JP2009189935A - 粉体処理装置 - Google Patents

粉体処理装置 Download PDF

Info

Publication number
JP2009189935A
JP2009189935A JP2008032227A JP2008032227A JP2009189935A JP 2009189935 A JP2009189935 A JP 2009189935A JP 2008032227 A JP2008032227 A JP 2008032227A JP 2008032227 A JP2008032227 A JP 2008032227A JP 2009189935 A JP2009189935 A JP 2009189935A
Authority
JP
Japan
Prior art keywords
powder
container
processing
wall surface
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008032227A
Other languages
English (en)
Other versions
JP4914850B2 (ja
Inventor
Naotoshi Kinoshita
直俊 木下
Akihiro Koban
昭宏 小番
Yoshihiro Moriya
芳洋 森屋
Ryuta Inoue
竜太 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008032227A priority Critical patent/JP4914850B2/ja
Publication of JP2009189935A publication Critical patent/JP2009189935A/ja
Application granted granted Critical
Publication of JP4914850B2 publication Critical patent/JP4914850B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】 粒子径100[μm]以下の微粒子を、凝集させること無く効率よくスプレーコーティング処理ができる装置を提供する。
【解決手段】 粉体処理装置は、上部開口部を備えた粉体容器と、粉体容器内に液状材料を供給するスプレーノズルと粉体容器内に配置された処理容器20を有し、処理容器20のスクリーン部材21の内壁面の円周方向の一部に近接し、スクリーン部材21の内壁面に対して相対速度を有する関係となることにより、クリアランス部に存在する粉体に対して剪断力を付与するインペラー23を有し、処理容器20の下方の通気板6の下方から上方に向かう気流を発生させる吸気用ブロアと、処理容器20の上方で粉体の通過を阻止し、粉体容器から気体のみを排出させるフィルタバックとを備え、スクリーン部材21には開口面積がスクリーンの孔よりも大きな排出口であるスリット21aを2つ設けている。
【選択図】 図2

Description

本発明は、本発明は、電子写真の現像剤、医薬品、電子材料などの粉粒体の造粒・コーティングに用いられる粉体処理装置に関するものである。
従来、電子写真のトナーやキャリアのコーティング、医薬品粉末の苦未マスキングや溶出制御、電子材料粉体への添加剤の被覆処理など、100[μm]以下の微粒子に対してスプレーコーティング処理を行う粉体処理装置が知られている。
このような粉体処理装置としては、特許文献1には次のような粉体処理装置が記載されている。すなわち、粉体を密閉して収容する粉体容器と、粉体容器の内部に配置されて上部と下部とが開口となる筒状のドラフトチューブと、ドラフトチューブの下方に配置され、その内部の粉体に対して機械的な解砕力を付する解砕機構とを備えた粉体処理装置である。解砕機構は、機械的な解砕力を与える機構として解砕羽根を有するインペラーと、インペラーの解砕羽根と所定の間隙を設けて配設されたすり鉢状のスクリーン(篩)とを備える。この解砕機構では、インペラーが回転することにより、解砕羽根とスクリーンとによる機械的な解砕力によって、スクリーンのすり鉢状の内側にある粉体の凝集を分散し、分散された粉体はスクリーンの孔からすり鉢状のスクリーンの外側で、スクリーンと粉体容器との間の空間に移動する。また、スクリーンの下方には、粉体粒子の通過を阻止し、気体のみを通過させる通気手段と、通気手段の下方から通気手段を解して上方に向かう気流を発生させる気流発生手段とを備える。このような粉体処理装置では、粉体容器内でスクリーン及びドラフトチューブの外側にある粉体は、気流発生手段が発生させる気流によって粉体容器の内壁面とドラフトチューブの側面との間の空間を上昇する。上昇してドラフトチューブの上方に到達した粉体は、ドラフトチューブの上部の開口に落下し、ドラフトチューブの下方のスクリーンの孔から粉体容器内でスクリーン及びドラフトチューブの外側となる空間に至る。ドラフトチューブの内部の粉体は、ドラフトチューブの内側を下って、すり鉢状のスクリーン内に至り、スクリーンの孔からスクリーン及びドラフトチューブの外側の空間に移動して、ドラフトチューブの側面の外側の空間を上昇して、ドラフトチューブの上方に至り、ドラフトチューブの上部の開口部から再び内部に戻る。このように粉体容器内の粉体は、粉体容器内のドラフトチューブの内側と外側とを循環する流動層を形成している。
また、この粉体処理装置は、粉体にコーティング液を噴霧するスプレーノズルを備え、ドラフトチューブの側面と粉体容器の内壁面との空間の粉体に対してコーティング液の噴霧する。このコーティング液の噴霧によって、コーティング液に含まれるコーティング剤が粉体の表面に付着する。インペラーとスクリーンとからなる解砕機構は、ドラフトチューブの内部に沿って下降し、凝集した状態の粉体をインペラーが回転することによって分散する。このような粉体処理装置によって粉体のコーティング処理を行うことができる。
また、特許文献2には、特許文献1に示されたような装置によって、電子写真用のトナー粒子のような、粒子径が数[μm]の微粒子に対してコーティング処理を行う、具体的な応用例が示されている。
従来の微粒子のコーティングに使用される他の粉体処理装置の形態としては、例えば特許文献3に記載された装置が挙げられる。
この粉体処理装置では、粉体を密閉して収容した粉体容器としてのケーシングを有し、このケーシング内に鉛直方向に沿った回転軸心の回りに回転自在で、被処理物が押し付けられる受け面を内周部に有する処理容器としての筒状回転体を有する。また、この筒状回転体の受け面に近接するよう筒状回転体の内部に配置したインナーピースと呼ばれる圧縮部材を備える。そして、筒状回転体を回転させることで、受け面とインナーピースとを相対回転させ、受け面とインナーピースとの間の押圧部に存在する粉体に押圧力を付与して粉体処理を行うものである。また、押圧部となりうる筒状回転体の一部に孔部を設けており、この孔部から筒状回転体内の粉体を筒状回転体の外周とケーシングとの間の空間に排出する構成となっている。筒状回転体は上部が開口となっており、筒状回転体の外周下部には羽根部材が設けられており、筒状回転体が回転することにより、羽根部材が回転し、筒状回転体の外周とケーシングとの間の空間の粉体を上方へと舞い上げる。この粉体処理装置では、筒状回転体が回転することにより、筒状回転体内の粉体は受面とインナーピースとの間の押圧部で押圧力を受けて粉体処理が行われながら、その一部は筒状回転体の孔部より筒状回転体の外部に排出される。筒状回転体の外周とケーシングとの間の空間に排出された粉体は、羽根部材によって舞い上げられ、筒状回転体の上部の開口部より筒状回転体の内部に戻り循環する。
特許文献3に示された様な粉体処理装置の具体的な微粒子コーティングへの応用事例は、例えば特許文献4の実施例4において、平均粒径9[nm]の粉末を、メタノールや水を添加しつつ粒子径30[μm]未満で造粒した事例が示されている。
特開2004−148291号公報 特開2006−322998号公報 特許第3877450号 特開2005−28356号公報
微粒子コーティングにおいて、特に水や溶媒を含む添加剤を噴霧供給するスプレーコーティングにおいて、コーティングの過程で、特に粉体の流動性に経時的な変化が起こることが多い。例えば、流動する粉体層に液体がスプレーなどにより供給されると、液架橋や、コーティング液の溶質や微粒子表面の溶解による粒子表面の粘着性上昇により、微粒子の付着力が上昇し、流動性が悪化し、また凝集しやすくなる。
特許文献1や特許文献2に記載の粉体処理装置では、解砕機構として用いられているスクリーンとインペラーにより、凝集しやすい状態の粉体を解砕しながらコーティングする方法を提案している。しかしながら、処理過程で流動性が悪化しやすいものや、凝集性が高くなるものについては、円滑にスクリーンを通過できずにスクリーン上に滞留するおそれがある。さらには、滞留した粉体が、インペラーにより混練されて、解砕では無くむしろ粗大粒に造粒されてしまう問題がある。このような問題を防止するため、スクリーンの通過性をよくするためにスクリーンの開口径を大きくすると、解砕効果が減るために、凝集塊が発生しやすくなることが、特許文献2の段落番号0087に示されている。すなわち、この粉体処理装置では、コーティング過程の一時的な凝集性の悪化などに伴う、流動性の悪化が生じ、凝集性の上昇が起こる粉体については、適さない欠点があった。
一方、特許文献3に記載の粉体処理装置では、粉体容器であるケーシング内での気体の積極的な流通機構を有しないので、スプレーコーティングに要したコーティング液を効率良く乾燥・除去できないため、スプレーコーティングによって流動性悪化が起こる粉体に適さない問題があった。
このため、粒子径100[μm]以下の微粒子に対して、凝集させること無く、更に効率よくスプレーコーティング処理ができる新たな装置形態が必要とされていた。
本発明は以上の問題点に鑑みなされたものであり、その目的は、粒子径100[μm]以下の微粒子を、凝集させること無く効率よくスプレーコーティング処理ができる装置を提供することである。
上記目的を達成するために、請求項1の発明は、上部開口部を備えた粉体を収容するための粉体容器と、該粉体容器内に液状材料を供給する液状材料供給手段と、該粉体容器内に配置され、その内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での該処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、該粉体容器に収容する粉体として粒径が100[μm]以下の粉体を収容するものであり、該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の粉体を該粉体容器の内壁面と該処理容器との間の空間に排出し、開口面積が20[mm]以上の排出口を一つ以上設けたことを特徴とするものである。
また、請求項2の発明は、上部開口部を備えた粉体を収容するための粉体容器と、該粉体容器内に液状材料を供給する液状材料供給手段と、該粉体容器内に配置され、内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の該粉体容器の内壁面と粉体を該処理容器との間の空間に排出し、開口面積が該粉体容器に収容する粉体の流動性が悪化した状態であっても粉体が通過可能な開口面積である排出口を一つ以上設けたことを特徴とするものである。
また、請求項3の発明は、上部開口部を備えた粉体を収容するための粉体容器と、該粉体容器内に液状材料を供給する液状材料供給手段と、該粉体容器内に配置され、内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での該処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所の少なくとも一部が所定径の多数の孔を有するスクリーン部材からなり、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の粉体を該粉体容器の内壁面と該処理容器との間の空間に排出し、開口面積が該スクリーンの孔よりも大きな排出口を一つ以上設けたことを特徴とするものである。
また、請求項4の発明は、請求項1または2の粉体処理装置において、上記処理容器は上記剪断力付与部材と内壁面が近接し得る箇所の少なくとも一部が、所定径の多数の孔を有するスクリーン部材からなることを特徴とするものである。
また、請求項5の発明は、請求項1、2、3または4の粉体処理装置において、上記排出口がスリット状であることを特徴とするものである。
また、請求項6の発明は、請求項1、2、3、4または5の粉体処理装置において、上記処理容器が回転することによって、上記剪断力付与部材が該処理容器の内壁面に対して相対速度を有する関係となることを特徴とするものである。
また、請求項7の発明は、請求項1、2、3、4、5または6の粉体処理装置において、上記剪断力付与部材が回転することによって、該剪断力付与部材が上記処理容器の内壁面に対して相対速度を有する関係となることを特徴とするものである。
また、請求項8の発明は、請求項1、2、3、4、5、6または7の粉体処理装置において、上記処理容器の下方、且つ、上記下方通気手段の上方に上記粉体容器に対して回転する羽根部材を設けることを特徴とするものである。
また、請求項9の発明は、請求項1、2、3、4、5、6、7または8の粉体処理装置において、上記液状材料供給手段は、上記処理容器と上記粉体容器の内壁面との間の空間に向けて液状材料を噴霧供給することを特徴とするものである。
また、請求項10の発明は、請求項1、2、3、4、5、6、7、8または9の粉体処理装置において、上記処理容器は、円筒状であることを特徴とするものである。
また、請求項11の発明は、請求項1、2、3、4、5、6、7、8または9の粉体処理装置において、上記処理容器の少なくとも下端部近傍が水平面における上記処理空間の断面積が下方ほど狭くなる、すり鉢状であることを特徴とするものである。
また、請求項12の発明は、請求項1、2、3、4、5、6、7、8、9、10または11の粉体処理装置において、上記剪断力付与部材は、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面との間隙に存在する粉体に対して該処理容器の内壁面に押し付けて圧縮力を付与する構成であることを特徴とするものである。
上記請求項1の構成を備えた発明においては、粉体容器に収容する粉体として粒径が100[μm]以下の粉体を収容するものであり、処理容器の内壁面における剪断力付与部材の近接する位置が変化することにより、剪断力付与部材が近接し得る処理容器の内壁面の箇所に、処理容器内の粉体を粉体容器の内壁面と処理容器との間の空間に排出する排出口の開口面積が20[mm]以上であるため、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても十分に排出可能な大きさの排出口を備えており、処理容器内で粉体を滞留させることを防止することができる。
また、上記請求項2の構成を備えた発明においては、処理容器の内壁面における剪断力付与部材の近接する位置が変化することにより、剪断力付与部材が近接し得る処理容器の内壁面の箇所に、処理容器内の粉体を粉体容器の内壁面と処理容器との間の空間に排出する排出口の開口面積が粉体容器に収容する粉体の流動性が悪化した状態であっても粉体が通過可能な開口面積であるため、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても処理容器内で粉体を滞留させることを防止することができる。
