JP3501948B2 - Ultrasonic corrosion diagnostic method and its equipment. - Google Patents

Ultrasonic corrosion diagnostic method and its equipment.

Info

Publication number
JP3501948B2
JP3501948B2 JP16530998A JP16530998A JP3501948B2 JP 3501948 B2 JP3501948 B2 JP 3501948B2 JP 16530998 A JP16530998 A JP 16530998A JP 16530998 A JP16530998 A JP 16530998A JP 3501948 B2 JP3501948 B2 JP 3501948B2
Authority
JP
Japan
Prior art keywords
diagnosed
reflected wave
amplitude
corrosion
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16530998A
Other languages
Japanese (ja)
Other versions
JPH11352117A (en
Inventor
健一 高橋
直樹 渡瀬
徹也 冨永
敏之 山口
Original Assignee
株式会社 日立インダストリイズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立インダストリイズ filed Critical 株式会社 日立インダストリイズ
Priority to JP16530998A priority Critical patent/JP3501948B2/en
Publication of JPH11352117A publication Critical patent/JPH11352117A/en
Application granted granted Critical
Publication of JP3501948B2 publication Critical patent/JP3501948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は超音波腐食診断法に
係り、特に鋳造で製造された下水ポンプや雨水ポンプの
ケーシングなどの被診断物の表面にその表面を平坦に表
面加工することなく超音波を投射しあるいは受信するセ
ンサを当接させて該被診断物の裏面の腐食あるいは劣化
具合を診断する超音波腐食診断法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic corrosion diagnostic method, and more particularly to a method for ultrasonically diagnosing a surface of an object to be diagnosed such as a casing of a sewage pump or a rainwater pump manufactured by casting without flattening the surface. The present invention relates to an ultrasonic corrosion diagnostic method for contacting a sensor that projects or receives a sound wave to diagnose the degree of corrosion or deterioration of the back surface of the object to be diagnosed.

【0002】[0002]

【従来の技術】下水ポンプや雨水ポンプなどのケーシン
グや揚水管の構造材は鋳鉄や炭素鋼などが用いられてお
り、機器の設置年数も20年を超す老朽化機器が増えて
いる。これらの機器は日常生活に欠くことのできない下
水道ラインの心臓部であり、事故や故障を起こさないよ
う定期的に検査診断を実施し、必要に応じて改修や交換
などの対策を行うことが大切である。
2. Description of the Related Art Cast iron, carbon steel and the like are used as structural materials for casings and pumping pipes of sewage pumps, rainwater pumps, etc., and the number of aging equipment for which the equipment has been installed for more than 20 years is increasing. These devices are the heart of the sewer line, which is indispensable for daily life, so it is important to perform regular inspections and diagnoses to prevent accidents and breakdowns, and take measures such as repairs and replacements as necessary. Is.

【0003】機器が扱う生活排水(汚水)から硫化水素
が発生し、機器の設置環境は非常に腐食(劣化)の起こ
りやすい状態になっている。構造材の一部で塗装が剥離
し腐食が始まると、腐食は急速に全体に広がり構造材の
内部深くまで進行する。この腐食の進行を放置しておく
と、次第に構造材の強度が低下し大きな破壊事故に進展
することもある。従って、日頃の定期的な検査診断で機
器の腐食状態を把握しておく必要がある。
Hydrogen sulfide is generated from domestic wastewater (dirt water) handled by the equipment, and the installation environment of the equipment is in a state where corrosion (deterioration) is likely to occur. When the paint peels off and corrosion starts in a part of the structural material, the corrosion rapidly spreads throughout and progresses deep inside the structural material. If the progress of this corrosion is left as it is, the strength of the structural material gradually decreases and it may progress to a large destruction accident. Therefore, it is necessary to grasp the corrosion state of the equipment through regular inspection and diagnosis.

【0004】構造材の内面(裏面)の腐食状態を検査診
断する従来の方法は、機器を分解し目視で判定するもの
であった。この方法は実態を正確に把握確認できること
において有効であるが、機器を分解しなければならない
から、機器の運転中には実施できなかった。
The conventional method of inspecting and diagnosing the corrosion state of the inner surface (back surface) of the structural material is to disassemble the equipment and make a visual judgment. This method is effective in accurately grasping and confirming the actual situation, but it cannot be performed while the equipment is in operation because the equipment must be disassembled.

【0005】そこで、非破壊検査法として超音波診断法
が利用されるようになってきた。
Therefore, an ultrasonic diagnostic method has come to be used as a nondestructive inspection method.

【0006】この方法は、被診断物の表面に超音波を投
射しあるいは受信するセンサを当接させて該被診断物の
裏面の腐食あるいは劣化具合を診断するものである。
In this method, a sensor for projecting or receiving ultrasonic waves is brought into contact with the surface of the object to be diagnosed to diagnose the degree of corrosion or deterioration of the back surface of the object to be diagnosed.

【0007】即ち、被診断物の表面に振幅Pの超音波を
投射し、該被診断物内での超音波の反射波の振幅Pxと
反射波を得た時間から該被診断物における厚さxを求
め、さらにこれらから超音波の減衰係数αを求め、該被
診断物の構成素材を用いた試料で予め求めておいた被診
断物の厚さと反射波との関係を表したマスターカーブを
用いて該減衰係数で被診断物の裏面における腐食状況を
診断する。
That is, an ultrasonic wave having an amplitude P is projected onto the surface of the object to be diagnosed, and the thickness P of the object to be diagnosed is calculated from the amplitude Px of the reflected wave of the ultrasonic wave in the object to be diagnosed and the time when the reflected wave is obtained. x is obtained, the attenuation coefficient α of the ultrasonic wave is obtained from these, and a master curve representing the relationship between the thickness and the reflected wave of the object to be diagnosed, which is obtained in advance with a sample using the constituent material of the object to be diagnosed, is obtained. By using the damping coefficient, the corrosion condition on the back surface of the object to be diagnosed is diagnosed.

【0008】そのマスターカーブにおいて、被診断物に
おける厚さxについて超音波の減衰係数αが健全な被診
断物のそれより大きければ、裏面の凹凸が大きくなって
いる、つまり、裏面は腐食していると判断する。
In the master curve, if the attenuation coefficient α of the ultrasonic wave with respect to the thickness x of the object to be diagnosed is larger than that of a healthy object to be diagnosed, the unevenness of the back surface is large, that is, the back surface is corroded. Determine that

【0009】なお、このような超音波診断法を紹介した
ものとして、書籍『超音波探傷法』(日本学術振興会製
鋼第19委員会編、昭和51年12月 日刊工業新聞社
発行)における「6.2 減衰測定」と題する記事(p
p301〜321)がある。
As an introduction to such an ultrasonic diagnostic method, "Ultrasonic flaw detection method" (edited by the Japan Society for the Promotion of Science, Steelmaking 19th Committee, December 1976, published by Nikkan Kogyo Shimbun) Article titled "6.2 Attenuation Measurement" (p
p301-321).

【0010】[0010]

【発明が解決しようとする課題】超音波診断法によれば
健全層の厚さを計測することができる。鋳造で製造され
た被診断物は、鋳型の加工精度などの関係からその正確
な厚さは明確でなく、鋳造時の厚さは設計値と異なって
いることが多い。鋳造直後の厚さが分かっていない場合
には、上記のマスターカーブを利用した診断では、得ら
れた健全層の厚さが設計値を大幅に下回っていた時は、
機器全体が危険な状態にあり改修よりも構造材の交換が
必要であると判定できる。
According to the ultrasonic diagnostic method, the thickness of the sound layer can be measured. The exact thickness of the object to be diagnosed manufactured by casting is not clear due to the processing accuracy of the mold, and the thickness at the time of casting often differs from the designed value. If the thickness immediately after casting is not known, in the diagnosis using the above master curve, when the thickness of the obtained sound layer is significantly lower than the design value,
It can be determined that the entire equipment is in a dangerous state and structural materials need to be replaced rather than repaired.

【0011】しかしながら、得られた健全層の厚さが設
計値程度の場合には、腐食の進行度合いは腐食前の健全
層の厚さが分かっていないと、鋳型の精度が高かったの
か腐食で薄くなったのか判定できない。従って、健全層
の厚さで腐食の進行度合いを判定し改修の必要性を判断
することは、正確さに欠ける。
However, when the thickness of the obtained sound layer is about the design value, the degree of progress of corrosion depends on whether the accuracy of the mold is high or not if the thickness of the sound layer before the corrosion is not known. It cannot be determined whether it has become thin. Therefore, it is not accurate to judge the degree of progress of corrosion based on the thickness of the sound layer to judge the necessity of repair.

【0012】また、鋳造で製造された被診断物は、鋳型
の加工精度などの関係から、全ての表面は凹凸のある鋳
肌面となっている。それゆえ、センサを防錆や保護のた
めの塗膜を設けた構造材にそのまま接触させて超音波を
送受信すると、センサを接触させた側の表面の凹凸で減
衰してしまうので超音波の減衰が表面の凹凸による減衰
なのか裏面の腐食による減衰なのか区別できない。超音
波の減衰を裏面の腐食によるものとしてしまうと、裏面
における腐食の進行度合いを大きく判断することにな
る。
Further, the object to be diagnosed manufactured by casting has a cast surface with unevenness on all surfaces due to the processing accuracy of the mold and the like. Therefore, if the sensor is directly contacted with the structural material provided with a coating for rust prevention or protection and ultrasonic waves are transmitted / received, it will be attenuated by the unevenness of the surface on the side where the sensor is contacted. It is not possible to distinguish whether the attenuation is due to unevenness on the surface or due to corrosion on the back surface. If the attenuation of the ultrasonic waves is caused by the back surface corrosion, the degree of progress of the back surface corrosion will be greatly judged.

【0013】従って、センサを接触させる構造材の表面
は平滑にしておかなくてはならない。平滑加工をすると
計測精度は得られるが、構造材の表面には防錆や保護の
ための塗膜を設けるから、診断作業後に、平滑加工を施
した場所に防錆や保護のための塗膜を設ける必要があ
る。その場合、新たに施した塗膜と以前の塗膜の色差を
生じることが多く、構造材表面の美観を損なう。
Therefore, the surface of the structural material with which the sensor is in contact must be made smooth. Measurement accuracy can be obtained by smoothing, but since a coating for rust prevention and protection is provided on the surface of the structural material, a coating for rust prevention and protection is applied to the smoothed location after the diagnostic work. Need to be provided. In that case, a color difference between the newly applied coating and the previous coating often occurs, and the appearance of the surface of the structural material is impaired.

【0014】それゆえ本発明の目的は、構造材の表面を
平滑加工することなく防錆や保護のための塗膜を設けた
構造材にセンサをそのまま接触させて正確に裏面の腐食
の進行度合いを判定することができる超音波腐食診断法
とその装置を提供することにある。
Therefore, an object of the present invention is to accurately contact the sensor directly with a structural material provided with a coating film for rust prevention and protection without smoothing the surface of the structural material to accurately measure the progress of corrosion of the back surface. An object of the present invention is to provide an ultrasonic corrosion diagnostic method and a device therefor capable of determining

【0015】[0015]

【課題を解決するための手段】上記目的を達成する本発
明の特徴とするところは、被診断物の表面に超音波を投
射し、該被診断物の裏面での超音波の反射波を求め、該
被診断物における超音波の減衰係数を求め、該減衰係数
により該被診断物の構成素材による試料で予め求めてお
いた被診断物の厚さと反射波との関係を表したマスター
カーブから被診断物の裏面における腐食状況を診断する
超音波腐食診断法において、被診断物の任意位置の表面
に遅延材を介してセンサを接触させて該表面での塗膜と
該被診断物の健全層との界面における反射波の振幅( PF
1 )の表裏面を平滑にした試料について同様に得られる
反射波の振幅に対する比である界面エコー比(PF1/PF
0)を得て、該界面エコー比(PF1/PF0)から該被診断物
の裏面における反射波の振幅( PR1 )の表裏面を平滑に
した試料について同様に得られる反射波の振幅( PRX
に対する比である裏面エコー比 PR1/PRX を得て、さ
らに該表面に遅延材を介することなくセンサを接触させ
て裏面での超音波の反射波から該被診断物の厚さと該反
射波の振幅を得て、該反射波の振幅を前記面エコー比
PR1/PRX の逆数 PRX/PR1 で補正し、該被診断物の
厚さと補正された該反射波の振幅によりマスターカーブ
から被診断物の裏面における腐食状況を診断することに
ある。
The feature of the present invention for achieving the above object is to project an ultrasonic wave on the surface of an object to be diagnosed and obtain a reflected wave of the ultrasonic wave on the back surface of the object to be diagnosed. From the master curve showing the relationship between the thickness of the object to be diagnosed and the reflected wave, which is obtained in advance by the sample of the constituent material of the object to be diagnosed by the attenuation coefficient of the ultrasonic wave in the object to be diagnosed In the ultrasonic corrosion diagnosis method for diagnosing the corrosion state on the back surface of the object to be diagnosed, a sensor is brought into contact with the surface of the object to be diagnosed through a delay material to ensure the soundness of the coating film on the surface and the object to be diagnosed. Amplitude of reflected wave at interface with layer ( PF
The same can be obtained for the sample with the front and back surfaces smoothed in 1 )
Interface echo ratio (PF1 / PF
0) was obtained, and the interface echo ratio (PF1 / PF0) from front and back surfaces of the smooth amplitude (PR1) of the reflected wave at the rear surface of該被diagnostic product
Amplitude of reflected wave ( PRX ) similarly obtained for the sample
To the backside echo ratio ( PR1 / PRX ) , which is the ratio to to obtain the amplitude, the back Men'e code ratio the amplitude of the reflected wave
It is to diagnose the corrosion state on the back surface of the object to be diagnosed from the master curve by correcting the inverse number ( PRX / PR1 ) of ( PR1 / PRX ) and the thickness of the object to be diagnosed and the corrected amplitude of the reflected wave.

【0016】[0016]

【発明の実施の形態】以下、図に示す実施形態に基いて
本発明を説明する。図1は、本発明の一実施形態とし
て、使用中であるポンプのケーシング1における内面の
腐食進行度合いを超音波で診断を行なう状況を示してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below based on the embodiments shown in the drawings. FIG. 1 shows, as an embodiment of the present invention, a situation in which ultrasonic waves are used to diagnose the degree of progress of corrosion on the inner surface of a casing 1 of a pump that is in use.

【0017】ケーシング1は、鋳鉄の健全層であるケー
シング本体1aとその外側の表面に設けた塗膜1bおよ
び内面(ケーシング本体1aの表面から見て裏面)にで
きた腐食層1cよりなるものとする。ポンプが使用中で
あるために、ケーシング1内には下水2が流れている。
The casing 1 comprises a casing body 1a which is a sound layer of cast iron, a coating film 1b provided on the outer surface of the casing body 1a, and a corrosion layer 1c formed on the inner surface (the back surface when viewed from the surface of the casing body 1a). To do. Sewage 2 is flowing in the casing 1 because the pump is in use.

