JP2009176650A - Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method - Google Patents

Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method Download PDF

Info

Publication number
JP2009176650A
JP2009176650A JP2008016128A JP2008016128A JP2009176650A JP 2009176650 A JP2009176650 A JP 2009176650A JP 2008016128 A JP2008016128 A JP 2008016128A JP 2008016128 A JP2008016128 A JP 2008016128A JP 2009176650 A JP2009176650 A JP 2009176650A
Authority
JP
Japan
Prior art keywords
electrode plate
positive electrode
cutting
mixture layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008016128A
Other languages
Japanese (ja)
Inventor
Masakazu Yamada
雅一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008016128A priority Critical patent/JP2009176650A/en
Publication of JP2009176650A publication Critical patent/JP2009176650A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery which can prevent exfoliation of an electrode mix layer of a cut portion of an electrode plate, can avoid thermal runaway due to internal short-circuit, and is excellent in safety, by restricting an insertion angle of the electrode plate into cutting blades and an exit port angle after cutting thereof when the electrode plate is cut by a gang blade. <P>SOLUTION: An inflection angle θ1 a positive electrode plate 8 and a cutting lower blade 12 make and an inflection angle θ2 the positive electrode plate 8 and a cutting upper blade 11 make are made not less than 175°, thereby suppressing bending of the electrode plate in cutting. An exit port angle θ3 and an exit port angle θ4 are made not less than 10°, thereby preventing contact of cutting portions of a positive electrode plate 9 and a positive electrode plate 10 after cutting and preventing exfoliation of the electrode mix layer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン電池に代表される非水系二次電池用電極板とそれを用いた非水系二次電池およびその製造方法並びに製造装置に関し、特に安全性を高めた非水系二次電池に関するものである。   TECHNICAL FIELD The present invention relates to an electrode plate for a non-aqueous secondary battery represented by a lithium ion battery, a non-aqueous secondary battery using the same, a manufacturing method thereof, and a manufacturing apparatus, and more particularly to a non-aqueous secondary battery with improved safety. Is.

近年、携帯用電子機器の電源として利用が広がっているリチウム二次電池は、負極板にリチウムの吸蔵および放出が可能な炭素質材料等を用い、正極板にLiCoO等の遷移金属とリチウムの複合酸化物を活物質として用いており、これによって高電位で高放電容量の非水系二次電池を実現しているが、近年の電子機器および通信機器の多機能化に伴って、さらなる高容量化が望まれている。これらのリチウム二次電池において、高容量化が進む一方で重視すべきは安全対策であり、特に正極板と負極板とが内部短絡することによる急激な温度上昇を抑止することが極めて重要である。 In recent years, lithium secondary batteries, which are widely used as power sources for portable electronic devices, use a carbonaceous material capable of occluding and releasing lithium for the negative electrode plate, and a transition metal such as LiCoO 2 and lithium for the positive electrode plate. A composite oxide is used as an active material, and this has realized a non-aqueous secondary battery with a high potential and a high discharge capacity. However, with the recent multi-functionalization of electronic and communication devices, the capacity has increased. Is desired. In these lithium secondary batteries, while increasing capacity, safety measures should be emphasized, and in particular, it is extremely important to suppress a rapid temperature rise due to an internal short circuit between the positive electrode plate and the negative electrode plate. .

従来、この問題の一つとして、正極板および負極板を所定の寸法に切断する際に、活物質が集電体から脱落して集電体が露出するという問題がある。電極板とセパレータを捲回した電極群を電池ケースに挿入し、電解液を注入した後に封口した非水系二次電池においては、充放電の際、特に正極板の集電体が露出している部分と負極板の活物質とが接触したときの内部短絡により熱暴走の原因となる。   Conventionally, as one of the problems, there is a problem that when the positive electrode plate and the negative electrode plate are cut into predetermined dimensions, the active material is dropped from the current collector and the current collector is exposed. In a non-aqueous secondary battery in which an electrode group in which an electrode plate and a separator are wound is inserted into a battery case and sealed after injecting an electrolyte, the current collector of the positive electrode plate is particularly exposed during charging and discharging. An internal short circuit when the part and the active material of the negative electrode plate come into contact causes thermal runaway.

前記課題に対し、集電体と活物質の剥がれを抑制する手段として、種々の提案がなされており、例えばギャング刃を用いて切断する際に、図8に示すように上軸62に取付けた上刃60および下軸63に取付けた下刃61の端面部間のクリアランス64を20μmから60μmにすることで電極板の切断部における活物質の脱落を防止することが提案されている(例えば、特許文献1参照)。   Various proposals have been made as means for suppressing the peeling of the current collector and the active material to the above-mentioned problem. For example, when cutting using a gang blade, it is attached to the upper shaft 62 as shown in FIG. It has been proposed to prevent the active material from falling off at the cut portion of the electrode plate by changing the clearance 64 between the end faces of the lower blade 61 attached to the upper blade 60 and the lower shaft 63 from 20 μm to 60 μm (for example, Patent Document 1).

さらに、例えば図9に示されるようにギャング刃を用いて切断する際に、上刃70の側面72の円周エッジ部にテーパ加工74と、下刃71の側面73の円周エッジ部にテーパ加工75を施すことで、電極板の切断部における活物質の脱落を防止することが提案されている(例えば、特許文献2参照)。
特開2005−317496号公報 特開2006−172828号公報
Further, for example, when cutting using a gang blade as shown in FIG. 9, the circumferential edge portion of the side surface 72 of the upper blade 70 is tapered 74 and the circumferential edge portion of the side surface 73 of the lower blade 71 is tapered. It has been proposed to prevent the active material from dropping off at the cut portion of the electrode plate by applying the processing 75 (see, for example, Patent Document 2).
JP-A-2005-317496 JP 2006-172828 A

しかしながら、非水系二次電池用電極板はアルミニウムの集電体または銅の集電体の両面に活物質を塗工した三層部と活物質を塗工していない未塗工部でできているために、三層部と未塗工部を同じ切断刃で切断することは非常に困難である。上述した特許文献1における活物質の脱落を防止する従来技術においては、活物質の脱落は防止できても、未塗工部の集電体を切断するときにバリが発生し内部短絡を誘発する課題を有していた。また、特許文献2における活物質の脱落を防止する従来技術においては、活物質と集電体の密着強度や電極板の厚み、または電極板の強度で活物質の脱落が左右されるといった課題を有していた。   However, the electrode plate for a non-aqueous secondary battery is made up of a three-layer part in which an active material is applied on both sides of an aluminum current collector or a copper current collector and an uncoated part in which no active material is applied. Therefore, it is very difficult to cut the three-layer portion and the uncoated portion with the same cutting blade. In the conventional technique for preventing the active material from falling off in the above-mentioned Patent Document 1, even if the active material can be prevented from falling off, burrs are generated when the current collector in the uncoated part is cut to induce an internal short circuit. Had problems. Moreover, in the prior art which prevents the active material from falling off in Patent Document 2, there is a problem that the dropping of the active material depends on the adhesion strength of the active material and the current collector, the thickness of the electrode plate, or the strength of the electrode plate. Had.

本発明は上記従来の課題を鑑みてなされたもので、電極板を切断するとき、切断刃への電極板の挿入角度と電極板の切断後の出口角度を規制することで切断部の活物質の脱落が
防止できる非水系二次電池用電極板であり、内部短絡による熱暴走を回避でき、安全性に優れた非水系二次電池を提供することを目的とするものである。
The present invention has been made in view of the above-described conventional problems. When cutting an electrode plate, the active material of the cutting portion is regulated by regulating the insertion angle of the electrode plate into the cutting blade and the exit angle after cutting the electrode plate. It is an electrode plate for a non-aqueous secondary battery that can prevent detachment of the battery, and an object thereof is to provide a non-aqueous secondary battery excellent in safety that can avoid thermal runaway due to an internal short circuit.

上記従来の課題を解決するために本発明の非水系二次電池用電極板は、少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成し所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成し所定の厚みまでプレスした負極板を所定の寸法に切断して構成した非水系二次電池用電極板であって、正極板または負極板の長手方向における正極集電体の正極合剤層の切断面からの剥がれまたは負極集電体の負極合剤層の切断面からの剥がれの長さを正極合剤層または負極合剤層の厚み以下としたことを特徴とするものである。   In order to solve the above conventional problems, the electrode plate for a non-aqueous secondary battery according to the present invention is a positive electrode mixture in which an active material, a conductive material and a binder comprising at least a lithium-containing composite oxide are kneaded and dispersed in a dispersion medium. A coating material is applied onto the positive electrode current collector and dried to form a positive electrode mixture layer and pressed to a predetermined thickness, or at least an active material and a binder made of a material capable of holding lithium in a dispersion medium. A non-aqueous secondary battery comprising a negative electrode plate coated with a kneaded and dispersed negative electrode coating material, dried to form a negative electrode mixture layer, and pressed to a predetermined thickness and cut to a predetermined size. The length of peeling from the cut surface of the positive electrode mixture layer of the positive electrode current collector or the negative electrode mixture layer of the negative electrode current collector in the longitudinal direction of the positive electrode plate or negative electrode plate Less than or equal to the thickness of the positive electrode mixture layer or negative electrode mixture layer It is characterized in.

本発明の非水系二次電池用電極板によると、正極板または負極板の切断部における活物質の剥がれが防止でき、内部短絡による熱暴走を回避できる。また、切断後の電極板を連続的に巻取る際に切断部の極板切れを回避でき、製造工程での歩留が向上できる。   According to the electrode plate for a non-aqueous secondary battery of the present invention, the active material can be prevented from peeling off at the cut portion of the positive electrode plate or the negative electrode plate, and thermal runaway due to an internal short circuit can be avoided. In addition, when the electrode plate after cutting is continuously wound, it is possible to avoid cutting of the electrode plate at the cutting portion, and the yield in the manufacturing process can be improved.

本発明の第1の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成し所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成し所定の厚みまでプレスした負極板を所定の寸法に切断して構成した非水系二次電池用電極板であって、正極板または負極板の長手方向における正極集電体の正極合剤層の切断面からの剥がれまたは負極集電体の負極合剤層の切断面からの剥がれの長さを正極合剤層または負極合剤層の厚み以下としたことにより、内部短絡による熱暴走を回避でき、非水系二次電池の安全を確保することが可能であり、また、切断後の電極を連続的に巻取る際に切断部の極板切れを回避でき、製造工程での歩留が向上できる。   In the first invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium is applied onto a positive electrode current collector and dried. A negative electrode current collector is formed by forming a positive electrode mixture layer and pressing it to a predetermined thickness, or a negative electrode mixture paint obtained by kneading and dispersing an active material and a binder made of a material capable of holding at least lithium in a dispersion medium An electrode plate for a non-aqueous secondary battery, which is formed by cutting a negative electrode plate that has been applied and dried to form a negative electrode mixture layer and pressed to a predetermined thickness, and is cut to a predetermined size, and is a positive electrode plate or a negative electrode plate The length of the positive electrode current collector in the longitudinal direction of the positive electrode mixture layer from the cut surface of the positive electrode mixture layer or the length of the negative electrode current collector from the cut surface of the negative electrode mixture layer is the thickness of the positive electrode mixture layer or the negative electrode mixture layer. Due to the following, thermal runaway due to internal short circuit It is possible to avoid, and it is possible to ensure the safety of the non-aqueous secondary battery, and it is possible to avoid the electrode plate breakage of the cut part when continuously winding the electrode after cutting, and the yield in the manufacturing process can be avoided. It can be improved.

本発明の第2の発明においては、少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成した後に所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成した後に所定の厚みまでプレスした負極板を所定の寸法に切断した正極板または負極板をそれぞれ切断後に上下互い違いに振り分けて巻き取る非水系二次電池用電極板の製造方法であって、電極板が上下切断刃で切断する場合において、電極板の切断時に屈曲角を175°から180°とし、また、電極板の切断後には隣り合う切断後の電極板を上下互い違いに分離させることにより、活物質と集電体の密着強度や電極板の厚み、または電極板の強度で活物質の脱落が左右されるといった影響を受けないで切断部の活物質の脱落が防止でき、内部短絡による熱暴走を回避することが可能である。   In the second invention of the present invention, a positive electrode mixture paint obtained by kneading and dispersing at least an active material comprising a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium is applied onto the positive electrode current collector and dried. A positive electrode plate pressed to a predetermined thickness after forming a positive electrode mixture layer or a negative electrode mixture coating material in which an active material made of a material capable of holding at least lithium and a binder are kneaded and dispersed in a dispersion medium A non-aqueous system in which a negative electrode plate that is applied to a body and dried to form a negative electrode mixture layer and then pressed to a predetermined thickness is cut into predetermined dimensions, and then the positive electrode plate or the negative electrode plate is divided and wound up alternately after being cut. A method for manufacturing an electrode plate for a secondary battery, wherein when the electrode plate is cut with an upper and lower cutting blade, the bending angle is changed from 175 ° to 180 ° when the electrode plate is cut, and the electrode plates are adjacent after being cut. Cutting By separating the subsequent electrode plates in an up-and-down direction, the cutting portion is not affected by the influence of the active material and current collector adhesion strength, the electrode plate thickness, or the electrode plate strength depending on the dropout of the active material. The active material can be prevented from falling off, and thermal runaway due to an internal short circuit can be avoided.

本発明の第3の発明においては、電極板が上下切断刃で切断する場合において、入口部では上下切断刃の中央および水平へ挿入させる水平ロールを設置し、出口部では隣り合う切断後の電極板が上下互い違いに分離させる出口ロールを各々10°以上に設置することにより、切断部の活物質の脱落が防止でき、内部短絡による熱暴走を回避することが可能である。   In the third invention of the present invention, when the electrode plate is cut by the upper and lower cutting blades, a horizontal roll is provided to be inserted in the center and horizontally of the upper and lower cutting blades at the inlet portion, and the adjacent cut electrodes at the outlet portion. By installing the outlet rolls that separate the plates alternately in the upper and lower directions at 10 ° or more, it is possible to prevent the active material in the cut portion from falling off and to avoid thermal runaway due to an internal short circuit.

本発明の第4の発明においては、正極板、負極板、セパレータの積層体または巻回体からなる電極群を非水電解質とともにケース内に封入してなる非水系二次電池において、正極板および負極板として請求項1記載の電極板を用いたことにより、内部短絡による熱暴走を回避することが可能である。   According to a fourth aspect of the present invention, in a non-aqueous secondary battery in which an electrode group consisting of a positive electrode plate, a negative electrode plate, a separator laminate or a wound body is enclosed in a case together with a non-aqueous electrolyte, By using the electrode plate according to claim 1 as the negative electrode plate, thermal runaway due to an internal short circuit can be avoided.

以下、本発明の一実施の形態について図面を参照しながら説明する。例えば、図4に示されるように本発明の非水系二次電池では、複合リチウム酸化物を活物質とする正極板16とリチウムを保持しうる材料を活物質とする負極板17とをセパレータ18を介して渦巻状に巻回した電極群22を作製した後、この電極群22を有底円筒形の電池ケース19の内部に絶縁板25と共に収容し、電極群22の下部より導出した負極リード24を電池ケース19の底部に接続し、次いで電極群22の上部より導出した正極リード23を封口板20に接続し、電池ケース19に所定量の非水溶媒からなる電解液(図示せず)を注液した後、電池ケース19の開口部に封口ガスケット21を周縁に取付けた封口板20を挿入し、電池ケース19の開口部を内方向に折り曲げてかしめ封口している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. For example, as shown in FIG. 4, in the non-aqueous secondary battery of the present invention, a separator 18 includes a positive electrode plate 16 using a composite lithium oxide as an active material and a negative electrode plate 17 using a material capable of holding lithium as an active material. After the electrode group 22 wound in a spiral shape is manufactured through the electrode, the electrode group 22 is housed in the bottomed cylindrical battery case 19 together with the insulating plate 25 and is led out from the lower part of the electrode group 22. 24 is connected to the bottom of the battery case 19, and then the positive electrode lead 23 led out from the upper part of the electrode group 22 is connected to the sealing plate 20. The battery case 19 has an electrolyte solution (not shown) made of a predetermined amount of nonaqueous solvent. Then, a sealing plate 20 having a sealing gasket 21 attached to the periphery is inserted into the opening of the battery case 19, and the opening of the battery case 19 is bent inward to seal it.

また、非水系二次電池用の電極群22は、例えば図2に示したように正極集電体1の両面に正極合剤層2a,2bを形成した正極板3および負極集電体4の両面に負極合剤層5a,5bを形成した負極板6とセパレータ7により構成されている。例えば、図3(a)に示したように未切断の正極板8が水平ロール15を経由して、切断上刃11と切断下刃12に挿入され、切断上刃11と切断下刃12で切断した後、正極板9と正極板10は、出口角度θ3および出口角度θ4に設置した出口ロール13と出口ロール14を経由してフープ状に巻き取られる。   Further, the electrode group 22 for the non-aqueous secondary battery includes, for example, a positive electrode plate 3 and a negative electrode current collector 4 in which positive electrode mixture layers 2a and 2b are formed on both surfaces of the positive electrode current collector 1 as shown in FIG. It consists of a negative electrode plate 6 and a separator 7 on which negative electrode mixture layers 5a and 5b are formed. For example, as shown in FIG. 3A, the uncut positive plate 8 is inserted into the cutting upper blade 11 and the cutting lower blade 12 via the horizontal roll 15, and the cutting upper blade 11 and the cutting lower blade 12 After cutting, the positive electrode plate 9 and the positive electrode plate 10 are wound into a hoop shape via an outlet roll 13 and an outlet roll 14 installed at the outlet angle θ3 and the outlet angle θ4.

正極板8を切断上刃11、切断下刃12に対して水平方向に挿入した場合、正極板8と切断下刃12の屈曲角θ1および正極板8と切断上刃11の屈曲角θ2を各々175°以上とすることにより、切断時の極板屈曲を抑制でき、また、出口角度θ3と出口角度θ4を各々10°以上にすることにより、切断後の正極板9と正極板10の切断部同士の接触を防ぐことが可能となる。このとき、例えば図1(a),(b)に示すように正極集電体1の両面に正極合剤層2a,2bを形成した正極板3と負極極集電体4の両面に負極合剤層5a,5bを形成した負極板6において、正極集電体1と正極合剤層2a,2bの剥がれと負極集電体4と負極合剤層5a,5bの剥がれが抑制できるが、図3(a)に示すように、切断時の電極板の屈折角が大きいことと、切断後に切断部同士の接触を防ぐことにより電極合剤層と集電体の剥離強度が維持されていることが電極合剤層の剥がれを抑制できる理由と考えられる。   When the positive electrode plate 8 is inserted horizontally with respect to the cutting upper blade 11 and the cutting lower blade 12, the bending angle θ1 of the positive electrode plate 8 and the cutting lower blade 12 and the bending angle θ2 of the positive electrode plate 8 and the cutting upper blade 11 are respectively set. By setting the angle to 175 ° or more, bending of the electrode plate during cutting can be suppressed, and by setting the exit angle θ3 and the exit angle θ4 to 10 ° or more respectively, the cut portions of the positive electrode plate 9 and the positive electrode plate 10 after cutting It becomes possible to prevent mutual contact. At this time, for example, as shown in FIGS. 1 (a) and 1 (b), the negative electrode composite is formed on both surfaces of the positive electrode plate 3 and the negative electrode current collector 4 formed with the positive electrode mixture layers 2 a and 2 b on both surfaces of the positive electrode current collector 1. In the negative electrode plate 6 on which the agent layers 5a and 5b are formed, peeling of the positive electrode current collector 1 and the positive electrode mixture layers 2a and 2b and peeling of the negative electrode current collector 4 and the negative electrode mixture layers 5a and 5b can be suppressed. As shown in 3 (a), the refraction strength of the electrode mixture layer and the current collector is maintained by preventing the contact angle between the cut portions after cutting and that the refraction angle of the electrode plate at the time of cutting is large. This is considered to be the reason why peeling of the electrode mixture layer can be suppressed.

例えば、図3(b)に示したように未切断の正極板8が水平ロール15を経由して、切断上刃11と切断下刃12に挿入され、切断上刃11と切断下刃12で切断した後、正極板9と正極板10は、出口角度θ5および出口角度θ6に設置した出口ロール13と出口ロール14を経由してフープ状に巻き取られる。正極板8を水平方向に挿入した場合、正極板8と切断下刃12の屈曲角θ1および正極板8と切断上刃11の屈曲角θ2は各々175°以上とすることにより、切断時の極板の屈曲を抑制できるが、出口角度θ5と出口角度θ6は各々10°未満にすることにより、切断後の正極板9と正極板10の切断部同士が接触する。   For example, as shown in FIG. 3B, the uncut positive plate 8 is inserted into the cutting upper blade 11 and the cutting lower blade 12 via the horizontal roll 15, and the cutting upper blade 11 and the cutting lower blade 12 After cutting, the positive electrode plate 9 and the positive electrode plate 10 are wound in a hoop shape via the outlet roll 13 and the outlet roll 14 installed at the outlet angle θ5 and the outlet angle θ6. When the positive electrode plate 8 is inserted in the horizontal direction, the bending angle θ1 of the positive electrode plate 8 and the lower cutting blade 12 and the bending angle θ2 of the positive electrode plate 8 and the upper cutting blade 11 are set to 175 ° or more, respectively. Although bending of the plate can be suppressed, the cut portions of the positive electrode plate 9 and the positive electrode plate 10 after cutting are brought into contact with each other by setting the outlet angle θ5 and the outlet angle θ6 to be less than 10 °.

このとき、例えば図5(a),(b)に示すように正極集電体1の両面に正極合剤層2a,2bを形成した正極板3と負極極集電体4の両面に負極合剤層5a,5bを形成した負極板6において、正極集電体1と正極合剤層2a,2bの剥がれと負極集電体4と負極合剤層5a,5bの剥がれが発生しやすいが、図3(b)に示すように、切断時の電極板の屈折角が小さいことと、切断後に切断部同士が接触することにより電極合剤層と集電体
の剥離強度が低下したことが電極合剤層の剥がれが発生しやすい理由と考えられる。
At this time, for example, as shown in FIGS. 5 (a) and 5 (b), the negative electrode composite is formed on both surfaces of the positive electrode plate 3 and the negative electrode current collector 4 having the positive electrode mixture layers 2 a and 2 b formed on both surfaces of the positive electrode current collector 1. In the negative electrode plate 6 on which the agent layers 5a and 5b are formed, peeling of the positive electrode current collector 1 and the positive electrode mixture layers 2a and 2b and peeling of the negative electrode current collector 4 and the negative electrode mixture layers 5a and 5b are likely to occur. As shown in FIG. 3 (b), the electrode plate has a reduced refraction angle between the electrode mixture layer and the current collector due to the small refraction angle of the electrode plate at the time of cutting and the contact between the cut portions after cutting. This is considered to be the reason why the mixture layer is easily peeled off.

例えば、図3(c)に示したように未切断の正極板8が切断上刃11と切断下刃12の噛み合わせ高さより下(または上)方向から挿入され、切断上刃11と切断下刃12で切断した後の正極板9と正極板10は、出口角度θ3および出口角度θ4に設置した出口ロール13と出口ロール14を経由してフープ状に巻き取られる。   For example, as shown in FIG. 3C, the uncut positive electrode plate 8 is inserted from the lower (or higher) direction than the meshing height of the upper cutting blade 11 and the lower cutting blade 12, and the upper cutting blade 11 and the lower cutting edge are cut. The positive electrode plate 9 and the positive electrode plate 10 after being cut by the blade 12 are wound into a hoop shape via an outlet roll 13 and an outlet roll 14 installed at the outlet angle θ3 and the outlet angle θ4.

正極板8を切断上刃11と切断下刃12の噛み合わせ高さより下(または上)方向から挿入した場合、未切断の正極板8は切断下刃12に対して接線方向に沿うため、屈曲角θ7は180°となり、切断後の正極板9は活物質の剥がれが発生しないが、図3(c)に示すように、切断時の電極板の屈折角が大きいことにより電極合剤層と集電体の剥離強度が維持されていることが電極合剤層の剥がれを抑制できる理由と考えられる。   When the positive electrode plate 8 is inserted from below (or above) the height of engagement between the upper cutting blade 11 and the lower cutting blade 12, the uncut positive electrode plate 8 is tangential to the lower cutting blade 12, and therefore bent. The angle θ7 is 180 °, and the positive electrode plate 9 after cutting does not peel off the active material. However, as shown in FIG. The reason why the peel strength of the current collector is maintained is considered to be the reason why peeling of the electrode mixture layer can be suppressed.

一方、正極板8が切断上刃11で切断される場合、未切断の正極板8は切断上刃11に対して屈曲角θ8が170°未満となり、切断後の正極板9は活物質の剥がれが発生しやすいが、図3(c)に示すように、切断後に切断部同士が接触することにより電極合剤層と集電体の剥離強度が低下したことが電極合剤層の剥がれが発生しやすい理由と考えられる。   On the other hand, when the positive electrode plate 8 is cut by the cut upper blade 11, the uncut positive electrode plate 8 has a bending angle θ8 of less than 170 ° with respect to the cut upper blade 11, and the positive electrode plate 9 after cutting is peeled off of the active material. However, as shown in FIG. 3 (c), the electrode mixture layer peels off because the peel strength between the electrode mixture layer and the current collector decreases due to the contact between the cut parts after cutting. It is thought that it is easy to do.

次に、例えば、図6(a),(b),(c),(d)および(e)は、切断上刃26と切断下刃27が正極集電体28の両面に正極合剤層29a,29bを形成した正極板30に入り込みながら切断される過程について示した。図6は、電極板の切断過程を示す電極板の断面図を示す。図6(a)は切断上刃26と切断下刃27が正極板30に入り込む前の状態であり、正極集電体28と正極合剤層29a,29bに変化はない。図6(b)は切断上刃26と切断下刃27が正極板30に入り込んだ初期状態であり、前記正極板30の正極集電体28および正極合剤層29a,29bがせん断により変形を始めた状態である。   Next, for example, FIGS. 6A, 6 </ b> B, 6 </ b> C, 6 </ b> D, and 6 </ b> E show that the upper cutting blade 26 and the lower cutting blade 27 have positive electrode mixture layers on both surfaces of the positive electrode current collector 28. The process of cutting while entering the positive electrode plate 30 on which 29a and 29b are formed is shown. FIG. 6 is a cross-sectional view of the electrode plate showing the cutting process of the electrode plate. FIG. 6A shows a state before the cutting upper blade 26 and the cutting lower blade 27 enter the positive electrode plate 30, and there is no change in the positive electrode current collector 28 and the positive electrode mixture layers 29a and 29b. FIG. 6B shows an initial state in which the upper cutting blade 26 and the lower cutting blade 27 have entered the positive electrode plate 30, and the positive electrode current collector 28 and the positive electrode mixture layers 29 a and 29 b of the positive electrode plate 30 are deformed by shearing. It is in the state which started.

図6(c)は切断上刃26と切断下刃27がさらに近づくことにより、正極板33と正極板36に分離された状態であるが、正極板33は集電体31と正極合剤層32aおよび正極合剤層32bからなる切断後の状態を示し、正極板36は集電体34と正極合剤層35aおよび正極合剤層35bからなる切断後の状態を示す。この段階で正極板33と正極板36の2つの正極板に分離されたことになるが、正極板33の切断面と正極板36の切断面はお互い接触した状態である。   FIG. 6C shows a state in which the upper cutting blade 26 and the lower cutting blade 27 are closer to each other so that the positive electrode plate 33 and the positive electrode plate 36 are separated. The positive electrode plate 33 is separated from the current collector 31 and the positive electrode mixture layer. The state after cutting | disconnection which consists of 32a and the positive mix layer 32b is shown, and the positive electrode plate 36 shows the state after cutting | disconnection which consists of the electrical power collector 34, the positive mix layer 35a, and the positive mix layer 35b. At this stage, the positive electrode plate 33 and the positive electrode plate 36 are separated into two positive plates, but the cut surface of the positive electrode plate 33 and the cut surface of the positive electrode plate 36 are in contact with each other.

図6(d)は切断上刃26と切断下刃27の頂点が噛み合ったときの、正極板33と正極板36の状態であるが、正極板33は集電体31と正極合剤層32aおよび正極合剤層32bからなる切断後の状態を示し、正極板36は集電体34と正極合剤層35aおよび正極合剤層35bからなる切断後の状態を示すが、この段階で正極板33の切断面と正極板36の切断面が完全に分離される。また、図6(e)は切断上刃26と切断下刃27を通過したときの正極板33と正極板36の状態を示すが、この段階も図6(d)と同様、正極板33の切断面と正極板36の切断面が完全に分離される。   FIG. 6D shows a state of the positive electrode plate 33 and the positive electrode plate 36 when the apexes of the upper cutting blade 26 and the lower cutting blade 27 are engaged with each other. The positive electrode plate 33 is the current collector 31 and the positive electrode mixture layer 32a. The positive electrode plate 36 shows a state after cutting consisting of the current collector 34, the positive electrode mixture layer 35a, and the positive electrode mixture layer 35b. The cut surface 33 and the cut surface of the positive electrode plate 36 are completely separated. FIG. 6E shows the state of the positive electrode plate 33 and the positive electrode plate 36 when passing through the upper cutting blade 26 and the lower cutting blade 27, and this stage is similar to that of FIG. The cut surface and the cut surface of the positive electrode plate 36 are completely separated.

例えば、図7は電極板切断装置を示すが、電極板ロール37から巻出された電極板38は、水平ロール39を通過したのち切断上刃40a,40b,40cと切断下刃41a,41bで所定の切断寸法、所定の列数に切断される。切断寸法と列数は切断上刃および切断下刃の取付け数で切替えが可能である。切断後の電極板38は、電極板47aと電極板46a、電極板46aと電極板47b、電極板47bと電極板46b、電極板46bと電極板47cのように上下互い違いに分離される。   For example, FIG. 7 shows an electrode plate cutting device, but an electrode plate 38 unwound from an electrode plate roll 37 passes through a horizontal roll 39 and then is cut by upper cutting blades 40a, 40b, 40c and lower cutting blades 41a, 41b. It is cut into a predetermined cutting size and a predetermined number of rows. The cutting dimension and the number of rows can be switched by the number of cutting upper blades and cutting lower blades attached. The cut electrode plates 38 are separated in a staggered manner like an electrode plate 47a and an electrode plate 46a, an electrode plate 46a and an electrode plate 47b, an electrode plate 47b and an electrode plate 46b, and an electrode plate 46b and an electrode plate 47c.

このとき電極板46a,46bは上部走行出口ロール42とガイドロール44を経由して巻取られるが、上部走行出口ロール42は電極板46a,46bが水平に対して10°以上の角度になるように設置されており、一方、電極板47a,47b,47cは下部走行出口ロール43とガイドロール45を経由して巻取られるが、下部走行出口ロール43は電極板46a,46bが水平に対して10°以下の角度になるように設置されている。以上のように、切断時の電極板の屈折角を大きくすることと、切断後に切断部同士の接触を防ぐことにより電極合剤層と集電体の剥離強度が維持されていることが電極合剤層の剥がれを抑制できると考えられる。   At this time, the electrode plates 46a and 46b are wound up via the upper traveling outlet roll 42 and the guide roll 44, but the upper traveling outlet roll 42 has the electrode plates 46a and 46b at an angle of 10 ° or more with respect to the horizontal. On the other hand, the electrode plates 47a, 47b and 47c are wound up via the lower traveling outlet roll 43 and the guide roll 45, but the lower traveling outlet roll 43 has the electrode plates 46a and 46b horizontally It is installed at an angle of 10 ° or less. As described above, it is necessary to maintain the peel strength between the electrode mixture layer and the current collector by increasing the refraction angle of the electrode plate at the time of cutting and preventing contact between the cut portions after cutting. It is thought that peeling of the agent layer can be suppressed.

次に、正極板3および負極板6の作製方法について具体的に説明する。まず正極板3については特に限定されないが、アルミニウムまたはアルミニウム合金あるいはニッケルまたはニッケル合金よりなる焼結金属体を用いることができ、厚みが10μm以上40μm以下、気孔率が20%以上60%以下、気孔径が1μm以上5μm以下である正極集電体1の片面または両面に正極活物質、導電材、結着剤とを分散媒中にプラネタリーミキサー等の分散機により混合分散させた正極合剤塗料を塗布、乾燥、圧延して正極合剤層を形成することにより作製される。   Next, a method for producing the positive electrode plate 3 and the negative electrode plate 6 will be specifically described. First, the positive electrode plate 3 is not particularly limited, but a sintered metal body made of aluminum, an aluminum alloy, nickel, or a nickel alloy can be used. The thickness is 10 μm to 40 μm, the porosity is 20% to 60%, A positive electrode mixture paint in which a positive electrode active material, a conductive material, and a binder are mixed and dispersed in a dispersion medium such as a planetary mixer on one or both sides of a positive electrode current collector 1 having a pore diameter of 1 μm to 5 μm. Is applied, dried and rolled to form a positive electrode mixture layer.

正極活物質としては、例えばコバルト酸リチウムおよびその変性体(コバルト酸リチウムにアルミニウムやマグネシウムを固溶させたものなど)、ニッケル酸リチウムおよびその変性体(一部ニッケルをコバルト置換させたものなど)、マンガン酸リチウムおよびその変性体などの複合酸化物を挙げることができる。   Examples of the positive electrode active material include lithium cobaltate and modified products thereof (such as lithium cobaltate in which aluminum or magnesium is dissolved), lithium nickelate and modified products thereof (such as nickel partially substituted with cobalt). And composite oxides such as lithium manganate and modified products thereof.

このときの導電材としては、例えばアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、各種グラファイトを単独あるいは組み合わせて用いても良い。   As the conductive material at this time, for example, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and various graphites may be used alone or in combination.

このときの正極用結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリフッ化ビニリデンの変性体、ポリテトラフルオロエチレン(PTFE)、アクリレート単位を有するゴム粒子結着剤等を用いることができ、この際に反応性官能基を導入したアクリレートモノマー、またはアクリレートオリゴマーを結着剤中に混入させることも可能である。   As the binder for the positive electrode at this time, for example, polyvinylidene fluoride (PVdF), a modified polyvinylidene fluoride, polytetrafluoroethylene (PTFE), a rubber particle binder having an acrylate unit, and the like can be used. At this time, an acrylate monomer or an acrylate oligomer into which a reactive functional group is introduced can be mixed in the binder.

一方、負極板6についても特に限定されないが、銅または銅合金よりなる焼結金属体を用いることができ、厚みが10μm以上40μm以下、気孔率が20%以上60%以下、気孔径が1μm以上5μm以下である負極集電体4の片面または両面に負極活物質、結着剤、必要に応じて導電材、増粘剤とを分散媒中にプラネタリーミキサー等の分散機により混合分散させた負極の合剤塗料を塗布、乾燥、圧延して負極合剤層を形成することにより作製される。   On the other hand, the negative electrode plate 6 is not particularly limited, but a sintered metal body made of copper or a copper alloy can be used. The thickness is 10 μm or more and 40 μm or less, the porosity is 20% or more and 60% or less, and the pore diameter is 1 μm or more. A negative electrode active material, a binder, and optionally a conductive material and a thickener were mixed and dispersed in a dispersion medium such as a planetary mixer on one or both sides of the negative electrode current collector 4 having a thickness of 5 μm or less. The negative electrode mixture layer is formed by applying, drying and rolling a negative electrode mixture paint.

負極用活物質としては、各種天然黒鉛および人造黒鉛、シリサイドなどのシリコン系複合材料および各種合金組成材料を用いることができる。   As the negative electrode active material, various natural graphites, artificial graphite, silicon-based composite materials such as silicide, and various alloy composition materials can be used.

このときの負極用結着剤としてはPVdFおよびその変性体をはじめ各種バインダーを用いることができるが、リチウムイオン受入れ性向上の観点から、スチレン−ブタジエン共重合体ゴム粒子(SBR)およびその変性体等を用いることもできる。   Various binders such as PVdF and modified products thereof can be used as the negative electrode binder at this time. From the viewpoint of improving lithium ion acceptability, styrene-butadiene copolymer rubber particles (SBR) and modified products thereof are used. Etc. can also be used.

次いで、セパレータについてはリチウムイオン二次電池の使用範囲に耐えうる組成であれば特に限定されないが、ポリエチレン、ポリプロピレンなどのオレフィン系樹脂の微多孔フィルムを、単一あるいは複合して用いるのが一般的でありまた態様として好ましい。このセパレータの厚みは特に限定されないが、10〜25μmとすれば良い。   Next, the separator is not particularly limited as long as it has a composition that can withstand the use range of the lithium ion secondary battery, but a microporous film of an olefin resin such as polyethylene or polypropylene is generally used singly or in combination. And preferred as an embodiment. The thickness of the separator is not particularly limited, but may be 10 to 25 μm.

さらに、電解液については、電解質塩としてLiPFおよびLiBFなどの各種リチウム化合物を用いることができる。また溶媒としてエチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)を単独および組み合わせて用いることができる。 Moreover, for the electrolytic solution, it is possible to use various lithium compounds such as LiPF 6 and LiBF 4 as an electrolyte salt. Further, ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and methyl ethyl carbonate (MEC) can be used alone or in combination as a solvent.

また正負極板上に良好な皮膜を形成させる、あるいは過充電時の安定性を保証するために、ビニレンカーボネート(VC)やシクロヘキシルベンゼン(CHB)およびその変性体を用いることも好ましい。以下、本発明の具体的な実施例について図面を参照しながら、さらに詳しく説明する。   It is also preferable to use vinylene carbonate (VC), cyclohexylbenzene (CHB), or a modified product thereof in order to form a good film on the positive and negative electrode plates or to ensure stability during overcharge. Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings.

正極合剤層の剥がれと内部短絡および電極群の巻きずれの関係を評価した結果を示す。評価方法は、電極群の製造装置(図示せず)を用いて巻回した電極群を製作し、短絡検査機(図示せず)を用いて内部短絡の発生頻度を評価し、X線検査機を用いて正極板と負極板の巻きずれを評価した。   The result of having evaluated the relationship between peeling of the positive electrode mixture layer, internal short circuit, and winding deviation of the electrode group is shown. The evaluation method is to produce a wound electrode group using an electrode group manufacturing apparatus (not shown), evaluate the occurrence frequency of internal short circuit using a short circuit inspection machine (not shown), and X-ray inspection machine Was used to evaluate the winding deviation between the positive electrode plate and the negative electrode plate.

内部短絡の評価判定基準としは、電極群に電圧200ボルトを通電し、電圧降下量が設定基準値より小さい場合を良品、大きい場合を不良品とした。また、X線検査機の評価判定基準としは、正極板より幅の広い負極板の位置を基準とし、正極板が負極板の幅の中にあれば良品、はみ出れば不良品とした。検査数は100個とした。実施例1は正極合剤層の剥がれの長さBを正極合剤層の厚みAより小さい正極板を使用した。   As a criterion for evaluating the internal short circuit, a voltage of 200 volts was applied to the electrode group, and when the voltage drop amount was smaller than the set reference value, a non-defective product was designated. In addition, as the evaluation criteria of the X-ray inspection machine, the position of the negative electrode plate wider than the positive electrode plate was used as a reference, and if the positive electrode plate was within the width of the negative electrode plate, it was judged as a non-defective product. The number of inspections was 100. In Example 1, a positive electrode plate in which the length B of peeling of the positive electrode mixture layer was smaller than the thickness A of the positive electrode mixture layer was used.

(比較例1)
実施例1と同じ評価方法で、正極合剤層の剥がれの長さBを正極合剤層の厚みAより大きい正極板を使用したものを比較例1とした。
(Comparative Example 1)
The same evaluation method as in Example 1 was used, and Comparative Example 1 was obtained using a positive electrode plate in which the length B of peeling of the positive electrode mixture layer was larger than the thickness A of the positive electrode mixture layer.

Figure 2009176650
Figure 2009176650

実施例1の結果では、内部短絡不良の発生は無く、巻きずれ不良は1%発生したのに対して、比較例1では内部短絡不良が15%、巻きずれ不良は8%発生した。以上の結果から、正極合剤層の剥がれの長さが合剤層の厚み以下であれば内部短絡は防止でき、巻きずれの抑制も可能であることがわかる。また、合剤の剥がれ長さが大きくなるにつれて、内部短絡不良、巻きずれ不良も増加する傾向にあると考えられるので、電極合剤層の剥がれの長さを低減させる取組みが必要となる。   In the result of Example 1, there was no occurrence of an internal short circuit failure and 1% of winding failure occurred, whereas in Comparative Example 1, 15% of internal short circuit failure and 8% of winding failure occurred. From the above results, it can be seen that if the length of peeling of the positive electrode mixture layer is equal to or less than the thickness of the mixture layer, an internal short circuit can be prevented and winding deviation can be suppressed. Further, it is considered that the internal short-circuit failure and the winding deviation failure tend to increase as the mixture peeling length increases, so an approach to reduce the length of the electrode mixture layer peeling is required.

まず、切断刃入口の屈曲角θ1を変化させることで、切断後の正極板20における電極合剤層の剥がれ箇所と電極合剤層の脱落および群電極群構成時における電極合剤層の脱落を評価した結果を示す。評価用の装置は、図3(a)に示すように正極板19を切断上刃22と切断下刃23で切断する装置を用い、評価用の正極板20は、長さ200mmのものを使用した。正極板19の切断刃入口の屈曲角θ1を175°に設定して切断したものを実施例1の正極板とした。   First, by changing the bending angle θ1 at the cutting blade inlet, the electrode mixture layer peels off the electrode mixture layer in the positive electrode plate 20 after cutting, the electrode mixture layer falls off, and the electrode mixture layer falls off during the group electrode group configuration. The evaluation results are shown. As shown in FIG. 3A, the evaluation apparatus uses an apparatus that cuts the positive electrode plate 19 with a cutting upper blade 22 and a cutting lower blade 23, and the evaluation positive electrode plate 20 has a length of 200 mm. did. The positive electrode plate of Example 1 was cut by setting the bending angle θ1 of the cutting blade inlet of the positive electrode plate 19 to 175 °.

実施例2と同じ切断方法を用いて、正極板19の切断刃入口の屈曲角θ1を180°に
設定したものを実施例3とした。
Using the same cutting method as in Example 2, the bending angle θ1 at the cutting blade inlet of the positive electrode plate 19 was set to 180 ° as Example 3.

(比較例2)
実施例2と同じ切断方法を用いて、正極板19の切断刃入口の屈曲角θ1を170°に設定したものを比較例2とした。
(Comparative Example 2)
The same cutting method as in Example 2 was used, and Comparative Example 2 was obtained by setting the bending angle θ1 of the cutting blade inlet of the positive electrode plate 19 to 170 °.

Figure 2009176650
Figure 2009176650

実施例2の結果では、正極板19の切断刃入口の屈曲角θ1を175°にした場合、電極合剤層の剥がれは2箇所発生したが、切断後の電極合剤層の脱落は無く、電極群構成後の電極合剤層の脱落も無かった。また、実施例3の結果では、切断刃入口の屈曲角θ1を180°にした場合、電極合剤層の剥がれは1箇所発生したが、切断後の電極合剤層の脱落は無く、電極群構成後の電極合剤層の脱落も無かった。   In the result of Example 2, when the bending angle θ1 of the cutting blade inlet of the positive electrode plate 19 was 175 °, peeling of the electrode mixture layer occurred in two places, but the electrode mixture layer did not fall off after cutting, There was no loss of the electrode mixture layer after the electrode group configuration. Moreover, in the result of Example 3, when the bending angle θ1 of the cutting blade inlet was set to 180 °, the electrode mixture layer was peeled off at one place, but the electrode mixture layer was not dropped after cutting, and the electrode group There was no dropout of the electrode mixture layer after construction.

一方切断刃入口の屈曲角θ1を170°にした場合、電極合剤層の剥がれは47箇所発生し、切断後の電極合剤層の脱落と電極群構成後の電極合剤層の脱落も有った。電極合剤層の剥がれ箇所が多い場合に切断後および電極群構成後の電極合剤層の脱落が発生することがわかる。比較例2に示す電極合剤層の脱落の原因としては、正極板19が切断後に切断下刃23に沿って走行するが、切断下刃23で分離した瞬間に正極板19が折り曲げられ、その屈曲角θ1が大きい場合に電極合剤層が脱落すると考えられる。   On the other hand, when the bending angle θ1 at the cutting blade entrance is set to 170 °, the electrode mixture layer is peeled off at 47 locations, and the electrode mixture layer is dropped after cutting and the electrode mixture layer is dropped after the electrode group is configured. It was. It can be seen that when the electrode mixture layer is peeled off many times, the electrode mixture layer falls off after cutting and after the electrode group structure. As a cause of the dropping of the electrode mixture layer shown in Comparative Example 2, the positive electrode plate 19 travels along the cutting lower blade 23 after cutting, but the positive electrode plate 19 is bent at the moment when it is separated by the cutting lower blade 23. It is considered that the electrode mixture layer falls off when the bending angle θ1 is large.

以上の結果から、正極板19の切断刃入口の屈曲角θ1およびθ2は175°以上が電極合剤層の脱落対策として良好であると言える。   From the above results, it can be said that the bending angles θ1 and θ2 at the entrance of the cutting blade of the positive electrode plate 19 are 175 ° or more as a good countermeasure against the electrode mixture layer falling off.

次に、切断後の正極板20の出口角度θ3を変化させることで、切断後の正極板20における電極合剤層の剥がれ箇所と電極合剤層の脱落および電極群構成時における電極合剤層の脱落を評価した結果を示す。   Next, by changing the exit angle θ3 of the positive electrode plate 20 after cutting, the electrode mixture layer peels off the electrode mixture layer from the positive electrode plate 20 after cutting, the electrode mixture layer falls off, and the electrode mixture layer during electrode group configuration The result of evaluation of omission is shown.

評価用の装置は、図3(a)に示すように正極板19を切断上刃22と切断下刃23で切断する装置を用い、評価用の正極板20は、長さ200mmのものを使用した。実施例1の結果から、正極板19の切断刃入口の屈曲角θ1は175°に設定した。正極板19の切断刃入口の屈曲角θ3を10°に設定したものを実施例4とした。   As shown in FIG. 3A, the evaluation apparatus uses an apparatus that cuts the positive electrode plate 19 with a cutting upper blade 22 and a cutting lower blade 23, and the evaluation positive electrode plate 20 has a length of 200 mm. did. From the results of Example 1, the bending angle θ1 at the cutting blade inlet of the positive electrode plate 19 was set to 175 °. Example 4 in which the bending angle θ3 at the cutting blade entrance of the positive electrode plate 19 was set to 10 ° was used.

実施例4と同じ切断方法を用いて、切断後の正極板20の出口角度θ3を15°に設定したものを実施例5とした。   Using the same cutting method as in Example 4, the outlet angle θ3 of the positive electrode plate 20 after cutting was set to 15 ° as Example 5.

(比較例3)
実施例4と同じ切断方法を用いて、切断後の正極板20の出口角度θ3を5°に設定したものを比較例3とした。
(Comparative Example 3)
Using the same cutting method as in Example 4, the outlet angle θ3 of the positive electrode plate 20 after cutting was set to 5 ° as Comparative Example 3.

Figure 2009176650
Figure 2009176650

実施例4の結果では、切断後の正極板20の出口角度θ3を10°にした場合、電極合剤層の剥がれは3箇所発生したが、切断後の電極合剤層の脱落は無く、電極群構成後の電極合剤層の脱落も無かった。また、実施例5の結果では、切断刃入口の屈曲角θ3を15°にした場合、電極合剤層の剥がれは3箇所発生したが、切断後の電極合剤層の脱落は無く、電極群構成後の電極合剤層の脱落も無かった。   In the result of Example 4, when the exit angle θ3 of the positive electrode plate 20 after cutting was 10 °, peeling of the electrode mixture layer occurred in three places, but the electrode mixture layer did not drop after cutting, and the electrode There was no loss of the electrode mixture layer after the group configuration. Further, in the result of Example 5, when the bending angle θ3 of the cutting blade inlet was set to 15 °, the electrode mixture layer was peeled off at three places, but the electrode mixture layer was not dropped after cutting, and the electrode group There was no dropout of the electrode mixture layer after construction.

一方切断刃入口の屈曲角θ3を5°にした場合、電極合剤層の剥がれは21箇所発生し、切断後の電極合剤層の脱落と電極群構成後の電極合剤層の脱落も有った。電極合剤層の剥がれ箇所が多い場合に切断後および電極群構成後の電極合剤層の脱落が発生することがわかる。   On the other hand, when the bending angle θ3 at the cutting blade entrance is 5 °, the electrode mixture layer is peeled off at 21 locations, and the electrode mixture layer is dropped after cutting and the electrode mixture layer is dropped after the electrode group is configured. It was. It can be seen that when the electrode mixture layer is peeled off many times, the electrode mixture layer falls off after cutting and after the electrode group structure.

比較例3に示す電極合剤層の脱落の原因としては、出口角度θ3切断後の正極板20と正極板21の切断部同士が接触するためであって、その出口角度θ3が小さい場合に切断部同士が接触しやすくなるために電極合剤層が脱落すると考えられる。   The cause of the drop of the electrode mixture layer shown in Comparative Example 3 is that the cut portions of the positive electrode plate 20 and the positive electrode plate 21 after cutting the outlet angle θ3 are in contact with each other, and the cutting is performed when the outlet angle θ3 is small. It is considered that the electrode mixture layer falls off because the parts easily come into contact with each other.

以上の結果から、切断後の正極板20の出口角度θ3およびθ4は10°以上が電極合剤層の脱落対策として良好であると言える。本実験結果から、電極合剤層の脱落を抑制するためには、切断刃入口の屈曲角と切断後の出口角度の両方を規制することが好ましい。   From the above results, it can be said that 10 ° or more of the exit angles θ3 and θ4 of the positive electrode plate 20 after cutting is good as a measure against dropping of the electrode mixture layer. From the results of this experiment, it is preferable to restrict both the bending angle of the cutting blade inlet and the outlet angle after cutting in order to suppress the electrode mixture layer from falling off.

本発明に係る非水系二次電池用電極板は、少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成し所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成し所定の厚みまでプレスした負極板を所定の寸法に切断して構成した非水系二次電池用電極板であって、正極板または負極板の長手方向における正極集電体からの正極合剤層の切断面からの剥がれまたは負極集電体からの負極合剤層の切断面からの剥がれの長さを正極合剤層または負極合剤層の厚み以下としたことにより、内部短絡による熱暴走を回避でき、安全性に優れているため電子機器および通信機器の多機能化に伴って高容量化が望まれている携帯用電源等として有用である。   The electrode plate for a non-aqueous secondary battery according to the present invention comprises a positive electrode mixture paint obtained by kneading and dispersing at least an active material comprising a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium. A positive electrode plate formed by forming a positive electrode mixture layer and drying to a predetermined thickness, or a negative electrode mixture paint prepared by kneading and dispersing an active material and a binder composed of a material capable of holding at least lithium in a dispersion medium An electrode plate for a non-aqueous secondary battery comprising a negative electrode plate formed on a negative electrode current collector, dried to form a negative electrode mixture layer and pressed to a predetermined thickness, and cut to a predetermined dimension. The length of the peeling from the cut surface of the positive electrode mixture layer from the positive electrode current collector in the longitudinal direction of the plate or the negative electrode plate or the length of the peeling from the cut surface of the negative electrode mixture layer from the negative electrode current collector By making it below the thickness of the negative electrode mixture layer, Can avoid thermal runaway due to fault, it is excellent for use in safety with the multi-functionality of electronic devices and communication devices useful as a portable power source such as a high capacity is desired.

(a)本発明における一実施の形態に係る合剤層の剥がれの無い正極板を示す断面図、(b)同合剤層の剥がれの無い負極板を示す断面図(A) Sectional drawing which shows the positive electrode plate without peeling of the mixture layer which concerns on one embodiment in this invention, (b) Sectional drawing which shows the negative electrode plate without peeling of the mixture layer 本発明における一実施の形態に係る電極群の断面を示す模式図The schematic diagram which shows the cross section of the electrode group which concerns on one embodiment in this invention (a)本発明における電極板の切断方法を示す摸式図、(b)同電極板の切断方法を示す摸式図、(c)本発明における別の実施の形態に係る電極板の切断方法を示す摸式図(A) Schematic diagram showing a method for cutting an electrode plate in the present invention, (b) Schematic diagram showing a method for cutting the electrode plate, (c) A method for cutting an electrode plate according to another embodiment of the present invention Schematic diagram showing 本発明の一実施の形態に係る円筒形二次電池の一部切欠斜視図1 is a partially cutaway perspective view of a cylindrical secondary battery according to an embodiment of the present invention. (a)従来例における合剤層の剥がれの有る正極板を示す断面図、(b)同合剤層の剥がれの有る負極板を示す断面図(A) Cross-sectional view showing positive electrode plate with peeling of mixture layer in conventional example, (b) Cross-sectional view showing negative electrode plate with peeling of mixture layer (a)本発明における電極板の切断過程を示す電極板の断面図、(b)同電極板の切断過程を示す電極板の断面図、(c)同電極板の切断過程を示す電極板の断面図、(d)同電極板の切断過程を示す電極板の断面図、(e)同電極板の切断過程を示す電極板の断面図(A) A sectional view of the electrode plate showing the cutting process of the electrode plate in the present invention, (b) a sectional view of the electrode plate showing the cutting process of the electrode plate, (c) an electrode plate showing the cutting process of the electrode plate Cross-sectional view, (d) Cross-sectional view of electrode plate showing cutting process of same electrode plate, (e) Cross-sectional view of electrode plate showing cutting process of same electrode plate 本発明における一実施の形態に係る電極板切断装置を示す模式図The schematic diagram which shows the electrode plate cutting device which concerns on one embodiment in this invention. 従来例における電極板切断装置を示す模式図Schematic diagram showing a conventional electrode plate cutting device 従来例における切断装置を示す模式図Schematic diagram showing a cutting device in a conventional example

符号の説明Explanation of symbols

1 正極集電体
2a,2b 正極合剤層
3 正極板
4 負極集電体
5a,5b 負極合剤層
6 負極板
7 セパレータ
8 正極板
9 正極板
10 正極板
11 切断上刃
12 切断下刃
13 出口ロール
14 出口ロール
15 水平ロール
16 正極板
17 負極板
18 セパレータ
19 電池ケース
20 封口板
21 封口ガスケット
22 電極群
23 正極リード
24 負極リード
25 絶縁板
26 切断上刃
27 切断下刃
28 正極集電体
29a,29b 正極合剤層
30 正極板
31 集電体
32a,32b 正極合剤層
33 正極板
34 集電体
35a,35b 正極合剤層
36正極板
37 電極板ロール
38 電極板
39 水平ロール
40a,40b,40c 切断上刃
41a,41b 切断下刃
42 上部走行出口ロール
43 下部走行出口ロール
44 ガイドロール
45 ガイドロール
46a,46b 電極板
47a,47b,47c 電極板
A 正極合剤層の厚み
B 正極合剤層の剥がれの長さ
DESCRIPTION OF SYMBOLS 1 Positive electrode collector 2a, 2b Positive electrode mixture layer 3 Positive electrode plate 4 Negative electrode collector 5a, 5b Negative electrode mixture layer 6 Negative electrode plate 7 Separator 8 Positive electrode plate 9 Positive electrode plate 10 Positive electrode plate 11 Cutting upper blade 12 Cutting lower blade 13 Exit roll 14 Exit roll 15 Horizontal roll 16 Positive electrode plate 17 Negative electrode plate 18 Separator 19 Battery case 20 Sealing plate 21 Sealing gasket 22 Electrode group 23 Positive electrode lead 24 Negative electrode lead 25 Insulating plate 26 Cutting upper blade 27 Cutting lower blade 28 Positive electrode current collector 29a, 29b Positive electrode mixture layer 30 Positive electrode plate 31 Current collector 32a, 32b Positive electrode mixture layer 33 Positive electrode plate 34 Current collector 35a, 35b Positive electrode mixture layer 36 Positive electrode plate 37 Electrode plate roll 38 Electrode plate 39 Horizontal roll 40a, 40b, 40c Cutting upper blade 41a, 41b Cutting lower blade 42 Upper traveling outlet roll 43 Lower traveling outlet roll 44 Idororu 45 guide roll 46a, peeling length of 46b electrode plates 47a, 47b, the thickness of 47c electrode plate A positive electrode mixture layer B positive electrode mixture layer

Claims (4)

少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成し所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成し所定の厚みまでプレスした負極板を所定の寸法に切断して構成した非水系二次電池用電極板であって、前記正極板または負極板の長手方向における正極集電体の正極合剤層の切断面からの剥がれまたは負極集電体の負極合剤層の切断面からの剥がれの長さを前記正極合剤層または負極合剤層の厚み以下としたことを特徴とする非水系二次電池電極板。   A positive electrode mixture paint obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium is applied onto a positive electrode current collector and dried to form a positive electrode mixture layer. A negative electrode mixture, in which an active material made of a material capable of holding at least lithium and a binder capable of holding lithium and a binder mixed and dispersed in a dispersion medium is applied onto the negative electrode current collector and dried. A non-aqueous secondary battery electrode plate comprising a layer formed and pressed to a predetermined thickness and cut to a predetermined size, wherein the positive electrode plate or the positive electrode current collector in the longitudinal direction of the negative electrode plate The length of the peeling from the cut surface of the positive electrode mixture layer or the peeling from the cut surface of the negative electrode mixture layer of the negative electrode current collector is equal to or less than the thickness of the positive electrode mixture layer or the negative electrode mixture layer. Non-aqueous secondary battery electrode plate. 少なくともリチウム含有複合酸化物よりなる活物質、導電材および結着剤を分散媒にて混練分散した正極合剤塗料を正極集電体の上に塗布し乾燥させて正極合剤層を形成した後に所定の厚みまでプレスした正極板または少なくともリチウムを保持しうる材料よりなる活物質および結着剤を分散媒にて混練分散した負極合剤塗料を負極集電体上に塗布し乾燥させて負極合剤層を形成した後に所定の厚みまでプレスした負極板を所定の寸法に切断した前記正極板または負極板をそれぞれ切断後に上下互い違いに振り分けて巻き取る非水系二次電池用電極板の製造方法であって、前記電極板が上下切断刃で切断する場合において、電極板の切断時に屈曲角を175°から180°とし、また、前記電極板の切断後には隣り合う切断後の電極板を上下互い違いに分離させることを特徴とする非水系二次電池用電極板の製造方法。   After forming a positive electrode mixture layer by applying and drying a positive electrode mixture coating material obtained by kneading and dispersing at least an active material composed of a lithium-containing composite oxide, a conductive material, and a binder in a dispersion medium. A negative electrode coating material obtained by kneading and dispersing a positive electrode plate pressed to a predetermined thickness or an active material made of a material capable of holding at least lithium and a binder in a dispersion medium is dried on the negative electrode collector. A method for producing an electrode plate for a non-aqueous secondary battery in which a negative electrode plate pressed to a predetermined thickness after forming an agent layer is cut into a predetermined size, and the positive electrode plate or the negative electrode plate is cut and wound alternately after being cut. When the electrode plate is cut with an upper and lower cutting blade, the bending angle is set to 175 ° to 180 ° when the electrode plate is cut, and the adjacent cut electrode plates are moved up and down after the electrode plate is cut. Mutual A method for producing an electrode plate for a non-aqueous secondary battery, characterized in that the electrode plates are separated in different ways. 電極板巻出し部と切断部と巻取り部で構成された非水系二次電池用電極板の製造装置であって、入口部では上下切断刃の中央へ挿入させる水平ロールを設置し、出口部では隣り合う切断後の電極板が上下互い違いに分離させる上部走行出口ロールを水平に対して10°以上、また、下部走行出口ロールを水平に対して10°以下に設置することを特徴とする非水系二次電池用電極板の製造装置。   An apparatus for manufacturing an electrode plate for a non-aqueous secondary battery comprising an electrode plate unwinding section, a cutting section, and a winding section, wherein a horizontal roll that is inserted into the center of the upper and lower cutting blades is installed at the inlet section, and the outlet section Then, the upper traveling exit roll that separates the electrode plates after cutting alternately in the vertical direction is installed at 10 ° or more with respect to the horizontal, and the lower traveling exit roll is installed at 10 ° or less with respect to the horizontal. An apparatus for manufacturing an electrode plate for an aqueous secondary battery. 正極板、負極板、セパレータの積層体または巻回体からなる電極群を非水電解質とともにケース内に封入してなる非水系二次電池において、前記正極板および負極板として請求項1記載の電極板を用いたことを特徴とする非水系二次電池。   2. The electrode according to claim 1, wherein the positive electrode plate and the negative electrode plate are used in a non-aqueous secondary battery in which a group of electrodes including a positive electrode plate, a negative electrode plate, a laminated body or a wound body of a separator is enclosed in a case together with a non-aqueous electrolyte. A non-aqueous secondary battery using a plate.
JP2008016128A 2008-01-28 2008-01-28 Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method Pending JP2009176650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008016128A JP2009176650A (en) 2008-01-28 2008-01-28 Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008016128A JP2009176650A (en) 2008-01-28 2008-01-28 Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009176650A true JP2009176650A (en) 2009-08-06

Family

ID=41031521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008016128A Pending JP2009176650A (en) 2008-01-28 2008-01-28 Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009176650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254595A (en) * 2012-06-05 2013-12-19 Hirano Tecseed Co Ltd Device and method for manufacturing web
WO2023210139A1 (en) * 2022-04-28 2023-11-02 日立造船株式会社 Solid state battery manufacturing method and solid state battery manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254595A (en) * 2012-06-05 2013-12-19 Hirano Tecseed Co Ltd Device and method for manufacturing web
WO2023210139A1 (en) * 2022-04-28 2023-11-02 日立造船株式会社 Solid state battery manufacturing method and solid state battery manufacturing device

Similar Documents

Publication Publication Date Title
JP6567280B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method
US7745042B2 (en) Lithium ion secondary battery
JP5929897B2 (en) Positive electrode plate for nonaqueous electrolyte secondary battery and method for producing the same, nonaqueous electrolyte secondary battery and method for producing the same
JP6156398B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
JP5224020B2 (en) Lithium secondary battery
JP5218873B2 (en) Lithium secondary battery and manufacturing method thereof
JP6038803B2 (en) Battery with spiral electrode body and method for manufacturing the same
WO2011135613A1 (en) Non-aqueous secondary battery and electrodes for use in same
KR101944443B1 (en) Non-aqueous electrolyte secondary battery, electrode body used therefor, and method of manufacturing the electrode body
JP2007103356A (en) Non-aqueous secondary battery
JP2005285607A (en) Nonaqueous secondary battery and manufacturing method thereof
JP6287185B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2009134915A (en) Non-aqueous secondary battery
JP2009181833A (en) Non-aqueous secondary battery and method of manufacturing the same
JP5945401B2 (en) Method for producing positive electrode current collector foil of lithium ion secondary battery
JP2011008929A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using this
JP2010009818A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same
JP2020136117A (en) Electrode and nonaqueous electrolyte secondary battery
JP2010108679A (en) Electrode group for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2006302509A (en) Battery
JP2008243704A (en) Cylindrical type nonaqueous electrolyte battery
JP2009176650A (en) Electrode plate for nonaqueous secondary battery, nonaqueous secondary battery using the same, and its manufacturing method
JP2013089441A (en) Electrode group for battery and battery using the same
JP2009193842A (en) Nonaqueous secondary battery, and manufacturing method and device thereof
JP2009134916A (en) Electrode plate for nonaqueous secondary battery, and nonaqueous secondary battery using the same