また、上記請求項3の構成を備えた発明においては、処理容器の内壁面における剪断力付与部材の近接する位置が変化することにより、剪断力付与部材が近接し得る処理容器の内壁面の箇所の少なくとも一部が所定径の多数の孔を有するスクリーン部材からなり、剪断力付与部材が近接し得る処理容器の内壁面の箇所に、処理容器内の粉体を処理容器と該粉体容器の内壁面との間の空間に排出する排出口の開口面積がスクリーンの孔よりも大きいため、粉体がスクリーンの孔を通過できない程度に粉体容器に収容する粉体の流動性が悪化した状態であっても、粉体が処理容器の内側から外側へ通過可能である。このため、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても処理容器内で粉体を滞留させることを防止することができる。
さらに、上記請求項1乃至12の発明においては、処理容器の下方に下方通気手段と、下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、粉体容器の上部開口部に上部通気手段とを備え、粉体容器内での気体の積極的な流通機構を構成する。このような気体の流通機構によって処理容器内の下方から上方に向かう気流を発生させることができるため、液状材料供給手段によって粉体に供給された液状材料を効率良く乾燥・除去できる。
粒子径100[μm]以下の微粒子を、処理容器内で滞留させることを防止でき、処理容器内で滞留した粉体が剪断力付与部材によって混練されることも防止できるため、粉体容器内で粉体が凝集することを防止することができ、さらに、液状材料を効率良く乾燥・除去できるため、効率よくスプレーコーティング処理ができるという優れた効果がある。
以下、本発明を適用した粉体処理装置の一例について説明する。
図1は、本実施形態の粉体処理装置100の概略説明図である。粉体処理装置100は、上部に開口部を備え、この上部開口部に粉体と気流の分離装置として、例えばパルスジェット式の逆洗機構を備えたフィルタバック14等を備えた集塵機類似の分離機構を備え、下部が円筒状の粉体容器10で形成されている。分離機構としては、粉体と気流を分離し、気流のみを排気する分離機構であればよく、集塵などに使用される折り布などの濾布ないしフィルタバックやバグフィルターと呼ばれるもの、樹脂焼結フィルタ、金属焼結フィルタ他、一般的に集塵装置や流動層造粒・コーティング装置に使用されているような分離装置を用いる。本実施形態では、内部が空洞の星型の筒状のフィルタカートリッジを用い、カートリッジの外側(筒の外側)がろ過エリアで、フィルタカートリッジの内部を経由して、カートリッジの上方に設置された開口部から排気する。カートリッジは、定期的にパルスジェット式の逆流洗浄をうけ、フィルタ表面の粉体の払い落としが行われる。またフィルタの設置方法としてはこれに限るものではなく、布状のフィルタバックでシェーキング方式が採用される。粉体と気流との分離方式では、ろ過方式に限るものではなく、サイクロンや、粉体分級機として用いられる回転ローターを分離装置として用いるのも良い。図1の粉体処理装置100の粉体容器10内部には、詳細は後述する処理容器20が備えられている。
円筒状の粉体容器10には、液状材料を噴霧供給する機構として、例えばスプレーノズル7が設置される。スプレーノズル7としては、例えばニ流体式のものが好ましい。円筒状の粉体容器10は、粉体を保持し、かつ、下方から気流を粉体層に供給できるよう、パンチングメタルやメッシュ状部材、金属焼結板などで構成された通気機構としての通気板6が配設される。処理容器20の低部に気流を流通する部材としては、いわゆる金属金網、折り布、パンチングプレート、金属焼結板他、粉体を内部に保持する隔壁機能と気流の通気機構を備えたものを使用する。粉体容器10は、このようなフィルタバック14及び通気板6によって、内部に粉体を封じ込める構成となっている。
通気板6を通って粉体層に供給される気流は、排気用ブロア18での吸引や、吸気用ブロア1による押し込みにより流通させることが出来る。また、粉体処理装置100では、吸気用ブロア1によって外気A1を吸気し、エアーヒーター2を通過させることで吸気した外気A1を加熱し、加熱した外気A1を通気板6の下方の粉体容器10の下部に供給する。そして、吸気用ブロア1によって通気板6の下方に外気A1が供給されることにより、通気板6の下方から上方に向かう気流が発生する。なお、外気A1がエアーヒーター2から粉体容器10に至る経路で入口温度計3によって外気A1の温度が検出される。
また、処理容器20は、その上方、下方、及び側方の粉体容器10の内壁面との間に空間を有する。通気板6を通った気流は粉体層に供給されて粉体の流動層を形成し、この流動層は、処理容器20の側面と粉体容器10との間の空間を流れて上昇する。この空間を上昇する流動層にスプレーノズル7によって液体材料が供給される。また、この空間を上昇する流動層は層内温度計12によって温度が検出される。また、この気流は、通気板6の前段に設置されたエアーヒーター2により、加温して送気することができる。エアーヒーター2をエアークーラーとすれば、冷却して送気することもできる。
液体材料を粉体容器10内に噴霧供給する機構としては、公知のものを差し支えなく用いることができるが、本事例では圧縮気体により液体材料を霧化する二流体式のスプレーノズル7を使用している。スプレーノズル7によって供給される液体材料としてのコーティング液は、コーティング液タンク9に収容され、ポンプ8によってスプレーノズル7への供給がなされ、スプレーノズル7ではスプレーエアーA4を吸引して、空気とともにコーティング液を噴霧する。
また、処理容器20の側面と粉体容器10との間の空間を上昇した流動層は、処理容器20の上方に至り、流動層を形成する粉体は処理容器20内に落下し、流動層を形成する気体の一部は、フィルタバック14を通過して、排気用ブロア18によって吸引されて排気A2として粉体容器10の外部に排出される。なお、フィルタバック14ではフィルタ部温度計15によって温度が検出され、フィルタバック14から排気用ブロア18に至る経路で排気温度計16によって排気A2の温度が検出される。
また、粉体容器10の下部に備えるモーター4は回転軸5を介して処理容器20が備える回転部材に回転駆動を伝達するものである。
また、フィルタバック14は逆洗エアーA3を吸引する吸引口19を備え、気体が粉体容器10内から排気用ブロア18に向かうときにフィルタバック14を通過するときとは逆方向に逆洗エアーA3を通過させることにより、フィルタバック14の粉体容器10の内側に付着した粉体を除去することができる。
〔構成例1〕
次に、処理容器20の一つ目の構成例(以下、構成例1と呼ぶ)について説明する。
図2は、構成例1の粉体容器10の処理容器20近傍の拡大説明図である。図2(a)は、処理容器20近傍を側方から見た断面図であり、図2(b)は、処理容器20近傍を上方から見た断面図である。処理容器20内の通気板6の上部には、ガイドリング22とスリット付きのスクリーン部材21とからなる処理容器20が設置されている。処理容器20内のスクリーン部材21は粉体を処理する略円錐状(すり鉢状)で篩のように多数の孔が開いたメッシュ部材である。また、このスクリーン部材21は、すり鉢状を形成する斜面部にすり鉢状の内部と外部とを連通するスリット21aが設けられている。
スクリーン部材21の内部には、スクリーン部材21の内壁に対して回転自在のインペラー23が設置されており、また、粉体容器10内の処理容器20と通気板6との間には、回転円板24を備え、さらの回転円板24の上面の外周部には、ハンマー状の羽根部材25を備えており、粉体に衝撃力等の分散作用を与えることが出来る。
円錐状のスクリーン部材21の上部には、円筒状のガイドリング22が設置され、粉体容器10の上部に舞い上がった粒子群が落下する際に、スクリーン部材21内に円滑に導く工夫がされている。また、処理容器20のガイドリング22の上端よりも上方で、粉体容器10の一部が粉体容器10の下部の円筒部よりも小さい内径の絞り部13を入れることで、より一層粉体が、スクリーン部材21内に円滑に導かれる工夫がなされている。インペラー23と回転円板24とは同一方向、同一角速度で回転しており、図1及び図2(a)に示す粉体容器10の底部に設置されたモーター4により駆動される。インペラー23が図2中の矢印回転することにより、図3中の矢印R方向に回転することにより、処理容器20の内壁面とインナーピース26の先端部26aとが相対速度を有する関係となる。
また、図2(b)に示すように、本実施形態ではスクリーン部材21に設けたスリット21aは二箇所であり、インペラー23が二個、羽根部材25が二個となっているが、これらの数はこれらの数は必要に応じて適宜増減してよい。
〔構成例2〕
次に、粉体容器10の二つ目の構成例(以下、構成例2と呼ぶ)について説明する。
図3は、構成例2の粉体容器10の処理容器20近傍の拡大説明図である。図3(a)は、処理容器20近傍を側方から見た断面図であり、図3(b)は、処理容器20近傍を上方から見た断面図であり、図3(c)は、処理容器20近傍の側面図である。
処理容器20内の通気板6の上部には、粉体容器10に対して回転自在の円筒容器状の処理容器20が設置され、処理容器20の側面には、円筒容器状の内部と外部とを連通するスリット20aが設けられている。また、処理容器20の内部には、粉体容器10に対して固定して設置されたインナーピース26が設置されている。インナーピース26は、処理容器20の内壁面と先端部26aで近接し、支持部26bによって粉体容器10に対して固定されている。処理容器20の底部には、粉体を舞い上げるためのフィン状の羽根部材25を供えている。構成例1と同様に、処理容器20の上端部よりも上方で、粉体容器10の一部が粉体容器10下部の円筒部よりも小さい内径の絞り部13を入れることで、より一層粉体が、処理容器20内に円滑に導かれる工夫がなされている。円筒容器状の処理容器20が図3中の矢印R方向に回転することにより、処理容器20の内壁面とインナーピース26の先端部26aとが相対速度を有する関係となる。
また、図3(b)に示すように、インナーピース26が処理容器20の内壁と対向する部位は、処理容器20の内壁に対して中央部が近接する凸形状に形成されるのがよく、インナーピース26の両端と処理容器20の内壁とのクリアランスよりも、中央の凸部と処理容器20の内壁とのクリアランスが小さくなっている。
また、図3(c)に示すように、羽根部材25は、処理容器20の回転方向に対してやや上向きに取り付けられ、流動する粉体を舞い上げる作用を有する。
構成例1のインペラー23及び構成例2のインナーピース26は、処理容器20に対して相対速度を有する関係となることにより、処理容器20の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材である。剪断力付与部材としては、処理容器20の内壁面に近接し、この内壁面に対して相対速度を有する関係となることにより、内壁面との間隙に存在する粉体に対して、粉体を内壁面に対し押し付ける機能を有するものが好ましい。剪断力付与部材と、内壁面とが相対速度を持つことによって、粉体に実質的な流れが生じ、クリアランスに導かれた粉体が剪断力を受ける。しかし、剪断力付与部材と内壁面との間のクリアランスに、適切な圧縮作用がないと、クリアランスで適切な剪断力が得られ無いことがあるため、粉体を内壁面に対し押し付ける機能を有するものが好ましい。
このような機能を有する剪断力付与部材としては、例えば、クリアランスへの粉体の入り口側の間隙をより大きくする位置関係とすることが挙げられ、このような位置関係の形状としては、構成例2のインナーピース26のような形状を挙げることができる。
図4は、処理容器20の内壁面と近接するインナーピース26の先端部26aと処理容器20の内壁面20fとの関係を示す説明図である。図4(a)は、構成例2のように先端部26aが中央部ほど内壁面20fに近接する凸形状となっている構成の説明図であり、図4(b)は、先端部26aが内壁面20fとのクリアランスが略一定の形状となっている。なお図4中の矢印Gは、内壁面20fに対する先端部26aの相対的な移動方向を示す。
