximum peak W2 and the intermediate peak W3 are displayed across the horizontal line corresponding to the threshold as shown by the broken line in FIG. And the intermediate peak W3 may be confused. In particular, when the reading is automated, the intermediate peak W3 is positioned before the maximum peak W2, and therefore there is a possibility that the value at the time of passing through the threshold value of the intermediate peak W3 may be read instead of the maximum peak W2.

このような間違った読取りをなくすため、本発明の別の実施形態では、立上り領域における閾値通過時Taと、最大ピークW2へと連なる直前の逆位相ピークW4への上昇領域における閾値通過時Tcとの間の時間を計時することにより行われる。ここにおいて、この逆位相ピークを用いる測定方法は、前述の説明で示した立上り時のピークW1と最大ピークW2との間にピークがない波形においてもまた同様に利用できることに留意されたい。   In order to eliminate such erroneous reading, in another embodiment of the present invention, the threshold value passing time Ta in the rising region and the threshold value passing time Tc in the rising region to the antiphase peak W4 immediately before reaching the maximum peak W2 This is done by measuring the time between. Here, it should be noted that the measurement method using the antiphase peak can be similarly used for a waveform having no peak between the rising peak W1 and the maximum peak W2 shown in the above description.

〔実験例3〕
次の組合せからなる試料をそれぞれ作成した。
試料a 薄膜支持体:アルミニウム / 薄膜4b:ニッケル
試料b 薄膜支持体:アルミニウム / 薄膜4b:クロム
試料c 薄膜支持体:銅 / 薄膜:錫
試料d 薄膜支持体:鉄 / 薄膜:亜鉛
試料e 薄膜支持体:鉄 / 薄膜:アルミニウム
前記実験例と同様に、25MHzの超音波トランスデューサ3を使用して超音波を送信し、受信した合成反射波Pcの立上り時のピークW1の振幅が表示器6の管面スケールで75%の位置にくるように信号増幅部5でレベル調整し、閾値Laをスケール25%のレベルに設定して立上り領域における閾値通過時Taの値を測定すると共に、最大ピークW2へと連なる直前の逆位相ピークW4の振幅が表示器6の管面スケールで75%の位置にくるように信号増幅部5でレベル調整し、閾値Lcをスケール25%のレベルに設定して最大ピーク上昇領域における閾値通過時Tcの値を測定した。これにより得られた2つの閾値通過時TaおよびTcの時間差dT2から膜厚の測定値(Vm)を算出した。その結果をグラフ化し、このグラフの近似式より求められた補正式はそれぞれ以下のようになった。
試料a: Vc=(Vm−103.36)/0.3682
試料b: Vc=(Vm−118.97)/0.7669
試料c: Vc=(Vm−66.614)/1.4523
試料d: Vc=(Vm−130.06)/1.1015
試料e: Vc=(Vm−84.347)/1.7771
(Vm:薄膜の厚さの測定値、Vc:薄膜の厚さの補正値)
[Experimental Example 3]
Samples consisting of the following combinations were prepared.
Sample a thin film support: aluminum / thin film 4b: nickel sample b thin film support: aluminum / thin film 4b: chromium sample c thin film support: copper / thin film: tin sample d thin film support: iron / thin film: zinc sample e thin film support Body: Iron / Thin film: Aluminum Similar to the above experimental example, the ultrasonic wave is transmitted using the ultrasonic transducer 3 of 25 MHz, and the amplitude of the peak W1 at the rising edge of the received composite reflected wave Pc is the tube of the display 6 The level is adjusted by the signal amplifying unit 5 so as to be at a position of 75% on the surface scale, the threshold value La is set to a level of 25%, and the value of Ta when passing through the threshold value in the rising region is measured, and the maximum peak W2 is reached. The signal amplifying unit 5 adjusts the level so that the amplitude of the antiphase peak W4 immediately before the signal is 75% of the tube scale of the display 6 and scales the threshold value Lc. The value of Tc at the time of passing the threshold in the maximum peak rise region was measured by setting the level to 25%. The measured value (Vm) of the film thickness was calculated from the time difference dT2 between the two threshold values Ta and Tc thus obtained. The results were graphed, and the correction formulas obtained from the approximate formulas of this graph were as follows.
Sample a: Vc = (Vm−103.36) /0.3682
Sample b: Vc = (Vm−118.97) /0.7669
Sample c: Vc = (Vm−66.614) /1.4523
Sample d: Vc = (Vm−130.06) /1.1015
Sample e: Vc = (Vm−84.347) /1.7771
(Vm: measurement value of thin film thickness, Vc: correction value of thin film thickness)

この補正式により求められた補正値Vcと、光学的に計測した実測値Vrの間の誤差は、平均で6.7μm、最大でも12.3μmであり、実用上、十分に利用可能な範囲に収まっていることが判明した。   The error between the correction value Vc obtained by this correction equation and the optically measured actual value Vr is 6.7 μm on average and 12.3 μm at the maximum, which is in a range that can be used practically. It turned out to be in place.

上述の説明において、境界面反射波P1と底面反射波P2が完全に分離されている場合並びに部分的に重畳している場合は、従来技術の手法により薄膜4bの厚さを求めるように説明したが、これらの場合であっても本発明の方法、すなわち、立上り領域における閾値通過時と、最大ピークへの上昇領域における閾値通過時の間の時間差を測定し、この時間差から膜厚の測定値を算出し、算出した測定値を上述した補正式を用いて補正することにより薄膜の厚さを求めることができることに留意されたい。   In the above description, when the boundary surface reflected wave P1 and the bottom surface reflected wave P2 are completely separated or partially overlapped, the thickness of the thin film 4b is obtained by the conventional technique. However, even in these cases, the method according to the present invention, that is, the time difference between the threshold value passing in the rising region and the threshold value passing in the rising region to the maximum peak is measured, and the measured value of the film thickness is calculated from this time difference. However, it should be noted that the thickness of the thin film can be obtained by correcting the calculated measurement value using the correction formula described above.

また、上述の説明において、測定点となる閾値La、LbおよびLcについては、それぞれ立上り時のピークW1のレベル、最大ピークW2のレベルおよび最大ピークW2へと連なる直前の逆位相ピークW4のレベルに対して所定の割合となるレベルであると説明したが、この所定の割合は、0%から100%のいずれであってもよい。   In the above description, the threshold values La, Lb and Lc serving as measurement points are respectively set to the level of the peak W1 at the time of rising, the level of the maximum peak W2 and the level of the antiphase peak W4 immediately before reaching the maximum peak W2. Although it has been described that the level is a predetermined ratio, the predetermined ratio may be 0% to 100%.

本発明は、送電用鉄塔、通信用鉄塔等の管やボイラの配管等に使用されている薄膜支持体と薄膜の組合せについて補正式を求め、係数を決定しているが、非破壊検査の対象となるこれ以外の組合せについても基本的に利用できる。   The present invention obtains a correction formula for a combination of a thin film support and a thin film used in a pipe for a power transmission tower, a communication tower, a boiler pipe, etc., and determines a coefficient. Basically, other combinations can be used.

1 超音波探傷器
2 パルサー
3 超音波トランスデューサ
4 測定対象物
4a 薄膜支持体
4b 薄膜
4c 境界面
4d 外面
5 信号増幅部
6 表示器
dT0、dT1、dT2 時間差
La、Lb、Lc、Lx 閾値
P 超音波パルス
Pc 合成反射波
P1 境界面反射波
P2 底面反射波
Ra 立上り領域
Rb 最大ピーク上昇領域
Rc 逆位相ピーク上昇領域
Ti1、Ti2 立上り時
Tm1、Tm2 最大ピーク時
Tt1、Tt2、Ta、Tb、Tc 閾値通過時
Vm 測定値
Vc 補正値
Vr 実測値
W1 立上り時のピーク
W2 最大ピーク
W3 逆位相ピーク
1 Ultrasonic flaw detector
2 Pulsar
3 Ultrasonic transducer
4 measurement object 4a thin film support 4b thin film 4c interface 4d outer surface
5 Signal amplifier
6 Display dT0, dT1, dT2 Time difference La, Lb, Lc, Lx Threshold
P Ultrasonic pulse Pc Synthetic reflected wave P1 Interface reflected wave P2 Bottom reflected wave Ra Rising area Rb Maximum peak rising area Rc Antiphase peak rising area Ti1, Ti2 Rising Tm1, Tm2 Maximum peak Tt1, Tt2, Ta, Tb, Tc When the threshold value is passed Vm Measured value Vc Correction value Vr Measured value W1 Rise peak W2 Maximum peak W3 Reverse phase peak

Claims (1)

薄膜支持体と該薄膜支持体の一面側に付着された薄膜とからなり、薄膜支持体の薄膜に対向する側の面から送信された超音波の底面反射波の振幅が境界面反射波の振幅よりも大きな特性を有する測定対象物の薄膜の厚さを測定する方法であって、
送信した超音波の境界面反射波と底面反射波とからなる合成反射波を受信し、
合成反射波の立上り時のピークのレベルが所定の値となるように信号増幅部の増幅度を調整し、前記所定の値に対して所定%の値を閾値とする立上り領域の閾値通過時を計測すると共に、合成反射波の最大ピークのレベルが前記所定の値と同じ値となるように信号増幅部の増幅度を調整し、前記閾値と同じ値を閾値とする最大レベル上昇領域の閾値通過時を計測し、
計測した2つの閾値通過時の時間差を計測して膜厚の測定値を求め、
求めた測定値から所定の補正式、
Vc=(Vm−b)/a
ただし、Vm:薄膜の厚さの測定値、Vc:薄膜の厚さの補正値、
a,b:薄膜および薄膜支持体の材質により設定される係数
に基づいて補正値を算出して薄膜の厚さを決定する、膜厚測定方法。
It consists of a thin film support and a thin film attached to one side of the thin film support, and the amplitude of the ultrasonic wave reflected from the bottom surface of the thin film support opposite to the thin film is the amplitude of the boundary reflection wave. A method for measuring a thickness of a thin film of an object having a larger characteristic,
Receives the composite reflected wave consisting of the boundary reflected wave and bottom reflected wave of the transmitted ultrasonic wave,
The amplification level of the signal amplifying unit is adjusted so that the peak level at the rising edge of the composite reflected wave becomes a predetermined value, and when the threshold value passes through the rising region with a predetermined value as a threshold value with respect to the predetermined value. In addition to measuring, the amplification level of the signal amplification unit is adjusted so that the maximum peak level of the combined reflected wave becomes the same value as the predetermined value, and the threshold value passes through the maximum level increasing region using the same value as the threshold value as a threshold value. Measure the time
Measure the time difference between the two measured thresholds to determine the film thickness measurement,
A predetermined correction formula from the obtained measurement value,
Vc = (Vm−b) / a
Where Vm is a measured value of the thin film thickness, Vc is a corrected value of the thin film thickness,
a, b: A film thickness measuring method for determining a thickness of a thin film by calculating a correction value based on a coefficient set by the material of the thin film and the thin film support.
JP2009146420A 2002-12-13 2009-06-19 Film thickness measurement method Expired - Fee Related JP4392463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146420A JP4392463B2 (en) 2002-12-13 2009-06-19 Film thickness measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002362920 2002-12-13
JP2009146420A JP4392463B2 (en) 2002-12-13 2009-06-19 Film thickness measurement method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003409527A Division JP4392232B2 (en) 2002-12-13 2003-12-08 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JP2009204627A true JP2009204627A (en) 2009-09-10
JP4392463B2 JP4392463B2 (en) 2010-01-06

Family

ID=41147018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146420A Expired - Fee Related JP4392463B2 (en) 2002-12-13 2009-06-19 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JP4392463B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234494A (en) * 2013-04-09 2013-08-07 浙江大学 Method of measuring thickness of thin materials on the basis of Gaussian echo model
WO2020222454A1 (en) * 2019-04-30 2020-11-05 한양대학교 산학협력단 Thickness measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335616B (en) * 2013-06-26 2016-08-17 西安交通大学 A kind of detection method of sliding bearing universe lubricant film thickness distribution

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234494A (en) * 2013-04-09 2013-08-07 浙江大学 Method of measuring thickness of thin materials on the basis of Gaussian echo model
CN103234494B (en) * 2013-04-09 2015-07-15 浙江大学 Method of measuring thickness of thin materials on the basis of Gaussian echo model
WO2020222454A1 (en) * 2019-04-30 2020-11-05 한양대학교 산학협력단 Thickness measuring device
KR20200127098A (en) * 2019-04-30 2020-11-10 한양대학교 산학협력단 Thickness measuring device
KR102180113B1 (en) * 2019-04-30 2020-11-18 한양대학교 산학협력단 Thickness measuring device

Also Published As

Publication number Publication date
JP4392463B2 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
AU2011295676B2 (en) Method for noninvasive determination of acoustic properties of fluids inside pipes
CN108872378B (en) Nonlinear torsional mode ultrasonic guided wave method for evaluating micro-damage of metal round pipe
US7779693B2 (en) Method for nondestructive testing of pipes for surface flaws
CN105954358B (en) A kind of small defect location detection method of supersonic guide-wave that TR is combined with Duffing systems
US6772638B2 (en) UT detection and sizing method for thin wall tubes
US8776603B2 (en) Method and system for non-destructive testing
CN109781860A (en) A kind of reference block and calibration method
EP3084415B1 (en) Ultrasonic pipeline inspection system and method
JP4392463B2 (en) Film thickness measurement method
CN103615995A (en) Method for lossless evaluation of thickness of thin cladding layer based on ultrasonic surface waves
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
EP1271097A2 (en) Method for inspecting clad pipe
JP4392232B2 (en) Film thickness measurement method
EP0554958B1 (en) Apparatus and method for pipe or tube inspection
JP2007017300A (en) Surface inspection device and surface inspection method
CN107782269A (en) A kind of electromagnetic ultrasonic signal processing method
CN106841385B (en) Detection method based on sound-ultrasound polypropylene production pipeline powder coherent condition
JP2010236886A (en) Method of measuring distribution of crystal grain size of metal material
JP4339159B2 (en) Tubular ultrasonic inspection method
JP2007309794A (en) Apparatus and method for measuring plate thickness
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JP3501948B2 (en) Ultrasonic corrosion diagnostic method and its equipment.
JP2006250595A (en) Ultrasonic measuring method and device
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP3510137B2 (en) Ultrasonic thickness measurement method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4392463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees