JP2009200358A - 積層型圧電素子 - Google Patents

積層型圧電素子 Download PDF

Info

Publication number
JP2009200358A
JP2009200358A JP2008042104A JP2008042104A JP2009200358A JP 2009200358 A JP2009200358 A JP 2009200358A JP 2008042104 A JP2008042104 A JP 2008042104A JP 2008042104 A JP2008042104 A JP 2008042104A JP 2009200358 A JP2009200358 A JP 2009200358A
Authority
JP
Japan
Prior art keywords
internal electrode
layer
piezoelectric element
outer peripheral
slit groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042104A
Other languages
English (en)
Inventor
Akira Fujii
章 藤井
Akio Iwase
昭夫 岩瀬
Shigeru Kadotani
成 門谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008042104A priority Critical patent/JP2009200358A/ja
Publication of JP2009200358A publication Critical patent/JP2009200358A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】変位性能をほとんど損ねることなく、絶縁破壊の発生を抑制することができる積層型圧電素子を提供する。
【解決手段】複数の圧電セラミック層2と複数の内部電極層3、4とを交互に積層してなるセラミック積層体19と、その外周側面195に形成された一対の側面電極11、12とを有する積層型圧電素子1である。第1隣接電極層35、45及び/又は第2隣接電極層には、第1内部電極部311、411と第1控え部321、421との境界部315及び/又は第2内部電極部と第2控え部との境界部315、415に沿って、圧電セラミック層2よりも絶縁抵抗の高い絶縁強化層25が形成されている。
【選択図】図2

Description

本発明は、複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の側面に形成された一対の側面電極とを有し、上記セラミック積層体の側面から内方に凹むスリット状の溝部が形成された積層型圧電素子に関する。
従来より、燃料噴射弁の駆動源等には、積層型圧電素子が用いられている。積層型圧電素子は、例えば内部電極と圧電セラミックとが交互に多数枚積層されたセラミック積層体に、上記内部電極と交互に電気的に接続される一対の外部電極を接合してなる。
上記積層型圧電素子は、特に燃料噴射弁等の用途においては、過酷な条件の下で長期間に渡って使用される。そのため、例えば、側面の電気的な絶縁性を向上させるため、内部電極の端部の一部を内方に控えた電極控え部を有するセラミック積層体が広く採用されている。
ところが、絶縁性を向上させるために上記のごとく電極控え部を形成すると、上記セラミック積層体において、電圧を印加したときに、変形する部分と変形し難い部分とが生じ、その境界部に応力集中が起こって素子にクラックが発生するおそれがあった。
応力集中によるクラックの発生を回避するために、セラミック積層体の側面に、積層方向に対して所定の間隔で形成されたスリット状の溝部(応力緩和部)を有する積層型圧電素子が開発されている。
しかし、溝部を形成した場合においても、該溝部に電圧が印加されたときに、溝部の先端からクラックが発生するおそれがあり、これを回避するためには、溝部の深さを内部電極の電極控え部の距離よりも大きくする必要があった。
また、溝部を挟む内部電極を同一極とした積層型圧電素子が開発されている(特許文献1参照)。
特開2006−216850号公報
上記のように、応力緩和部を挟む2つの内部電極を同一極にすると、応力緩和部に選択的(優先的に)クラックが入るようになる。よって積層型圧電素子の圧電活性層にクラックが生じることを防止でき、耐久性を向上できると考えられていた。
しかしながら、実際には、応力緩和部にクラックが生じていない状態であっても、十分な絶縁性を得ることはできず、依然として絶縁抵抗が低下してショートが発生してしまうという問題があった。
本発明はかかる従来の問題点に鑑みてなされたものであって、変位性能をほとんど損ねることなく、絶縁破壊の発生を抑制することができる積層型圧電素子を提供しようとするものである。
第1の発明は、複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の外周側面に形成された一対の側面電極とを有する積層型圧電素子において、
上記内部電極層は、導電性金属を主成分とする内部電極部と、該内部電極部の外周端部が上記セラミック積層体の外周側面よりも内方に所定の控え距離で控えた控え部とを有し、上記内部電極部においていずれか一方の上記側面電極に交互に電気的に接続しており、
上記セラミック積層体は、該セラミック積層体の外周側面から所定の深さで内方に凹んだスリット状のスリット溝部を有し、
上記セラミック積層体において、上記スリット溝部を積層方向に挟んで対向する一対の上記内部電極層のうち、上記スリット溝部の最も近くに形成された一対の内部電極層を第1隣接電極層、該第1隣接電極層の内部電極部を第1内部電極部、及び上記第1隣接電極層の上記控え部を第1控え部とし、また、上記スリット溝部に2番目に近い位置に形成された一対の内部電極層を第2隣接電極層、該第2隣接電極層の内部電極部を第2内部電極部、及び上記第2隣接電極層の上記控え部を第2控え部とすると、
上記第1隣接電極層及び/又は上記第2隣接電極層には、上記第1内部電極部と上記第1控え部との境界部及び/又は上記第2内部電極部と上記第2控え部との境界部に沿って、上記圧電セラミック層よりも絶縁抵抗の高い絶縁強化層が形成されており、
該絶縁強化層の内方側端部は、上記境界部より上記第1内部電極部及び/又は上記第2内部電極部の内方まで達すると共に、上記セラミック積層体を積層方向に透視した場合に、上記絶縁強化層が形成された上記第1隣接電極層及び/又は上記第2隣接電極層の最も近くに形成された上記スリット溝部の先端よりもさらに内方に達していることを特徴とする積層型圧電素子にある(請求項1)。
上記第1の発明において、上記積層型圧電素子は、上記スリット溝部を有している。
そのため、上記スリット溝部が、電圧印加時に上記セラミック積層体における変形し易い部分と変形し難い部分との境界部に生じる応力集中を緩和することができる。
その反面、上記スリット溝部を有しているため、該スリット溝部に水分が進入した場合に、上記第1隣接電極層及び上記第2隣接電極層の上記内部電極部の上記外周端部周辺に拡散していた上記導電性金属がイオン化し易くなる。一般には、イオン化が起きると、絶縁破壊が発生し、短絡等が起こるおそれがある。
即ち、本願発明者らは、積層型圧電素子にスリット溝部を形成する際の不具合に関して鋭意研究した結果、スリット溝部に隣接する負極層と該負極層に隣接する正極層に挟まれる圧電セラミック層が最も早く絶縁抵抗が低下することを発見するに至った。
この詳細に関して説明するために、まず、一般的な積層型圧電素子の絶縁抵抗低下について説明する。
一般に、積層型圧電素子に高温で高電界を印加し続けると、負極側から低抵抗領域が広がっていく現象が現れる。この原因は、例えば積層型圧電素子を一体焼成により作製した場合において、この一体焼成時に圧電セラミック層へ拡散したイオン状態で存在する導電性金属イオンが、マイナス電極から放出される電子により金属化されることによるものである。上記現象により、正極層と負極層との間の積層方向の電界強度分布が均一ではなくなってしまう。つまり、低抵抗領域の電界強度が低下し、相対的に低抵抗領域以外の電界強度が上昇する。したがって、この電界強度の上昇が絶縁抵抗の劣化を加速させてしまうことになる。また、上記低抵抗領域の広がりは、水分の存在により加速される。
具体的には、例えば、一体焼成時に、AgPd電極等からなる内部電極形成領域からPZT等からなる圧電セラミック層へ拡散したAg+イオンが駆動時に負極層から放出される電子により金属化されることにより低抵抗領域を形成し、さらにこの低抵抗領域が正極層側へ向かって成長するという現象が起こる(Ag++e-→Ag金属)。
特に、スリット溝部を有する積層型圧電素子の場合、スリット溝部は水分が存在する外部に通ずる通路となりうるため、スリット溝部に最も隣接する負極層は特に低抵抗領域の広がり現象が顕著となる。
従って、スリット溝部に隣接する負極層と該負極層に隣接する正極層に挟まれる圧電セラミック層が最も早く絶縁抵抗が低下する。即ち、絶縁抵抗の低下は、上記スリット溝部を挟んで隣り合う2つの内部電極層のうち少なくとも一方が負極である場合に起こり易い。そして、該負極側の上記内部電極層と、これに近隣する正極側の上記内部電極層との間で絶縁抵抗の低下が起こり、ショート等の不具合が発生し易くなると考えられる。
本願発明者らは、上記のごとく、スリット溝部を有する積層型圧電素子における絶縁抵抗の低下機構を解明し、本願発明に至った。
即ち、上記第1の発明においては、上記第1隣接電極層及び/又は上記第2隣接電極層に、上記第1内部電極部と上記第1控え部との境界部及び/又は上記第2内部電極部と上記第2控え部との境界部に沿って、上記圧電セラミック層よりも絶縁抵抗の高い絶縁強化層が形成されている。
そのため、たとえ上記導電性金属がイオン化したとしても、絶縁抵抗の高い上記絶縁強化層があるため、絶縁破壊の発生を抑制することができる。また、上記絶縁強化層は、上記第1内部電極部と上記第1控え部との境界部及び/又は上記第2内部電極部と上記第2控え部との境界部という上記導電性金属のイオン化が比較的起こり易い位置に形成されている。そのため、絶縁破壊の発生を効率的に抑制することができる。よって、上記積層型圧電素子は、ショートが起こりにくくなり、優れた耐久性を示すことができる。
また、上記絶縁強化層の内方側端部は、上記境界部より上記第1内部電極部及び/又は上記第2内部電極部の内方まで達すると共に、上記セラミック積層体を積層方向に透視した場合に、上記絶縁強化層が形成された上記第1隣接電極層及び/又は上記第2隣接電極層の最も近くに形成された上記スリット溝部の先端よりもさらに内方に達している。そのため、上述の絶縁破壊の発生を充分に抑制し、上記積層型圧電素子の耐久性を向上させることができる。
また、上記積層型圧電素子においては、一対の上記第1隣接電極層をそれぞれ異なる上記側面電極に電気的に接続させることができる。そのため、上記スリット溝部を含む上記圧電セラミック層にも、その他の上記圧電セラミック層と同様に電界を印加させることができ、上記スリット溝部を含む上記圧電セラミック層も変位させることができる。それ故、従来のように変位性能を低下させるおそれがなくなる。
以上のように、上記第1の発明によれば、変位性能をほとんど損ねることなく、絶縁破壊の発生を抑制できる積層型圧電素子を提供することができる。
なお、上述の正極層及び負極層とは、それぞれ正極側及び負極側の側面電極に電気的に接続する上記内部電極形成領域を有する内部電極層のことである。
第2の発明は、複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の外周側面に形成された一対の側面電極とを有する積層型圧電素子において、
上記内部電極層は、導電性金属を主成分とする内部電極部と、該内部電極部の外周端部が上記セラミック積層体の外周側面よりも内方に所定の控え距離で控えた控え部とを有し、上記内部電極部においていずれか一方の上記側面電極に交互に電気的に接続しており、
上記セラミック積層体は、該セラミック積層体の外周側面から所定の深さで内方に凹んだスリット状のスリット溝部を有し、
上記セラミック積層体において、上記スリット溝部を積層方向に挟んで対向する一対の上記内部電極層のうち、上記スリット溝部の最も近くに形成された一対の内部電極層を第1隣接電極層、該第1隣接電極層の内部電極部を第1内部電極部、及び上記第1隣接電極層の上記控え部を第1控え部とし、また、上記スリット溝部に2番目に近い位置に形成された一対の内部電極層を第2隣接電極層、該第2隣接電極層の内部電極部を第2内部電極部、及び上記第2隣接電極層の上記控え部を第2控え部とすると、
上記第2内部電極部を該第2内部電極部と同じ上記側面電極に電気的に接続する上記第1内部電極部を有する上記第1隣接電極層上に上記積層方向に投影した場合において、投影された上記第2内部電極部における該第2内部電極部と上記第2控え部との境界部周辺における上記第1内部電極部の上記導電性金属の密度は、少なくとも部分的に、同じ位置における上記第2内部電極部の上記導電性金属の密度に比べて小さくなっていることを特徴とする積層型圧電素子にある(請求項7)。
上記第2の発明の積層型圧電素子は、上記第1の発明と同様に、上記スリット溝部を有している。そのため、上記スリット溝部が、上記セラミック積層体における電圧印加時に変形し易い部分と変形し難い部分との境界部に生じる応力集中を緩和することができる。その反面、上記スリット溝部に水分が進入した場合に、上記第1隣接電極層の上記内部電極部の上記外周端部周辺に拡散していた上記導電性金属がイオン化し易くなる構成になっている。
しかし、上記第2の発明においては、上記第2内部電極部を該第2内部電極部と同じ上記側面電極に電気的に接続する上記第1内部電極部を有する上記第1隣接電極層上に上記積層方向に投影した場合において、投影された上記第2内部電極部における該第2内部電極部と上記第2控え部との境界部周辺における上記第1内部電極部の上記導電性金属の密度は、少なくとも部分的に、同じ位置における上記第2内部電極部の上記導電性金属の密度に比べて小さくなっている。そのため、上記積層型圧電素子の作製時等に、上記第1内部電極部の上記外周端部からその周辺に拡散する上記導電性金属の量を少なくすることができる。それ故、上記スリット溝部に水分が進入した場合に、イオン化する上記導電性金属の量を少なくすることができる。その結果、絶縁破壊の発生を抑制することができ、上記積層型圧電素子は、ショートが起こり難くなり、優れた耐久性を示すことができる。
また、上記積層型圧電素子においては、上記第1の発明と同様に、一対の上記第1隣接電極層をそれぞれ異なる電極の側面電極に電気的に接続させることができる。そのため、上記スリット溝部を含む上記圧電セラミック層にも、その他の上記圧電セラミック層と同様に電界を印加させることができ、上記スリット溝部を含む上記圧電セラミック層も変位させることができる。それ故、従来のように変位性能を低下させるおそれがなくなる。
以上のように、上記第2の発明によれば、変位性能をほとんど損ねることなく、絶縁破壊を防止し、耐久性に優れた積層型圧電素子を提供することができる。
次に、本発明の実施の形態について説明する。
上記積層型圧電素子は、複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の外周側面に形成された一対の側面電極とを有する。
上記圧電セラミック層は、例えばPZT等の圧電特性を有するセラミックス材料で形成することができる。
上記内部電極層は、導電性金属を主成分とする内部電極部と、該内部電極部の外周端部が上記セラミック積層体の外周側面よりも内方に所定の距離で控えた控え部とを有する。
上記導電性金属としては、例えば、銀、パラジウム、白金、金、及びこれらの合金等を採用することができる。
また、上記セラミック積層体は、該セラミック積層体の外周側面から所定の深さで内方に凹んだスリット状のスリット溝部を有している。
以下、図面を用いて上記控え部及びスリット溝部について説明する。
図2及び図3に、積層型圧電素子の断面図(スリット溝部周囲の断面図)を示す。図2、図3、及び後述の積層型圧電素子の断面図(図8、図9、図11、図15、及び図16)においては、セラミック積層体と該セラミック積層体の側面を挟んで形成された一対の側面電極とを積層方向に切断する積層型圧電素子の断面図を示す。即ち、一対の側面電極が形成された側面で積層型圧電素子を積層方向に切断する断面図を示す。
図2及び図3に示すごとく、積層型圧電素子1において、セラミック積層体19は、圧電セラミック層2と内部電極層3、4とが交互に複数積層してなる。内部電極層3、4は、導電性を有する内部電極部31、41と、その外周端部315、415がセラミック積層体19の外周面195よりも内方に所定の控え距離aで控えた控え部32、42とを有している。
上記控え距離aは、積層方向と略垂直な方向における控え部32、42の距離であり、セラミック積層体19の断面において、内部電極部31、41の外周端部315、415からセラミック積層体19の側面195までの最短距離で示すことができる。
また、図2及び図3に示すごとく、セラミック積層体19は、該セラミック積層体19の側面195から内方に所定の深さで凹むスリット溝部15を有している。
スリット溝部15の深さは、図3に示すごとく、積層方向と略垂直な方向におけるスリット溝部15の距離bであり、セラミック積層体19の断面において、セラミック積層体19の側面195からスリット溝部15の先端155までの距離で示すことができる。
また、図22に積層型圧電素子の断面図を示す。
本発明において、上記スリット溝部15は、上記積層型圧電素子の積層方向の断面において、上記内部電極層3、4における上記控え部32、42の上記控え距離の最小値199よりも大きな深さで形成されたものを示す(図22参照)。したがって、上記控え距離の最小値199よりも小さな深さで形成されたスリット状の溝部9等は、本発明の上記スリット溝部15に該当しない(図22参照)。なお、控え距離は、通常ほぼ同じ距離で形成されるが、ばらつき等により積層型圧電素子の断面において異なる場合がある。
上記スリット溝部は、上記セラミック積層体の積層方向に所定の間隔又は間隔を変えて複数設けることができ、上記セラミック積層体の積層方向に累積する応力を緩和することができる。積層数が少ないと、電圧を印加したときに発生する累積応力の絶対値が小さくなり、そもそもクラックが発生し難くなる。その結果、上記セラミック積層体にスリットを形成する必要性自体がほとんどなくなってしまうおそれがある。さらに、内部電極を控えることによる電極面積の低下が変位性能の低下を招くおそれがある。そのため、上記セラミック積層体は、10層以上の内部電極層を有することが好ましい。また、同様の理由から、上記スリット溝部を形成する積層方向の間隔は、内部電極層10層以上であることが好ましい。上記スリット溝部が内部電極層10層未満の間隔で形成されている場合、電極を控えることによる電極面積の低下が変位性能の低下を招くおそれがある。また、上記スリット溝部を形成する積層方向の間隔は、内部電極層50層以下であることが好ましい。50層を超える間隔で形成されている場合には、上記スリット溝部による応力緩和効果が十分に得られなくなるおそれがある。
上記積層型圧電素子の断面において、上記スリット溝部は、上記控え部の上記控え距離よりも大きな深さで形成されていることが好ましい(請求項6及び請求項10)。
この場合には、上記スリット溝部が、電圧印加時に上記セラミック積層体における変形し易い部分と変形し難い部分との境界部に生じる応力集中をより充分に緩和することができる。また、この場合には、上記第1の発明のように上記絶縁強化層を設けることによる作用効果、及び上記第2の発明のように上記第1隣接電極層の上記特定の領域における上記導電性金属の密度を小さくすることによる作用効果がより顕著になる。
即ち、上記スリット溝部は、上記控え部の上記控え距離よりも大きな深さで形成すると、上記スリット溝部に水分が進入した場合に、上記第1隣接電極層の上記内部電極部の上記外周端部周辺に拡散していた上記導電性金属がよりイオン化し易くなり、絶縁破壊がより起こり易くなる。したがって、上記第1の発明のように上記絶縁強化層を形成したり、上記第2の発明のように上記第1隣接電極層の上記特定の領域における上記導電性金属の密度を小さくしたりすることによる上記導電性金属のイオン化の抑制効果がより顕著になる。
また、上記内部電極層には上記控え部が形成されている。そのため、上記セラミック積層体は、該セラミック積層体を積層方向に透視した場合に、すべての上記内部電極部が重合する領域である圧電活性領域と、少なくとも一部の上記内部電極部しか重合しない、あるいは全く重合しない領域である圧電不活性領域とを有する。
上記スリット溝部は、少なくとも上記圧電不活性領域に形成されていることが好ましい。この場合には、電圧印加時に上記セラミック積層体の内部に生じうる応力集中をより充分に緩和することができる。
また、本発明においては、上記セラミック積層体において、上記スリット溝部を積層方向に挟んで対向する一対の上記内部電極層のうち、上記スリット溝部の最も近くに形成された一対の内部電極層を第1隣接電極層とし、該第1隣接電極層に形成された内部電極部を第1内部電極部とする。また、上記スリット溝部に2番目に近い位置に形成された一対の内部電極層を第2隣接電極層とし、該第2隣接電極層に形成された内部電極部を第2内部電極部とする。
上記第1の発明において、上記第1隣接電極層及び/又は上記第2隣接電極層には、上記第1内部電極部と上記第1控え部との境界部及び/又は上記第2内部電極部と上記第2控え部との境界部に沿って、上記圧電セラミック層よりも絶縁抵抗の高い絶縁強化層が形成されている。
本発明において、上記境界部に沿って形成された上記絶縁強化層の内方側端部、即ち、上記内部電極部と上記控え部との上記境界部に沿って形成された上記絶縁強化層の上記内部電極部側の端部は、上記境界部より上記第1内部電極部及び/又は上記第2内部電極部の内方まで達すると共に、上記絶縁強化層が形成された上記第1隣接電極層及び/又は上記第2隣接電極層の最も近くに形成された上記スリット溝部の先端よりもさらに内方に達している。
上記絶縁強化層の上記内方側端部が上記スリット溝部の先端よりも内方に達していない場合には、上記絶縁強化層が上記第1内部電極部の外周端部周辺及び/又は上記第2隣接電極層の外周端部周辺に起こりやすい絶縁破壊を充分に防止することができなくなるおそれがある。
上記絶縁強化層及び上記圧電セラミック層の絶縁抵抗は、例えば次のようにして測定することができる。
即ち、まず絶縁強化層又は圧電セラミック層の該当部を切り出し、形状を測定する。次に電極としてインジウム・ガリウム合金等の電極、あるいは、金などのスパッタ電極を塗布する。さらに別途配置された抵抗、たとえば1KΩの抵抗値を有する抵抗と直列に接続する。その後、接続された切り出し部と抵抗の両端子に所定の電圧、たとえば切り出したセラミック層該当部の電界強度が2KV/mmとなるような電圧を印加する。この時の電流値はコンデンサの充電特性に従い、時間が経つにつれて徐々に小さくなるが、切り出し部抵抗と直列抵抗との差が十分に大きくなる、例えば1000倍以上となる時間を求める。この時の時間を便宜的にTとすると、絶縁強化層、および圧電セラミック層のT秒後の抵抗を、直列抵抗に流れた電流値を検知・計算することにより求めることができる。なお温度の影響を避けるため、例えば25±1℃の定温度下で測定することが望ましい。
上記絶縁強化層は、上述の測定方法で測定される絶縁抵抗が、上記圧電セラミック層よりも高いセラミック層や空洞部等で構成することができる。
上記絶縁強化層は、例えば上記圧電セラミック層よりも絶縁抵抗の高い圧電材料により形成することができる。
上記圧電セラミック層はPZT材料を主成分とし、上記絶縁強化層は、PZT材料にFe、Cr、Ni、Mn、及びCoから選ばれる少なくとも1種の金属酸化物が添加されてなる圧電材料を主成分とすることが好ましい(請求項2)。
この場合には、所謂ハード化剤として用いられる上述の金属酸化物をPZT材料に添加してなる圧電材料を用いるため、上記圧電セラミック層よりも絶縁抵抗の高い上記絶縁強化層を容易に形成することができる。そしてこの場合には、電圧印加時に上記絶縁強化層自体も変位することができるため、変位量の低下をより抑制しつつ、絶縁破壊の発生を抑制することができる。
上記金属酸化物はFe、Cr、及びNiから選ばれる少なくとも1種の酸化物であり、上記絶縁強化層の上記圧電材料には、上記金属酸化物が上記PZT材料100重量部に対して0.1〜10重量部添加されていることが好ましい(請求項3)。
また、上記金属酸化物はMnの酸化物であり、上記絶縁強化層の上記圧電材料には、上記金属酸化物が上記PZT材料100重量部に対して0.05〜1重量部添加されていることが好ましい(請求項4)。
これらの場合には、PZTの圧電特性の低下を抑制しつつ、絶縁抵抗を高くすることができる。Cr、Ni、Feから選ばれる少なくとも1種の酸化物の添加量が0.1重量部未満の場合及びMnの酸化物が0.05重量部未満の場合には、充分に絶縁抵抗を上昇させることが困難になるおそれがある。一方、Cr、Ni、Feから選ばれる少なくとも1種の酸化物の添加量が10重量部を越える場合及びMnの酸化物が1重量部を越える場合には、絶縁強化層の圧電特性が低下してしまうおそれがある。
また、上記絶縁強化層は、上記セラミック積層体の上記外周側面から内方に埋設された空洞部で形成することもできる(請求項5)。
この場合には、上記圧電セラミック層に比べて絶縁抵抗が充分に高い上記絶縁強化層を形成することができる。また、上記空洞部は、周囲の上記圧電セラミックス層の変形に伴ってその形状を変形させることができる。そのため、電圧印加時における上記圧電セラミック層の変形を阻害してしまうことを防止できる。
次に、上記第2の発明においては、上記第2内部電極部を該第2内部電極部と同じ上記側面電極に電気的に接続する上記第1内部電極部を有する上記第1隣接電極層上に上記積層方向に投影した場合において、投影された上記第2内部電極部における該第2内部電極部と上記第2控え部との境界部周辺における上記第1内部電極部の上記導電性金属の密度は、少なくとも部分的に、同じ位置における上記第2内部電極部の上記導電性金属の密度に比べて小さくなっている。
上述のごとく、上記第1内部電極部の上記所定位置における上記導電性金属の密度を、上記第2内部電極部の上記所定位置における上記導電性金属の密度よりも小さくする具体的な方法としては、例えば、上記第1内部電極部を形成するに当たって、その外周端部を、第2内部電極部の外周端部よりも導電性金属の含有量が少ない導電性金属材料を用いて形成する方法がある。また、上記第1内部電極部全体を上記第2内部電極部に比べて導電性金属の含有量が少ない導電性金属材料を用いて形成することもできる。また、上記第1内部電極部の上記所定位置における上記導電性金属材料の塗布密度を小さくする方法を採用することもできる。
また、上記第2内部電極部だけでなく、上記第1内部電極部を除くその他の上記内部電極部を該内部電極部と同じ上記側面電極に電気的に接続する上記第1内部電極部を有する上記第1隣接電極層上に上記積層方向に投影した場合において、投影された上記内部電極部における該内部電極部と上記控え部との境界部周辺における上記第1内部電極部の上記導電性金属の密度が、少なくとも部分的に、同じ位置における上記内部電極部の上記導電性金属の密度に比べて小さくなっていることが好ましい。
この場合には、絶縁破壊の発生をより一層防止することができる。
好ましくは、図19に示すごとく、上記セラミック積層体を積層方向に透視した場合に、上記セラミック積層体を積層方向に透視した場合に、上記第1内部電極部の上記外周端部の少なくとも一部は、上記第1内部電極部と同じ上記側面電極に電気的に接続する上記第2内部電極部の上記外周端部よりも上記セラミック積層体の外周側面からさらに内方に控えられていることが好ましい(請求項7)。
また、上記第1内部電極部の上記外周端部は、上記第1内部電極部とその上記控え部との境界部において凹凸形状になっていることが好ましい(請求項8)。
これらの場合には、上記第1内部電極部の外周端部における導電性金属の密度を容易に小さくすることができる。
(実施例1)
次に、本発明の積層型圧電素子の実施例につき、図1〜図7を用いて説明する。
図1〜図3に示すごとく、本例の積層型圧電素子1は、複数の圧電セラミック層2と複数の内部電極層3、4とを交互に積層してなるセラミック積層体19と、その外周側面195に形成された一対の側面にそれぞれ設けられた一対の側面電極11、12とを有する。
内部電極層3、4は、導電性金属を主成分とする内部電極部31、41と、その外周端部315、415がセラミック積層体19の外周側面195よりも内方に所定の距離で控えた控え部32、42とを有している。内部電極部31、41はそれぞれいずれか一方の側面電極11、12に交互に電気的に接続している。
セラミック積層体19は、その外周側面195から所定の深さbで内方に凹んだスリット状のスリット溝部15を有している。スリット溝部15は、セラミック積層体19の積層方向に所定の間隔で複数形成されている。
また、図1〜3に示すごとく、セラミック積層体19において、スリット溝部15を積層方向に挟んで対向する一対の内部電極層3、4のうち、スリット溝部15の最も近くに形成された一対の内部電極層を第1隣接電極層35、45とし、この第1隣接電極層35、45における内部電極部を第1内部電極部311、411、及び第1隣接電極層35、45における控え部を第1控え部321、421とすると、第1隣接電極層35、45には、第1内部電極部311、411と第1控え部321、421との境界部315に沿って所定の幅で形成された、圧電セラミック層2よりも絶縁抵抗の高い絶縁強化層25が形成されている。
また、図4に、セラミック積層体を積層方向に透視して任意の第1隣接電極層35(45)を見た図を示してある。同図においては、第1内部電極部311(411)が形成された領域を斜線のハッチングで示し、その外周端部315(415)を実線で示してある。また、絶縁強化層25が形成された領域をドットハッチングで示し、その内方側端部251を一点鎖線で示してある。同図において、斜線ハッチングとドットハッチングが重なる領域は、内部電極部311(411)と絶縁強化層25とが重合する領域を示している。また、同図には、セラミック積層体を積層方向に透視したときに、第1隣接電極層35(45)の積層方向の最も近くに形成されたスリット溝部の先端位置155が第1隣接電極層35(45)上に重なる位置を点線で示してある。
図2〜図4に示すごとく、第1内部電極部311、411と第1控え部321、421との境界部315、415に沿って形成された絶縁強化層25の内方側端部251、即ち、絶縁強化層25の第1内部電極部311、411側の端部251は、上記境界部315、415より第1内部電極部311、411の内方まで達すると共に、セラミック積層体19を積層方向に透視した場合に、図4に示すごとく、絶縁強化層25が形成された第1隣接電極層35、45の最も近くに形成されたスリット溝部の先端155よりもさらに内方に達している。
以下、本例の積層型圧電素子1についてさらに詳細に説明する。
図1に示すごとく、本例の積層型圧電素子1において、圧電セラミック層2はジルコン酸チタン酸鉛(PZT)からなり、内部電極部31、41は銀・パラジウム合金(Ag/Pd合金)よりなる。また、側面電極11、12は銀からなる。
本例において、図1〜図3に示すごとく、内部電極層3、4は、セラミック積層体19における一対の側面電極11、12が形成された2側面のうち一方の側面側に控え部32、42を有している。即ち、内部電極部31、41の外周端部315、415は、一対の側面電極11、12のうちの一方が形成された側面には露出しておらず、セラミック積層体19の外周側面195よりも内方に所定の距離aで控えた控え部32、42が形成されている。本例においては、セラミック積層体19の外周側面195からの控え距離aを0.4mmに設定してある。
また、内部電極層3、4に控え部32、42が形成されているため、図3に示すごとく、すべての内部電極部31、41が重合する領域である圧電活性領域13と、少なくとも一部の内部電極部31、41しか重合しない、あるいは全く重合しない領域である圧電不活性領域14とを有する。セラミック積層体19を積層方向に透視した場合には、図5に示すごとく、セラミック積層体19の外周側面195より内方に圧電活性領域13と圧電不活性領域14とが形成される。同図においては、圧電活性領域13、即ちすべての内部電極部が重合する領域を細かいドットハッチングで示し、圧電活性領域14、即ち少なくとも一部の内部電極部しか重合しない、あるいは全く重合しない領域を粗いドットハッチングで示してある。そして、内部電極部の外周端部315、415の位置を点線で示してある。
また、図3及び図4に示すごとく、本例において、セラミック積層体19の外周側面195から所定の深さbで内方に凹んだスリット溝部15は少なくとも圧電不活性領域14に形成され、スリット溝部の先端(内方側端部)155は、圧電活性領域13に達している。本例において、スリット溝部15の深さ、即ちセラミック積層体の側面195からスリット溝部15の先端155までの距離bは0.6mmに設定してある。
本例の積層型圧電素子1においては、上記のごとく、控え距離aが0.4mmに設定され、スリット溝部15の深さbが0.6mmに設定されているため、図3及び図4に示すごとく、セラミック積層体19を積層方向に透視した場合には、内部電極部とスリット溝部とがそれぞれ外周端部315、415側及び先端155側で、約0.2mmの幅で重合する重合領域18を有している(図4参照)。これは、第1隣接電極層35、45においても同様である。
図1〜図4に示すごとく、第1隣接電極層35,45に形成されている絶縁強化層25は少なくとも重合領域18に形成されている。本例において、絶縁強化層25は、第1隣接電極層35、45の第1控え部321、421の全体を覆うように形成されており、その内方側端部251は、上述のごとく、第1内部電極部311、411と第1控え部321、421との境界部315、415よりも第1内部電極部の内方まで達すると共に、セラミック積層体を積層方向に透視した場合に、絶縁強化層25が形成された第1隣接電極層311、411の最も近くに形成されたスリット溝部15の先端155よりもさらに内方に達している。本例においては、絶縁強化層25の端部251がスリット溝部15の先端155よりもさらに0.2mm深い位置(図3においてc=0.2mm)となるように絶縁強化層25は形成されている。また、本例においては、絶縁強化層25の外方側端部252、即ち第1内部電極部311、411と第1控え部321、421との境界部315、415に沿って形成された絶縁強化層25の第1控え部321、421側の端部252は、セラミック積層体19の外周側面195に達している。
また、本例における絶縁強化層25は、圧電セラミック層2と同じPZT100重量部に、Mn25が0.5重量部添加された圧電材料からなる。
また、図1に示すごとく、セラミック積層体19においては、圧電セラミック層2と内部電極層3、4とが交互に積層されているが、セラミック積層体19の両端には、内部電極層を含まないダミー層29が形成されている。このダミー層29は、圧電セラミック層2と同様のPZTからなる。
以下、本例の積層型圧電素子1の製造方法につき、図1〜図7を用いて説明する。
本例においては、グリーンシート作製工程、電極印刷工程、消失材料印刷工程、絶縁強化材料印刷工程、圧着・切断工程、及び焼成工程を行うことにより、積層型圧電素子を作製する。
以下、製造方法を各工程ごとに説明する。
<グリーンシート作製工程>
まず、圧電材料となるジルコン酸チタン酸鉛(PZT)等のセラミック原料粉末を準備した。具体的には、出発原料としてPb34、SrCO3、ZrO2、TiO2、Y23、及びNb25を準備し、これらの出発原料を目的組成PbZrO3−PbTiO3−Pb(Y1/2Nb1/2)O3となるような化学量論比で秤量し、湿式混合し、温度850℃で5時間仮焼した。次に、仮焼粉をパールミルにより湿式粉砕した。この仮焼粉粉砕物(粒径(D50値):0.7±0.05μm)を乾燥した後、溶剤、バインダ、可塑剤、分散剤等を加えてボールミルにより混合し、得られたスラリーを真空装置内で撹拌機により撹拌しながら真空脱泡、粘度調整をした。
そして、ドクターブレード法により、上記スラリーをキャリアフィルム上に塗布し、厚さ80μmの長尺のグリーンシートを成形した。このグリーンシートを所定の大きさに切断して、幅広のグリーンシート20(図6参照)を作製した。
なお、グリーンシート20の成形方法としては、本例で用いたドクターブレード法のほか、押出成形法やその他種々の方法を採用することができる。
<電極印刷工程>
次に、図6に示すごとく、グリーンシート20上に内部電極層となる電極材料310、410を印刷し、第1電極印刷シート201及び第2電極印刷シート202の2種類のシートを形成した。
以下に、電極印刷シートの形成についてさらに説明する。
第1電極印刷シート201の形成に当たっては、グリーンシート20上における最終的に内部電極部となる部分に電極材料310を印刷して、第1電極印刷シート201を形成した。
また、第2電極印刷シート202の形成に当たっては、第1電極印刷シート201と同様に、グリーンシート20上における内部電極部となる部分に電極材料410を印刷して、第2電極印刷シート202を形成した。
電極材料は、図6に示すごとく、グリーンシート20の一方の面上に所定のパターンで印刷した。
グリーンシート20は、後述の積層後に外周が切断されるため、電極材料310、410は、切断部209よりも内側に印刷すると共に、外周端部312、412が切断部209の一部から所定の距離(0.4mm)で内方に控えて印刷して控え部を形成した。このようにして、第1電極印刷シート201と第2電極印刷シート202をそれぞれ必要枚数作製した。
なお、本例では、電極材料として、ペースト状のAg/Pd合金を用いた。また、上記以外にも、Ag、Pd、Cu、Ni等の単体、Cu/Ni等の合金を用いることができる。
<消失材料印刷工程>
次に、製造しようとする積層型圧電素子1のセラミック積層体19の外周側面195から所定の深さ(0.6mm)で内方に凹んだスリット部15を設けるため(図1参照)、消失材料印刷シートを形成する消失材料印刷工程を行った。
図6に示すごとく、グリーンシート20上において、最終的にスリット溝部となる部分に焼成によって消失する消失材料150を印刷した。これにより、消失材料印刷シート203を必要枚数作製した。
なお、本例では、消失材料150として、熱変形が小さく、焼成工程によって形成される溝の形状精度を高く維持し得るカーボン粒子よりなる材料を用いた。また、カーボン粒子以外にも、炭化させたパウダー状の炭化有機物粒子を用いることもできる。この炭化有機物粒子は、パウダー状の有機物粒子を炭化して得ることができるほか、炭化させた有機物を粉砕して得ることもできる。さらに、上記有機物としては、樹脂等の高分子材料や、コーン、大豆、小麦粉等の穀物を用いることができる。この場合には、製造コストを抑制することができる。
<絶縁強化材料印刷工程>
次に、後述の積層時に消失材料印刷シートの上下に配される第1電極印刷シート204及び第2印刷シート205を作製した。この第1電極印刷シート204及び第2電極印刷シート205においては、内部電極部310、410を形成すると共に、その控え部32、42に絶縁強化材料250を形成した。
具体的には、まず、Pb34、SrCO3、ZrO2、TiO2、Y23、Nb25、及びMn25を準備した。これらの出発原料をPZTの目的組成PbZrO3−PbTiO3−Pb(Y1/2Nb1/2)O3100重量部に対してMn25が0.5重量部となる化学量論比で秤量し、湿式混合し、温度850℃で5時間仮焼した。次に、仮焼粉をパールミルにより湿式粉砕した。この仮焼粉粉砕物(粒径(D50値):0.7±0.05μm)を乾燥した後、溶剤、バインダ、可塑剤、分散剤等を加えてボールミルにより混合し、得られたスラリーを真空装置内で撹拌機により撹拌しながら真空脱泡、粘度調整をすることにより、絶縁強化材料を作製した。
次に、図6に示すごとく、グリーンシート20上に、電極材料310、410と絶縁強化材料250とを同図に示すごとく所定のパターンで印刷した。即ち、電極材料310、410は、上述の第1電極印刷シート201及び第2電極印刷シート202とそれぞれ同様のパターンで印刷し、絶縁強化材料250は電極材料310、410の控え部32、42に印刷した。また、控え部32、42は第1電極印刷シート201及び第2電極印刷シート202と同様に、切断部209から所定の距離(0.4mm)の控え距離で形成した。また、絶縁強化材料は、控え部の全体を覆うように形成すると共に、切断部209(セラミック積層体の外周側面に相当(図1参照))から内部電極部310、410の外周端部312、412の方向へ0.8mmの深さまで形成した。したがって、電極材料310、410と絶縁強化材料250とは両者の端部が0.4mmの幅で重合する。また、本例においては、積層時に、電極材料310、410と絶縁強化材料250との重合部分において絶縁強化材料250が消失材料印刷シート203側にくるように重合部分を形成した。
このようにして、積層時に消失材料印刷シート203の上下に配される第1電極印刷シート204及び第2電極印刷シート205を必要枚数作製した。
<圧着・切断工程>
次に、図6及び図7に示すごとく、第1電極印刷シート201と第2電極印刷シート202とを交互に積層すると共に、所定の間隔で消失材料印刷シート203を配設した。また、消失材料印刷シート203の上下には、絶縁強化材料250を形成した第1電極印刷シート204と第2電極印刷シート205とを配設した。
このとき、第1電極印刷シート201、204と第2電極印刷シート202、205とは、図6及び図7に示すごとく、積層後の積層体を後述のごとく切断部で切断したときに電極材料310と電極材料410とが交互に異なる側面に露出するように積層した。また、各印刷シートを積層した積層体の積層方向の両端には電極材料等の印刷を行っていないグリーンシート20を必要枚数配設した。このようにして積層したシートを温度100℃で加熱すると共に、積層方向に50MPaで加圧し、未焼成積層体190を作製した。
次に、未焼成積層体を切断部209に沿って積層方向に切断した。これにより、電極材料310、410、消失材料150、及び絶縁強化材料250を積層体の側面に露出させた。
<焼成工程>
次に、切断後の未焼成積層体190を加熱し、脱脂を行った。加熱は、80時間かけて徐々に500℃まで昇温し、5時間保持することにより行った。
次に、脱脂後の未焼成積層体190を焼成した。焼成は、温度1050℃まで12時間かけて徐々に昇温させ、2時間保持後、徐々に冷却することにより行った。この焼成により、消失材料150が消失してスリット溝部15が形成されると共に、グリーンシート20が焼結して圧電セラミック層2及びダミー部29が形成され、さらに、電極材料310、410を形成した位置には内部電極部31、41が形成される。このようにして、セラミック積層体19を得た。
そして、焼成後、所望の形状に研削した。この研削の際に角部に面取りを施した。さらに全面研磨を行ってセラミック積層体19を作製した。さらに、セラミック積層体19の両側面を挟むように、側面電極11、12を焼き付けた。このとき、内部電極部31、41をそれぞれ交互に異なる側面の側面電極31、41に電気的に接続させた。
以上のようにして、図1〜図3に示すごとく積層型圧電素子1を作製した。
図1〜図3に示すごとく、本例の積層型圧電素子1は側面195から所定の深さ(0.6mm)で形成されたスリット溝部15を有している。そして、セラミック積層体19は、これを積層方向に透視した場合に、図4に示すごとく、少なくとも第1内部電極部の外周端部315、415とスリット溝部15の内方側端部155(先端)とが重合する重合領域18を有している。即ち、図2〜図4に示すごとく、スリット溝部15は、第1隣接電極層311、411の控え部32、42の控え距離a(0.4mm)よりも大きな深さb(0.6mm)で形成されている。
そのため、図1〜図3に示すごとく、積層型圧電素子1への電圧印加時に、スリット溝部15がセラミック積層体19における変形し易い部分と変形し難い部分との境界部、具体的には例えば圧電活性領域13と圧電不活性領域14との境界部に生じる応力集中を充分に緩和することができる。
その反面、スリット溝部15を有しているため、スリット溝部15に外部から水分が進入した場合に、第1内部電極部311、411の外周端部315、415からその周辺に拡散していた導電性金属がイオン化し易くなる構成になっている。
しかし、本例の積層型圧電素子においては、第1隣接電極層35、45には、第1内部電極部311、411と第1控え部321、421との境界部315に沿って、圧電セラミック層よりも絶縁抵抗の高い絶縁強化層が形成されており、絶縁強化層25の内方側端部251は、上記境界部315より第1内部電極部311、411の内方まで達する。さらに、絶縁強化層25の内方側端部251は、セラミック積層体19を積層方向に透視した場合に、この絶縁強化層25が形成された第1隣接電極層35、45の積層方向の最も近くに形成されたスリット溝部15の先端155よりもさらに内方に達している。
そのため、例え導電性金属がイオン化したとしても、絶縁抵抗の高い絶縁強化層25が、例えば第1内部電極部311、411の外周端部315、415の周囲等で絶縁破壊が発生することを充分に抑制することができる。また、絶縁強化層25は、絶縁強化層は、第1内部電極部311、411と第1控え部321、421との境界部315、415という導電性金属のイオン化が比較的起こり易い特定の位置に形成されている。そのため、絶縁破壊の発生を効率的に抑制することができ、絶縁強化層25を必要以上に形成することによる変位性能の低下を抑制することができる。よって、積層型圧電素子1は、ショートが起こりにくくなり、優れた耐久性を示すことができる。
また、積層型圧電素子1においては、一対の第1隣接電極層35、45をそれぞれ正負が異なる側面電極11、12に電気的に接続させることができる。そのため、スリット溝部15を含む圧電セラミック層2にも電界を印加させることができ、この圧電セラミック層2をも変位させることができる。それ故、従来のように変位性能を低下させるおそれがなくなる。
以上のように、本例によれば、変位性能をほとんど損ねることなく、絶縁破壊を防止し、耐久性に優れた積層型圧電素子1を提供することができる。
また、上述の例においては、第1隣接電極層35、45に絶縁強化層25を形成したが、第2隣接電極層36、46に形成することもできる(図8参照)。
即ち、図8に示すごとく、積層型圧電素子1において、スリット溝部15を積層方向に挟んで対向する一対の内部電極層3、4のうち、スリット溝部15に2番目に近い位置に形成された一対の内部電極層3、4を第2隣接電極層36、46とし、この第2隣接電極層36、46の内部電極部を第2内部電極部312、412及び控え部を第2控え部322、422とすると、第2隣接電極層36、46における第2内部電極部312、412と第2控え部322、422との境界部315、415に沿って、圧電セラミック層2よりも絶縁抵抗の高い絶縁強化層25を形成することができる。
また、第1隣接電極層35、45における第1内部電極部311、411と第1控え部321、421との境界部315、415、及び第2隣接電極層36、46における第2内部電極部312、412と第2控え部322、422との境界部315、415の双方に、絶縁強化層25を形成することもできる(図9参照)。
また、第1隣接電極層35、45及び/又は第2隣接電極層36、46において、絶縁強化層25と第1内部電極部311、411、及び/又は絶縁強化層25と第2内部電極部312、412とは部分的に重合するが、この重合部分においては、絶縁強化層と内部電極部(第1内部電極部及び/又は第2内部電極部)とのいずれが積層方向におけるスリット溝部15に近い側にあってもよい(図9参照)。
図9においては、第1隣接電極層35、45においては、第1内部電極部311、411と絶縁強化層25との重合部分を、第1内部電極部311、411側がスリット溝部15の近くになるように形成し、第2隣接電極層36、46においては、第2内部電極部312、412と絶縁強化層25との重合部分を、絶縁強化層25側がスリット溝部15の近くになるように形成した例を示してある。
このように第2隣接電極層36、46の上述の所定の位置、又は第1隣接電極層35、45及び第2隣接電極層36、46の両方の上述の所定の位置に絶縁強化層25を形成した場合においても、変位性能をほとんど損ねることなく、絶縁破壊を防止し、積層型圧電素子1は、優れた耐久性を示すことができる(図8及び図9参照)。
(実施例2)
本例は、絶縁強化層として空洞部を有する積層型圧電素子5の例である。
図10に示すごとく、本例の積層型圧電素子5は、実施例1と同様に、複数の圧電セラミック層2と複数の内部電極層3、4とを交互に積層してなるセラミック積層体59と、その外周側面595に形成された一対の側面にそれぞれ設けられた一対の側面電極11、12とを有する。また、内部電極層3、4は、導電性金属を主成分とする内部電極部31、41と、その外周端部315、415がセラミック積層体59の外周側面595よりも内方に所定の距離で控えた控え部32、42とを有している。本例においては、図10及び後述の図13に示すごとく、内部電極部31、41は、実施例1とは異なるパターンで形成しある。
また、セラミック積層体59は、その外周側面595から内方に凹んだスリット状のスリット溝部15を有している。スリット溝部15は、セラミック積層体19の積層方向に所定の間隔で複数形成されている。本例において、各スリット溝部15は、セラミック積層体59の外周側面595の全周に形成されている。
また、図10及び図11に示すごとく、セラミック積層体59において、スリット溝部15を積層方向に挟んで対向する一対の内部電極層3、4のうち、スリット溝部15の最も近くに形成された一対の内部電極層を第1隣接電極層35、45とし、この第1隣接電極層35、45における内部電極部を第1内部電極部311、411、及び第1隣接電極層35、45における控え部を第1控え部321、421とすると、第1隣接電極層35、45には、第1内部電極部311、411と第1控え部321、421との境界部315、415に沿って所定の幅で形成された、圧電セラミック層2よりも絶縁抵抗の高い絶縁強化層55が形成されている。本例においては、この絶縁強化層として、セラミック積層体59の外周側面595から内方に埋設された空洞部55が形成されている。
また、図12に、セラミック積層体を積層方向に透視して任意の第1隣接電極層35(45)を見た図を示してある。同図においては、第1内部電極部311(411)が形成された領域を斜線のハッチングで示し、第1内部電極部311(411)の外周端部315(415)を実線で示してある。また、絶縁強化層(空洞部)55が形成された領域をドットハッチングで示し、その外周を一点鎖線で示してある。同図において、斜線ハッチングとドットハッチングが重なる領域は、内部電極部311(411)と絶縁強化層55とが重合する領域である。また、同図には、セラミック積層体を積層方向に透視したときに、この第1隣接電極層35(45)の積層方向の最も近くに形成されたスリット溝部の先端位置155が第1隣接電極層35(45)上に重なる位置を点線で示してある。
図11及び図12に示すごとく、絶縁強化層55の内方側端部551は、上記境界部315、415より第1内部電極部311、411の内方まで達する。また、絶縁強化層55の内方側端部551は、セラミック積層体19を積層方向に透視した場合に、図12に示すごとく、絶縁強化層25が形成された第1隣接電極層35、45の最も近くに形成されたスリット溝部の先端155、即ちスリット溝部におけるセラミック積層体の外周面595から内方側の端部(内方側端部)155よりもさらに内方に達している。
また、図11に示すごとく、セラミック積層体59は、実施例1と同様に、内部電極部とスリット溝部とがそれぞれ外周端部315、415側及び先端155側で、約0.2mmの幅で重合する重合領域18を有している。これは、第1隣接電極層35、45においても同様であり、絶縁強化層25は少なくとも第1隣接電極層における重合領域18に形成されている。
その他の構成は実施例1と同様である。
本例の積層型圧電素子5の製造方法につき、図10〜図14を用いて説明する。
まず、実施例1と同様のグリーンシート作製工程を行ってグリーンシート20を作製した。
次に、図13に示すごとく、実施例1と同様にしてグリーンシート20上に内部電極層となる電極材料310、410を印刷すると共に、控え部32、42を形成し、第1電極印刷シート201及び第2電極印刷シート202の2種類のシートを形成した。本例においては、同図に示すごとく、実施例1とは異なるパターンで電極材料310、410を印刷した。このようにして、第1電極印刷シート201と第2電極印刷シート202とをそれぞれ必要枚数作製した。
また、実施例1と同様に、グリーンシート20上において、消失材料150を印刷した。本例においては、積層型圧電素子の側面全周にスリット溝部が形成されるパターンで消失材料150を形成した。これにより、消失材料印刷シート203を必要枚数作製した。
次に、後述の積層時に消失材料印刷シート203の上下に配される第1電極印刷シート204及び第2印刷シート205を作製した。具体的には、グリーンシート20上、内部電極材料310、410を印刷形成すると共に、その控え部32、42に消失材料151を印刷形成した。ここで、使用する消失材料151は、消失材料印刷シート203と同様のものを用いた。電極材料310、410と消失材料151とは、同13に示すごとく所定のパターンで形成し、消失材料151は、電極材料310、410の外周端部312、412に沿って形成した。
このようにして、積層時に消失材料印刷シート203の上下に配される第1電極印刷シート204及び第2電極印刷シート205を必要枚数作製した。
次に、実施例1と同様に、電極印刷シート201と第2電極印刷シート202とを交互に積層すると共に、所定の間隔で消失材料印刷シート203を配設した(図13及び図14参照)。また、消失材料印刷シート203の上下には、消失材料151を形成した第1電極印刷シート204と第2電極印刷シート205とを配設した。また、各印刷シートを積層した積層体の積層方向の両端には電極材料等の印刷を行っていないグリーンシート20を必要枚数配設した。このようにして積層したシートを、実施例1と同様に加熱及び加圧し、未焼成積層体590を作製した。さらに実施例1と同様にして、未焼成積層体590を所定の位置で切断し、脱脂、焼成を行った。焼成時には、消失材料150が消失してスリット溝部15が形成されると共に、消失材料151も消失して絶縁強化層(空洞部)55が形成される。また、グリーンシート20が焼結して圧電セラミック層2及びダミー部29が形成され、さらに、電極材料310、410を形成した位置には内部電極部31、41が形成される。このようにして、セラミック積層体59を得た(図10、図13、図14参照)。
次いで、実施例1と同様にして研削、研磨を行い、さらにセラミック積層体59の一対の側面を挟むように側面電極11、12を形成した。
以上のようにして、図10及び図11に示すごとく、積層型圧電素子5を作製した。
本例の積層型圧電素子5においては、絶縁抵抗の高い絶縁強化層(空洞部)55が上記特定の位置に形成されているため、実施例1と同様に、絶縁破壊が発生することを抑制することができ、積層型圧電素子5は、優れた耐久性を示すことができる。
また、上述の例においては、第1隣接電極層に絶縁強化層(空洞部)を形成したが、実施例1と同様に、第2隣接電極層36、46に絶縁強化層55を形成することもできる(図15参照)。
即ち、図15に示すごとく、積層型圧電素子5において、スリット溝部15を積層方向に挟んで対向する一対の内部電極層3、4のうち、積層方向においてスリット溝部15に2番目に近い位置に形成された一対の内部電極層3、4を第2隣接電極層36、46とし、この第2隣接電極層36、46の内部電極部を第2内部電極部312、412及び控え部を第2控え部322、422とすると、第2隣接電極層36、46における第2内部電極部312、412と第2控え部322、422との境界部315、415に沿って、圧電セラミック層2よりも絶縁抵抗の高い絶縁強化層(空洞部)55を形成することができる。
また、第1隣接電極層35、45における第1内部電極部311、411と第1控え部321、421との境界部315、415、及び第2隣接電極層36、46における第2内部電極部312、412と第2控え部322、422との境界部315、415の双方に、絶縁強化層(空洞部)55を形成することもできる(図16参照)。
以上のように、絶縁強化層として空洞部を所定位置に形成した場合においても、積層型圧電素子は、実施例1と同様に優れた耐久性を示すことができる。
(実施例3)
本例は、第1隣接電極層の第1内部電極部の外周端部における導電性金属の密度を部分的に小さくした積層型圧電素子の例である。
図17に本例の積層型圧電素子の部分断面図を示し、図18に本例の積層型圧電素子におけるスリット溝部前後の各層の展開図を示す。
図17及び図18に示すごとく、本例の積層型圧電素子6は、実施例1と同様に、複数の圧電セラミック層2と複数の内部電極層3、4とを交互に積層してなるセラミック積層体69と、その外周側面695に形成された一対の側面にそれぞれ設けられた一対の側面電極11、12とを有する。また、内部電極層3、4は、導電性金属を主成分とする内部電極部31、41と、その外周端部315、415がセラミック積層体59の外周側面595よりも内方に所定の距離で控えた控え部32、42とを有している。
また、セラミック積層体69は、その外周側面695から内方に凹んだスリット状のスリット溝部15を有している。スリット溝部15は、セラミック積層体69の積層方向に所定の間隔で複数形成されている。本例において、各スリット溝部15は、セラミック積層体69の外周側面695の全周に形成されている。
本例のセラミック積層体69において、上記スリット溝部15を積層方向に挟んで対向する一対の内部電極層3、4のうち、上記スリット溝部15の最も近くに形成された一対の内部電極層を第1隣接電極層35、45、該第1隣接電極層35、45の内部電極部を第1内部電極部311、411、及び上記第1隣接電極層35、45の上記控え部を第1控え部321、421とし、また、上記スリット溝部15に2番目に近い位置に形成された一対の内部電極層3、4を第2隣接電極層36、46、該第2隣接電極層36、46の内部電極部を第2内部電極部312、412、及び上記第2隣接電極層36、46の上記控え部を第2控え部322、422とする。
図18、図19(a)及び(b)に示すごとく、第2内部電極部312、412を該第2内部電極部とそれぞれ同じ側面電極に電気的に接続する第1内部電極部311、411を有する上記第1隣接電極層35、45上に積層方向に投影した場合において、投影された第2内部電極部における該第2内部電極部と第2控え部との境界部365、465周辺における第1内部電極部311、411の導電性金属の密度は、少なくとも部分的に、同じ位置における第2内部電極部の導電性金属の密度に比べて小さくなっている。
本例においては、図17、図18、図19(a)及び(b)に示すごとく、セラミック積層体69を積層方向に透視した場合に、第1内部電極部311、411の外周端部355、455の少なくとも一部が、第1内部電極部311、411と同じ側面電極11、12に電気的に接続する第2内部電極部312、412の外周端部365、465よりもセラミック積層体69の外周側面695からさらに内方に控えられている。特に、本例においては、セラミック積層体69を積層方向に透視した場合に、第1内部電極部311、411の外周端部695は凹凸形状になっている。
その他の構成は実施例1と同様である。
本例の積層型圧電素子は、上述の実施例1及び実施例2と同様に、グリーンシート上に電極材料及び消失材料を印刷して電極印刷シート及び消失印刷シートを必要枚数作製し、これらを積層、圧着、脱脂、及び焼成して得ることができる。
本例においては、電極印刷シートの形成時に、図18に示すごとく、内部電極部のパターンが形成されるようにグリーンシート上に電極材料の印刷を行った。
即ち、図18、図19(a)及び(b)に示すごとく、第1内部電極部311、411の外周端部695は凹凸形状にし、第2内部電極部312、412をこの第2内部電極部312、412とそれぞれ同じ側面電極に電気的に接続する第1内部電極部311、411を有する第1隣接電極層35、45上に積層方向に投影したときに、投影された第2内部電極部における該第2内部電極部と第2控え部との境界部365、465周辺における第1内部電極部311、411の導電性金属の密度が同じ位置における第2内部電極部の導電性金属の密度に比べて小さくなるように第1内部電極部311、411を形成した。
このようにして図17〜図19に示すごとく、積層型圧電素子6を作製した。
図17〜図19に示すごとく、本例の積層型圧電素子6は、実施例1及び実施例2と同様にスリット溝部15を有している。そのため、スリット溝部15が、セラミック積層体69における電圧印加時に変形し易い部分と変形し難い部分との境界部に生じる応力集中を緩和することができる。その反面、スリット溝部15に水分が進入した場合に、第1隣接電極層35、45の内部電極部311、411の外周端部355、455周辺に拡散していた導電性金属がイオン化し易くなる構成になっている。しかし、本例の積層型圧電素子6においては、第2内部電極部312、412をこの第2内部電極部312、412と同じ側面電極11、12に電気的に接続する第1内部電極部311、411を有する第1隣接電極層31、41上に上記積層方向に投影した場合に、投影された第2内部電極部におけるこの第2内部電極部と第2控え部との境界部周辺における第1内部電極部311、411の導電性金属の密度が少なくとも部分的に同じ位置における第2内部電極部の導電性金属の密度に比べて小さくなっている。
そのため、積層型圧電素子6の作製時等に、第1内部電極部311、411の外周端部355、455からその周辺に拡散する導電性金属の量を少なくすることができる。それ故、スリット溝部15に水分が進入した場合に、イオン化する導電性金属の量を少なくすることができる。その結果、絶縁破壊の発生を抑制することができ、積層型圧電素子6は、ショートが起こり難くなり、優れた耐久性を示すことができる。
また、図17に示すごとく、積層型圧電素子6においては、一対の第1隣接電極層35、45をそれぞれ異なる電極の側面電極11、12に電気的に接続させることができる。そのため、スリット溝部15を含む圧電セラミック層2にも、その他の圧電セラミック層2と同様に電界を印加させることができ、スリット溝部15を含む圧電セラミック層2も変位させることができる。それ故、従来のように変位性能を低下させるおそれがなくなる。
また、本例においては、第1隣接電極層35、45における第1内部電極部311、411を図19(a)及び(b)に示すパターンで形成したが、その他にも図20及び図21等に示すようなパターンで形成することができる。この場合にも本例と同様の作用効果を示すことができる。
以上のように、本例によれば、変位性能をほとんど損ねることなく、絶縁破壊を防止し、耐久性に優れた積層型圧電素子を提供することができる。
実施例1にかかる、積層型圧電素子の構造を示す部分断面説明図。 実施例1にかかる、積層型圧電素子のスリット溝部周辺の断面構造を示す説明図。 実施例1にかかる、積層型圧電素子のスリット溝部周辺の断面構造を示し、圧電活性領域と圧電不活性領域とを示す説明図。 実施例1にかかる、セラミック積層体を積層方向に透視して任意の第1隣接電極層を見た様子を示す説明図。 実施例1にかかる、セラミック積層体19を積層方向に透視した図であって、圧電活性領域と圧電不活性領域との位置を示す説明図。 実施例1にかかる、第1電極印刷シート、第2電極印刷シート、及び消失材料印刷シートを積層する様子を示す説明図。 実施例1にかかる、未焼成積層体の断面構造を示す説明図。 実施例1にかかる、第2隣接電極層に絶縁強化層を形成した積層型圧電素子のスリット溝部周辺における断面構造を示す説明図。 実施例1にかかる、第1隣接電極層及び第2隣接電極層の双方に絶縁強化層を形成した積層型圧電素子のスリット溝部周辺における断面構造を示す説明図。 実施例2にかかる、積層型圧電素子の構造を示す部分断面説明図。 実施例2にかかる、積層型圧電素子のスリット溝部周辺の断面構造を示す説明図。 実施例2にかかる、セラミック積層体を積層方向に透視して任意の第1隣接電極層を見た様子を示す説明図。 実施例2にかかる、第1電極印刷シート、第2電極印刷シート、及び消失材料印刷シートを積層する様子を示す説明図。 実施例2にかかる、未焼成積層体の断面構造を示す説明図。 実施例2にかかる、第2隣接電極層に絶縁強化層(空洞部)を形成した積層型圧電素子のスリット溝部周辺における断面構造を示す説明図。 実施例1にかかる、第1隣接電極層及び第2隣接電極層に絶縁強化層(空洞部)を形成した積層型圧電素子のスリット溝部周辺における断面構造を示す説明図。 実施例3にかかる、積層型圧電素子の構造を示す部分断面説明図。 実施例3にかかる、積層型圧電素子におけるスリット溝部周辺の各層を展開した様子を示す説明図。 実施例3にかかる、セラミック積層体を積層方向に透視して一方の側面電極に接続する第1隣接電極層を見た様子を示す説明図(a)、セラミック積層体を積層方向に透視してもう一方の側面電極に接続する第1隣接電極層を見た様子を示す説明図(b)。 実施例3にかかる、第1内部電極部の外周端部の電極密度を小さくするための内部電極の形成パターンを示す説明図。 実施例3にかかる、第1内部電極部の外周端部の電極密度を小さくするための内部電極の形成パターンを示す説明図。 スリット溝部以外のスリット状の溝部が形成された積層型圧電素子の断面図を示す説明図。
符号の説明
1 積層型圧電素子
11、12 側面電極
15 スリット溝部
155 内方側端部
18 重合領域
19 セラミック積層体
195 外周側面
2 圧電セラミック層
25 絶縁強化層
3、4 内部電極層
31、41 内部電極部
315、415 外周端部
32、42 控え部
35、45 第1隣接電極層
36、46 第2隣接電極層

Claims (10)

  1. 複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の外周側面に形成された一対の側面電極とを有する積層型圧電素子において、
    上記内部電極層は、導電性金属を主成分とする内部電極部と、該内部電極部の外周端部が上記セラミック積層体の外周側面よりも内方に所定の控え距離で控えた控え部とを有し、上記内部電極部においていずれか一方の上記側面電極に交互に電気的に接続しており、
    上記セラミック積層体は、該セラミック積層体の外周側面から所定の深さで内方に凹んだスリット状のスリット溝部を有し、
    上記セラミック積層体において、上記スリット溝部を積層方向に挟んで対向する一対の上記内部電極層のうち、上記スリット溝部の最も近くに形成された一対の内部電極層を第1隣接電極層、該第1隣接電極層の内部電極部を第1内部電極部、及び上記第1隣接電極層の上記控え部を第1控え部とし、また、上記スリット溝部に2番目に近い位置に形成された一対の内部電極層を第2隣接電極層、該第2隣接電極層の内部電極部を第2内部電極部、及び上記第2隣接電極層の上記控え部を第2控え部とすると、
    上記第1隣接電極層及び/又は上記第2隣接電極層には、上記第1内部電極部と上記第1控え部との境界部及び/又は上記第2内部電極部と上記第2控え部との境界部に沿って、上記圧電セラミック層よりも絶縁抵抗の高い絶縁強化層が形成されており、
    該絶縁強化層の内方側端部は、上記境界部より上記第1内部電極部及び/又は上記第2内部電極部の内方まで達すると共に、上記セラミック積層体を積層方向に透視した場合に、上記絶縁強化層が形成された上記第1隣接電極層及び/又は上記第2隣接電極層の最も近くに形成された上記スリット溝部の先端よりもさらに内方に達していることを特徴とする積層型圧電素子。
  2. 請求項1において、上記圧電セラミック層はPZT材料を主成分とし、上記絶縁強化層は、PZT材料にFe、Cr、Ni、Mn、及びCoから選ばれる少なくとも1種の金属酸化物が添加されてなる圧電材料を主成分とすることを特徴とする積層型圧電素子。
  3. 請求項2において、上記金属酸化物はFe、Cr、及びNiから選ばれる少なくとも1種の酸化物であり、上記絶縁強化層の上記圧電材料には、上記金属酸化物が上記PZT材料100重量部に対して0.1〜10重量部添加されていることを特徴とする積層型圧電素子。
  4. 請求項2において、上記金属酸化物はMnの酸化物であり、上記絶縁強化層の上記圧電材料には、上記金属酸化物が上記PZT材料100重量部に対して0.05〜1重量部添加されていることを特徴とする積層型圧電素子。
  5. 請求項1において、上記絶縁強化層は、上記セラミック積層体の上記外周側面から内方に埋設された空洞部であることを特徴とする積層型圧電素子。
  6. 請求項1〜5のいずれか一項において、上記スリット溝部は、上記控え部の上記控え距離よりも大きな深さで形成されていることを特徴とする積層型圧電素子。
  7. 複数の圧電セラミック層と複数の内部電極層とを交互に積層してなるセラミック積層体と、該セラミック積層体の外周側面に形成された一対の側面電極とを有する積層型圧電素子において、
    上記内部電極層は、導電性金属を主成分とする内部電極部と、該内部電極部の外周端部が上記セラミック積層体の外周側面よりも内方に所定の控え距離で控えた控え部とを有し、上記内部電極部においていずれか一方の上記側面電極に交互に電気的に接続しており、
    上記セラミック積層体は、該セラミック積層体の外周側面から所定の深さで内方に凹んだスリット状のスリット溝部を有し、
    上記セラミック積層体において、上記スリット溝部を積層方向に挟んで対向する一対の上記内部電極層のうち、上記スリット溝部の最も近くに形成された一対の内部電極層を第1隣接電極層、該第1隣接電極層の内部電極部を第1内部電極部、及び上記第1隣接電極層の上記控え部を第1控え部とし、また、上記スリット溝部に2番目に近い位置に形成された一対の内部電極層を第2隣接電極層、該第2隣接電極層の内部電極部を第2内部電極部、及び上記第2隣接電極層の上記控え部を第2控え部とすると、
    上記第2内部電極部を該第2内部電極部と同じ上記側面電極に電気的に接続する上記第1内部電極部を有する上記第1隣接電極層上に上記積層方向に投影した場合において、投影された上記第2内部電極部における該第2内部電極部と上記第2控え部との境界部周辺における上記第1内部電極部の上記導電性金属の密度は、少なくとも部分的に、同じ位置における上記第2内部電極部の上記導電性金属の密度に比べて小さくなっていることを特徴とする積層型圧電素子。
  8. 請求項7において、上記セラミック積層体を積層方向に透視した場合に、上記第1内部電極部の上記外周端部の少なくとも一部は、上記第1内部電極部と同じ上記側面電極に電気的に接続する上記第2内部電極部の上記外周端部よりも上記セラミック積層体の外周側面からさらに内方に控えられていることを特徴とする積層型圧電素子。
  9. 請求項7又は8において、上記セラミック積層体を積層方向に透視した場合に、上記第1内部電極部の上記外周端部は凹凸形状になっていることを特徴とする積層型圧電素子。
  10. 請求項7〜9のいずれか一項において、上記スリット溝部は、上記控え部の上記控え距離よりも大きな深さで形成されていることを特徴とする積層型圧電素子。
JP2008042104A 2008-02-22 2008-02-22 積層型圧電素子 Pending JP2009200358A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042104A JP2009200358A (ja) 2008-02-22 2008-02-22 積層型圧電素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042104A JP2009200358A (ja) 2008-02-22 2008-02-22 積層型圧電素子

Publications (1)

Publication Number Publication Date
JP2009200358A true JP2009200358A (ja) 2009-09-03

Family

ID=41143522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042104A Pending JP2009200358A (ja) 2008-02-22 2008-02-22 積層型圧電素子

Country Status (1)

Country Link
JP (1) JP2009200358A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091234A (ja) * 2009-10-23 2011-05-06 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置及びアクチュエーター装置
JP2013077636A (ja) * 2011-09-29 2013-04-25 Taiheiyo Cement Corp 圧電素子
US20150042212A1 (en) * 2012-02-20 2015-02-12 Epcos Ag Multilayer Component and Method for Producing a Multilayer Component
US20190193874A1 (en) * 2017-12-22 2019-06-27 Japan Aerospace Exploration Agency Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091234A (ja) * 2009-10-23 2011-05-06 Seiko Epson Corp 液体噴射ヘッド、液体噴射装置及びアクチュエーター装置
JP2013077636A (ja) * 2011-09-29 2013-04-25 Taiheiyo Cement Corp 圧電素子
US20150042212A1 (en) * 2012-02-20 2015-02-12 Epcos Ag Multilayer Component and Method for Producing a Multilayer Component
US10217927B2 (en) * 2012-02-20 2019-02-26 Epcos Ag Method for producing a multilayer component
US10608163B2 (en) 2012-02-20 2020-03-31 Epcos Ag Multilayer component having internal electrodes alternatingly connected to external electrodes
US20190193874A1 (en) * 2017-12-22 2019-06-27 Japan Aerospace Exploration Agency Multi-layer insulation, spacecraft, damage diagnosis device, and method of detecting object to be detected
US11492149B2 (en) * 2017-12-22 2022-11-08 Japan Aerospace Exploration Agency Multi-layer insulation of spacecraft structure for cosmic dust impact damage monitoring

Similar Documents

Publication Publication Date Title
JP4911066B2 (ja) 積層型圧電素子
US8737037B2 (en) Ceramic electronic component and method of manufacturing the same
JP4930410B2 (ja) 積層型圧電素子
US11610736B2 (en) Electronic component
JP4565349B2 (ja) 積層型圧電セラミック部品の製造方法
KR20130023612A (ko) 적층 세라믹 전자부품
JP4925825B2 (ja) 積層型電子部品及びこれを用いた噴射装置
JP2006203070A (ja) 積層型圧電素子
JP2009200358A (ja) 積層型圧電素子
JP2009200359A (ja) 積層型圧電素子
JP2010103198A (ja) 積層セラミックコンデンサ及びその製造方法
JPH1012475A (ja) 積層型セラミック電子部品
JP4817610B2 (ja) 積層型圧電素子およびその製造方法ならびにこれを用いた噴射装置
JP2005005680A (ja) 圧電アクチュエータ
JP2009246105A (ja) 積層コンデンサ
JP2005340388A (ja) 積層型電子部品
JP2010225911A (ja) 積層型圧電素子
JP2021052103A (ja) セラミック電子部品の製造方法及びセラミック電子部品
JP2005268393A (ja) 積層型圧電素子およびこれを用いた噴射装置
KR20190121138A (ko) 적층 세라믹 전자부품의 제조방법
JP4942461B2 (ja) セラミック電子部品及び噴射装置
JP4868707B2 (ja) 積層型圧電素子および噴射装置
JP2000012375A (ja) 積層セラミック電子部品
JP2013211432A (ja) 積層型圧電素子
JP3921171B2 (ja) セラミック電子部品及びその製法並びに噴射装置