図4(a)に示す構成であれば、内壁面20fに対する先端部26aの移動方向について移動方向上流側(粉体のクリアランス部への入口側)になる部位のクリアランスがより広く取られている。このため、粉体層Tを効率よく最小のクリアランス部(=作用部)に導くことができる。このように、先端部26aと内壁面20fとのクリアランスが最小部を有するため、粉体層Tがクリアランス部へより導かれ易く、圧縮力をかけながら効率よく剪断力を付与することができる。一方、図4(b)に示す構成であると、先端部26aと内壁面20fとのクリアランスに変化が無いため、粉体層Tがクリアランス部に誘導されにくく、圧縮力の作用が弱く、剪断力を付与する効率も低下する。
構成例1及び構成例2ともに、剪断力付与部材と処理容器20とが相対速度を有する関係を作るために、処理容器20の断面を円形に形成して処理容器20を回転させることや、逆に剪断力付与部材を回転させることや、剪断力付与部材を特定の部位で往復運動させるなどの工夫が可能である。
このように装置を構成することで、液体材料であるコーティング液を噴霧供給された後に、処理容器20の内側に入った粉体が液架橋などで凝集しても、処理容器20の内壁面と剪断力付与部材との間のクリアランス部における剪断力や圧縮力により粉体が解砕される。
たとえば粉体層の水分量の増加等のコーティング過程での一時的な流動性不良や凝集性の悪化により一時的に粉体の凝集性が剪断力付与部材等による解砕力を上回ったとしても、構成例1及び構成例2の処理容器20では過剰な粉体は常に排出口であるスリット(20aまたは21a)から排出されていくので、処理容器20の内壁に粉体が滞留して運転の継続を阻害することもない。また、たとえば粉体層の水分量が、処理に伴って減少し、その他の原因も含めコーティング過程での一時的な流動性不良が解消され始めると、再び剪断力付与部材等による解砕力が支配的になり、分散が進行する。
ここで、処理容器20に設置された粉体を流通する排出口は、剪断力付与部材によって処理容器20の内壁に押し付けられた後に、粉体が排出口から排出されやすいように、スリット状に形成されることが望ましい。剪断力付与部材によって処理容器20の内壁に押し付けられることで解砕効果が得られるし、また、剪断力付与部材と処理容器20の関係が、粉体の排出を促すように設置されることで、粉体が処理容器20内に滞留してしまう不都合を回避できる。ここで、スリットについては、解砕効果を得るようなものである必要はない。すなわち、例えば構成例1のスクリーン(篩)に準ずるような微小な幅のスリットである必要がない。
処理容器20から剪断力付与部材によって粉体を排出する方法としては、処理容器20が回転することで剪断力付与部材との相対速度を形成し、処理容器20の排出口から粉体を押し出す方法がある。または、剪断力付与部材が回転することで、処理容器20との相対速度を形成し、処理容器20の排出口から粉体を押出す方法が好ましい。
剪断力付与部材は、構成例1のインペラー23や構成例2のインナーピース26のような形状に限るものではなく、さまざまな形状を用いることができる。たとえば処理容器20の内壁面に対して近接する部位が平行な面もしくは曲面で構成しても良いし、近接する部位が線になるように構成しても良い。特に工夫された形状としては、処理容器20に対して略曲面で近接するように構成され、粉体が圧縮されながら最近接部に導入され、最近接部で圧縮力もしくは剪断力を受けた後に、開放されるような形状が構成できる。このような構成としては、図3(b)に示すインナーピース26の処理容器20の内壁面と対向する部分のように構成できる。
また、処理容器20が、構成例1のようにスクリーンを備えた構成であると、剪断力付与部材によって粉体が処理容器20(構成例1ではスクリーン部材21)の内壁に押し付けられることで得られる解砕効果に加え、さらにスクリーンによる篩分け・分散効果による解砕効果が得られ、処理対象粉体の種類によってはより好ましい場合がある。
排出口としては、一つの排出口の開口面積が20[mm]以上の排出口を有することが好ましく、開口面積が90[mm]以上であることがより好ましく、更に好ましくは開口面積が150[mm]以上であることが好ましい。これは、開口面積が大きければ大きいほど、処理容器20内で大きくなってしまった粉体を、より確実に排出することができるためである。また、排出口の開口面積の総和は、剪断力付与部材と処理容器20が相互作用可能な部位、すなわち剪断力部材が粉体に処理容器20の内壁に押し付けることが可能な部位の面積に対して40[%]未満がよく、20[%]未満がさらに好ましく、15[%]未満がより一層好ましい。これは、排出口が占める割合が大きすぎると、粉体に対して剪断力を付与する処理の効率が低下するためである。
そして、構成例1及び構成例2のようにスリット状の排出口を備える場合は、スリットの幅は、3[mm]以上、好ましくは5[mm]以上が好ましい。これは、スリット幅が大きければ大きいほど、処理容器20内で大きくなってしまった粉体を、より確実に排出することができるためである。
また、スリットの幅は、スリットの存在する位置における、円筒ないし円錐状容器の中心軸に垂直な断面の最大周長の20[%]未満、好ましくは18[%]未満がよく、更に好ましくは15[%]未満が好ましく、スリットが2つ以上存在する場合はスリット幅の合計が前記値の範囲に収まればよい。なお、スリットは回転体のバランスの都合上、2本以上で構成されるのが好ましく、12本未満であることが好ましい。より好ましくは、2本以上、8本未満である。
また、スリットの長手方向が、処理容器20と剪断力付与部材との相対的な回転方向とおよそ直行する向きに設置されることが好ましい。これは、スリットを回転方向に対して直交する向きに配置することにより、剪断力付与部材による掻き出し作用がスリットに対して最も効率良く作用するためである。
スクリーンの孔径は、孔の面積から円相当の径に換算した直径で、250[μm]以上、6000[μm]以下が好ましく、1000[μm]以上、5000[μm]以下がより好ましい。更に好ましくは、2000[μm]以上4000[μm]未満である。
相対速度は、0.5[mm/s]〜25[mm/s]が好ましく、さらには、0.7[mm/s]〜20[mm/s]がより好ましく、さらには1.0[mm/s]〜15[mm/s]がより一層好ましい。
剪断力付与部材と処理容器20とのクリアランスは、0.1[mm]〜20[mm]が好ましく、さらに好ましくは、処理容器20の最大内径D[mm]に対して、クリアランスC[mm]が(D1/2×0.6)> C >(D1/2×0.05)であればよい。
また、スクリーン部材21の内壁面とインペラー23との間のクリアランスとスクリーンの孔の径との大小関係は、スクリーンの孔の方が大きい場合もその逆の場合もありうる。
特に、処理容器20を小スケールで構成した際に、スクリーンの孔径がクリアランスよりも小さくなる傾向にあり、クリアランスは、処理容器20のスケールを大きくするにしたがって、より大きく設定する必要がある。これは、たとえば処理容器20の水平断面を円形に構成した場合、その直径をDとすると、仕込み量(1バッチあたりの処理量)は、およそDの三乗に比例させるのが処理効率の面から好適であり、インペラー23とで圧縮・剪断力を与えることが可能な内壁面は装置のDに対しておよそ二乗に比例させざるを得ないためである。これは、容器を相似的に拡大したときに、容量は三乗、各部の面積は二乗に比例するためであり、処理容器20のスケールアップは、相応の微調整が行われるため、三乗もしくは二乗にぴったりと比例するわけではない。このため、より大きなスケールの処理容器20を構成する場合には、よりクリアランスを大きくすることで、圧縮・剪断力作用を受ける部位に粉体がより入り込みやすくする工夫を加える。このクリアランスの厚みの増加率は、およそD1/2に比例させるのが良い。
本実施形態の粉体処理装置100は、装置の底部に備えられた空気流通部材である吸気用ブロア1によって、粉体層に気流が供給できるので、粉体は、低部から供給された上昇流にのって、処理容器20の外周を経由し、粉体容器10の上部へ搬送される。空塔速度は、0.2[m/s]以上、2.6[m/s]未満、より好ましくは0.25[m/s]以上、2[m/s]未満、さらに好ましくは0.4[m/s]以上、1.5[m/s]未満である。ここで空塔速度vとは、処理容器20の最上部における粉体容器10の断面積をS[m]とし、粉体容器10に流通される空気量をV[m/s]とした場合、v=V/Sで導かれる速度である。
粉体容器10では、絞り部13と処理容器20の外壁面とによって上昇流を曲げ、上昇流によって搬送される粉体を中心部に案内するため、粉体容器10の上部へ搬送された粉体粒子群の大部分は処理容器20の内部へ落下し、剪断力付与部材によって作用を受けた後、再び処理容器20外へ排出される。なお、処理容器20の外壁面と粉体容器10との隙間を通過可能だった上昇流が処理容器20の上端を過ぎると通過可能な領域の断面積が広がり、流速が低下して粉体を上昇させる作用が低下する。また、処理容器20内では、粉体を排出する作用によってその内圧が他の部分よりも低いため、処理容器20の上方の開口部では、処理容器20内に向かう気流が発生する。このように、処理容器20の上方では、上昇流が粉体を上昇させる作用が低下し、処理容器20内に向かう気流が発生しているため、粉体容器10内を循環する気流が処理容器20内に向かい、上昇流によって上昇した粉体が処理容器20内に落下する。
ここで、比重の重い粉体や、分散力をより強く与えることが好ましい粉体を処理する場合には、処理容器20の底部に羽根部材を備えることが望ましい。羽根部材25によって、粉体層に供給される気流の作用に加えて、さらに、処理容器20の外部においても粉体に分散力を与えたり、比重の重い粉体を粉体容器10の上部に舞いあげたり効果が得られる。
コーティング液の噴霧供給機構は、図1に示すように粉体容器10の内部であって、かつ処理容器20の外部に向けて設置されていることが好ましい。
この位置に噴霧供給機構を設置することで、コーティング液で濡れた粉体は、まず粉体容器10の低部から供給された気流(上昇流)に曝され、ある程度乾燥した後に処理容器20の内部に落下させることができるので、コーティング液の供給速度を最大限に高めることができる。一方、処理容器20の内部に向けて噴霧供給機構を設置すると、処理容器20内部に、より濡れた粉体が供給されるので、処理容器20内での付着性・凝集性が高まるため、コーティング液の供給速度を最大限に高めることが出来ない。
また、構成例1のように、処理容器20でスクリーンと剪断力付与部材とによって粉体を解砕する機構では、スクリーンの孔径は処理対象たる粉体の粉体物性(実質的には流動性)により依存して設定する。具体的には流動性のより高い(良い)粉粒体に対しては、小さめに設定しないと抵抗無くスクリーンからどんどん流れ出してしまうために、実質的にスクリーンの開口部から受ける解砕効果がなくなってしまうし、流動性の悪い粉粒体に対しては大きめの開口径にしなければ抵抗がありすぎて排出が不十分(排出され難くなる)になり、運転が継続できなくなる。
また、スクリーンの孔径と解砕作用とは次のような関係にある。
流動性がある程度良い時は、スクリーン部材21の内壁(スクリーンの孔部でない箇所を含む)と剪断力付与部材であるインペラー23との間隙部の作用はあまり無く、インペラー23の前方部で押されて流れる緩やかな剪断作用によって、スクリーンの孔部からの流出が促進され、そのときに加わる剪断力がもっとも寄与している。
一方、流動性が悪くなった時は、インペラー23の前方部で押されて流れる作用のみではスクリーンの孔部からの流出が不十分であるか起こらないために、インペラー23とスクリーン部材21の内壁面との間隙部へ導かれる粉体が流動性がある程度良い状態に対してより多くなる。このため、インペラー23とスクリーン部材21の内壁面とによって粉体が受ける圧縮力と剪断力とがより一層大きくなり、同時に、スクリーンの孔から強制的に押出される効果による解砕効果もある。
このため、例えば、コーティング中に流動性が著しく悪くなることがある材料を扱う場合、コーティング中は圧縮・剪断作用と強制押出しにより解砕効果を受けつつ、過剰に滞留してしまった粉粒体は、スクリーンの孔部よりも十分に大きな排出口としてのスリット21aからの流出によって循環を保つ。そして、コーティングの進行によって流動性が改善してくると次第にスクリーンによる緩やかな解砕効果をより支配的に受けつつ、所望の粒度へ調整されて製品となる。
また、スクリーンを用いた構成例2のような処理容器20を用いる場合、処理容器20の内壁面と、剪断力付与部材であるインナーピース26との間隙部では圧縮・剪断作用による効果を常に受ける。スクリーンを用いない処理容器20を用いた粉体処理操作は、例えば、体積平均粒径(Dv)=50[μm]以下のような、より微細な粒子群に対するコーティング操作に適している。
次に、本発明について具体例を挙げて説明する。
これらは、本発明の一態様にすぎず、これらに発明の技術的範囲は限定されない。
以下、カプセルトナーを製造する事例で粉体処理装置100の機能を説明する。本実施例では、カプセルトナーの母体となるコーティング用粒子を製造した後に、さらにスプレーコーティングによるカプセル化処理を行う。
スプレーコーティングによるカプセル化工程においては、コーティングの前後において、凝集塊が発生する恐れがあるが、この凝集塊は発生しないことが望ましい。凝集塊の発生は、例えば粒子径分布を計測し、粒子径分布の広がりの指標として、例えば変動係数(CV値)を求めることで評価できる。コーティング前後の粒子径分布のCV値を計測し、コーティング後のCV値がコーティング前のCV値に対して大きくなりにくいことが望ましい。
[実施例1]
<コーティング用粒子の作製>
ポリエステル樹脂(ガラス転移点(Tg)58[℃]、軟化点130[℃])100部、着色剤(カーボンブラック)5部、ワックス(ポリエチレン 融点125[℃])5部、荷電調整剤1部をヘンシェルミキサーにて3分間混合分散した後、押出機(商品名、ニーデックスMOS140−800、三井鉱山(株)製)を用いて溶融混練分散し、樹脂混練物を調製した。
一方、ポリアクリル酸(重量平均分子量10,000)アンモニウム塩100部およびイオン交換水400部を混ぜ合わせて、水溶性高分子分散剤の20wt%水溶液を調製した。
圧力調整弁、加熱手段およびロータステータ式撹拌手段(口径30[mm])を備える金属製容器に、上記のように調整した樹脂混練物100部とポリアクリル酸アンモニウム塩の20%水溶液400部とを投入し、150[℃]、5[atom]で加熱加圧しながら10[分間]撹拌混合した(8000[rpm])。その後加熱を止め、この混合物を撹拌しながら20[℃]まで冷却した。
その後、イオン交換水を混合物に加えて洗浄を行った。洗浄は、混合物とイオン交換水とを混合し、イオン交換水の添加量によって固形分量が10[%]になるように調整した後、タービン型撹拌翼で30分間撹拌(300[rpm])を行い、この混合物から遠心分離によって分離される上澄み液の導電率が10[μS/cm]以下になるまで、同じ洗浄操作を繰り返し行った。
その後、遠心分離によって混合物中の合成樹脂粒子を分取し、乾燥し、合成樹脂粒子約100部を得た。得られた粒子をコールターマルチサイザーII(コールター社製)を用い、アパーチャーとして100μmアパーチャーを用いて、着色樹脂粒子(A)の体積平均粒径および変動係数の測定を行ったところ、6.1[μm]で変動係数は23であった。
ここで、測定装置としてコールターマルチサイザーII(ベックマン・コールター社製)を用いた測定方法について述べる。
まず、電解水溶液100〜150[ml]中に分散剤としてポリオキシエチレンアルキルエーテルを0.1〜5[ml]加える。ここで、電解液とは1級塩化ナトリウムを用いて約1%NaCl水溶液を調製したもので、例えばISOTON−II(コールター社製)が使用できる。ここで、更に測定試料を2〜20[mg]加える。試料を懸濁した電解液は、超音波分散器で約1〜3分間分散処理を行ない、測定装置により、アパーチャーとして100μmアパーチャーを用いて、トナー粒子又はトナーの体積、個数を測定して、体積分布と個数分布を算出する。得られた分布から、トナーの体積平均粒径(Dv)、個数平均粒径を求めることができる。
チャンネルとしては、2.00〜2.52[μm]未満;2.52〜3.17[μm]未満;3.17〜4.00[μm]未満;4.00〜5.04[μm]未満;5.04〜6.35[μm]未満;6.35〜8.00[μm]未満;8.00〜10.08[μm]未満;10.08〜12.70[μm]未満;12.70〜16.00[μm]未満;16.00〜20.20[μm]未満;20.20〜25.40[μm]未満;25.40〜32.00[μm]未満;32.00〜40.30[μm]未満の13チャンネルを使用し、粒径2.00[μm]以上から40.30[μm]未満の粒子を対象とする。
<コーティング液の作製>
イオン交換水390部にドデシルスルホン酸アンモニウム0.1部を溶解し、80[℃]に昇温した。80[℃]に保温し、「V−50」(和光純薬工業社、2,2’−アゾビス− 2−アミジノプロパンジハイドロクロライド)1部とイオン交換水10部とからなる水溶液、およびスチレンモノマー20部とメタクリル酸メチル40部とメタクリル酸n−ブチル15部とチオグリコール酸オクチル1部との混合モノマーを、それぞれ60[分]かけて滴下した。滴下30分後、さらにスチレンモノマー10部とメタクリル酸メチル15部とメタクリル酸n−ブチル5部との混合モノマーを30[分]かけて滴下した。2[時間]80[℃]で撹拌して重合を完結させて、固形分濃度が20[%]の樹脂微粒子(B)のコーティング液を得た。得られ た粒子体積平均粒子径をDLS−700(大塚電子社製)を用いて測定したところ0.12[μm]であった。また、DSC示差熱分析装置で測定したガラス転移点は61[℃]であった。
<スプレーコーティング工程>
実施例1では流動層コーティング装置として、図1中の処理容器20に図3を用いて説明した構成例2の処理容器20を備える粉体処理装置100を用いる。この粉体処理装置100は、粉体容器10の内径0.30[m]、通気板6の上面から図1中のB部までの高さが約0.40[m]であり、通気板6の上面から図1中のB部までの容量が約25[L]の粉体処理装置100を用いる。実施例1の粉体処理装置100は、処理容器20として、外径が0.23[mm]で内径が0.21[mm]であり、さらに幅45[mm]のスリット20aを対角の位置に2本有する円筒型回転容器を有する。また、剪断力付与部材としてのインナーピース26と処理容器20の内周面とのクリアランスが3[mm]と設定されている。
このような粉体処理装置100に、前記着色樹脂粒子(A)を8[kg]に前記樹脂微粒子(B)を含むコーティング液を塗布し、コーティングを行った。円筒型回転容器からなる処理容器20の回転数は500[rpm]である。コーティング液を噴霧させる際、樹脂微粒子(B)を含むコーティング液とともに130[NL/min]の圧縮空気をスプレーノズル7に送り、コーティング液を40.0[ml/min]のペースで噴霧する。また、吸気用ブロア1が外気A1を吸気し、3.5[m/min]のペースで60[℃]の空気を、通気板6を経由して粉体容器10内に送り込んだ。100分後、4000[ml]のコーティング液の供給が終了した後、10分間通気を継続した後、粉体処理装置100の中からコーティングされた着色樹脂粒子であるカプセルトナーを取り出した。
このトナーの体積平均粒径を、コーティング用粒子の調整と同様の手順でコールターマルチサイザーIIを用いて測定した結果、6.3[μm]、CV値(変動係数)は24であった。
[実施例2]
<コーティング用粒子の作製>から<コーティング液の作製>までは実施例1と同様である。
<スプレーコーティング工程>
実施例2の流動層コーティング装置として、図1中の処理容器20に図2を用いて説明した構成例1の処理容器20を備える粉体処理装置100を用いる。この粉体処理装置100は、粉体容器10の内径0.30[m]、通気板6の上面から図1中のB部までの高さ約0.40[m]であり、通気板6の上面から図1中のB部までの容量が約25[L]である。この粉体処理装置100は、外径が0.250[m]で内径が0.245[m]、高さが0.15[m]のガイドリング22を備える。さらに回転円板24と、先端の角度が約80[°]で、高さ0.150[m]、最大直径0.250[m]の略円錐状のスクリーン部材21とを備える。このスクリーン部材21は、厚みは0.0025[m]、スクリーンに開けられた多数の孔は円形で開口径は1[mm]、三角千鳥格子配列で、開効率は40[%]である。また、円形の孔の中心間距離は4.5[mm]となっている。さらに、スクリーン部材21は幅20[mm]のスリット21aを対角の位置に2本有し、スクリーン部材21に対して回転自在のインペラー23とスクリーン部材21の内壁面とのクリアランスが3[mm]と設定されている。
このような粉体処理装置100に、前記着色樹脂粒子(A)8[kg]に前記樹脂微粒子(B)を含むコーティング液を塗布しコーティングを行った。インペラー23の回転数は500[rpm]である。コーティング液を噴霧させる際、樹脂微粒子(B)を含むコーティング液とともに130[NL/min]の圧縮空気をスプレーノズル7に送り、コーティング液を40.0[ml/min]のペースで噴霧する。また、吸気用ブロア1が外気A1を吸気し、3.5[m/min]のペースで60[℃]の空気を、通気板6を経由して粉体容器10内に送り込んだ。100分後、4000[ml]のコーティング液の供給が終了した後、10分間通気を継続した後、粉体処理装置100の中からコーティングされた着色樹脂粒子であるカプセルトナーを取り出した。
このトナーの体積平均粒径を、コーティング用粒子の調整と同様の手順でコールターマルチサイザーIIを用いて測定した結果、6.2[μm]、CV値(変動係数)は24であった。
〔比較例1〕
<コーティング用粒子の作製>から<コーティング液の作製>までは実施例1と同様である。
<スプレーコーティング工程>
比較例1では流動層コーティング装置として、図1中の処理容器20に図5に示す処理容器20(図5の処理容器20は構成例1のスクリーン部材21にスリット21aがない構造である)を備える粉体処理装置100を用いる。この粉体処理装置100は、粉体容器10の内径0.30[m]、通気板6の上面から図1中のB部までの高さ約0.40[m]であり、通気板6の上面から図1中のB部までの容量が約25[L]である。処理容器20として、外径が0.250[m]で内径が0.245[m]であり、高さ0.15[m]のガイドリング22を備え、さらに回転円板24と、先端の角度が約80[°]で、高さが0.150[m]、最大直径が0.250[m]の略円錐状のスクリーン部材21とを備える。このスクリーン部材21は、厚みは、0.0025[m]、スクリーンに開けられた多数の孔は円形で開口径は3[mm]、三角千鳥格子配列で、開効率は40[%]である。処理容器20は、スクリーン部材21に対して回転自在のインペラー23とスクリーン部材21の内壁面とのクリアランスが3[mm]と設定されている。
このような粉体処理装置100に、前記着色樹脂粒子(A)8[kg]に前記樹脂微粒子(B)を含むコーティング液を塗布し、コーティングを行った。インペラー23の回転数は500[rpm]である。コーティング液を噴霧させる際、樹脂微粒子(B)を含むコーティング液とともに130[NL/min]の圧縮空気をスプレーノズル7に送り、コーティング液を40.0[ml/min]のペースで噴霧するとともに、3.5[m/min]のペースで60[℃]の空気を、通気板6を経由して粉体容器10内に送り込んだ。100分後、4000[ml]のコーティング液の供給が終了した後、10分間通気を継続した後、粉体処理装置100の中からコーティングされた着色樹脂粒子であるカプセルトナーを取り出した。
このトナーの体積平均粒径を、コールターマルチサイザーIIを用いて測定した結果、7.2[μm]、CV値は38であった。
〔比較例2〕
<コーティング用粒子の作製>から<コーティング液の作製>までは実施例1と同様である。
<スプレーコーティング工程>
比較例2の流動層コーティング装置は、比較例1の流動層コーティング装置が備えるスクリーン部材21のスクリーンの孔径を1[mm]とした以外は比較例1と同様である
このような比較例2では、コーティング液の供給から23分後、スクリーン部材21で目詰まりが発生し、目詰まりの解消を促すためにコーティング液の供給を停止し粉体の解砕を促したが、インペラー23とスクリーン部材21の内壁面とのクリアランス部で粉体が融着し、運転の継続が出来なかった。
粉体処理装置100で処理する粉体は微細な粒子群(100[μm]以下)である。比較例1及び比較例2のようにスクリーン部材21に排出口がない構成であっても、スクリーンの多くの孔やクリアランスの間隔に比べて粉体が十分に小さい。このため、粉体の流動性が悪化していない状態であれば、スクリーン部材21の内側から孔部を通って粉体が流出し、粉体容器10内で粉体を十分に循環させることができる。
粉体処理装置100のように処理容器20の内壁面と剪断力付与部材との間のクリアランス部における剪断力や圧縮力により粉体を解砕する機構では、処理容器20内の粉体の流動性が一時的に悪くなる場合がある。粉体の流動性が悪い状態とは、一般的に粒子間の摩擦抵抗や付着力が粒子間に働き得る分離力よりも過大となる状態である。付着力などが大きくなるのは、例えば、粒子表面が濡れている時、さらには、濡れによって一部溶解して粘着力が出た時、乾燥のための加温により粒子表面の粘着性が高くなるときなどが想定される。粉体処理装置100による流動層造粒もしくはコーティングは、いわゆるスプレーコーティングにより、粉体を濡らすことで、造粒もしくはコーティングを行うものである。このため、粉体処理装置100では、前述のように、粒子表面が濡れた状態、粒子表面(粒子表面を形成する材料、もしくはコーティング基材そのもの)が溶解することによって粘着が発生する状態を作り出す操作を行う。また、コーティング液の溶媒成分を十分に乾燥して除去するためにある程度の加温が必要な操作である。このような粉体処理装置100では以下(1)〜(5)に示すような問題が生じる。
(1)流動層造粒、もしくはコーティングの過程で、材料特性の問題(少量でも濡れると粘着性が出やすい)から、コーティング等の過程で必ず流動性不良となる材料に対しては、比較例1のように、コーティング中の流動性が悪化した状態での凝集を回避するスクリーン孔径の設定では、最終製品の目標粒子径分布に対してスクリーン孔径が過大であるために造粒が回避できず、製品として大きすぎる粒子群が得られてしまう問題がある。
(2)上記(1)のような材料系の場合に、比較例2のように、最終製品の目標粒子径分布に対して適切な開孔径のスクリーンを用いた場合には、一時的に流動性不良となるとスクリーンからの排出が滞り排出不良となる。このスクリーンから排出が滞ると、スクリーンと剪断力付与部材との間で何度もせん断力を受ける、もしくは、剪断力付与部材に押されているだけでも、スクリーンの内壁面上を長時間転がり、転動作用を受けるため、スクリーンによる解砕効果よりも造粒作用が過大になってしまう。
(3)上記(2)ような排出不良が一瞬でも発生してしまうと、循環している粉体の密度が低下するため、スプレー液(コーティング液、もしくは結合剤等)供給量が循環する粉体に対して実質的に過剰なる。それ故、より濡れた粉体がスクリーンで構成された容器内へ供給され、上記(2)、(3)の悪循環が更に進行し、やがて粉体の循環が完全に停止してしまう。
(4)熱で粘着性が出る場合は、開口部から流出せずに摩擦を繰り返すことで更に発熱し、造粒してしまう。
(5)上記(2)や(3)を回避するには、例えばスプレー液の供給速度を遅くすることが出来るが、コーティング皮膜の形成状態が不十分(皮膜形成の観点から濡れが不十分)であったり、生産効率が著しく低下すると言った問題が発生する。乾燥に必要な熱を与えられない場合も、生産効率が著しく低下する場合や、乾燥が不十分で所望の品質が得られない問題がある。
各実施例及び各比較例で用いた粉体の材料、コーティング液の供給速度や通気条件では、特許文献1や特許文献2に記載の粉体処理装置100のような単純なスクリーンを用いた処理容器20の場合、比較例1のように、スクリーンの開口径が大きすぎると解砕効果が低く粒子径が粗大化したり凝集物が生成し、粒度分布が広くなったりする。一方で比較例2のように、スクリーンの開孔径が小さくなるとスクリーンが目詰まりして運転が継続できなくなる。
実施例1や実施例2のように処理容器20に本発明の構成要件である、循環可能な粉体の排出口などの構造を具有させることで、解砕出来ない場合でも粉体の流動もしくは運動を妨げ無い安定した運転が可能であり、粉体の凝集を抑制しつつシャープな粒度分布でコーティングできる粉体処理装置が提供できる。
以上、本実施形態によれば、粉体処理装置100は、上部開口部を備えた粉体を収容するための粉体容器10と、粉体容器10内に液状材料を供給する液状材料供給手段であるスプレーノズル7とを有する。また、粉体容器10内に配置され、その内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における処理空間の断面形状が円形で、処理空間の上方に開口部を備え、上方、下方、及び側方の粉体容器10の内壁面との間に空間を有する処理容器20を有する。また、処理容器20の内壁面の円周方向の一部に近接し、処理容器20の内壁面に対して相対速度を有する関係となることにより、処理容器20の内壁面における近接する位置が変化し、処理容器20の内壁面と近接する位置での間隙であるクリアランス部に存在する粉体に対して剪断力を付与する剪断力付与部材であるインペラー23またはインナーピース26を有する。また、処理容器20の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段である通気板6と、通気板6の下方から上方に向かう気流を発生させる気流発生手段である吸気用ブロア1を有する。また、処理容器20の上方で粉体の通過を阻止し、粉体容器10から気体のみを排出させる上部通気手段であるフィルタバック14とを備える。処理容器20の下方に通気板6と、通気板6の下方から上方に向かう気流を発生させる吸気用ブロア1と、処理容器20の上方にフィルタバック14とを備え、粉体容器10内での気体の積極的な流通機構を構成する。このような気体の流通機構によって処理容器20の下方から上方に向かう気流を発生させることができるため、スプレーノズル7によって粉体に供給された液状材料であるコーティング液を効率良く乾燥・除去できる。また、粉体容器10に収容する粉体の粒径は100[μm]以下であり、処理容器20の剪断力付与部材と内壁面とが近接し得る箇所に、処理空間内の粉体を処理容器20と粉体容器10の内壁面との間の空間に排出し、開口面積が20[mm]以上の排出口としてのスリット21a(または20a)を2つ設けている。スリット20aまたは21aの開口面積が20[mm]以上であるため、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても十分に排出可能な大きさのスリット20aまたは21aを備えており、処理容器20内で粉体を滞留させることを防止することができる。よって、粒子径100[μm]以下の微粒子を、処理容器20内で滞留させることを防止でき、処理容器20内で滞留した粉体が剪断力付与部材(インペラー23またはインナーピース26)によって混練されることも防止できるため、粉体容器10内で粉体が凝集することを防止することができ、さらに、コーティング液を効率良く乾燥・除去できるため、効率よくスプレーコーティング処理ができる。
また、排出口であるスリット20aまたは21aは、粉体容器10に収容する粉体の流動性が悪化した状態であっても粉体が通過可能な開口面積を備えているので、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても処理容器20内で粉体を滞留させることを防止することができる。処理容器20内で滞留させることを防止でき、処理容器20内で滞留した粉体が剪断力付与部材(インペラー23またはインナーピース26)によって混練されることも防止できるため、粉体容器10内で粉体が凝集することを防止することができる。
また、構成例1の粉体処理装置100は、処理容器20は剪断力付与部材であるインペラー23と内壁面が近接し得る箇所の少なくとも一部が所定径の多数の孔を有するスクリーン部材21からなる。そして、スクリーン部材21のインペラー23と内壁面が近接し得る箇所に、処理空間内の粉体を処理容器20と粉体容器10の内壁面との間の空間に排出し、開口面積がスクリーンの孔よりも大きな排出口であるスリット21aを2つ設けている。スリット21aの開口面積がスクリーンの孔よりも大きいため、スクリーンの孔を通過できない程度に粉体容器10に収容する粉体の流動性が悪化した状態であっても粉体が処理容器20の内側から外側へ通過可能である。このため、処理を行う粒径が100[μm]以下の粉体が、コーティング過程で一時的に流動性が悪化し、凝集性の上昇が起こったとしても処理容器20内で粉体を滞留させることを防止することができる。処理容器20内で滞留させることを防止でき、処理容器20内で滞留した粉体が剪断力付与部材であるインペラー23によって混練されることも防止できるため、粉体容器10内で粉体が凝集することを防止することができる。
構成例1の粉体処理装置100のように、処理容器20がインペラー23と内壁面が近接し得る箇所の少なくとも一部が、所定径の多数の孔を有するスクリーン部材21からなることにより、スクリーンの孔を用いた粉体の解砕を行うことができる。
また、排出口であるスリット20aまたは21aが、スリット状であると、処理容器20と剪断力付与部材との相対的な回転によって剪断力付与部材による掻き出し作用を粉体に効率良く作用させることができる。
また、構成例2のように処理容器20が回転することによって、剪断力付与部材であるインナーピース26が処理容器20の内壁面に対して相対速度を有する関係となることにより、処理容器20内の粉体に対して剪断力を付与する構成を実現することができる。
また、構成例1のように、剪断力付与部材であるインペラー23が回転することによって、インペラー23が処理容器20のスクリーン部材21の内壁面に対して相対速度を有する関係となることにより、処理容器20内の粉体に対して剪断力を付与する構成を実現することができる。
また、処理容器20の下方、且つ、下方通気手段である通気板6の上方に粉体容器10に対して回転する羽根部材25を設けることにより、比重の重い粉体が上昇することを促すことができる。
また、粉体処理装置100では、液状材料供給手段であるスプレーノズル7は、処理容器20の側方と粉体容器10の内壁面との間の空間に向けて液状材料であるコーティング液を噴霧供給する。これにより、コーティング液で濡れた粉体は、まず粉体容器10の低部から供給された気流(上昇流)に曝され、ある程度乾燥した後に処理容器20の内部に落下させることができるので、コーティング液の供給速度を最大限に高めることができる。
また、構成例2のように処理容器20が円筒状であることにより、円筒状の内周面とインナーピース26との間で、粉体に対して剪断力を付与する構成を実現することができる。
また、構成例1のように処理容器20の少なくとも下端部近傍が水平面における上記処理空間の断面積が下方ほど狭くなる、すり鉢状のスクリーン部材21であることにより、すり鉢状の内側の斜面とインペラー23との間で、粉体に対して剪断力を付与する構成を実現することができる。
また、構成例2のように、剪断力付与部材であるインナーピース26は、先端部26aが凸形状となっており、処理容器20の内壁面に対して相対速度を有する関係となることにより、処理容器20の内壁面との間隙であるクリアランス部に存在する粉体に対して処理容器20の内壁面に押し付けて圧縮力を付与する。このように圧縮力を付与しながら処理容器20とインナーピース26とが相対速度を有する関係となることによって、粉体に効率良く剪断力を付与することができる。
本実施形態の粉体処理装置の概略説明図 構成例1の粉体容器の処理容器近傍の拡大説明図、(a)は、側方から見た断面図、(b)は、上方から見た断面図。 構成例2の粉体容器の処理容器近傍の拡大説明図、(a)は、側方から見た断面図、(b)は、上方から見た断面図、(c)は、側面図。 インナーピースの先端部と処理容器の内壁面との関係を示す説明図、(a)は、構成例2のように先端部が中央部ほど内壁面に近接する凸形状となっている構成の説明図、(b)は、先端部が内壁面とのクリアランスが略一定の形状となっている構成の説明図。 比較例1及び比較例2で用いた粉体容器の処理容器近傍の拡大説明図、(a)は、側方から見た断面図、(b)は、上方から見た断面図。
符号の説明
1 吸気用ブロア
2 エアーヒーター
3 入口温度計
4 モーター
5 回転軸
6 通気板
7 スプレーノズル
8 ポンプ
9 コーティング液タンク
10 粉体容器
12 層内温度計
13 絞り部
14 フィルタバック
15 フィルタ部温度計
16 排気温度計
18 排気用ブロア
19 吸引口
20 処理容器
21 スクリーン部材
22 ガイドリング
23 インペラー
24 回転円板
25 羽根部材
26 インナーピース
100 粉体処理装置
A1 外気
A2 排気
A3 逆洗エアー
A4 スプレーエアー

Claims (12)

  1. 上部開口部を備えた粉体を収容するための粉体容器と、
    該粉体容器内に液状材料を供給する液状材料供給手段と、
    該粉体容器内に配置され、その内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、
    該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での該処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、
    該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、
    該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、
    該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、
    該粉体容器に収容する粉体として粒径が100[μm]以下の粉体を収容するものであり、
    該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の粉体を該粉体容器の内壁面と該処理容器との間の空間に排出し、開口面積が20[mm]以上の排出口を一つ以上設けたことを特徴とする粉体処理装置。
  2. 上部開口部を備えた粉体を収容するための粉体容器と、
    該粉体容器内に液状材料を供給する液状材料供給手段と、
    該粉体容器内に配置され、内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、
    該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、
    該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、
    該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、
    該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、
    該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の該粉体容器の内壁面と粉体を該処理容器との間の空間に排出し、開口面積が該粉体容器に収容する粉体の流動性が悪化した状態であっても粉体が通過可能な開口面積である排出口を一つ以上設けたことを特徴とする粉体処理装置。
  3. 上部開口部を備えた粉体を収容するための粉体容器と、
    該粉体容器内に液状材料を供給する液状材料供給手段と、
    該粉体容器内に配置され、内部の粉体に対して剪断力を付与する処理を行う処理空間を形成し、水平面における該処理空間の断面形状が円形で、該処理空間の上方に開口部を備え、上方、下方、及び側方の該粉体容器の内壁面との間に空間を有する処理容器と、
    該処理容器の内壁面の円周方向の一部に近接し、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面における近接する位置が変化し、該処理容器の内壁面と近接する位置での該処理容器の内壁面との間隙に存在する粉体に対して剪断力を付与する剪断力付与部材とを有する粉体処理装置において、
    該処理容器の下方で粉体の通過を阻止し、気体のみを通過させる下方通気手段と、
    該下方通気手段の下方から上方に向かう気流を発生させる気流発生手段と、
    該粉体容器の該上部開口部に設けられ、粉体の通過を阻止し、該粉体容器から気体のみを排出させる上部通気手段とを備え、
    該処理容器の内壁面における該剪断力付与部材の近接する位置が変化することにより、該剪断力付与部材が近接し得る該処理容器の内壁面の箇所の少なくとも一部が所定径の多数の孔を有するスクリーン部材からなり、
    該剪断力付与部材が近接し得る該処理容器の内壁面の箇所に、該処理容器内の粉体を該粉体容器の内壁面と該処理容器との間の空間に排出し、開口面積が該スクリーンの孔よりも大きな排出口を一つ以上設けたことを特徴とする粉体処理装置。
  4. 請求項1または2の粉体処理装置において、
    上記処理容器は上記剪断力付与部材と内壁面が近接し得る箇所の少なくとも一部が、所定径の多数の孔を有するスクリーン部材からなることを特徴とする粉体処理装置。
  5. 請求項1、2、3または4の粉体処理装置において、
    上記排出口がスリット状であることを特徴とする粉体処理装置。
  6. 請求項1、2、3、4または5の粉体処理装置において、
    上記処理容器が回転することによって、上記剪断力付与部材が該処理容器の内壁面に対して相対速度を有する関係となることを特徴とする粉体処理装置。
  7. 請求項1、2、3、4、5または6の粉体処理装置において、
    上記剪断力付与部材が回転することによって、該剪断力付与部材が上記処理容器の内壁面に対して相対速度を有する関係となることを特徴とする粉体処理装置。
  8. 請求項1、2、3、4、5、6または7の粉体処理装置において、
    上記処理容器の下方、且つ、上記下方通気手段の上方に上記粉体容器に対して回転する羽根部材を設けることを特徴とする粉体処理装置。
  9. 請求項1、2、3、4、5、6、7または8の粉体処理装置において、
    上記液状材料供給手段は、上記処理容器と上記粉体容器の内壁面との間の空間に向けて液状材料を噴霧供給することを特徴とする粉体処理装置。
  10. 請求項1、2、3、4、5、6、7、8または9の粉体処理装置において、
    上記処理容器は、円筒状であることを特徴とする粉体処理装置。
  11. 請求項1、2、3、4、5、6、7、8または9の粉体処理装置において、
    上記処理容器の少なくとも下端部近傍が水平面における上記処理空間の断面積が下方ほど狭くなる、すり鉢状であることを特徴とする粉体処理装置。
  12. 請求項1、2、3、4、5、6、7、8、9、10または11の粉体処理装置において、
    上記剪断力付与部材は、該処理容器の内壁面に対して相対速度を有する関係となることにより、該処理容器の内壁面との間隙に存在する粉体に対して該処理容器の内壁面に押し付けて圧縮力を付与する構成であることを特徴とする粉体処理装置。
JP2008032227A 2008-02-13 2008-02-13 粉体処理装置 Expired - Fee Related JP4914850B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008032227A JP4914850B2 (ja) 2008-02-13 2008-02-13 粉体処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008032227A JP4914850B2 (ja) 2008-02-13 2008-02-13 粉体処理装置

Publications (2)

Publication Number Publication Date
JP2009189935A true JP2009189935A (ja) 2009-08-27
JP4914850B2 JP4914850B2 (ja) 2012-04-11

Family

ID=41072451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008032227A Expired - Fee Related JP4914850B2 (ja) 2008-02-13 2008-02-13 粉体処理装置

Country Status (1)

Country Link
JP (1) JP4914850B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211953A (ja) * 2014-05-01 2015-11-26 小林 博 粉体ないしは粒子の表面を微細粒子の集まりで覆う処理装置
KR101744404B1 (ko) * 2015-08-27 2017-06-09 주위미 용기 코팅장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365272A (en) * 1976-11-24 1978-06-10 Okawara Mfg Granule manufacturing apparatus
JP2000117083A (ja) * 1998-10-16 2000-04-25 Hosokawa Micron Corp 粉体処理装置
JP2000254535A (ja) * 1999-03-05 2000-09-19 Mitsui Mining Co Ltd 混練粉砕機
JP2004148291A (ja) * 2002-09-04 2004-05-27 Pauretsuku:Kk 流動層装置
JP2005028356A (ja) * 2003-06-17 2005-02-03 Hosokawa Funtai Gijutsu Kenkyusho:Kk 複合粒子の製造方法、並びにその方法により製造された複合粒子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365272A (en) * 1976-11-24 1978-06-10 Okawara Mfg Granule manufacturing apparatus
JP2000117083A (ja) * 1998-10-16 2000-04-25 Hosokawa Micron Corp 粉体処理装置
JP2000254535A (ja) * 1999-03-05 2000-09-19 Mitsui Mining Co Ltd 混練粉砕機
JP2004148291A (ja) * 2002-09-04 2004-05-27 Pauretsuku:Kk 流動層装置
JP2005028356A (ja) * 2003-06-17 2005-02-03 Hosokawa Funtai Gijutsu Kenkyusho:Kk 複合粒子の製造方法、並びにその方法により製造された複合粒子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211953A (ja) * 2014-05-01 2015-11-26 小林 博 粉体ないしは粒子の表面を微細粒子の集まりで覆う処理装置
KR101744404B1 (ko) * 2015-08-27 2017-06-09 주위미 용기 코팅장치

Also Published As

Publication number Publication date
JP4914850B2 (ja) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6283093B2 (ja) 粒子調整装置
KR870000861B1 (ko) 조립 코팅장치
US20080305420A1 (en) Method and device for coating particles, and carrier for use in developer
US9976001B2 (en) Process for producing water-absorbing resin powder
IE57168B1 (en) Method for coating particles or liquid droplets
JP2002526246A (ja) 流し込み可能な製品を製造するための装置、及びこの装置を使用するための方法
Dixit et al. Fluidization technologies: aerodynamic principles and process engineering
CN102327232A (zh) 一种颗粒状预混剂的制备方法
JPS61213201A (ja) 微結晶セルロ−ス球形顆粒及びその製造法
JP2021003703A (ja) スラリーの製造に用いる分散混合ポンプを備えた分散混合システム
JP4914850B2 (ja) 粉体処理装置
US4967688A (en) Powder processing apparatus
JP2012143983A (ja) 噴霧乾燥造粒装置、それを用いた造粒体およびセラミック顆粒の製造方法
CN203790303U (zh) 一种药品制备用的沸腾制粒机
JP2004122057A (ja) 流動層装置
CN110947460B (zh) 一种颗粒剂的生产系统
CN107413281B (zh) 一种高转速湿法剪切造粒机
JP3890171B2 (ja) 遠心転動造粒装置およびそれを用いた粉粒体処理方法
JP2006102558A (ja) 粒子のコーティング方法
JP4461394B2 (ja) トナーの製造方法
Wong et al. Centrifugal air-assisted melt agglomeration for fast-release “granulet” design
JP6754587B2 (ja) 造粒粉体化粧料の製造方法
CN216094420U (zh) 旋风式粉粒体包衣装置
CN216987547U (zh) 一种磨料喷雾造粒装置
JP2006143998A (ja) 洗剤添加用粒子群の製造方法及び撹拌造粒機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

R150 Certificate of patent or registration of utility model

Ref document number: 4914850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees