JP2009196056A - Thin-bladed whetstone - Google Patents

Thin-bladed whetstone Download PDF

Info

Publication number
JP2009196056A
JP2009196056A JP2008042571A JP2008042571A JP2009196056A JP 2009196056 A JP2009196056 A JP 2009196056A JP 2008042571 A JP2008042571 A JP 2008042571A JP 2008042571 A JP2008042571 A JP 2008042571A JP 2009196056 A JP2009196056 A JP 2009196056A
Authority
JP
Japan
Prior art keywords
plating layer
grindstone
thin
layer
abrasive grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008042571A
Other languages
Japanese (ja)
Other versions
JP4400677B2 (en
Inventor
Yusuke Suzuki
勇介 鈴木
Shozo Odera
昭三 大寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008042571A priority Critical patent/JP4400677B2/en
Priority to CN200880127233.0A priority patent/CN101945733B/en
Priority to KR1020107018322A priority patent/KR101151051B1/en
Priority to PCT/JP2008/068712 priority patent/WO2009107272A1/en
Publication of JP2009196056A publication Critical patent/JP2009196056A/en
Application granted granted Critical
Publication of JP4400677B2 publication Critical patent/JP4400677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/12Cut-off wheels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-bladed whetstone with a long service life and capable of keeping good cutting performance for a long time. <P>SOLUTION: Abrasive grains 2 are diffused in a metallic binder 3 made of Ni, and a Cu-plated layer 4 with a thickness not exceeding a protrusion amount of the abrasive grains from the metallic binder is formed on the surface of the binder 3. The soft Cu-plated layer 4 can serve as a shock-absorbing layer when the abrasive grains 2 collide against a workpiece thereby reducing damage of the workpiece and also preventing the workpiece from being chipped. In addition, since the Cu-plated layer 4 is excellent in wear resistance, abrasion speed of both side faces equipped with the Cu-plated layer can be reduced to attain a long service life. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミックスや単結晶材料などの被加工物を切断加工するのに適した薄刃砥石に関するものである。   The present invention relates to a thin blade grindstone suitable for cutting a workpiece such as ceramics or single crystal material.

従来、シリコン、GaAs、フェライト等の被加工物を高精度に切削加工する薄刃砥石(ダイシングブレード)として、薄板リング状の電鋳薄刃砥石が知られている。この電鋳薄刃砥石は、ダイヤモンドやcBN等の砥粒を金属結合材中に分散配置したものであり、その厚さは数十μm〜数百μm程度の薄板リング状に形成されている。薄刃砥石は、その内周側領域を砥石軸に保持し、砥石軸を回転させることで、外周側領域で被加工物の切断加工や溝入れ加工を行うことができる。   2. Description of the Related Art Conventionally, a thin ring-shaped electroformed thin blade grindstone is known as a thin blade grindstone (dicing blade) for cutting a workpiece such as silicon, GaAs, and ferrite with high accuracy. This electroformed thin-blade grindstone is formed by dispersing abrasive grains such as diamond and cBN in a metal binder, and is formed into a thin plate ring shape with a thickness of several tens to several hundreds of μm. The thin-blade grindstone can hold the inner peripheral region thereof on the grindstone shaft and rotate the grindstone shaft, thereby cutting or grooving the workpiece in the outer peripheral region.

近年の電子部品の小型化や収率向上などの理由から、電鋳薄刃砥石にもさらなる薄刃化が求められており、金属結合材としてNiなどの機械的強度が高い金属材料を用いることにより、厚さが50μm以下の極薄電鋳砥石も提供されている。しかし、金属結合材による砥粒の保持力が大きくなると、砥粒による被加工物へのダメージが大きくなるため、切断加工時にチッピングと呼ばれる被加工物の割れ、欠けを増大させるという問題がある。   Due to the recent downsizing and yield improvement of electronic components, further thinning of the electroformed thin blade grindstone is required, and by using a metal material with high mechanical strength such as Ni as a metal binder, An ultra-thin electroformed grinding wheel having a thickness of 50 μm or less is also provided. However, when the holding force of the abrasive grains by the metal binder increases, damage to the workpiece due to the abrasive grains increases, which causes a problem of increasing cracking and chipping of the workpiece called chipping during cutting.

このような問題を解決するため、特許文献1には、Ni、Co又はこれらの合金からなる金属結合材の刃先部の表面に、この金属結合材からの砥粒の突き出し量を越えない厚みのSnめっき層を形成した電鋳薄刃砥石が提案されている。この場合には、Snめっき層が金属結合材の表面を覆うことで、摺動性を向上させると共に、金属結合材より軟質のSnめっき層が緩衝層を構成し、被加工物へのダメージを低減し、チッピングを抑えることができるとされている。   In order to solve such a problem, Patent Document 1 discloses that the surface of the cutting edge portion of a metal binding material made of Ni, Co or an alloy thereof has a thickness that does not exceed the protruding amount of abrasive grains from the metal binding material. An electroformed thin blade grindstone in which an Sn plating layer is formed has been proposed. In this case, the Sn plating layer covers the surface of the metal binding material to improve the slidability, and the Sn plating layer softer than the metal binding material constitutes a buffer layer, and damages to the work piece It is said that chipping can be reduced and reduced.

しかしながら、この構造の電鋳薄刃砥石を用いて、電子セラミックスや単結晶材料などの高硬度脆性材料を切断加工した場合、Snめっき層が加工初期で大きく磨耗してしまい、長期間安定してチッピング抑制効果を維持することができず、実用的ではないという問題がある。その様子を、図6を参照して説明する。   However, when high-hardness brittle materials such as electronic ceramics and single-crystal materials are cut using the electroformed thin blade grindstone with this structure, the Sn plating layer is greatly worn at the initial stage of processing, and chipping is stable for a long period of time. There is a problem that the suppression effect cannot be maintained and is not practical. This will be described with reference to FIG.

図6の(a)は加工前の薄刃砥石10、(b)は切断加工中の薄刃砥石10を示す。Niよりなる金属結合材11の表面に、砥粒の突き出し量を越えない厚みのSnめっき層12が形成されている。なお、図6では砥粒を省略してある。被加工物13を切削することで薄刃砥石10の外周部が磨耗するが、半径方向の磨耗よりも厚み方向の磨耗、特にSnめっき層12を設けた両側面の磨耗が大きく、図6の(b)に示すように、短時間で金属結合材11が両側面に現れてしまう。これではSnめっき層12による緩衝効果がなくなり、良好な切断性能(チッピング抑制)や加工精度を維持できない。そのため、Snめっき層で被覆した薄刃砥石10の寿命は非常に短いという欠点があった。さらに、電鋳薄刃砥石を切削加工に使用する場合、砥粒の突き出し量を調整し、加工品質を安定させるために、事前にドレッシングと呼ばれる目立て作業を砥石刃先部に対して行う。この目立て作業は、例えば砥石刃先部で砥粒を固めたドレスボードをカットすることで行う。このドレスボードをカットすることにより、砥石刃先部で砥粒間の金属結合材が削り取られてチップポケットが形成される。しかしながら、この目立て作業において、Snめっき層は簡単に磨耗してしまうため、実際の切削加工時にはSnめっき層が殆ど残っておらず、Snめっき層による緩衝効果を十分に発揮できないという欠点があった。   6A shows the thin blade whetstone 10 before processing, and FIG. 6B shows the thin blade whetstone 10 during cutting. An Sn plating layer 12 having a thickness that does not exceed the protruding amount of the abrasive grains is formed on the surface of the metal binding material 11 made of Ni. In FIG. 6, the abrasive grains are omitted. Although the outer peripheral portion of the thin-blade grindstone 10 is worn by cutting the workpiece 13, wear in the thickness direction, particularly wear on both side surfaces provided with the Sn plating layer 12 is larger than wear in the radial direction. As shown in b), the metal binder 11 appears on both side surfaces in a short time. With this, the buffering effect by the Sn plating layer 12 is lost, and good cutting performance (chipping suppression) and processing accuracy cannot be maintained. Therefore, there is a drawback that the life of the thin blade grindstone 10 coated with the Sn plating layer is very short. Furthermore, when using an electroformed thin-blade grindstone for cutting, in order to adjust the protruding amount of abrasive grains and stabilize the machining quality, a sharpening operation called dressing is performed on the grindstone blade tip in advance. This sharpening operation is performed, for example, by cutting a dressboard in which abrasive grains are hardened by a grindstone blade tip. By cutting this dress board, the metal bonding material between the abrasive grains is scraped off at the grindstone cutting edge to form a chip pocket. However, in this sharpening operation, the Sn plating layer is easily worn out, so that there is almost no Sn plating layer remaining at the time of actual cutting, and there is a disadvantage that the buffering effect by the Sn plating layer cannot be fully exhibited. .

特許文献1では、Snめっき層の厚みを例えば10〜15μmとしているが、この様な分厚いSnめっき層を形成すると、砥粒の粒径をそれ以上に大きくする必要があるため、砥粒径の増大によるチッピングの増大や加工品質の低下、さらには加工幅の増大を招くという問題がある。
特開2002−66935号公報
In Patent Document 1, the thickness of the Sn plating layer is, for example, 10 to 15 μm. However, when such a thick Sn plating layer is formed, it is necessary to increase the grain size of the abrasive grains. There is a problem that chipping increases due to the increase, processing quality decreases, and further, the processing width increases.
JP 2002-66935 A

そこで、本発明の目的は、寿命が長く、良好な切断性能を長期間維持できる薄刃砥石を提供することにある。   Therefore, an object of the present invention is to provide a thin blade grindstone that has a long life and can maintain good cutting performance for a long period of time.

本発明は、砥粒をNi又はNiを主体とする合金からなる金属結合材中に分散配置してなる薄刃砥石において、前記金属結合材の表面に、前記金属結合材からの砥粒の突き出し量を越えない厚みのCuめっき層又はCuを主体とする合金めっき層が形成されていることを特徴とする薄刃砥石である。   The present invention relates to a thin blade grindstone in which abrasive grains are dispersed and arranged in a metal binder made of Ni or an alloy mainly composed of Ni, and the amount of abrasive grains protruding from the metal binder on the surface of the metal binder. A thin-blade grindstone in which a Cu plating layer or an alloy plating layer mainly composed of Cu is formed.

本発明に係る薄刃砥石で被加工物を切削すると、Niより軟質のCuめっき層による緩衝効果によって、被加工物へのダメージを低減でき、チッピングを抑制できる。しかも、Cuめっき層はSnめっき層に比べて耐磨耗性に優れているため、Cuめっき層を設けた両側面の磨耗速度を低減できる。耐磨耗性を示す尺度としてモース硬度があるが、Snのモース硬度は1.8、Cuのモース硬度は3.0、Niのモース硬度は3.5である。このようにCuのモース硬度はNiのモース硬度に近いため、切削加工に伴って薄刃砥石の外周部が磨耗したとき、半径方向の磨耗速度と厚み方向の磨耗速度とをバランスさせることができる。そのため、薄刃砥石が磨耗しても両側面が極端に磨耗することなく初期の切断性能(チッピングの抑制)と同様の性能を維持でき、長寿命の薄刃砥石を実現できる。さらに、実際の切削加工に先立って行われる目立て作業において、Cuめっき層は簡単に磨耗しないので、切削加工時にCuめっき層による緩衝効果を十分に発揮できる。なお、Cuめっき層はNi金属結合材との密着性が高いので、切削加工中にCuめっき層がNi金属結合材から剥離することがない。   When the workpiece is cut with the thin-blade grindstone according to the present invention, damage to the workpiece can be reduced and chipping can be suppressed by the buffering effect of the Cu plating layer softer than Ni. Moreover, since the Cu plating layer is more excellent in wear resistance than the Sn plating layer, it is possible to reduce the wear rate on both side surfaces provided with the Cu plating layer. Mohs hardness is a measure of wear resistance. Sn has a Mohs hardness of 1.8, Cu has a Mohs hardness of 3.0, and Ni has a Mohs hardness of 3.5. Thus, since the Mohs hardness of Cu is close to the Mohs hardness of Ni, when the outer peripheral part of a thin blade grindstone is worn with cutting, the wear rate in the radial direction and the wear rate in the thickness direction can be balanced. Therefore, even if the thin-blade grindstone is worn, both sides can be maintained without excessive wear, and the same performance as the initial cutting performance (suppression of chipping) can be maintained, and a long-life thin-blade grindstone can be realized. Furthermore, in the sharpening work performed prior to the actual cutting process, the Cu plating layer is not easily worn, so that the buffering effect of the Cu plating layer can be sufficiently exhibited during the cutting process. In addition, since Cu plating layer has high adhesiveness with Ni metal binder, Cu plating layer does not peel from Ni metal binder during cutting.

Cuめっき層又はCuを主体とする合金めっき層の厚みは 1〜10μmが望ましい。前述のようにCuめっき層が簡単に摩滅しないので、その厚さが10μm以下の薄膜でも十分な緩衝効果を発揮できる。換言すると、砥粒の粒径をそれだけ小さくでき、高精度な切削加工を行うことができる。Cuめっき層又はCuを主体とする合金めっき層の厚みは、砥粒の粒径に応じて設定されるが、砥粒の粒径が5〜10μmの場合、1〜10μm、望ましくは1〜5μmがよい。   The thickness of the Cu plating layer or the alloy plating layer mainly composed of Cu is preferably 1 to 10 μm. As described above, since the Cu plating layer is not easily worn away, even a thin film having a thickness of 10 μm or less can exhibit a sufficient buffering effect. In other words, the grain size of the abrasive grains can be reduced accordingly, and high-precision cutting can be performed. The thickness of the Cu plating layer or the alloy plating layer mainly composed of Cu is set according to the grain size of the abrasive grains. When the grain size of the abrasive grains is 5 to 10 μm, it is 1 to 10 μm, preferably 1 to 5 μm. Is good.

薄刃砥石としては電着薄刃砥石や電鋳薄刃砥石を用いることができる。例えば、電着薄刃砥石の場合には、ステンレス等の台金をカソードとして、その上に電着法によりNi又はNiを主体とする合金からなる金属結合材を形成することで、薄刃砥石を作成できる。また、電鋳薄刃砥石の場合には、カソードから金属結合材を剥離することで、極薄肉な薄刃砥石も作成できる。   As the thin blade grindstone, an electrodeposited thin blade grindstone or an electroformed thin blade grindstone can be used. For example, in the case of an electrodeposited thin blade whetstone, a metal blade made of Ni or an alloy mainly composed of Ni is formed by electrodeposition on a base metal such as stainless steel as a cathode, thereby creating a thin blade whetstone. it can. In the case of an electroformed thin blade grindstone, an extremely thin thin blade grindstone can also be created by peeling the metal binder from the cathode.

Cuを主体とする合金めっき層とは、少なくともCuが50重量%以上含む合金をいう。そのような合金めっき層は、そのヤング率が金属結合材を構成する金属のヤング率より小さく、かつBS6430−13:1986,EN101:1991に記されたモース硬度評価方法によるモース硬度が2.5より大きな材質を使用するのが望ましい。モース硬度が2.5以下(例えばAu,Snなど)の場合には、耐磨耗性が低いために早期に磨耗してしまい、当初の切断性能を維持できないからである。   The alloy plating layer mainly composed of Cu refers to an alloy containing at least 50% by weight of Cu. Such an alloy plating layer has a Young's modulus smaller than that of the metal constituting the metal binder, and a Mohs hardness of 2.5 according to the Mohs hardness evaluation method described in BS6430-13: 1986, EN101: 1991. It is desirable to use a larger material. This is because when the Mohs hardness is 2.5 or less (for example, Au, Sn, etc.), the wear resistance is low and the wear is caused early, and the original cutting performance cannot be maintained.

金属結合材を構成する金属としては、Niのほか、主体となるNiと他の金属(例えばCo等)との合金でもよい。ここで、Niを主体とする合金とは、少なくともNiが50重量%以上含む合金をいう。Niと同等な機械的強度及び耐磨耗性を有する合金であればよい。本発明の薄刃砥石で切削できる被加工物としては、シリコンやGaAs、フェライトなどの他、PZT等の圧電セラミックス、水晶、LiTaO3単結晶、誘電体などの高硬度の材料も含む。 In addition to Ni, the metal constituting the metal binder may be an alloy of Ni as a main component and another metal (for example, Co). Here, the alloy mainly composed of Ni refers to an alloy containing at least 50% by weight of Ni. Any alloy having mechanical strength and wear resistance equivalent to Ni may be used. Workpieces that can be cut with the thin-blade grindstone of the present invention include silicon, GaAs, ferrite, and the like, as well as high-hardness materials such as piezoelectric ceramics such as PZT, quartz, LiTaO 3 single crystal, and dielectric.

本発明に係る薄刃砥石によれば、Ni又はNiを主体とする合金からなる金属結合材の表面にCuめっき層又はCuを主体とする合金めっき層を形成したので、Niより軟質のCuめっき層が砥粒が被加工物に当たった時の緩衝層として働き、被加工物へのダメージを低減でき、チッピングを抑制できる。また、Cuめっき層は耐磨耗性に優れているので、Cuめっき層を設けた両側面の磨耗速度を低減できる。そのため、切削加工に伴って薄刃砥石の外周部が磨耗したとき、半径方向の磨耗速度と厚み方向の磨耗速度とをバランスさせることができ、初期の切断性能と同様の性能を維持できる。その結果、長寿命の薄刃砥石を実現できる。さらに、Cuめっき層が簡単に磨耗しないので、その厚さが薄くても十分な緩衝効果を発揮できると共に、砥粒の粒径をそれだけ小さくでき、高精度な切削加工を行うことができる。   According to the thin-blade grindstone according to the present invention, since the Cu plating layer or the alloy plating layer mainly composed of Cu is formed on the surface of the metal binding material made of Ni or an alloy mainly composed of Ni, the Cu plating layer softer than Ni. Works as a buffer layer when the abrasive grains hit the work piece, can reduce damage to the work piece, and can suppress chipping. Moreover, since the Cu plating layer is excellent in wear resistance, the wear rate on both side surfaces provided with the Cu plating layer can be reduced. Therefore, when the outer peripheral portion of the thin-blade grindstone is worn with cutting, the radial wear rate and the thickness wear rate can be balanced, and the same performance as the initial cutting performance can be maintained. As a result, a long-life thin blade grindstone can be realized. Furthermore, since the Cu plating layer is not easily worn, a sufficient buffering effect can be exhibited even if the thickness is small, and the grain size of the abrasive grains can be reduced accordingly, and high-precision cutting can be performed.

以下に、本発明の好ましい実施の形態を、図面を参照して説明する。図1は本発明にかかる薄刃砥石の第1実施形態を示し、(a)は薄刃砥石の正面図、(b)はA−A線拡大断面図である。本実施形態の薄刃砥石1は薄板リング状の電鋳薄刃砥石であり、ダイヤモンドやcBN等の砥粒2を金属結合材3中に分散配置してなるものであり、その厚さは数十μm〜数百μm程度、望ましくは50μm以下に設定されている。金属結合材3は、Niめっき層又はNiを主体とする合金めっき層からなる。Ni合金としては、例えばNi−Co合金,Ni−W合金,Ni−B合金などがある。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. 1A and 1B show a first embodiment of a thin-blade grindstone according to the present invention, in which FIG. 1A is a front view of the thin-blade grindstone, and FIG. The thin blade grindstone 1 of the present embodiment is a thin ring-shaped electroformed thin blade grindstone in which abrasive grains 2 such as diamond and cBN are dispersedly arranged in a metal binder 3, and the thickness thereof is several tens of μm. ˜about several hundred μm, desirably 50 μm or less. The metal binding material 3 is made of a Ni plating layer or an alloy plating layer mainly composed of Ni. Examples of the Ni alloy include a Ni—Co alloy, a Ni—W alloy, and a Ni—B alloy.

金属結合材3の表面には、金属結合材3からの砥粒2の突き出し量を越えない厚みのCuめっき層4が形成されている。Cuめっき層4の厚さは、砥粒2の突き出し量を超えなければよいが、砥粒2の粒径が5〜10μmの場合、1〜10μm程度、望ましくは1〜5μm程度がよく、平均砥粒径の15%〜100 %が望ましい。なお、図1の(b)では、表層部の全ての砥粒2がCuめっき層4から表面に突出している例を示したが、一部の砥粒2はCuめっき層4内に埋没していてもよい。   On the surface of the metal binding material 3, a Cu plating layer 4 having a thickness not exceeding the protruding amount of the abrasive grains 2 from the metal binding material 3 is formed. The thickness of the Cu plating layer 4 should not exceed the protruding amount of the abrasive grains 2, but when the grain size of the abrasive grains 2 is 5 to 10 μm, it is about 1 to 10 μm, preferably about 1 to 5 μm, and the average 15% to 100% of the abrasive grain size is desirable. 1B shows an example in which all the abrasive grains 2 in the surface layer portion protrude from the Cu plating layer 4 to the surface, but some of the abrasive grains 2 are buried in the Cu plating layer 4. It may be.

Cuめっき層4に代えてCuを主体とする合金めっき層を用いてもよい。合金めっき層としては、例えばCuZn,CuZnSn,CuSnなどがあるが、そのヤング率が金属結合材3を構成するNiのヤング率(210GPa)より小さく、かつモース硬度(BS6430−13:1986,EN101:1991に記されたモース硬度評価方法によるモース硬度)2.5より大きな材質であることが望ましい。Cuめっき層4は、少なくとも薄刃砥石1の刃先部1aに形成されるが、刃先部1aだけでなく薄刃砥石1の全体にわたってCuめっき層4を形成してもよい。   Instead of the Cu plating layer 4, an alloy plating layer mainly composed of Cu may be used. Examples of the alloy plating layer include CuZn, CuZnSn, and CuSn. The Young's modulus is smaller than the Young's modulus (210 GPa) of Ni constituting the metal binder 3, and the Mohs hardness (BS6430-13: 1986, EN101: It is desirable that the material be larger than 2.5 (Mohs hardness according to the Mohs hardness evaluation method described in 1991). The Cu plating layer 4 is formed at least on the blade edge portion 1a of the thin blade grinding stone 1, but the Cu plating layer 4 may be formed not only on the blade edge portion 1a but also on the entire thin blade grinding stone 1.

次に、前記構成よりなる薄刃砥石1の製造方法の一例を、図2を参照して説明する。
まず、ダイヤモンド等の砥粒2を分散させたNiを含む電解めっき液を準備し、このめっき液中にステンレス等の基板と陽極板とを対向して配置し、基板を陰極に接続する。陰極と陽極間に通電すると、基板上にNi合金めっき層が析出し、砥粒2が均一に分散された金属結合材3が形成される。金属結合材3が数十μm〜数百μmとなった時点でめっきを終了し、この金属結合材3を形成した基板をめっき液から取り出し、基板から金属結合材3を剥離する。剥離した金属結合材3をリング状に成形して図2の(a)に示す単層砥石1Aを得る。
次に、単層砥石1Aの金属結合材3の表面をエッチング等により除去し、図2の(b)のように砥粒2の突き出し量を大きくした単層砥石1Bを得る。
次に、単層砥石1BをCuイオンを含むめっき液に浸漬し、単層砥石1Bを陰極とし、この陰極に対向して陽極板を配置し、陰極と陽極間に通電すると、Cuが単層砥石1B上に析出し、Cuめっき層4が形成される。Cuめっきは非導電性の砥粒2上には析出せず、金属結合材3上にのみ析出する。こうして、図2の(c)に示す薄刃砥石1が得られる。なお、実際の切削加工に先立って、薄刃砥石1の刃先部をドレッシングすることにより、目立てを行うのがよい。
Next, an example of the manufacturing method of the thin blade whetstone 1 which consists of the said structure is demonstrated with reference to FIG.
First, an electrolytic plating solution containing Ni in which abrasive grains 2 such as diamond are dispersed is prepared, a substrate such as stainless steel and an anode plate are disposed facing each other in this plating solution, and the substrate is connected to the cathode. When a current is applied between the cathode and the anode, a Ni alloy plating layer is deposited on the substrate, and the metal binder 3 in which the abrasive grains 2 are uniformly dispersed is formed. When the metal binding material 3 reaches several tens of μm to several hundreds of μm, the plating is finished, the substrate on which the metal binding material 3 is formed is taken out of the plating solution, and the metal binding material 3 is peeled off from the substrate. The peeled metal binder 3 is formed into a ring shape to obtain a single-layer grindstone 1A shown in FIG.
Next, the surface of the metal binding material 3 of the single-layer grindstone 1A is removed by etching or the like to obtain a single-layer grindstone 1B in which the protruding amount of the abrasive grains 2 is increased as shown in FIG.
Next, the single-layer grindstone 1B is immersed in a plating solution containing Cu ions, the single-layer grindstone 1B is used as a cathode, an anode plate is disposed opposite to the cathode, and energization is performed between the cathode and the anode. Deposited on the grindstone 1B, the Cu plating layer 4 is formed. Cu plating does not deposit on the non-conductive abrasive grains 2 but only on the metal binder 3. Thus, the thin blade grindstone 1 shown in FIG. 2C is obtained. Prior to actual cutting, it is preferable to dress the blade edge portion of the thin blade 1 by dressing.

Cuめっき層4のヤング率(120GPa)は、Niよりなる金属結合材3のヤング率(210GPa)より低い。つまり、Cuめっき層4は金属結合材3より軟質であるので、砥粒2が被加工物に衝突した時に緩衝効果を発揮し、被加工物へのダメージを低減でき、チッピングを抑制できる。一方、耐磨耗性の尺度となるモース硬度は、Cuが3.0、Niが3.5であり、Cuのモース硬度はNiのモース硬度に近いため、切削加工に伴って薄刃砥石の外周部が磨耗したとき、半径方向の磨耗速度と厚み方向の磨耗速度とをバランスさせることができる。砥粒2の中間部は軟質のCuめっき層4で保持されるが、砥粒2の底部は硬質の金属結合材3で保持されているので、砥粒2が簡単に脱落するのを防止できる。   The Young's modulus (120 GPa) of the Cu plating layer 4 is lower than the Young's modulus (210 GPa) of the metal binder 3 made of Ni. That is, since the Cu plating layer 4 is softer than the metal binder 3, it exerts a buffering effect when the abrasive grains 2 collide with the work piece, can reduce damage to the work piece, and can suppress chipping. On the other hand, the Mohs hardness, which is a measure of wear resistance, is 3.0 for Cu and 3.5 for Ni. Since the Mohs hardness of Cu is close to the Mohs hardness of Ni, the outer periphery of the thin-blade grindstone is accompanied by cutting. When the part is worn, the wear rate in the radial direction and the wear rate in the thickness direction can be balanced. The middle part of the abrasive grains 2 is held by the soft Cu plating layer 4, but the bottom part of the abrasive grains 2 is held by the hard metal binder 3, so that the abrasive grains 2 can be prevented from easily falling off. .

図3に本実施形態における薄刃砥石1の初期状態(a)と何回かの切断加工を実施した後の状態(b)とを示す。なお、図3では砥粒を省略してある。被加工物5を切削することで薄刃砥石1の外周部が磨耗するが、CuとNiはモース硬度が近いので、金属結合材3の外周部が円弧状に磨耗するとともに、Cuめっき層4の先端部も磨耗し、この形態を維持しながら磨耗が進行する。特に、薄刃砥石1の外周部の両側面の硬度がチッピングの発生に大きく影響するが、本実施形態における薄刃砥石1の場合には、図3の(b)に示すように薄刃砥石1の外周部の両側面にCuめっき層4を残しながら磨耗していくので、Cuめっき層4による緩衝効果を維持でき、良好な切断性能(チッピング抑制)や加工精度を維持できる。そのため、薄刃砥石1の寿命が長くなる。   FIG. 3 shows an initial state (a) of the thin-blade grindstone 1 in the present embodiment and a state (b) after performing several cutting processes. In FIG. 3, abrasive grains are omitted. Although the outer peripheral portion of the thin-blade grindstone 1 is worn by cutting the workpiece 5, since Cu and Ni are close to Mohs hardness, the outer peripheral portion of the metal binder 3 is worn in an arc shape, and the Cu plating layer 4 The tip part also wears, and wear progresses while maintaining this form. In particular, although the hardness of both side surfaces of the outer peripheral portion of the thin blade grindstone 1 greatly affects the occurrence of chipping, in the case of the thin blade grindstone 1 in the present embodiment, as shown in FIG. Since the Cu plating layer 4 is worn on both side surfaces of the part and wears, the buffering effect by the Cu plating layer 4 can be maintained, and good cutting performance (chipping suppression) and processing accuracy can be maintained. Therefore, the life of the thin blade grindstone 1 is extended.

ここで、次の4種類の薄刃砥石を用いて単結晶材料(LiTaO3)を加工したときのチッピング量と砥石外側層の磨耗状態を比較する。薄刃砥石(1)は、砥粒を分散させたNiの金属結合材のみからなる単層砥石、薄刃砥石(2)は砥粒を分散させたNiの金属結合材の上にSnめっき層を形成した三層砥石(特許文献1に記載のもの)、薄刃砥石(3)は砥粒を分散させたNiの金属結合材の上にCuめっき層を形成した三層砥石(本発明品)、薄刃砥石(4)は砥粒を分散させたNiの金属結合材の上にAuめっき層を形成した三層砥石(比較例)である。
(1)Ni電鋳単層砥石(従来技術品)
金属結合材:Ni(モース硬度:3.5 、ヤング率:210[GPa] )
砥粒径:5/10μm
形状:外径52×厚さ0.04×内径40 [mm]
(2)Sn三層砥石(先行技術品)
金属結合材:Ni
外側層材質:Sn(モース硬度:1.5 、ヤング率:55[GPa])
外側層厚 :1.2 μm
(3)Cu三層砥石(本発明品)
金属結合材:Ni
外側層材質:Cu(モース硬度:3.0 、ヤング率:120[GPa] )
外側層厚 :1.2 μm
(4)Au三層砥石(比較例)
金属結合材:Ni
外側層材質:Au(モース硬度:2.5 、ヤング率:78[GPa])
外側層厚 :1.2 μm
Here, the chipping amount when the single crystal material (LiTaO 3 ) is processed using the following four types of thin blade grindstones and the wear state of the grindstone outer layer are compared. The thin-blade grindstone (1) is a single-layer grindstone made only of Ni metal binder with dispersed abrasive grains, and the thin-blade grindstone (2) is formed with a Sn plating layer on a Ni metal binder with dispersed abrasive grains. Three-layered grindstone (described in Patent Document 1), thin-blade grindstone (3) is a three-layer grindstone (product of the present invention) in which a Cu plating layer is formed on a Ni metal binding material in which abrasive grains are dispersed, thin blade The grindstone (4) is a three-layer grindstone (comparative example) in which an Au plating layer is formed on a Ni metal binder in which abrasive grains are dispersed.
(1) Ni electroformed single-layer whetstone (prior art product)
Metal binder: Ni (Mohs hardness: 3.5, Young's modulus: 210 [GPa])
Abrasive grain size: 5 / 10μm
Shape: outer diameter 52 x thickness 0.04 x inner diameter 40 [mm]
(2) Sn three-layer whetstone (prior art product)
Metal binding material: Ni
Outer layer material: Sn (Mohs hardness: 1.5, Young's modulus: 55 [GPa])
Outer layer thickness: 1.2 μm
(3) Cu three-layer whetstone (product of the present invention)
Metal binding material: Ni
Outer layer material: Cu (Mohs hardness: 3.0, Young's modulus: 120 [GPa])
Outer layer thickness: 1.2 μm
(4) Au three-layer whetstone (comparative example)
Metal binding material: Ni
Outer layer material: Au (Mohs hardness: 2.5, Young's modulus: 78 [GPa])
Outer layer thickness: 1.2 μm

加工条件は次の通りである。
加工機 :ダイサーDAD522(株式会社ディスコ製)
主軸回転数:30000rpm
被加工物 :単結晶材料(LiTaO3
ワーク形状:短冊形状(20×80mm)
送り速度 :20mm/s
カット本数:5本
カット長さ:20mm×5本 計100 mm
The processing conditions are as follows.
Processing machine: Dicer DAD522 (manufactured by DISCO Corporation)
Spindle speed: 30000rpm
Workpiece: Single crystal material (LiTaO 3 )
Work shape: Strip shape (20 × 80mm)
Feeding speed: 20mm / s
Number of cuts: 5 Cut length: 20 mm x 5 Total 100 mm

図4は、前述の薄刃砥石(1)〜(4)で加工した際のチッピング結果を示す。この図は、平板状の被加工物を切断した際の切断面に現れるチッピングの大きさを示したもので、各切断面における最大チッピングを集計し、その最大値と最小値と平均値とを示したものである。図4に示すように、Ni単層砥石の場合には、Ni金属結合材の硬度が高いため、チッピングが大きい。Sn三層砥石とAu三層砥石は、外側層であるSnめっき層,Auめっき層が緩衝層として働く筈であるが、耐磨耗性が低く、目立て作業によってSnめっき層,Auめっき層が殆ど磨耗してしまうため、実際の切断加工におけるチッピング結果はNi単層砥石の場合と殆ど差異がない。一方、Cu三層砥石では、目立て作業によってCuめっき層が磨耗しないので、切断加工におけるチッピング結果はNi単層砥石、Sn三層砥石及びAu三層砥石に比べて大幅に低減され、かつそのバラツキも小さくなっていることがわかる。このようにCu三層砥石は、他の砥石に比べて良好な切断性能を持つことがわかる。   FIG. 4 shows the chipping results when machining with the above-mentioned thin blade grindstones (1) to (4). This figure shows the amount of chipping that appears on the cut surface when a flat workpiece is cut. The maximum chipping on each cut surface is tabulated, and the maximum value, minimum value, and average value are calculated. It is shown. As shown in FIG. 4, in the case of a Ni single-layer grindstone, the Ni metal binder has a high hardness, so chipping is large. The Sn three-layer grindstone and the Au three-layer grindstone should serve as a buffer layer for the Sn plating layer and Au plating layer, which are the outer layers, but the wear resistance is low, and the Sn plating layer and Au plating layer are formed by sharpening work. Since it is almost worn out, the chipping result in the actual cutting process is almost the same as that of the Ni single-layer grindstone. On the other hand, in the Cu three-layer grindstone, the Cu plating layer does not wear due to the sharpening operation, so that the chipping result in the cutting process is greatly reduced compared to the Ni single-layer grindstone, the Sn three-layer grindstone, and the Au three-layer grindstone, and its variation It can also be seen that it is getting smaller. Thus, it can be seen that the Cu three-layer grindstone has better cutting performance than other grindstones.

次に、Ni単層砥石、Cu三層砥石、Sn三層砥石の3種類の薄刃砥石を用いて加工した際のチッピング抑制効果の持続性を評価した。実験条件は以下の通りである。
(1)Ni単層砥石
砥粒径:5/10μm
形状:外径52×厚さ0.04×内径40 [mm]
(2)Cu三層砥石
基材:Ni単層砥石
エッチング処理
エッチング液 :35%塩酸:60%硝酸:純水=1:1:3(vol%) 混合液
エッチング液量:400ml
エッチング厚 :1.7μm
めっき処理
めっき液 :硫酸銅めっき液
電流 :0.2A
めっき時間 :340s
浴温度 :25℃
Cuめっき厚 :1.1μm
(3)Sn三層砥石
基材:Ni単層砥石
エッチング処理 :Cu三層砥石と同一条件
めっき処理
めっき液 :スズめっき 酸性浴
電流 :0.04A
めっき時間 :780s
浴温度 :25℃
Snめっき厚 :1.1μm
Next, the sustainability of the chipping suppression effect when processing using three types of thin blade whetstones, Ni single-layer whetstone, Cu three-layer whetstone, and Sn three-layer whetstone was evaluated. The experimental conditions are as follows.
(1) Ni single-layer grinding wheel Abrasive grain size: 5 / 10μm
Shape: outer diameter 52 x thickness 0.04 x inner diameter 40 [mm]
(2) Cu three-layer whetstone Base material: Ni single-layer whetstone etching treatment Etching solution: 35% hydrochloric acid: 60% nitric acid: pure water = 1: 1: 3 (vol%) Mixed solution Etching amount: 400 ml
Etching thickness: 1.7μm
Plating treatment Plating solution: Copper sulfate plating solution Current: 0.2A
Plating time: 340s
Bath temperature: 25 ° C
Cu plating thickness: 1.1μm
(3) Sn three-layer whetstone Base material: Ni single-layer whetstone etching treatment: Same condition plating treatment as Cu three-layer whetstone Plating solution: Tin plating Acid bath Current: 0.04A
Plating time: 780s
Bath temperature: 25 ° C
Sn plating thickness: 1.1μm

加工条件は次の通りである。
加工機:DAD3350(株式会社ディスコ製)
スピンドル回転数:30000rpm
加工速度:20mm/s
切削水流量:1.0リットル/min
加工ワーク:PFLT基板(X-Y焦電処理品)φ100mm
加工ピッチ:0.9mm
加工本数:100本
加工枚数:2枚
The processing conditions are as follows.
Processing machine: DAD3350 (manufactured by DISCO Corporation)
Spindle speed: 30000rpm
Machining speed: 20mm / s
Cutting water flow rate: 1.0 liter / min
Workpiece: PFLT substrate (XY pyroelectric product) φ100mm
Machining pitch: 0.9mm
Number of processing: 100 Number of processing: 2

以上の条件にて、(1)〜(3)の3種類の砥石にて各2枚のPFLTウェハを加工し、そのとき発生した裏面チッピング量を図5に示す。図5は、砥石のトータル加工長さを横軸にとり、縦軸にそのときのSn三層砥石、Cu三層砥石における裏面チッピング量を、Ni単層砥石で加工したときのチッピング量を1としたときの割合にて示したものである。図5の結果より、Sn三層砥石では、カット長さ10000mmまでは、Ni単層砥石と比べチッピングを20%程度低減する効果が確認できるが、13000mm(ウェハ1.5枚分)を超えるカット長さより、チッピング抑制効果が小さくなり、カット長さ15000mm(ウェハ2枚分)を超える領域ではNi単層砥石と同等のチッピング量にまで悪化する。それに対して、Cu三層砥石では、最初から最後まで20〜30%程度のチッピング抑制効果を持続していることがわかる。   Under the above conditions, two PFLT wafers are each processed with the three types of grindstones (1) to (3), and the back surface chipping amount generated at that time is shown in FIG. FIG. 5 shows the total processing length of the grindstone on the horizontal axis, and the vertical axis represents the back surface chipping amount of the Sn three-layer whetstone and Cu three-layer whetstone, and the chipping amount when the Ni single-layer whetstone is machined is 1. It is shown in the ratio when doing. From the results shown in Fig. 5, with the Sn three-layer grindstone, the effect of reducing chipping by about 20% compared to the Ni single-layer grindstone can be confirmed up to a cut length of 10,000 mm, but from the cut length exceeding 13000 mm (1.5 wafers) In addition, the chipping suppression effect is reduced, and in the region where the cut length exceeds 15000 mm (for two wafers), the chipping amount is deteriorated to a level equivalent to that of a Ni single layer grindstone. In contrast, it can be seen that the Cu three-layer grindstone maintains a chipping suppression effect of about 20 to 30% from the beginning to the end.

以上のように、Sn皮膜ではチッピング抑制効果が長期的に持続しないのに対し、Cu皮膜では維持していることが確かめられた。今回の加工ワークの場合、1枚のCu三層砥石を用いておおよそ150〜200枚のウェハの切断が可能であり、砥石の長寿命化を達成できた。   As described above, it was confirmed that the Sn film did not maintain the chipping suppression effect for a long time, but the Cu film maintained it. In the case of this work, approximately 150-200 wafers can be cut using a single Cu three-layer grindstone, and the life of the grindstone can be extended.

本発明は前記実施形態に限定されるものではない。前記実施形態では、電鋳薄刃砥石を例として説明したが、ステンレスなどの台金に電着によりNiめっき層を設けて金属結合材を構成し、この金属結合材の両側面にCuめっき層を形成したものでもよい。   The present invention is not limited to the above embodiment. In the above-described embodiment, the electroformed thin blade grindstone has been described as an example. However, a Ni plating layer is provided by electrodeposition on a base metal such as stainless steel to form a metal bonding material, and Cu plating layers are formed on both sides of the metal bonding material. It may be formed.

本発明に係る薄刃砥石の第1実施形態の正面図及びA−A線断面図である。It is the front view and AA sectional view taken on the line of 1st Embodiment of the thin-blade grindstone concerning this invention. 図1に示す薄刃砥石の製造段階を示す断面図である。It is sectional drawing which shows the manufacturing stage of the thin blade grindstone shown in FIG. 本発明に係る薄刃砥石の加工前と加工途中の側面図である。It is the side view before the process of the thin blade grindstone concerning the present invention, and the middle of processing. 各種薄刃砥石のチッピング結果を示す比較図である。It is a comparison figure which shows the chipping result of various thin blade grindstones. Sn三層砥石とCu三層砥石のチッピング抑制効果の持続性を評価した図である。It is the figure which evaluated the sustainability of the chipping suppression effect of Sn three-layer whetstone and Cu three-layer whetstone. 従来の薄刃砥石の加工前と加工途中の側面図である。It is a side view before the process of the conventional thin blade grindstone, and the middle of a process.

符号の説明Explanation of symbols

1 薄刃砥石
2 砥粒
3 金属結合材(Niめっき層)
4 Cuめっき層
5 被加工物
1 Thin blade whetstone 2 Abrasive grain 3 Metal binding material (Ni plating layer)
4 Cu plating layer 5 Work piece

本発明は、砥粒をNi又はNiを主体とする合金からなる金属結合材中に分散配置し、前記砥粒の一部を前記金属結合材の表面から突出させてなる薄刃砥石において、前記金属結合材の表面に、前記金属結合材からの砥粒の突き出し量を越えない厚みのCuめっき層又はCuを主体とする合金めっき層が形成され、前記Cuめっき層又はCuを主体とする合金めっき層の厚みは1〜10μmであり、前記Cuめっき層又はCuを主体とする合金めっき層は、そのヤング率が前記金属結合材を構成する金属のヤング率より小さく、かつBS6430−13:1986,EN101:1991に記されたモース硬度評価方法によるモース硬度が2.5より大きな材質であることを特徴とする薄刃砥石である。 The present invention relates to a thin-blade grindstone in which abrasive grains are dispersedly arranged in a metal binder made of Ni or an alloy mainly composed of Ni, and a part of the abrasive grains protrudes from the surface of the metal binder. On the surface of the binding material, a Cu plating layer having a thickness not exceeding the protruding amount of abrasive grains from the metal binding material or an alloy plating layer mainly composed of Cu is formed, and the Cu plating layer or alloy plating mainly composed of Cu is formed. The thickness of the layer is 1 to 10 μm, and the Cu plating layer or the alloy plating layer mainly composed of Cu has a Young's modulus smaller than the Young's modulus of the metal constituting the metal binder, and BS6430-13: 1986 A thin blade grindstone characterized in that the Mohs hardness is 2.5 or more according to the Mohs hardness evaluation method described in EN101: 1991 .

本発明は、砥粒をNi又はNiを主体とする合金からなる金属結合材中に分散配置し、前記砥粒の一部を前記金属結合材の表面から突出させてなる電鋳薄刃砥石において、前記金属結合材の表面に、前記金属結合材からの砥粒の突き出し量を越えない厚みのCuめっき層又はCuを主体とする合金めっき層が形成され、前記Cuめっき層又はCuを主体とする合金めっき層の厚みは1〜10μmであり、前記Cuめっき層又はCuを主体とする合金めっき層は、そのヤング率が前記金属結合材を構成する金属のヤング率より小さく、かつBS6430−13:1986,EN101:1991に記されたモース硬度評価方法によるモース硬度が2.5より大きな材質であることを特徴とする電鋳薄刃砥石である。 The present invention is an electroformed thin blade whetstone in which abrasive grains are dispersedly arranged in a metal binder made of Ni or an alloy mainly composed of Ni, and a part of the abrasive grains protrudes from the surface of the metal binder. On the surface of the metal binding material, a Cu plating layer having a thickness not exceeding the amount of abrasive grains protruding from the metal binding material or an alloy plating layer mainly containing Cu is formed, and the Cu plating layer or Cu is mainly used. The thickness of the alloy plating layer is 1 to 10 μm, and the Cu plating layer or the alloy plating layer mainly composed of Cu has a Young's modulus smaller than that of the metal constituting the metal binder, and BS6430-13: 1986, EN101: 1991. An electroformed thin blade whetstone characterized in that the Mohs hardness is greater than 2.5 according to the Mohs hardness evaluation method described in 1986, EN101: 1991.

薄刃砥石としては電鋳薄刃砥石を用いることができる。例えば、電鋳薄刃砥石の場合には、ステンレス等の台金をカソードとして、その上に電着法によりNi又はNiを主体とする合金からなる金属結合材を形成し、カソードから金属結合材を剥離することで、極薄肉な薄刃砥石も作成できる。 An electroformed thin blade grindstone can be used as the thin blade grindstone. For example, in the case of an electroformed thin blade grindstone, a base metal such as stainless steel is used as a cathode, and a metal binder made of Ni or an alloy mainly composed of Ni is formed thereon by electrodeposition, and the metal binder is applied from the cathode. By peeling, an ultrathin thin blade can be created.

Claims (4)

砥粒をNi又はNiを主体とする合金からなる金属結合材中に分散配置してなる薄刃砥石において、
前記金属結合材の表面に、前記金属結合材からの砥粒の突き出し量を越えない厚みのCuめっき層又はCuを主体とする合金めっき層が形成されていることを特徴とする薄刃砥石。
In a thin blade grindstone in which abrasive grains are dispersed and arranged in a metal binder made of Ni or an alloy mainly composed of Ni,
A thin blade grindstone, wherein a Cu plating layer or an alloy plating layer mainly composed of Cu having a thickness not exceeding the protruding amount of abrasive grains from the metal binding material is formed on the surface of the metal binding material.
前記Cuめっき層又はCuを主体とする合金めっき層の厚みは 1〜10μmであることを特徴とする請求項1に記載の薄刃砥石。 The thin-blade grindstone according to claim 1, wherein the Cu plating layer or the alloy plating layer mainly composed of Cu has a thickness of 1 to 10 μm. 前記薄刃砥石は電鋳薄刃砥石であることを特徴とする請求項1又は2に記載の薄刃砥石。 The thin blade grindstone according to claim 1 or 2, wherein the thin blade grindstone is an electroformed thin blade grindstone. 前記Cuめっき層又はCuを主体とする合金めっき層は、そのヤング率が前記金属結合材を構成する金属のヤング率より小さく、かつBS6430−13:1986,EN101:1991に記されたモース硬度評価方法によるモース硬度が2.5より大きな材質であることを特徴とする請求項1乃至3のいずれか1項に記載の薄刃砥石。 The Cu plating layer or the alloy plating layer mainly composed of Cu has a Young's modulus smaller than the Young's modulus of the metal constituting the metal binder, and the Mohs hardness evaluation described in BS6430-13: 1986, EN101: 1991 The thin blade grindstone according to any one of claims 1 to 3, wherein the material has a Mohs hardness of greater than 2.5.
JP2008042571A 2008-02-25 2008-02-25 Thin blade whetstone Active JP4400677B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008042571A JP4400677B2 (en) 2008-02-25 2008-02-25 Thin blade whetstone
CN200880127233.0A CN101945733B (en) 2008-02-25 2008-10-16 Sharp-edge grinding wheel
KR1020107018322A KR101151051B1 (en) 2008-02-25 2008-10-16 Sharp-edge grinding wheel
PCT/JP2008/068712 WO2009107272A1 (en) 2008-02-25 2008-10-16 Sharp-edge grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042571A JP4400677B2 (en) 2008-02-25 2008-02-25 Thin blade whetstone

Publications (2)

Publication Number Publication Date
JP2009196056A true JP2009196056A (en) 2009-09-03
JP4400677B2 JP4400677B2 (en) 2010-01-20

Family

ID=41015682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042571A Active JP4400677B2 (en) 2008-02-25 2008-02-25 Thin blade whetstone

Country Status (4)

Country Link
JP (1) JP4400677B2 (en)
KR (1) KR101151051B1 (en)
CN (1) CN101945733B (en)
WO (1) WO2009107272A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252446A (en) * 2015-08-24 2016-01-20 镇江丰成特种工具有限公司 Preparation technology for efficient abrasion-resistant grinding wheel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140715B2 (en) * 2010-10-19 2013-02-13 株式会社アライドマテリアル Superabrasive wheel, molded body and processing method thereof
SG190724A1 (en) * 2010-11-29 2013-07-31 Shinetsu Chemical Co Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof
GB201208680D0 (en) 2012-05-17 2012-06-27 Origold As Method of manufacturing an electronic card
US20150105006A1 (en) * 2013-10-11 2015-04-16 HGST Netherlands B.V. Method to sustain minimum required aspect ratios of diamond grinding blades throughout service lifetime
CN105252447B (en) * 2015-08-24 2017-12-15 镇江丰成特种工具有限公司 A kind of efficient emery wheel

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA731960B (en) * 1972-05-10 1973-12-19 Gen Electric Diamond abrasive tool
JPS61169570U (en) 1985-04-09 1986-10-21
JPH0277593A (en) * 1988-09-13 1990-03-16 Asahi Daiyamondo Kogyo Kk Production of sharp-edged blade
JPH06210570A (en) * 1993-01-14 1994-08-02 Disco Abrasive Syst Ltd Three layer structure electrocast blade
US6319108B1 (en) * 1999-07-09 2001-11-20 3M Innovative Properties Company Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece
JP2001150328A (en) * 1999-11-26 2001-06-05 Fujimori Gijutsu Kenkyusho:Kk Polishing dresser for polishing disk of chemical machine polisher and manufacturing method for it
JP4337250B2 (en) * 2000-08-31 2009-09-30 三菱マテリアル株式会社 Electroformed thin blade whetstone and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252446A (en) * 2015-08-24 2016-01-20 镇江丰成特种工具有限公司 Preparation technology for efficient abrasion-resistant grinding wheel

Also Published As

Publication number Publication date
CN101945733A (en) 2011-01-12
CN101945733B (en) 2013-06-05
KR20100113578A (en) 2010-10-21
WO2009107272A1 (en) 2009-09-03
KR101151051B1 (en) 2012-06-01
JP4400677B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
US9701043B2 (en) Dicing blade
JP4400677B2 (en) Thin blade whetstone
JP2009066689A (en) Fixed abrasive grain wire saw
JP2010234597A (en) Cutting blade, method for manufacturing cutting blade, and cutting apparatus
JP4779580B2 (en) Electroformed thin blade whetstone
JP5470713B2 (en) Electroformed thin blade whetstone and manufacturing method thereof
JP2007118122A (en) Electroformed thin blade grinding tool
JP4711025B2 (en) Thin blade whetstone and manufacturing method thereof
JP4470559B2 (en) Ultra-thin blade and manufacturing method thereof
KR101402214B1 (en) Polycrystalline diamond grinding edge tools with multi-layer deposition
JP2003326464A (en) Cutting wheel and method of manufacturing the wheel
JP5566189B2 (en) Thin blade
JP2002326166A (en) Electrodeposition thin blade grinding wheel, and method for manufacturing the same
JPS6165776A (en) Manufacture of grinder element for lubricated cutting processing
JP5104394B2 (en) Thin blade grinding wheel manufacturing method
JP3086670B2 (en) Super abrasive whetstone
JP2008238304A (en) Cutting electrodeposition blade
JP2004017174A (en) Cutting tool
JP4416548B2 (en) Cutting blade
KR20120003197A (en) Diamond tool having strong corrosion- resistance for cmp
JP2002187071A (en) Electrotype thin-blade grindstone
JP5515508B2 (en) Thin blade whetstone and manufacturing method thereof
JP2001001266A (en) Super abrasive grain cutting wheel
JP2009006407A (en) Thin edge grinding wheel
JPS5976773A (en) Manufacture of grindstone for cut working

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4400677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4