【0018】塗膜1b上に超音波センサ(以下、センサ
と略記)3、4が設置される。両センサ3、4は連結部
材5で一定間隔を持たせた状態で結合させてあり、図示
していない作業者は、塗膜1b上を診断をするべく図1
において両センサ3、4を左あるいは右方向に移動させ
る。センサ3には遅延材6が塗膜1b側に固定されてい
る。7、8は各センサ3、4に同一振幅の超音波パルス
を送る発信器で、センサ3は遅延材6を介して塗膜1b
に超音波を投射するが、センサ4は遅延材が設けられて
いないので塗膜1bに超音波を直接投射する。9、10
は各センサ3、4から出した超音波についてケーシング
1からの反射波を各センサ3、4を介してそれぞれ受け
る受信器である。
Ultrasonic sensors (hereinafter abbreviated as sensors) 3 and 4 are provided on the coating film 1b. Both the sensors 3 and 4 are connected by a connecting member 5 with a certain interval, and an operator (not shown) is shown in FIG. 1 in order to make a diagnosis on the coating film 1b.
In, both sensors 3 and 4 are moved leftward or rightward. A delay material 6 is fixed to the sensor 3 on the side of the coating film 1b. Reference numerals 7 and 8 are transmitters for sending ultrasonic pulses having the same amplitude to the sensors 3 and 4, respectively.
Although the ultrasonic wave is projected onto the sensor 1, the sensor 4 directly projects the ultrasonic wave onto the coating film 1b because no delay material is provided. 9, 10
Is a receiver that receives reflected waves from the casing 1 for the ultrasonic waves emitted from the sensors 3 and 4, respectively.

【0019】11、12は、各受信器8、9で得たケー
シング1からの反射波をディジタル化するA−D変換
器、13、14はディジタル化された反射波を記憶して
おく波形メモリ、15、16はケーシング1上での各セ
ンサ3、4の位置計測を連結材17、18を介して行な
う変位計、19、20は変位計15、16で得た各セン
サ3、4の位置データを記憶しておく位置メモリであ
る。21は波形メモリ13、14および位置メモリ1
9、20からデータを得て処理を行なうコンピュータ
(以下、パソコンと略記)であり、処理結果などはモニ
タ22やプリンタ23から適宜に出力する。
Reference numerals 11 and 12 are A / D converters for digitizing the reflected waves from the casing 1 obtained by the receivers 8 and 9, and 13 and 14 are waveform memories for storing the digitized reflected waves. , 15 and 16 are displacement gauges for measuring the positions of the sensors 3 and 4 on the casing 1 through the connecting members 17 and 18, and 19 and 20 are the positions of the sensors 3 and 4 obtained by the displacement gauges 15 and 16. A position memory for storing data. 21 is the waveform memories 13 and 14 and the position memory 1
A computer (hereinafter abbreviated as a personal computer) that obtains data from 9 and 20 and performs processing, and outputs the processing result and the like from the monitor 22 and the printer 23 as appropriate.

【0020】各センサ3、4はいづれが先でもよいが、
一方が超音波を投射した箇所は必ず他方のセンサでも超
音波を投射する。両センサ3、4を連結部材5で一体化
させてあるのは、両センサ3、4を連結部材5による一
定間隔だけ一直線に移動させると、両センサ3、4でケ
ーシング1の同一位置に超音波を投射することになり、
作業が容易になるためである。
Either of the sensors 3 and 4 may come first,
Where one of the sensors projects ultrasonic waves, the other sensor always projects ultrasonic waves. The two sensors 3 and 4 are integrated by the connecting member 5 because when the two sensors 3 and 4 are moved in a straight line at a constant interval by the connecting member 5, the two sensors 3 and 4 move to the same position on the casing 1. To project sound waves,
This is because the work becomes easy.

【0021】なお、センサ3は受信波のうち鋳鉄の健全
層であるケーシング本体1aとその外側の表面に設けた
塗膜1bの境界面での反射波を扱うものとし、センサ4
は受信波のうち鋳鉄の健全層であるケーシング本体1a
と腐食層1cの境界面での反射波を扱うものとする。従
って、センサ3はケーシング本体1aの表面の状態を、
またセンサ4はケーシング本体1aの裏面の状態をみる
ことになる。
The sensor 3 handles the reflected wave at the boundary between the casing body 1a, which is a sound layer of cast iron, and the coating film 1b provided on the outer surface of the received wave, and the sensor 4
Is a casing body 1a which is a sound layer of cast iron in the received wave
The reflected wave at the boundary surface between the corrosion layer 1c and the corrosion layer 1c is treated. Therefore, the sensor 3 indicates the state of the surface of the casing body 1a as
Further, the sensor 4 can see the state of the back surface of the casing body 1a.

【0022】パソコン21には、被診断物の構成素材毎
に図2、図3に示すマスターカーブのデータが格納され
ている。図2は、ケーシング1と同一の構成素材を用
い、表面は粗さを変え裏面は平滑にした複数の試料につ
いて、センサ3で得た反射波の振幅PF1を横軸に、セ
ンサ4で得た反射波の振幅PR1を縦軸にとって図表化
した実測値補正のためのマスターカーブの一例を示すも
のである。
The personal computer 21 stores the master curve data shown in FIGS. 2 and 3 for each constituent material of the object to be diagnosed. FIG. 2 shows a plurality of samples in which the same constituent material as that of the casing 1 is used, the surface of which is changed in roughness and the back surface thereof is made smooth, and the amplitude PF1 of the reflected wave obtained by the sensor 3 is obtained by the sensor 4 on the horizontal axis. It shows an example of a master curve for correcting the actual measurement value, which is represented by plotting the amplitude PR1 of the reflected wave on the vertical axis.

【0023】図2において、PF0、PRXは表面と裏
面を共に平滑にした試料について両センサ3、4で得た
反射波の振幅であり、各振幅について比(エコー比)を
取った理由は試料の厚さに依る影響を排除するためであ
る。各振幅PF0、PRXはケーシング1が腐食を受け
ず鋳肌面の凹凸も極めて小さい理想的な状態にあること
を示しており、従って、以下、各振幅PF0、PRXを
基準エコー高さと呼ぶ。 本発明者らは、図2に示すマ
スターカーブMC2が被診断物の構成素材の組成を変更
してみても構成素材により定数A〜Cが代わるだけで下
式で表せることを確認することができた。 PR1/PRX=A(PF1/PF0)2+B(PF1/PF0)+C …(数1) 図2では、センサ3で得た反射波の振幅PF1は表面の
荒れの程度を現わしており、センサ3でのエコー比PF
1/PF0が小さいことは表面が荒れており、逆にエコ
ー比PF1/PF0が1に近づくほど表面は平坦である
ことを意味している。センサ4でのエコー比PR1/P
RXとセンサ3でのエコー比PF1/PF0は相関関係
にあることを示しているので、センサ4でのエコー比P
R1/PRXはセンサ3でのエコー比PF1/PF0か
ら、つまりは表面の荒れの程度を推定できる。
In FIG. 2, PF0 and PRX are the amplitudes of the reflected waves obtained by both sensors 3 and 4 with respect to the sample whose front and back surfaces are both smoothed. The reason for taking the ratio (echo ratio) for each amplitude is the sample. This is to eliminate the influence due to the thickness of. The respective amplitudes PF0 and PRX indicate that the casing 1 is in an ideal state in which the casing 1 is not corroded and the unevenness of the casting surface is extremely small. Therefore, hereinafter, the respective amplitudes PF0 and PRX are referred to as reference echo heights. The inventors of the present invention can confirm that the master curve MC2 shown in FIG. 2 can be expressed by the following formula even if the composition of the constituent material of the object to be diagnosed is changed and the constants A to C are changed depending on the constituent material. It was PR1 / PRX = A (PF1 / PF0) 2 + B (PF1 / PF0) + C (Equation 1) In FIG. 2, the amplitude PF1 of the reflected wave obtained by the sensor 3 indicates the degree of surface roughness. Echo ratio PF at 3
The fact that 1 / PF0 is small means that the surface is rough, and conversely, as the echo ratio PF1 / PF0 approaches 1, the surface becomes flatter. Echo ratio PR1 / P at sensor 4
Since the RX and the echo ratios PF1 / PF0 in the sensor 3 have a correlation, the echo ratio P in the sensor 4
R1 / PRX can be estimated from the echo ratios PF1 / PF0 at the sensor 3, that is, the degree of surface roughness.

【0024】本発明はこの傾向を利用するもので、表面
の荒れによる超音波の往路と復路での合成した減衰をセ
ンサ3でのエコー比PF1/PF0から求められるエコ
ー比PR1/PRXで補正して表面の荒れが無い平滑な
表面を仮想し、この仮想表面から超音波を投射したと見
做して裏面の荒れ具合(腐食の進行度合い)を判定する
ものである。即ち、図2でのエコー比PR1/PFXが
小さいほど表面の荒れていて超音波が往復において減衰
したと云えるので、このエコー比PR1/PFXの逆数
(PRX/PR1)をセンサ4の実測値に乗じること
で、平滑な表面から超音波を投射し裏面の反射波を平滑
な表面においてセンサ4で得たと見做し得る。従って、
塗膜1bを剥離し健全層1aの表面を削って平滑化しな
くても、裏面における腐食の進行度合いを判定できるこ
とになる。
The present invention utilizes this tendency, and the combined attenuation in the forward and backward paths of ultrasonic waves due to surface roughness is corrected by the echo ratio PR1 / PRX obtained from the echo ratio PF1 / PF0 at the sensor 3. Assuming that an ultrasonic wave is projected from this virtual surface, the degree of roughness of the rear surface (degree of progress of corrosion) is determined. That is, it can be said that the smaller the echo ratio PR1 / PFX in FIG. 2, the rougher the surface and the more the ultrasonic waves are attenuated in the round trip. Therefore, the reciprocal of the echo ratio PR1 / PFX (PRX / PR1) is measured by the sensor 4. By multiplying by, it can be considered that the ultrasonic wave is projected from the smooth surface and the reflected wave on the back surface is obtained by the sensor 4 on the smooth surface. Therefore,
Even if the coating layer 1b is not peeled off and the surface of the sound layer 1a is not ground and smoothed, the degree of progress of corrosion on the back surface can be determined.

【0025】図3は、予め被診断物の構成素材による試
料を用いてセンサ4で健全層の厚さL3に対しその試料
についてセンサ4で実測した反射波の振幅P1aを上記
逆数で補正した値P1と表裏面が平滑な試料での反射波
の振幅P0の比(実測エコー比P1/P0)の関係を健
全な場合、腐食が始まった初期の状態、さらに腐食が進
んだ状態および激しく腐食を受けてしまった状態に区別
できるように減衰係数αnで図表化した、腐食進行度合
い診断のためのマスターカーブMC31〜MC33を示
している。
FIG. 3 shows a value obtained by previously correcting the amplitude P1a of the reflected wave measured by the sensor 4 for the thickness L3 of the healthy layer by the sensor 4 using the sample made of the constituent material of the object to be diagnosed in advance by the reciprocal. When the relationship between the ratio of P1 and the amplitude P0 of the reflected wave (measured echo ratio P1 / P0) of the sample with smooth front and back surfaces is sound, the initial state where corrosion started, the state where corrosion further progressed, and the severe corrosion The master curves MC31 to MC33 for diagnosing the degree of progress of corrosion are shown in a diagram with the damping coefficient αn so that the received state can be distinguished.

【0026】なお、エコー比で表す理由は、図2の場合
と同様に厚さの影響を除去するためである。
The echo ratio is used to eliminate the influence of the thickness, as in the case of FIG.

【0027】以下、具体的に上記の各エコー比や腐食診
断について、図9に示したフロー図を参照しつつ説明す
る。先ず、図4で、図1に示したケーシング1の任意位
置における塗膜1bの厚さL2をセンサ3で計測するこ
となどについて説明する。
The above echo ratios and corrosion diagnosis will be specifically described below with reference to the flow chart shown in FIG. First, the measurement of the thickness L2 of the coating film 1b at an arbitrary position of the casing 1 shown in FIG. 1 with the sensor 3 will be described with reference to FIG.

【0028】図4(a)はセンサ3により遅延材6を介
して塗膜1bの厚さL2を計測する状況をモデル的に示
している。遅延材6は設計されたものであるから、その
構成素材や厚さL1は既知の値である。
FIG. 4A shows, as a model, a situation in which the thickness L2 of the coating film 1b is measured by the sensor 3 via the delay material 6. Since the delay member 6 is designed, its constituent material and thickness L1 are known values.

【0029】図9に示すステップ(以下Sと略記)1で
計測位置にセンサ3を移動させ、センサ3から超音波T
1を投射し、塗膜1bと健全層1aの界面からの反射波
R2をセンサ3で受信する。遅延材6と塗膜1bの界面
での反射波も受信するが、塗膜1bの表面は荒れがある
ことを想定し、平滑な当接面を有する遅延材6と大気と
の界面での反射波を利用する。その反射波を波R1と
し、図4(b)に超音波T1やそれぞれの界面からの反
射波R1、R2の波形を示している。
In step (hereinafter abbreviated as S) 1 shown in FIG. 9, the sensor 3 is moved to the measurement position, and the ultrasonic wave T is emitted from the sensor 3.
1, and the sensor 3 receives the reflected wave R2 from the interface between the coating film 1b and the sound layer 1a. Although the reflected wave at the interface between the delay material 6 and the coating film 1b is also received, it is assumed that the surface of the coating film 1b is rough, and reflection at the interface between the delay material 6 having a smooth contact surface and the atmosphere. Take advantage of the waves. The reflected wave is referred to as a wave R1, and the waveforms of the ultrasonic wave T1 and the reflected waves R1 and R2 from the respective interfaces are shown in FIG. 4B.

【0030】図4(b)において、PF1a、PF1は
それぞれ反射波R1、R2の振幅(エコー高さ)であ
る。
In FIG. 4B, PF1a and PF1 are the amplitudes (echo heights) of the reflected waves R1 and R2, respectively.

【0031】尚、遅延材6の厚さL1は既知の値である
が、加工精度上確認をしておきたい場合には、その構成
素材で定まる超音波の音速cと反射波R1を得た時間
(路程)tから容易に得る(L1=C×t/2)ことが
できる。
The thickness L1 of the delay member 6 is a known value, but if it is desired to confirm it in terms of processing accuracy, the ultrasonic wave velocity c and the reflected wave R1 determined by the constituent materials thereof were obtained. It can be easily obtained (L1 = C × t / 2) from the time (road length) t.

【0032】図4(b)に示すように、センサ3でR2
を計測することで、波形から塗膜1bの厚さL2と振幅
PF1が得られる(図9のS2)。
As shown in FIG. 4 (b), the sensor 3 performs R2
By measuring, the thickness L2 of the coating film 1b and the amplitude PF1 can be obtained from the waveform (S2 in FIG. 9).

【0033】次に、図5により図2に示した塗膜1bに
関するエコー比PF1/PF0について説明する。基準
エコー高さPF0は図2に関して説明したように健全層
1aの表面が平滑な場合の反射波の振幅である。図5
(a)はその状況をモデル化して示したものである。図
5(b)は図4(b)に合わせた基準エコー(基準反射
波)R2Oの波形を示している。基準エコーR2Oの高
さPF0は健全層1aの表面が平滑であるから減衰が殆
どなく、従って、実測値PF1より大きな値である。
Next, the echo ratios PF1 / PF0 relating to the coating film 1b shown in FIG. 2 will be described with reference to FIG. The reference echo height PF0 is the amplitude of the reflected wave when the surface of the sound layer 1a is smooth as described with reference to FIG. Figure 5
(A) shows the situation as a model. FIG. 5B shows the waveform of the reference echo (reference reflected wave) R2O matched with FIG. 4B. The height PF0 of the reference echo R2O has almost no attenuation because the surface of the sound layer 1a is smooth, and is therefore a value larger than the measured value PF1.

【0034】基準エコーR2Oの高さPF0は図5
(a)のモデルとして予め用意した試料の中から健全層
1aや塗膜1bの素材や厚さが一致するものを選んで図
4の場合と同一の音圧の超音波T1をセンサ3から投射
して計測してもよいが、図4での実測値や設計値および
各素材の音響インピーダンス、内部減衰係数、超音波T
1の音圧を用いて公知の手法で各界面での減衰と内部で
の減衰から算出しても良い(図9のS3)。
The height PF0 of the reference echo R2O is shown in FIG.
From the sample prepared in advance as the model of (a), one in which the material and thickness of the sound layer 1a and the coating film 1b are the same is selected, and the ultrasonic wave T1 having the same sound pressure as in the case of FIG. 4 is projected from the sensor 3. Although it may be measured by measuring, the measured value and the design value in FIG. 4, the acoustic impedance of each material, the internal attenuation coefficient, the ultrasonic wave T
It may be calculated from the attenuation at each interface and the internal attenuation by a known method using the sound pressure of 1 (S3 in FIG. 9).

【0035】基準エコーR2Oの高さPF0を得ること
で、センサ3による塗膜1bに関するエコー比PF1/
PF0が得られる。そこで、このエコー比PF1/PF
0を用い予め用意されている図2のマスターカーブある
いは数1からセンサ4でのエコー比PR1/PRXを得
る(図9のS4)。
By obtaining the height PF0 of the reference echo R2O, the echo ratio PF1 / for the coating film 1b by the sensor 3 is obtained.
PF0 is obtained. Therefore, this echo ratio PF1 / PF
0 is used to obtain the echo ratio PR1 / PRX at the sensor 4 from the master curve of FIG. 2 prepared in advance or the equation 1 (S4 of FIG. 9).

【0036】次に、図6に示すようにセンサ3で計測を
行ったケーシング1上の同一位置でセンサ4による計測
を行う(図9のS5〜S6)。図1のように、センサ4
はケーシング1の塗膜1b上に直接接触されており、セ
ンサ3の場合と異なり遅延材は存在しない。
Next, as shown in FIG. 6, the sensor 4 measures the same position on the casing 1 where the sensor 3 measured (S5 to S6 in FIG. 9). As shown in FIG. 1, the sensor 4
Is in direct contact with the coating film 1b of the casing 1, and unlike the case of the sensor 3, there is no delay material.

【0037】図6(a)は、図5(a)と同様、センサ
3による計測状況をモデル化して示している。センサ4
から投射された超音波のうち裏面に至るものをT2で示
しており、その反射波R3をセンサ4で受信する。超音
波T2と反射波R3は図6(b)に示す波形であり、セ
ンサ4で受信した反射波R3の振幅(エコー高さ)をP
1aとする。塗膜1bの厚さL2はセンサ3による計測
でわかっているので、反射波R3までの時間から健全層
1aの厚さL3がわかる。健全層1aの厚さL3は塗膜
1bの厚さL2と同様に、音速や路程などから演算で正
確に算出することもできる(図9のS7)。
FIG. 6A shows a model of the measurement situation by the sensor 3, as in FIG. 5A. Sensor 4
Among the ultrasonic waves projected from, those reaching the back surface are indicated by T2, and the reflected wave R3 is received by the sensor 4. The ultrasonic wave T2 and the reflected wave R3 have the waveforms shown in FIG. 6B, and the amplitude (echo height) of the reflected wave R3 received by the sensor 4 is P
1a. Since the thickness L2 of the coating film 1b is known by the measurement by the sensor 3, the thickness L3 of the sound layer 1a can be known from the time until the reflected wave R3. Like the thickness L2 of the coating film 1b, the thickness L3 of the sound layer 1a can also be accurately calculated by calculation from the sound velocity, the road length, etc. (S7 in FIG. 9).

【0038】塗膜1bと健全層1aの界面が荒れている
ために、超音波T2と反射波R3はこの界面を通過する
と減衰する。従って、反射波R3のエコー高さP1aは
ケーシング1の裏面、つまり、健全層1aと腐食層1c
の界面の荒れを正確に反映したものとなっていない。
Since the interface between the coating film 1b and the sound layer 1a is rough, the ultrasonic wave T2 and the reflected wave R3 are attenuated when passing through this interface. Therefore, the echo height P1a of the reflected wave R3 is the back surface of the casing 1, that is, the sound layer 1a and the corrosion layer 1c.
It does not accurately reflect the roughness of the interface.

【0039】そこで、図7(a)に示すように、塗膜1
bと健全層1aの界面に荒れがない場合における反射波
R3の振幅をP1として、これを図2に示す本発明の基
になった知見から求める。
Then, as shown in FIG. 7A, the coating film 1
The amplitude of the reflected wave R3 when there is no roughness at the interface between b and the sound layer 1a is P1, and this is obtained from the knowledge on which the present invention is based, shown in FIG.

【0040】実測中のケーシング1については、前述し
たようにエコー比PF1/PF0を用い予め用意されて
いる図2のマスターカーブあるいは数1からセンサ4で
のエコー比PR1/PRXが得られているから、この逆
数PRX/PR1を補正値として反射波R3のエコー高
さP1aに乗ずることで、図7(b)に示すように塗膜
1bと健全層1aの界面に荒れがない場合における反射
波R3の振幅P1が得られる(図9のS8)。
As for the casing 1 being actually measured, the echo ratio PR1 / PRX at the sensor 4 is obtained from the master curve of FIG. Therefore, by multiplying the echo height P1a of the reflected wave R3 by using the reciprocal PRX / PR1 as a correction value, the reflected wave when the interface between the coating film 1b and the sound layer 1a is not rough as shown in FIG. 7B. The amplitude P1 of R3 is obtained (S8 in FIG. 9).

【0041】図7(b)において、波形R30は反射波
R3を逆数PRX/PR1で補正して示したもので、従
来のように、ケーシング1の表面を削って平滑にしセン
サを直接その研削面に当接して計測を行なうと、この波
形R30が得られるのであるが、本発明では研削しない
で計測を行なうものであるため、実測した波形は波形R
3である。
In FIG. 7 (b), the waveform R30 shows the reflected wave R3 corrected by the reciprocal PRX / PR1. As in the conventional case, the surface of the casing 1 is ground and smoothed, and the sensor is directly ground to the ground surface. This waveform R30 can be obtained by contacting with and contacting with, but in the present invention, since the measurement is performed without grinding, the actually measured waveform is waveform R.
It is 3.

【0042】次に、健全層1aの厚さに依る影響を排除
するために、波形R30についてエコー比を取る。
Next, in order to eliminate the influence due to the thickness of the sound layer 1a, the echo ratio is obtained for the waveform R30.

【0043】図8(a)に示すように、エコー比を得る
ための基準エコーは、予め用意してある塗膜1bと健全
層1aの厚さL2、L3と素材を同一とし界面が平滑な
試料にセンサ4を接触させるか、図6での実測値や設計
値および各素材の音響インピーダンス、内部減衰係数、
超音波T1の音圧を用いて公知の手法で各界面での減衰
と内部での減衰から算出しても良い(図9のS9)。そ
れらの方法で得た基準エコーの波形R4とその振幅をP
0を補正したエコー波形R30に対比させて図8(b)
に示した。
As shown in FIG. 8A, the reference echo for obtaining the echo ratio is made of the same material as the thicknesses L2 and L3 of the coating film 1b and the sound layer 1a prepared in advance, and the interface is smooth. The sensor 4 is brought into contact with the sample, or the measured value or design value in FIG. 6 and the acoustic impedance of each material, the internal attenuation coefficient,
The sound pressure of the ultrasonic wave T1 may be used to calculate from the attenuation at each interface and the internal attenuation by a known method (S9 in FIG. 9). The reference echo waveform R4 obtained by these methods and its amplitude are P
8 (b) in comparison with the echo waveform R30 in which 0 is corrected.
It was shown to.

【0044】これでセンサ4による健全層1aについて
のエコー比P1/P0が求まるので(図9のS10)、
図6の実測で得た健全層1aの厚さL3とにより、図3
に示すマスターカーブMC31〜MC33を予め格納し
ているパソコン21で腐食層1cの腐食の進行度合いを
判定する。
Since the echo ratio P1 / P0 for the sound layer 1a by the sensor 4 is obtained (S10 in FIG. 9),
The thickness L3 of the sound layer 1a obtained by the actual measurement of FIG.
The degree of progress of corrosion of the corrosion layer 1c is determined by the personal computer 21 in which the master curves MC31 to MC33 shown in are stored in advance.

【0045】図3において、マスターカーブMC31〜
MC33は、健全層1aにおける減衰係数αnがそれぞ
れα1、α2、α3として経験から任意に定めるもので
ある。 健全層1aの厚さL3とエコー比P1/P0の
関係が、マスターカーブMC31の位置より上にあれば
ケーシング1は腐食が無く健全である、マスターカーブ
MC31とマスターカーブMC32の間であれば腐食が
始まった初期の状態、マスターカーブMC32とマスタ
ーカーブMC33の間であればさらに腐食が進んだ状
態、マスターカーブMC33よりも下であれば腐食を受
けてしまった状態にあると判定できる。
In FIG. 3, master curves MC31 to MC31
In the MC 33, the damping coefficient αn in the sound layer 1a is arbitrarily determined from experience as α1, α2, and α3, respectively. If the relationship between the thickness L3 of the sound layer 1a and the echo ratio P1 / P0 is above the position of the master curve MC31, the casing 1 is healthy without corrosion. If it is between the master curve MC31 and the master curve MC32, the casing 1 is corroded. It can be determined that the initial state of the start of the process, the state where the corrosion is further progressed between the master curve MC32 and the master curve MC33, and the state where the corrosion has been performed if it is below the master curve MC33.

【0046】即ち、各マスターカーブMC31〜MC3
3は下式で一般化して表記できる。 P1/P0=exp(−αn・2・L3)……(数2) 各減衰係数αnは、この数2を展開して下式で表すこと
ができる。 αn=−(1/2・L3)・(lnP1/P0)……(数3) 上記計測などで得た健全層1aの厚さL3とエコー比P
1/P0を下式に入れてケーシング1での減衰係数αを
得る。 α=−(1/2・L3)・(lnP1/P0)……(数4) 計算の結果得られる減衰係数αを上記マスターカーブM
C31〜MC33の減衰係数αnと順次比較し、大小関
係で、マスターカーブMC31の減衰係数α1より小さ
い場合は健全、マスターカーブMC31、MC32の減
衰係数α1、α2の間では初期の状態、 マスターカー
ブMC32、MC33の減衰係数α2、α3の間では腐
食が進んだ状態、マスターカーブMC33の減衰係数α
3より大きい場合は激しい腐食、というように上記した
腐食の進行度合いを判定する(図9のS11)。
That is, each master curve MC31 to MC3
3 can be generalized and expressed by the following formula. P1 / P0 = exp (−αn · 2 · L3) (Equation 2) Each attenuation coefficient αn can be expressed by the following equation by expanding this Equation 2. αn = − (1/2 · L3) · (lnP1 / P0) (Equation 3) The thickness L3 and the echo ratio P of the sound layer 1a obtained by the above measurement and the like.
The damping coefficient α in the casing 1 is obtained by inserting 1 / P0 into the following equation. α = − (½ · L3) · (lnP1 / P0) (Equation 4) The attenuation coefficient α obtained as a result of the calculation is used as the master curve M.
The damping coefficient αn of C31 to MC33 is sequentially compared, and if the damping coefficient α1 of the master curve MC31 is smaller than the damping coefficient α1 of the master curve MC31, the sound state is normal, the initial state between the damping coefficients α1 and α2 of the master curves MC31 and MC32, the master curve MC32 , MC33 of the attenuation coefficient α2, α3, corrosion progressed, the master curve MC33 of the attenuation coefficient α
If it is larger than 3, the degree of progress of the above-mentioned corrosion is judged as severe corrosion (S11 of FIG. 9).

【0047】以上の説明では、ケーシング1の任意の一
点について説明してきたが、複数箇所について計測を行
い腐食診断をするのが通例であるので、図1に示すよう
に、連結部材5でセンサ3、4を一体化し、移動させて
振幅や位置のデータを順次取り込んでいけば、パソコン
21で位置の対応づけをしながら稼動中の機器について
内部(裏面)における腐食の進行度合いを判定すること
ができる。
In the above description, an arbitrary point of the casing 1 has been described, but since it is customary to measure corrosion at a plurality of points to make a corrosion diagnosis, as shown in FIG. If 4 and 4 are integrated and moved, and the data of the amplitude and the position are sequentially captured, it is possible to determine the progress degree of corrosion in the inside (rear surface) of a device in operation while associating the position with the personal computer 21. it can.

【0048】また、計測する位置を作業者が特定できる
ならば、2個のセンサ3、4を用いることは止めて、1
個のセンサに対し遅延材を脱着可能にして、被診断物
(ケーシング)の表面における荒れの状態を把握しても
良い。
If the operator can specify the position to be measured, stop using the two sensors 3 and 4 and
The delay material may be attached to and detached from each sensor, and the state of roughness on the surface of the object to be diagnosed (casing) may be grasped.

【0049】さらに、図2、図3のマスターカーブでは
エコー比で表示しているが、厚さの影響の心配がない場
合には、基準エコーを用いなくてもよい。
Further, although the master curves of FIGS. 2 and 3 are displayed by the echo ratio, the reference echo may not be used if there is no concern about the influence of the thickness.

【0050】[0050]

【発明の効果】以上説明したように本発明によれば、構
造材の表面を平滑加工することなく防錆や保護のための
塗膜を設けた構造材にセンサをそのまま接触させて正確
に裏面の腐食の進行度合いを判定することができる。
As described above, according to the present invention, the sensor is directly brought into contact with the structural material provided with the coating film for rust prevention and protection without smoothing the surface of the structural material, and the back surface is accurately formed. The degree of progress of corrosion can be determined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態になる超音波腐食診断装置
で使用中であるポンプのケーシング1における内面の腐
食進行度合いの診断を行なう状況を示す図である。
FIG. 1 is a diagram showing a situation in which a degree of progress of corrosion of an inner surface of a casing 1 of a pump used in an ultrasonic corrosion diagnostic apparatus according to an embodiment of the present invention is diagnosed.

【図2】図1に示す超音波腐食診断装置におけるパソコ
ンに格納されている実測値補正のためのマスターカーブ
の一例を示す図である。
FIG. 2 is a diagram showing an example of a master curve for correcting actual measurement values stored in a personal computer in the ultrasonic corrosion diagnostic apparatus shown in FIG.

【図3】図1に示す超音波腐食診断装置におけるパソコ
ンに格納されている腐食進行度合い診断のためのマスタ
ーカーブの一例を示す図である。
3 is a diagram showing an example of a master curve for diagnosing a degree of corrosion progress stored in a personal computer in the ultrasonic corrosion diagnostic apparatus shown in FIG.

【図4】図1に示したケーシングの任意位置における塗
膜の厚さを遅延材を介してセンサで計測する状況を示す
図である。
4 is a diagram showing a situation in which the thickness of a coating film at an arbitrary position of the casing shown in FIG. 1 is measured by a sensor via a delay material.

【図5】図4に示したセンサで得た計測結果により塗膜
に関するエコー比を得る状況を示す図である。
5 is a diagram showing a situation in which an echo ratio for a coating film is obtained based on measurement results obtained by the sensor shown in FIG.

【図6】図4において計測した任意位置でケーシングに
おける健全層の厚さを遅延材を介在させることなくセン
サで計測する状況を示す図である。
FIG. 6 is a diagram showing a situation in which the thickness of the sound layer in the casing is measured by a sensor at an arbitrary position measured in FIG. 4 without interposing a delay material.

【図7】図6において塗膜と健全層の界面に荒れがない
場合における反射波の振幅について説明する図である。
FIG. 7 is a diagram illustrating the amplitude of a reflected wave when there is no roughness at the interface between the coating film and the sound layer in FIG.

【図8】図6に示したセンサで得た計測結果によりケー
シングにおける健全層に関するエコー比を得る状況を示
す図である。
8 is a diagram showing a situation in which an echo ratio for a sound layer in a casing is obtained based on a measurement result obtained by the sensor shown in FIG.

【図9】図1に示す超音波腐食診断装置で、使用中であ
るポンプのケーシング1における内面の腐食進行度合い
の診断を行う場合の、フロー図である。
FIG. 9 is a flow chart when the degree of progress of corrosion on the inner surface of the casing 1 of the pump being used is diagnosed by the ultrasonic corrosion diagnostic apparatus shown in FIG.

【符号の説明】[Explanation of symbols]

1 …ケーシング 1a …ケーシング本体(健全層) 1b …塗膜 1c …腐食層 3、4 …超音波センサ 5 …連結部材 6 …遅延材 7、8 …発信器 9、10 …受信器 11、12…A−D変換器 13、14…波形メモリ 15、16…変位計 17、18…連結材 19、20…位置メモリ 21 …コンピュータ(パソコン) 22 …モニタ 23 …プリンタ 1 ... Casing 1a ... Casing body (healthy layer) 1b ... Coating film 1c ... Corrosion layer 3, 4 ... Ultrasonic sensor 5 ... Connecting member 6 ... Delay material 7, 8 ... Transmitter 9, 10 ... Receiver 11, 12 ... AD converter 13, 14 ... Waveform memory 15, 16 ... Displacement meter 17, 18 ... Connecting material 19, 20 ... Position memory 21… Computer (personal computer) 22 ... Monitor 23 ... Printer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 冨永 徹也 茨城県土浦市神立東二丁目28番4号 日 立テクノエンジニアリング株式会社 土 浦事業所内 (72)発明者 山口 敏之 茨城県土浦市神立東二丁目28番4号 日 立テクノエンジニアリング株式会社 土 浦事業所内 (56)参考文献 特開 平5−172794(JP,A) 特開 平2−143158(JP,A) 特開 平3−84407(JP,A) 特開 昭64−46609(JP,A) 特開 平3−200061(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 29/00 - 29/28 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tetsuya Tominaga Tetsuya Tominaga 2-8-4 Jinritsu Higashi 2-chome, Tsuchiura City, Ibaraki Prefecture Hiratsuno Engineering Co., Ltd. Tsuchiura Works (72) Inventor Toshiyuki Yamaguchi Jinritsu Higashi Tsuchiura City, Ibaraki Prefecture No. 28-4, Nititsu Techno Engineering Co., Ltd., Tsuchiura Works (56) Reference JP-A-5-172794 (JP, A) JP-A-2-143158 (JP, A) JP-A-3-84407 (JP , A) JP-A 64-46609 (JP, A) JP-A-3-200061 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 29/00-29/28

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被診断物の表面に超音波を投射し、該被診
断物の裏面での超音波の反射波を求め、該被診断物にお
ける超音波の減衰係数を求め、該減衰係数により該被診
断物の構成素材による試料で予め求めておいた被診断物
の厚さと反射波との関係を表したマスターカーブから被
診断物の裏面における腐食状況を診断する超音波腐食診
断法において、 被診断物の任意位置の表面に遅延材を介してセンサを接
触させて該表面での塗膜と該被診断物の健全層との界面
における反射波の振幅( PF1 )の表裏面を平滑にした試
料について同様に得られる反射波の振幅に対する比であ
る界面エコー比(PF1/PF0)を得て、該界面エコー比(P
F1/PF0)から該被診断物の裏面における反射波の振幅
PR1 )の表裏面を平滑にした試料について同様に得ら
れる反射波の振幅( PRX )に対する比である裏面エコー
PR1/PRX を得て、さらに該表面に遅延材を介する
ことなくセンサを接触させて裏面での超音波の反射波か
ら該被診断物の厚さと該反射波の振幅を得て、該反射波
の振幅を前記面エコー比 PR1/PRX の逆数 PRX/PR
1 で補正し、該被診断物の厚さと補正された該反射波
の振幅によりマスターカーブから被診断物の裏面におけ
る腐食状況を診断することを特徴とする超音波腐食診断
法。
1. An ultrasonic wave is projected onto the surface of the object to be diagnosed, a reflected wave of the ultrasonic wave on the back surface of the object to be diagnosed is obtained, and an attenuation coefficient of the ultrasonic wave at the object to be diagnosed is obtained. In the ultrasonic corrosion diagnosis method for diagnosing the corrosion state on the back surface of the object to be diagnosed from the master curve representing the relationship between the thickness and the reflected wave of the object to be diagnosed, which is obtained in advance by the sample of the constituent material of the object to be diagnosed, The sensor is brought into contact with the surface of the object to be diagnosed through a delay material to smooth the front and back surfaces of the amplitude ( PF1 ) of the reflected wave at the interface between the coating film on the surface and the healthy layer of the object to be diagnosed. Tried
Is the ratio of the amplitude of the reflected wave obtained in the same way
That the interface echo ratio to give (PF1 / PF0), said interface echo ratio (P
F1 / PF0) to the amplitude of the reflected wave on the back of the object to be diagnosed
( PR1 ) samples obtained by smoothing the front and back surfaces were obtained in the same manner.
The backside echo ratio ( PR1 / PRX ) , which is the ratio to the amplitude ( PRX ) of the reflected wave to be generated, is obtained, and the sensor is brought into contact with the surface without a delay material, and the reflected wave of the ultrasonic wave on the backside is used to to obtain the amplitude of the thickness and the reflection wave of the diagnostic object, the inverse of the amplitude of the reflected wave back Men'e code ratio (PR1 / PRX) (PRX / PR
An ultrasonic corrosion diagnostic method, wherein the corrosion condition on the back surface of the diagnostic object is diagnosed from the master curve by the thickness of the diagnostic object and the corrected amplitude of the reflected wave corrected in 1 ) .
【請求項2】 上記請求項1に記載の超音波腐食診断法に
おいて、該マスターカーブは裏面から得られる反射波の
振幅(P1)の表裏面が平滑な試料の裏面から得られる反
射波の振幅(P0)に対する比(P1/P0)と被診断物の厚
さの関係で表示されたものであることを特徴とする超音
波腐食診断法。
2. The ultrasonic corrosion diagnostic method according to claim 1, wherein the master curve has an amplitude (P1) of the reflected wave obtained from the back surface, and the amplitude of the reflected wave obtained from the back surface of the sample whose front and back surfaces are smooth. An ultrasonic corrosion diagnostic method characterized in that it is displayed as a relationship between the ratio (P1 / P0) to (P0) and the thickness of the object to be diagnosed.
【請求項3】被診断物の表面に超音波を投射し、該被診
断物の裏面での超音波の反射波を求め、該被診断物にお
ける超音波の減衰係数を求め、該減衰係数により該被診
断物の構成素材による試料で予め求めておいた被診断物
の厚さと反射波との関係を表したマスターカーブから被
診断物の裏面における腐食状況を診断する装置であっ
、 被診断物の任意位置の表面に遅延材を介して超音波を投
射し該表面からの反射波を受信する第一のセンサ、該表
面に遅延材を介することなく直接接触して超音波を投射
し該裏面での反射波を受信する第二のセンサ、および被
診断物の裏面における腐食状況を診断する判定手段を有
し、該第一のセンサによる計測から該表面における塗膜
と該被診断物の健全層との界面における反射波の振幅
PF1 )の表裏面を平滑にした試料について同様に得ら
れる反射波の振幅( PR0 )に対する比である界面エコー
比(PF1/PF0)を得、該界面エコー比(PF1/PF0)から
該被診断物の裏面における反射波の振幅( PRX )に対す
る比である裏面エコー比 PR1/PRX を得るとともに
該第二のセンサによる計測から該被診断物の厚さと該裏
面での該反射波の振幅を得ること、該反射波の振幅を該
裏面におけるエコー比 PR1/PRX の逆数 PRX/PR1
補正した該反射波の振幅を得ること、および該被診断物
の厚さと補正された該反射波の振幅によりマスターカー
ブから被診断物の裏面における腐食状況を診断するよう
に構成したことを特徴とする超音波腐食診断装置。
3. An ultrasonic wave is projected on the surface of the object to be diagnosed, a reflected wave of the ultrasonic wave on the back surface of the object to be diagnosed is obtained, and an attenuation coefficient of the ultrasonic wave at the object to be diagnosed is obtained. A device for diagnosing the corrosion state on the back surface of the object to be diagnosed from a master curve representing the relationship between the thickness and the reflected wave of the object to be diagnosed, which is obtained in advance from a sample of the constituent material of the object to be diagnosed.
A first sensor for projecting an ultrasonic wave to a surface of an object to be diagnosed through a delay material and receiving a reflected wave from the surface, and an ultrasonic wave directly contacting the surface without a delay material A second sensor for projecting light and receiving the reflected wave from the back surface, and
Equipped with a judgment means for diagnosing the corrosion state on the back of the diagnostic object
Then, from the measurement by the first sensor , the amplitude of the reflected wave at the interface between the coating film on the surface and the sound layer of the object to be diagnosed
( PF1 ) sample obtained by smoothing the front and back surfaces was obtained in the same manner.
Obtaining interface echo ratio (PF1 / PF0) is the ratio to the amplitude (PR0) of the reflected wave, against the amplitude (PRX) of the reflected wave at the rear surface of該被diagnostic object from the interface echo ratio (PF1 / PF0)
Together to obtain the back surface echo ratio (PR1 / PRX) is that ratio,
Obtaining the thickness of the object to be diagnosed and the amplitude of the reflected wave on the back surface from the measurement by the second sensor, the amplitude of the reflected wave being the reciprocal of the echo ratio ( PR1 / PRX ) on the back surface ( PRX / PR1). ) by obtaining the amplitude of the reflected wave corrected, and to diagnose the corrosion situation in the rear surface of the diagnostic object from the master curve by the amplitude of the thickness of該被diagnostic object and corrected the reflected wave
An ultrasonic corrosion diagnostic device characterized in that
JP16530998A 1998-06-12 1998-06-12 Ultrasonic corrosion diagnostic method and its equipment. Expired - Fee Related JP3501948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16530998A JP3501948B2 (en) 1998-06-12 1998-06-12 Ultrasonic corrosion diagnostic method and its equipment.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16530998A JP3501948B2 (en) 1998-06-12 1998-06-12 Ultrasonic corrosion diagnostic method and its equipment.

Publications (2)

Publication Number Publication Date
JPH11352117A JPH11352117A (en) 1999-12-24
JP3501948B2 true JP3501948B2 (en) 2004-03-02

Family

ID=15809894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16530998A Expired - Fee Related JP3501948B2 (en) 1998-06-12 1998-06-12 Ultrasonic corrosion diagnostic method and its equipment.

Country Status (1)

Country Link
JP (1) JP3501948B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045736B2 (en) 2019-04-25 2022-04-01 樹峰 孫 Composite machining head and working method based on the flow of abrasive particles by laser and jet liquid beam

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626049B1 (en) 1999-04-01 2003-09-30 Panametrics, Inc. Clamp-on steam/gas flow meter
JP5022640B2 (en) * 2006-06-28 2012-09-12 川崎重工業株式会社 Ultrasonic flaw detection method and ultrasonic flaw detection apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7045736B2 (en) 2019-04-25 2022-04-01 樹峰 孫 Composite machining head and working method based on the flow of abrasive particles by laser and jet liquid beam

Also Published As

Publication number Publication date
JPH11352117A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
JP5113340B2 (en) Method and system for inspecting an object using ultrasonic scanning data
US7389693B2 (en) Methods and apparatus for porosity measurement
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
CA2616900C (en) Method for error-free checking of tubes for surface faults
Titov et al. Pulse-echo NDT of adhesively bonded joints in automotive assemblies
EP1333277A3 (en) Method and apparatus for investigating pipes with ultrasonic phased array sensors
AU2008297648B2 (en) Acoustic thickness measurements using gas as a coupling medium
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
EP1474680A1 (en) System and method for detecting defects in a manufactured object
JP5562118B2 (en) Ultrasonic nondestructive measuring method, ultrasonic nondestructive measuring device, and program
CA2390712A1 (en) Method for inspecting clad pipe
JP3501948B2 (en) Ultrasonic corrosion diagnostic method and its equipment.
JP2003130854A (en) Pipe arrangement examining method and device
US4854173A (en) Measurement of intergranular attack in stainless steel using ultrasonic energy
JP2003021621A (en) Corrosion diagnosing system
JP2021103100A (en) Delamination inspection method and delamination inspection device for laminated body
EP0981047A3 (en) Method and apparatus for ultrasonic inspection of steel pipes
CN113808092B (en) Method, system, device and medium for detecting debonding defect of steel pipe concrete interface
JP2002350407A (en) Estimation method of pipe inner surface corrosion by utilizing echo height of ultrasonic pulse
JPH10221309A (en) Determining method of welded part, measuring method of unwelded part, and inspecting device of the welded part
RU2231753C1 (en) Procedure measuring thickness of article with use of ultrasonic pulses
JP4339159B2 (en) Tubular ultrasonic inspection method
JP2009204627A (en) Film thickness measuring method
JP3828115B2 (en) Deterioration diagnosis method for inner surface of pipe thread joint by ultrasonic
JP2000275224A (en) Ultrasonic flaw detecting device and ultrasonic flow detecting method for thin metal member

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031203

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101212

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees