JP2009198514A - パターン検査方法及びその装置 - Google Patents
パターン検査方法及びその装置 Download PDFInfo
- Publication number
- JP2009198514A JP2009198514A JP2009131707A JP2009131707A JP2009198514A JP 2009198514 A JP2009198514 A JP 2009198514A JP 2009131707 A JP2009131707 A JP 2009131707A JP 2009131707 A JP2009131707 A JP 2009131707A JP 2009198514 A JP2009198514 A JP 2009198514A
- Authority
- JP
- Japan
- Prior art keywords
- image
- brightness
- pattern
- images
- pattern inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本発明では、同一パターンとなるように形成された2つのパターンの対応する領域の画
像を比較して画像の不一致部を欠陥と判定するパターン検査装置において、膜厚の違いな
どから生じるパターンの明るさむらの影響を低減して、高感度なパターン検査を実現する
。また、多種多様な欠陥を顕在化でき,広範囲な工程への適用が可能なパターン検査装置
を実現する。
【解決手段】
上記課題を解決するために、本発明では、同一パターンとなるように形成された2つの
パターンの対応する領域の画像を比較して画像の不一致部を欠陥と判定するパターン検査
装置を、複数の検出系とそれに対応する複数の画像比較処理方式を備えて構成した。
また、パターン検査装置を、異なる複数の処理単位で比較画像間の画像信号の階調を変
換する手段を備えて構成し、画像間の同一パターンで明るさの違いが生じている場合であ
っても、正しく欠陥を検出できるようにした。
【選択図】 図1
Description
ップが多数、規則的に並んでいる。各チップは図7に示すようにメモリマット部71と周
辺回路部72に大別することができる。メモリマット部71は小さな繰り返しパターン(
セル)の集合であり、周辺回路部72は基本的にランダムパターンの集合である。一般的
にはメモリマット部71はパターン密度が高く、明視野照明光学系で得られる画像は暗く
なる。これに対し、周辺回路部72はパターン密度が低く、得られる画像は明るくなる。
62等での画像を比較し、その差異を欠陥として検出する。このとき、ステージの振動や
対象物の傾きなどがあり、2枚の画像の位置が合っているとは限らないため、センサで撮
像した画像と、繰り返しパターンピッチ分の遅延された画像の位置ずれ量を求め、求めら
れた位置ずれ量に基づき2枚の画像の位置合わせを行った後、画像間の差をとり、差が規
定のしきい値よりも大きいときに欠陥と,小さいときは非欠陥と判定する。
の1つの情報とし,画像内のパターン間のずれが最小になるように位置ずれ量を算出する
のが一般的である。実際には正規化相互相関を用いる方法,残差の総和を用いる方法など
が提案されている。
妙な違いが生じ、チップ間の画像には局所的に明るさの違いがある。例えば、図4(a)
の41は検査対象画像,図4(b)の42は参照画像の一例であり、図4(a)の4a、
図4(b)の4bに示すように検査対象画像と参照画像の同一のパターンで明るさの違い
が生じている。また、検査対象画像図4(a)の41には欠陥4dがある。この場合の差
画像は図4(c)のようになる。差画像とは検査対象画像と参照画像の対応する各位置で
の差分に応じて濃淡差表示した画像のことである。位置1D−1D‘での差の波形は図4
(d)のようになっている。このような画像に対し、従来方式のように、差分値が特定の
しきい値TH以上となる部分を欠陥とするならば、明るさの異なるパターン4aと4bの
差分値4cは、欠陥として検出されることになる。これは本来、欠陥として検出されるべ
きものではない。つまり虚報である。従来、図4(c)の4cのような虚報発生を避ける
ための1つの方法として、しきい値THを大きくしていた(図4(d)TH→TH2)。
しかし、これは感度を下げることになり、同程度以下の差分値の欠陥4dは検出できない
。
特定チップ間でのみ生じる場合や、チップ内の特定のパターンでのみ生じる場合があるが
、これらのローカルなエリアにしきい値THを合わせてしまうと全体の検査感度を著しく
低下させることになる。
合,正規化相互相関を用いる方法,残差の総和を求める方法のいずれの場合も正しい位置
ずれ量が算出できない可能性がある。
明条件など検出系に依存したファクタとの組合せにより顕在化が不可能な場合がある。
に形成された2つのパターンの対応する領域の画像を比較して画像の不一致部を欠陥と判
定するパターン検査装置において、膜厚の違いなどから生じるパターンの明るさむらの影
響を低減し、高感度なパターン検査を実現することにある。
を選択し,それ応じた比較検査方式により検査を行うことにより,より多様な欠陥に対応
できる高感度なパターン検査を実現することにある。
パターンの対応する領域の画像を比較して画像の不一致部を欠陥と判定するパターン検査
装置を、切替え可能な複数の異なる検出系とそれに応じた複数の画像比較処理方式と複数
の欠陥分類方式を備えて構成した。1つ以上の検出系の選択は,それに対応する画像比較
処理方式,欠陥分類方式の検出性能も加味して行われる。これにより,最適な条件の選択
が可能となり,多種の欠陥を検出できるようにした。
する手段を備えて構成した。これにより、検査対象が半導体ウェハで、ウェハ内の膜厚の
違いや、照明光量変動、イメージセンサの画素毎の感度ばらつき、光量蓄積時間むらなど
により画像間の同一パターンで明るさの違いが生じている場合であっても、正しく欠陥を
検出できるようにした。
を備えて構成した。これにより,ウェハ内の膜厚の違いにより強い明るさの違いが画像間
の特定パターンで生じている場合であっても、位置のずれを高精度に検出できるようにし
た。また,位置のずれが画像間に生じている場合であっても,明るさのずれを高精度に検
出できるようにした。
ことにより、高感度検査を実現するとともに,多様な欠陥の検出が可能となる。
様々な要因により発生するチップ間の明るさの違い(色むら)等によって生じる比較する
画像間の明るさの違いを、異なる複数の方式で明るさを合わせ込むことにより、強い明る
さむらの中に埋没した微弱信号の欠陥を顕在化し、検出することが可能となる。
能となる。
例にとると、図1は装置の構成の一例を示したものである。11は試料(半導体ウェハな
どの被検査物)、12は試料11を搭載し、移動させるステージ、13は検出部である。
この検出部13は、試料11を照射する光源101、光源101から出射した光を集光す
る照明光学系102、照明光学系102で集光された照明光で試料11を照明し、反射し
て得られる光学像を結像させる対物レンズ103、結像された光学像を受光し、明るさに
応じた画像信号に変換するイメージセンサ104,イメージセンサ104からの入力信号
をデジタル信号に変換するAD変換部105で構成される。
、レーザを用いても良い。また、光源101から発した光の波長としては短波長であって
も良く、また、広帯域の波長の光(白色光)であってもよい。短波長の光を用いる場合、
検出する画像の分解能を上げる(微細な欠陥を検出する)ために、紫外領域の波長の光(
Ultra Violet Light:UV光)を用いることもできる。レーザを光源
として用いる場合、それが単波長のレーザである場合には、図示していない可干渉性を低
減する手段を備える必要がある。
た時間遅延積分型のイメージセンサ(Time Delay Integration
Image Sensor:TDIイメージセンサ)を採用し、ステージ13の移動と同
期して各1次元イメージセンサが検出した信号を次段の1次元イメージセンサに転送して
加算することにより、比較的高速で高感度に検出することが可能になる。
ィング補正、暗レベル補正等の画像補正を行う前処理部106、比較対象となる参照画像
のデジタル信号を格納しておく画像メモリ107で構成される。
部14の画像メモリ107に記憶された2枚の画像(検出画像と参照画像)を比較し,差
がしきい値より大きい部分を欠陥とする。まず、画像メモリ107に記憶された検出画像
と参照画像のデジタル信号を読み出し、補正量算出部108で位置,及び明るさを合わせ
るための補正量を算出し、画像比較部109で算出された位置と明るさの補正量を用いて
、検出画像と参照画像の画像信号の対応する位置での明るさの比較を行い、差分値が特定
のしきい値より大きい部分を欠陥候補として出力する。パラメータ設定部110は、差分
値から欠陥候補を抽出する際のしきい値などの画像処理パラメータを設定し、画像比較部
109に与える。そして欠陥分類部111にて,各欠陥候補の特徴量から真の欠陥を抽出
し,分類を行う。
ど)の変更を受け付けたり、検出された欠陥情報を表示したりする表示手段と入力手段を
持つユーザインターフェース部112、検出された欠陥候補の特徴量や画像などを記憶す
る記憶装置113、各種制御を行うCPU(全体制御部16に内臓)で構成される。114
は、全体制御部16からの制御指令に基づいてステージ12を駆動するメカニカルコント
ローラである。尚、画像比較処理部15、検出部13等も全体制御部16からの指令によ
り駆動する。
規則的に並んでいる。図1の検査装置では、全体制御部16では試料である半導体ウェハ
11をステージ12により連続的に移動させ、これに同期して、順次、チップの像を検出
部13より取り込み、隣接する2つのチップの同じ位置、例えば図6の領域61と領域6
2とのデジタル画像信号をそれぞれ検出画像及び参照画像として上記手順で比較し、欠陥
を検出する。
2は検出部13の詳細を示す図である。
化またはほぼ平準化され,光路分岐光学系23に入射する。光源101はレーザであって
、発射される光は紫外光(ultra violet light:UV光, deep ultra violet light:DUV光
など)または可視光である。光路分岐光学系23に入射した光は、偏光手段2302で
偏光の状態を調整され、偏光ビームスプリッタ2301で2つの光路2601と2602
とに分岐される。偏光手段2302は、例えば回転可能な1/2波長板で構成されていて
、1/2波長板の回転角度に応じて透過する光のP偏光とS偏光との光量の割合を1:0
から0:1の範囲で調整できる。光路2601に分岐された光は、ビーム形成光学系20
1に入射し,ビーム径の調整や照度分布の調整が行われ,ミラー202で折り曲げられて
干渉性低減光学系203に入射し,時間的・空間的な干渉性が低減される。干渉性低減光
学系203から射出した該照明光は変形照明光学系20で対物レンズ10の瞳位置での照
度分布が変形され,偏光ビームスプリッタ27でS偏光成分が対物レンズ103側に反射
し,光変調ユニット21および対物レンズ103を介してウェハ11を照射する。以下で
は本光路にて照射された照明光,つまり対物レンズ103を通して照射された照明光を明
視野照明と呼ぶものとする。
の瞳位置における照明光の照度分布を複数種に変化させることにより,様々なプロセスウ
ェハに対応可能な照明を行う。これは例えば,光軸断面で光の透過率を変えたフィルタで
も良く,光軸を中心に点対称に配置した4光束又は8光束を形成する光学素子でも良く、更
に、ビームを揺動できる素子を用いてビーム位置を変化させても良い。ビームを揺動でき
る素子とは,例えばガルバノミラーや半導体共振ミラーである。これらは切替え可能であ
る。
203を透過した後、偏光暗視野照明光学系A24に入ってパーシャルミラー2401で
2光路に分岐され、一方は光学素子2403及び2405を透過して偏光暗視野照明光学
系B25に入り、他方は、全反射ミラー2402で反射して光学素子2403及び240
5を透過して偏光暗視野照明光学系B25に入る。偏光暗視野照明光学系B25に入った
それぞれの光は、光学素子2501,2502を透過してミラー2503および2504
で反射されてウェハ11の表面を斜め方向から照射する。
光のうち、対物レンズ103で集光された光は、光変調ユニット21、偏光ビームスプリ
ッタ27、光変調ユニット22を透過してイメージセンサ104の検出面上に結像され、
この結像した光学像がイメージセンサ104で検出され、検出信号はA/D変換器105
でデジタル信号に変換されて検出部13から出力される。ここで、イメージセンサ104
からは、複数の検出信号が並列に出力され、A/D変換器105で並列に出力された複数
の検出信号をA/D変換して並列に出力する。
制御するためのものである。例えば,ウェハ11から反射される0次回折光と高次回折光
の光量比を調整し,イメージセンサ104で検出される回路パターン信号のコントラスト
を向上させる。または,偏光微分干渉により回路パターンのコントラストを向上させる。
ここで,前記0次回折光と高次回折光の光量比を調整するためには,1/2波長板と1/
4波長板を組み合わせて光の振動方向を変化させることにより実現できる。また偏光微分
干渉は,複屈折プリズムを用いることにより実現できる。ノマルスキー型のプリズムを1
個用いた偏光微分干渉光学系による物理的な現象は,一般的な微分干渉顕微鏡と同様であ
る。これらも切替え可能である。
し,瞳位置での光学的な変調を行う。例えば,石英等の透明基板の中央部に誘電体膜を蒸
着した構成の物を設置し,該誘電体膜部分の透過率を変えることによってイメージセンサ
104で検出される光を変調する。なお,誘電体膜の代わりに金属等で遮光したユニット
を用いても良い。これらも切替え可能である。
3の外側からウェハ11に照明光を照射する。偏光暗視野照明光学系24に入射した光路
2602は,光路分岐するパーシャルミラー2401と,全反射ミラー2402を備えて
構成されている。一方,光路分岐光学系23で光路2601に分岐された照明光,つまり
対物レンズ103を通して照射された照明光を明視野照明と呼ぶ。
の機能を有することにより,検査対象に最適な光学系を選択し,最適な検査が可能となる
。
置補正係数,明るさ補正係数の算出方法などの各機能について,それぞれ複数の方式(図
3に示した例では、1501〜1503)をもっており,検出系の組合せが決定すると,
それに対応した各機能の最適な組合せとその処理順が決定するようになっている。例えば
、1501に示した画像比較処理方式では、108−1、109−1で欠陥候補を抽出し
,111−1により欠陥を検出し分類する。このとき,画像処理パラメータもそれに対応
した値が110−1で設定される。
係数の算出→エッジの高さ方向平滑化(試料11の高さ方向の微妙な違いが画像に存在す
る場合の信号量の平滑化)による画像編集→コントラストと明るさを用いた明るさ補正係
数の算出の順で比較処理が行われる例を示してあるが,他に,画像編集なし→位置補正係
数と明るさ補正係数の一括算出など様々な組合せと演算順序がある。分類についても同様
である。
れに対応する画像比較方式,欠陥分類方式に基いて,画像比較を行うことにより,高感度
な検査を実現するとともに,多様な欠陥の検出を可能とする。
なる試料の情報を入力する。半導体ウェハでは,工程,着目エリア(例えば,メモリマッ
ト部など),見つけたい欠陥が既知であれば着目欠陥とし,その座標などを教示する。そ
して検出系を切替えて着目エリア,着目欠陥の画像を撮像し,画像のコントラスト,輝度
値,パターンの方向,パターンの密度,欠陥部分とその周囲との輝度値の違い(S/N)な
どを演算し,図9のように画面上に並べて表示する。図9(a)は指定した着目欠陥の各
検出系による画像,コントラスト,濃淡差,輝度分布,S/Nを示した例である。図9(
b)は着目エリアの各検出系による画像,コントラスト,明るさ,微分値,輝度分布を示
した例である。これにより,1つ以上の条件を選択する。条件はユーザが図9のように表
示された画像や評価値を見て選択することもできるが,評価値から自動選択することも可
能である。そして,選択された検出系に応じて図8の802に示すように各検出系に対応
した比較方式,分類方式により検査を行う。
設定し(S101),画像を撮像(S102),検出系に対応する画像比較方式を設定し
て(S103)テスト検査を行う(104)。これを数種類(あるいは,全種類)の検出
系で行う。そして,検出したい欠陥がいずれかの検出系で見つかっていれば,その座標を
指定する(S105)。また,ユーザは,メモリマット部など高感度に検査したい領域の
座標も指定する(S106)。あらかじめ,検出ターゲットとなる欠陥が既知の場合は,
このテスト検査は行わなくてよい。そして,各検出系で指定した欠陥,領域の画像を取得
し(S107〜S109),図9に示した定量評価値を算出してその結果を表示する(S
110)。一方,設定した検出系に対応した画像比較方式でテスト検査を行い,結果を表
示する(S111)。そして両者,すなわち,異なる検出系による画像の定量評価値と,
異なる画像比較方式による検出性能を加味して最適な条件を1つ以上選択する(S112
)。選択の基準として,画像の定量評価値と画像比較方式の性能までを加味した検出結果
について,重みを同じにしてもよいし,一方に重みを付けてもよい。これにより,最適な
検出系を選択し(S113),それに対応する画像比較方式,分類方式を選択し(S11
4),選択した全検査条件で検査を行い(S115),選択した全条件を終了した場合に
は(S116),結果を表示画面上にマップ形式で表示する(S117)。
欠陥検出,分類結果である。複数の検出方式で行った検査結果は1101のように検出方
式ごとに個別に表示することも可能であるし,1102のように各検出方式で行った検出
結果の論理積や論理和をとることにより、結果を合成して表示することも可能である。検
出結果は検出の有無をマップにそのまま表示しても良いが、1101及び1102に示し
たように、分類結果をマップに表示することにより,ユーザはターゲットとする欠陥がど
の条件で最もよく検出できるか一目でわかる。
ステージの移動に同期してメモリ107に連続して入力される検出画像信号、参照画像信
号を読み出す。これら2チップの画像信号は、ステージの振動や、ステージ上にセットさ
れたウェハの傾きにより、全く同じ箇所での信号とはならない。このため、補正量演算部
108では通常,2つの画像間の位置ずれ量を算出する(S1081)。位置ずれ量の算
出はステージの進行方向に特定の長さを一処理単位とし,順次行う。図5の51,52,
…は長さD(画素)を1処理単位とした場合の各処理領域である。以下,この単位の処理
領域をユニットと記述する。
し,次にユニット52とそれに対応する隣接チップのユニットで位置ずれ量を算出する,
といったように入力される画像に対して順次ユニット単位で位置ずれ量を算出する。位置
ずれ量の算出には画像間の正規化相互相関、画像間の濃淡差の総和、画像間の濃淡差の二
乗和などを用いる各種手法があり、そのいずれかを選択する。そして、算出された位置ず
れ量に基いて、ユニット単位で2枚の画像の位置合わせを行う(S1082)。次に位置
合わせを行った2枚の画像について,明るさのずれを合わせ込むための補正量を2段階で
算出する。明るさのずれが生じる要因として、半導体ウェハのチップ間の膜厚の微妙な違
い、照明光量の変動などがある。膜厚の微妙な違いによる明るさのずれは半導体ウェハの
パターンに依存して生じる。そこで、本発明では、まず,パターンに依存して空間的に連
続する領域に発生する明るさむらに対する補正量を算出し(S1083)、次にランダム
に発生する明るさむらに対する補正量を算出する(S1084)。これらの階層的に算出
される補正量とパラメータ設定部110で各検出条件に応じて設定されるしきい値などの
画像処理パラメータを用いて画像比較を行う(109)。
合せ後の検出画像1210と参照画像1220とから空間的に連続した領域を抽出し(1
201)、この抽出した領域ごとに明るさの補正量を算出し(1202)、この算出した
結果に基いて領域ごとに明るさの補正を行う(1203)。
画像(a)には2つの欠陥2701(○で囲んだ部分)があるが,欠陥2701は帯状の
背景パターンよりも明るく,背景パターンと識別可能である。しかし,参照画像(b)の
対応するパターン2702は欠陥と同等の明るさがあるため,単純に両画像の差を取ると
、差画像(c)のように,欠陥部分の差分は小さくなり,検出画像と参照画像との明るさ
の散布図(d)を作成すると、明るさむらのない領域と識別ができない。なお、散布図(
d)では、検出画像を縦軸に、参照画像を横軸にして明るさをプロットしている。これに
対し,本発明では対象画像から2702のようにパターンまたは領域に応じて部分画像を
抽出し,その領域毎に明るさの補正量を算出する(図12−1202)。補正量の算出方
法の一例を(数1)に示す。
での明るさである。そして、(数2)のように補正量を算出し、
2−1),ヒストグラムのピーク位置が0となるようなオフセット量をその領域の補正量
として算出し補正してもよい(1202−2)。
ための補正量を、画素毎に算出する。その手順の一例を、図14、図15に示す。
明るさ補正を行った画像に対して、各画素の持つ特徴量を算出し,その特徴量を軸とする
N次元の特徴空間へマッピングし(14−1)(図28の(f))、次に特徴空間をセグ
メントに分割し(14‐2)、分割したセグメントごとに補正量を演算する(14−3)
。
02は1203により補正を行った参照画像,検出画像であるが,繰返しのドットパター
ンで明るさむらが生じている。これにより,散布図(b)に示すようにデータの分布が広
がり,欠陥は検出できない。これらの画像に対し,各画素の特徴量を算出し,図15(c
)に示すように特徴空間へマッピングする(図14の14−1に対応)。図15(c)は
2次元の特徴空間を例に取ったものだが,図28(f)はN次元の特徴空間に各画素をマ
ッピングした例である。特徴量は各画素のコントラスト、明るさ、2次微分値、対応画素
間の濃淡差、近傍画素を用いた分散値など、その画素の特徴を示すものなら何でもよい。
全ての特徴量を用いた空間にマッピングしてもよいし,欠陥の判別に有効な特徴量を選択
し,マッピングしてもよい。次に、特徴空間を複数のセグメントに分割し(図14の14
−2)、セグメント毎に、そのセグメントに属する画素の統計量を用いて補正量を算出す
る(図14の14−3)。図15(d)(e)は,(b)の画像全体の散布図から特徴空
間で分割したセグメントに含まれる画素を抽出し,生成された散布図である,そして,(
d)(e)・・・のように各セグメントの散布図から、補正量を演算する。これにより,
図28(e)の濃淡差画像が示すようにドットパターンの明るさむらは補正され,欠陥の
みが検出可能となる。
ている。本発明では、対象画像により自動でセグメント分割を行う。図16(a)の上の
グラフは明るさと濃淡差による特徴空間の例であり、下のグラフは各明るさ(輝度値)の
頻度を示すヒストグラムであり、明るさ方向の分割しきい値を対象画像の明るさのヒスト
グラムから決定する例である。
出する(17−1)。これは検出画像、もしくは参照画像から算出してもよいし、2枚の
画像の平均値から算出してもよい。次に輝度ヒストグラムを平滑化し、小ピークなどを除
去し(17−2)、平滑化されたヒストグラムの微分値を算出する(17−3)。次に明
るさの小さい方から、微分値をみていき、値が正になる輝度値をStart、次に負になる輝
度値をEndとする(17−4)。そして、StartからEndの範囲内で微分値が最大となる輝
度値を分割のためのしきい値とする(17−5)。これにより、図16(a)に示すよう
にヒストグラムの谷の部分で分割が行われる。これは、対象領域内のパターンに応じてセ
グメント分割がなされることを示している。このように画像内のパターンに応じて分割す
ることも可能であるが、図16(b)に示すようにユーザが設定した固定値で分割するこ
とも可能である。
したものである。検出画像(a),参照画像(b)には大きな明るさの違いがあり,差画
像(c)に示す通り,差は大きくなる。(d)は(a)と(b)による散布図である。こ
れを(e)のように特徴量で分解し,散布図毎に補正量を算出し,補正を行うことにより
,(a)と(b)の散布図は,(f)のようデータの広がりが抑制され,補正後の差画像
(g)に示すように差が小さくなる。
すように散布図内で最小二乗近似により直線式を求め、その傾きとy切片を補正量とする
。また、補正量は各セグメントに属する画素から前述の(数1)、(数2)のように求め
てもよい。また、特徴空間を形成するための領域は最小1×1画素以上の任意に設定可能
である。ただし、最高周波数である1×1画素で補正を行うと、欠陥も合わせ込んでしま
うので、やや大きめの領域に設定するようにする。
没した欠陥を顕在化,(2)画素毎に明るさを補正することによりランダムに生じる明る
さむらを抑制する階層的な明るさ補正により欠陥のみを検出することが可能となる(図2
8−(e))。
ある。○で囲った部分に欠陥がある。(d)は欠陥部を含む1D−1D‘の位置合せ後の
2枚の画像の輝度波形とそのときの差分値である。検出画像には欠陥があり、その部分は
周囲に比べて明るくなっているが、参照画像は全体に明るく、欠陥部分の差分値は周囲に
比べ、小さくなっている。これに対し、(b)は領域毎に明るさの違いを補正した後の差
画像である。帯状の明るさのむらが領域として抽出され,補正されている。この結果、(
e)に示すように輝度値が合わせ込まれ、背景の色むらに埋没していた欠陥が顕在化され
る。しかし、繰り返しパターンに依存し、ランダムに生じる明るさの違いは補正できてい
ない。
の違いを補正した後の差画像である。このように、2つ以上の異なる処理方式で階層的に
明るさ補正量を算出することにより、発生状況の異なる明るさの違いを補正し、強い明る
さむらの中に埋没した微弱信号の欠陥を顕在化、検出することが可能となる。
検出画像,(b)は参照画像であるが,下地1901に明るさむらがあり,差画像(c)
では,1901に対応する部分の差が大きくなっている。(a)(b)による散布図デー
タの分布は一部の明るさ領域で(d)のように広がる。これに対し,位置のずれは図13
に示した通り,通常は明るさむらの補正の前に行われるため,明るさのずれ量が大きいと
,正しい位置ずれ量が算出できない可能性がある。一方,位置のずれがあると画像間で画
素の対応がとれず,正しい明るさの補正量が算出できない。このため,本発明では,位置
のずれと明るさのずれを同時に合わせ込む手段をもつ。
の方が明るいが,その上のパターン2002は明るさの違いがほとんどない。さらに上の
パターン2003は(a)の方が明るいものと暗いものが混在し,明暗が(b)に対して
反転している。このような画像(a)と(b)の散布図は(d)に示すように正の相関と
負の相関がある。これに対して,明るさの差が最小となるように位置ずれ量を算出する濃
淡差の二乗和をとる方式では、正しい位置ずれ量は算出できない。また,明るさむらにロ
バストな正規化相関であっても,正の相関と負の相関が混在するような画像では正しい位
置ずれ量は算出不能である。図20(e)は(a)と(b)の相関係数であるが,全体に
値が小さく一意に位置ずれ量が算出できないことを示している。
量(α,β)を中心として,周囲へ位置補正量を振り((αi,βi))ながら,位置補正
(S211)→明るさむら補正量演算(S212)→明るさ合わせ(S213)→散布図
評価(S214) を繰り返す。そして,各位置補正時の散布図データ(a−1),(a
−i),(a−n)のうちで、ばらつきが最も小さくなるもの(a−i)を適用して検査
を行う。散布図データのばらつきは各画素の差の二乗和で算出する。
を分解し,散布図毎に図21の処理を繰り返すことも可能である。すなわち散布図毎に位
置ずれ量を振り((αi,βi))ながら,位置補正(2901)→対応画素について明る
さむら補正量演算(2902)→明るさ補正(2903)→散布図評価(2904)を繰
り返し,散布図データの広がりが最も小さくなる,すなわち画像間の対応する画素の差の
総和が最小となるときの位置ずれ量((αi,βi),明るさ補正量を適用する(2905
)。
照画像2202に微分フィルタをかけ(S221),画像からパターンのエッジを検出し
(S222),エッジに相当する画素のみを用いて位置補正量(α,β)を算出し(S2
23)、これに基いて位置を補正して(S224)画像F‘(2203)と画像G‘(2
204)とを求める。これにより,明るさむらの影響を排除した位置ずれ量の算出が可能
となり、この結果を用いて明るさ村補正量を演算して求めることができる(S225)。
(S222)でエッジを検出するときには,隣接画素間の明るさ勾配の急峻な画素,すな
わち一次微分値が大きい画素や,二次微分値の0交差画素などを選択する。
い。図32に示すように,検出画像2201,参照画像2202の各画素について,隣接
画素との差分を算出し(S321)、算出した差分値の符号配列を算出する(S322)
。ここでは,簡単のため画像データを一次元配列として考えると,検出画像,参照画像の
各画素f(i),g(i)の隣接画素との差df(i),dg(i)を(数4)のように算出し,
if dg(i)≧0 then cg(i)=1 else cg(i)=0
そして,符号の配列が近傍で(もともと画像間には位置のずれがあるため)一致している
画素を選択して位置補正量(α,β)を算出し(S323)、位置補正を行う(S324
)。これにより,明暗が一部反転しているパターンを排除して位置補正を行うことが可能
となる。
201,参照画像2202の各画素f,gについて,n個の近傍画素f(i),g(i)をから分散
値fs,gsを(数5)のように用いて算出し(S331),
(S334)ようにしても良い。ここで,
もよい。本発明は,いずれかの指標により画素を選択すること,言い換えれば,位置ずれ
量算出に悪影響を及ぼす画素を排除することにより,高精度な位置ずれ量の算出を実現す
るものである。
それぞれで領域抽出(S231)を行い,対応する領域毎に位置補正量算出(S232)
,位置補正(S233),明るさむら補正量算出(S234)、明るさむら補正(S23
5)を行う。これにより,正の相関のある部分と負の相関のある部分に分割して位置と明
るさのずれ補正量算出を行うことが可能となる。
それぞれで領域抽出を行い(S241),対応する領域毎に位置補正量と明るさ補正量を
パラメータとして振り,差の二乗和が最小となる位置補正量,明るさ補正量を適用する(
S242)。
それぞれで領域抽出及び,画素毎の特徴量による散布図の分解を行う(S301)。そし
て領域情報と特徴量により分解した画像の散布図毎に位置補正量と明るさ補正量をパラメ
ータとして振り,差の二乗和が最小となる位置補正量,明るさ補正量を適用する(S30
2)。
と正の相関に分布データを分離する(b)(c)(d)。これにより,分離した分布デー
タ毎に散布図データのばらつきが最小になるように位置補正量,明るさ補正量を算出する
。
えば、CMP工程を経て、表面が光学的に透明で平坦な絶縁膜で覆われた半導体ウェハに
形成されたパターンを検査する場合について説明する。CMP加工後のウェハを検出部1
3で撮像して得られた画像は、上記絶縁膜の厚さのウェハ面内でのばらつきやチップ内パ
ターンの疎密により生じる反射光量の分布等の影響を受けて、ウェハの場所によって明る
さがばらついた画像となる。この明るさのばらつきがある画像に対して、上記に説明した
ような方法で異なる単位で多段階に明るさ補正を行うことにより、画像間の明るさのばら
つきの影響を低減して欠陥を顕在化することができるので、欠陥の検出率を向上させるこ
とが可能になる。
様々な要因により発生するチップ間の明るさの違い(色むら)を異なる複数の方式により
明るさを合わせ込む(即ち、異なる複数の領域毎に補正量を算出する)ことにより、強い
明るさむらの中に埋没した微弱信号の欠陥を顕在化し、検出することが可能となる。
理で実現するが、正規化相関演算や特徴空間の形成などコアとなる演算部分をLSIなどに
よるハード処理にすることも可能である。これにより、高速化が実現できる。また、CM
Pなど平坦化プロセス後のパターンの膜厚の微妙な違いや、照明光の短波長化により比較
ダイ間に大きな明るさの違いがあっても、本発明により、20nm〜90nm欠陥の検出
が可能となる。
機絶縁膜や、メチル基含有SiO2、MSQ,ポリイミド系膜、パレリン系膜、テフロン
(登録商標)系膜、アモルファスカーボン膜などの有機絶縁膜といったlow k膜の検
査において、屈折率分布の膜内ばらつきによる局所的な明るさの違いがあっても、本発明
により、20nm〜90nm欠陥の検出が可能となる。
1を用いて説明する。ウェハ上の回路パターンは複数の装置A,B,・・・Eにより順次
形成される(3101)。そして本発明によるパターン検査装置を用いて各製造装置によ
る工程後に検査及び欠陥分類を行うことにより,どのような欠陥が各装置を経てどのよう
に発生するかを追跡することが可能となる。例えば,装置Bによる工程を経たウェハを検
査し,検出した欠陥は,前装置Aからの持込み欠陥と装置B内で発生した欠陥からなり,
装置Aによる工程の後に検査して得られた欠陥データと照合すれば,装置B内で発生した
欠陥か装置Aからの持込み欠陥かどうかがわかる(3102)。ここで,前装置Aからの
持込み欠陥のうち,異物については装置Bで形状欠陥或いは変色を引き起こさないものも
あり,致命的な異物の付着したパターンは必ず次以降の装置で形状欠陥或いは変色となる
が,致命的でない異物の付着したパターンは以降の装置を経ても形状欠陥などにならず,
良品である。従って,本構成をもつパターン検査装置により異物と分類された欠陥につい
て,その座標を記憶しておき,次の装置を経た後に,再度欠陥検出,分類を行うことによ
り,異物が致命性のあるものになるか否かを判定することが可能になる。これにより製造
装置の状態をより的確に把握することが可能となる。
検査画像を例にとって説明したが、電子線式パターン検査における比較画像にも適用可能
である。また、検査対象は半導体ウェハに限られるわけではなく、画像の比較により欠陥
検出が行われているものであれば、例えばTFT基板、ホトマスク、プリント板などでも
適用可能である。
3…対物レンズ、104…イメージセンサ、105…AD変換部、14…画像編集部、1
06…前処理部、107…画像メモリ、15…画像比較処理部、108…補正量算出部、
109…画像比較部、110…パラメータ設定部、111…欠陥分類部,16…全体制御
部、112…ユーザインターフェース部、113…記憶装置、114…メカニカルコント
ローラ、70…チップ、72…周辺回路部、71…メモリマット部、41…検出画像、4
2…参照画像
Claims (7)
- 試料上の同一形状のパターンとなるように形成された2つのパターンの対応する領域に、斜方からの照明光と上方からの照明光との照明光量比の設定が互いに異なる複数の条件で照明し、前記複数の条件による照明ごとに照明領域を撮像して複数の画像を得、前記複数の画像をそれぞれに対応する画像処理方式を用いて処理し、前記処理された複数の画像の比較をすることにより欠陥を検出して分類し、前記分類した結果を画面上に表示することを特徴とするパターン検査方法。
- 請求項1記載のパターン検査方法であって、
前記画像処理方式は、予め設定された複数の画像処理方式の中から選択したものを用いて処理することを特徴とするパターン検査方法。 - 請求項1記載のパターン検査方法であって、
前記照明光量比を、試料の品種,パターン密度,パターンの方向又は検出したい欠陥の種類に応じて調整することを特徴とするパターン検査方法。 - 請求項1乃至3のいずれかに記載のパターン検査方法であって、
前記複数の画像処理方式は、前記照明光量比に対応する複数の画像比較処理方式と複数の欠陥分類方式とをそれぞれ組合わせて用いることを特徴とするパターン検査方法。 - 請求項4記載のパターン検査方法であって、
前記画像比較処理方式と前記欠陥分類方式との組合せを画面上で指定することを特徴とするパターン検査方法。 - 請求項1記載のパターン検査方法であって、
前記斜方からの照明光の光量と前記上方からの照明光の光量との照明光量比を1:0から0:1の範囲で調整することを特徴とするパターン検査方法。 - 試料上の同一パターンとなるように形成された2つのパターンの対応する領域をそれぞれ斜方から照射する斜方照明部と上方から照明する落射照明部と前記斜方照明部と落射照明部との照明光量比を調整する光量比調整部とを有する照明手段と,
前記照明手段で照明された領域からの反射光を結像させる結像光学系手段と、
前記照明手段のそれぞれの照明部で照明されて結像された像を撮像する撮像手段と、
複数の画像処理方式を備えて前期複数の画像処理方式の中から前記照明手段の照明光量比調整部で調整した光量比に対応する画像処理方式を用いて前記撮像手段で撮像した画像を処理して欠陥を検出して分類する画像処理手段と,
前記画象処理手段で処理した結果を表示する表示手段とを有し、
前記画像処理手段は、前記照明光量比の設定が互いに異なる複数の条件で照明して得た複数の画像をそれぞれに対応する前記画像処理方式を用いて処理し、前記処理された複数の画像を比較する手段を備えることを特徴とするパターン検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131707A JP5011348B2 (ja) | 2009-06-01 | 2009-06-01 | パターン検査方法及びその装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009131707A JP5011348B2 (ja) | 2009-06-01 | 2009-06-01 | パターン検査方法及びその装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004138009A Division JP4357355B2 (ja) | 2004-05-07 | 2004-05-07 | パターン検査方法及びその装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011227562A Division JP2012083351A (ja) | 2011-10-17 | 2011-10-17 | 欠陥検査装置およびその方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009198514A true JP2009198514A (ja) | 2009-09-03 |
JP5011348B2 JP5011348B2 (ja) | 2012-08-29 |
Family
ID=41142111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009131707A Expired - Fee Related JP5011348B2 (ja) | 2009-06-01 | 2009-06-01 | パターン検査方法及びその装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5011348B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075426A (ja) * | 2009-09-30 | 2011-04-14 | Hitachi High-Technologies Corp | レジスト膜面ムラ検査装置及び検査方法並びにdtm製造ライン |
WO2013103032A1 (ja) * | 2012-01-05 | 2013-07-11 | オムロン株式会社 | 画像検査装置の検査領域設定方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303586A (ja) * | 2001-04-03 | 2002-10-18 | Hitachi Ltd | 欠陥検査方法及び欠陥検査装置 |
-
2009
- 2009-06-01 JP JP2009131707A patent/JP5011348B2/ja not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002303586A (ja) * | 2001-04-03 | 2002-10-18 | Hitachi Ltd | 欠陥検査方法及び欠陥検査装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011075426A (ja) * | 2009-09-30 | 2011-04-14 | Hitachi High-Technologies Corp | レジスト膜面ムラ検査装置及び検査方法並びにdtm製造ライン |
WO2013103032A1 (ja) * | 2012-01-05 | 2013-07-11 | オムロン株式会社 | 画像検査装置の検査領域設定方法 |
JP2013140090A (ja) * | 2012-01-05 | 2013-07-18 | Omron Corp | 画像検査装置の検査領域設定方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5011348B2 (ja) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4357355B2 (ja) | パターン検査方法及びその装置 | |
JP2006220644A (ja) | パターン検査方法及びその装置 | |
JP5174535B2 (ja) | 欠陥検査方法及びその装置 | |
TWI399534B (zh) | And a defect inspection device for performing defect inspection using image analysis | |
TWI497032B (zh) | 缺陷檢查裝置 | |
US20120294507A1 (en) | Defect inspection method and device thereof | |
US20070064225A1 (en) | Method and apparatus for detecting defects | |
US20080292176A1 (en) | Pattern inspection method and pattern inspection apparatus | |
JP2004271470A (ja) | パターン検査方法及びその装置 | |
JP2012083351A (ja) | 欠陥検査装置およびその方法 | |
JPH10325711A (ja) | 検査方法およびその装置並びに半導体基板の製造方法 | |
JP2008116405A (ja) | 欠陥検査方法及びその装置 | |
JP2010151824A (ja) | パターン検査方法及びその装置 | |
US8184282B2 (en) | Method and system for defect detection using transmissive bright field illumination and transmissive dark field illumination | |
KR20120092181A (ko) | 결함 검사 방법 및 그 장치 | |
US20060290930A1 (en) | Method and apparatus for inspecting pattern defects | |
US9933370B2 (en) | Inspection apparatus | |
JP5011348B2 (ja) | パターン検査方法及びその装置 | |
US7046352B1 (en) | Surface inspection system and method using summed light analysis of an inspection surface | |
KR20190050582A (ko) | 결함 검사 방법 및 결함 검사 장치 | |
JP2009109263A (ja) | 検査装置及び検査方法 | |
JP2004170400A (ja) | 寸法測定方法及び装置 | |
JP4518704B2 (ja) | 位相シフトマスク検査装置及び位相シフトマスク検査方法 | |
JP2006003168A (ja) | 表面形状の測定方法およびその装置 | |
TW202338331A (zh) | 雷射退火圖案抑制 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090601 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111017 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120604 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150608 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |